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Abstract. Understanding the properties of preferential flow patters is a major challenge in subsurface hydrology. Most of the

theoretical approaches in this field stem from research on karst aquifers, where typically two or three distinct flow components

with different time scales are considered. This study starts from a different concept, where a continuous spatial variation in

transmissivity and storavity
::::::::
storativity over several orders of magnitude is assumed. Distribution and spatial pattern of these

properties are derived from the concept of minimum energy dissipation. While the numerical simulation of such systems is5

challenging, it is found that a reduction to a dendritic flow pattern, similar to rivers at the surface, works well. It is also shown

that spectral theory can allow
:
is

:::::
useful

:
for investigating the fundamental properties of such aquifers. As a main result, the long-

term recession of the spring draining the aquifer during periods of drought becomes slower for large catchments. However,

the dependence of the respective recession coefficient on catchment size is much weaker than for homogeneous aquifers.

Concerning the short-term behavior after an instantaneous recharge event, strong deviations from the exponential recession of10

a linear reservoir are observed. In particular, it takes a considerable time span until the spring discharge reaches its peak. This

rise time is in an order of magnitude of one-seventh of the e-folding recession time. Despite the strong deviations from the

linear reservoir at short times, the exponential component typically contributes more than 80 % to the total discharge. This

fraction is much higher than expected for karst aquifers and even exceeds the fraction predicted for homogeneous aquifers.

1 Introduction15

The recession of spring discharge after recharge events can be seen as the fingerprint of an aquifer. In contrast to pumping tests

at wells, it is a passive method based on data that are often recorded routinely. Additionally, spring discharges depend on the

overall properties of the catchment, while pumping tests reflect the properties in a region around the well.

More than a century ago, Maillet (1905) suggested
::::::::
proposed the linear reservoir where discharge Q is directly proportional

to the stored volume V ,20

Q(t) = αV (t). (1)
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The linear reservoir is described by a single parameter α [s−1] and the stored volume follows the ordinary differential equation

d

dt
V (t) =−Q(t)+R(t) =−αV (t)+R(t), (2)

where R(t) [m3s−1] is the recharge. During periods with zero recharge, both the stored volume and the discharge decay25

exponentially with the same decay constant α, also called recession coefficient,

V (t) = V (0)e−αt, (3)

Q(t) = Q(0)e−αt. (4)

The inverse of the recession coefficient, τ = 1
α , defines the e-folding time, so the time interval over which the discharge

decreases by a factor of e.30

The linear reservoir is not only appealing because it can be described by a single parameter, but even more because its

behavior during periods of drought depends only on the actual amount of water, but is independent of the recharge history. It

often provides a reasonable approximation for long periods of drought. Deviations from the exponential decay at shorter time

scales have been investigated and used for characterizing aquifers since the 1960s, where in particular karst systems have been

addressed in numerous studies and several theoretical concepts were proposed.35

Forkasiewicz and Paloc (1967) suggested a superposition of three distinct linear reservoirs with different decay constants

describing three major flow components – a network of highly conductive conduits, an intermediate system of well integrated

fissures, and a network of pores or narrow fissures with low permeability. The behavior of this model is dominated by the

slowest reservoir during long periods of drought.

A
:::::::::::::::::::::
Mangin (1975) introduced

::
a different approach using two componentswas suggested by Mangin (1975). The slow com-40

ponent was described as a linear reservoir, and a fast component with a limited range was added. The parameters of the fast

components are the basis of the widely used karst classification system suggested in the same study. Several other modeling

approaches which are similar in their spirit were developed (e.g., Drogue, 1972; Atkinson, 1977; Padilla et al., 1994; Kovács

and Perrochet, 2014; Xu et al., 2018; Basha, 2020; Kovács, 2021). Beyond these approaches, a multitude of numerical models

designed for simulating real-world scenarios is nowadays availaible. For deeper insights, readers are referred to the review45

paper by Fiorillo (2014) and to the model comparison by Jeannin et al. (2021).

While deviations from the linear reservoir are particular relevant for karst systems, it should be noted that even the simplest

Darcy-type aquifers are not linear reservoirs. Assuming a given transmissivity T [m2s−1] and a given storavity
::::::::
storativity S

[-], the simplest Darcy-type aquifer is described by the water balance equation

S
∂h

∂t
=−divq+ r, (5)50

where h [m] is the hydraulic head,

q =−T∇h, (6)
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[m2s−1] the 2-D flux density (volume per time and cross section width), ∇ the 2-D gradient operator, r the recharge per area

[ms−1], and div the 2-D divergence operator. Inserting Eq. (6) into Eq. (5) yields a partial differential equation of the diffusion

type for the hydraulic head h,55

S
∂h

∂t
= div(T∇h)+ r. (7)

This model was investigated in several studies for constant T and S in square or rectangular domains (e.g., Rorabaugh, 1964;

Nutbrown, 1975; Kovács et al., 2005; Kovács and Perrochet, 2008). Applying spectral theory (see Sect. 2.4), it was shown that

the total discharge Q (q integrated over the entire boundary) can be described by an infinite series of exponential terms with

different decay constants during periods of drought. Since the term with the smallest decay constant dominates at large times,60

the behavior approaches that of the linear reservoir. However, the question how well the linear reservoir approximates the

properties of real aquifers practically or whether the linear reservoir is even some kind of preferred state from a theoretical

point of view, has been discussed controversially (e.g., Fenicia et al., 2006; de Rooij, 2014; Kleidon and Savenije, 2017;

Savenije, 2018).

Including the early recession phase in the analysis yields more information about the aquifer, but increases the dependence of65

the results on the recharge history in turn. The instantaneous unit hydrograph, which dates back to concepts of Sherman (1932),

is widely used in this context. It describes the discharge arising from a unit amount of recharge that is applied instantaneously

at t= 0 over the entire domain.

The unit hydrograph of the simple Darcy aquifer differs strongly from that of the linear reservoir and as well as from the

empirical approaches proposed by Forkasiewicz and Paloc (1967) and by Mangin (1975). While these models predict a finite70

discharge at t= 0, it diverges according to a power law,

Q(t)∝ t− 1
2 , (8)

in the limit t→ 0 for the simple Darcy aquifer (e.g., Hergarten and Birk, 2007). Such a power-law decrease also occurs in

models consisting of porous blocks connected by highly conductive conduits (Kovács et al., 2005; Kovács and Perrochet,

2008). However, a finite conductance of the conduits limits the power-law divergence at short times (Kovács and Perrochet,75

2014). Hergarten and Birk (2007) extended this concept by a fractal distribution of block sizes. While this model was able

to explain a power-law recession with exponents different from − 1
2 , deriving aquifer properties from the power-law behavior

of recession curves turned out to be challenging. Birk and Hergarten (2010) investigated synthetic hydrographs for recharge

events of finite duration and found that the properties of the recharge event likely shadow
::::::
obscure

:
the short-term dynamics of

the porous blocks.80

This study addresses the influence of preferential flow patterns on hydrograph recession in a more general context . In

particular, focus is not explicitly on karst systems. As a major difference towards the studies mentioned above, we do not

start from a binary or ternary system of distinct flowcomponents, but assume a continuous variation in
:::
The

::::::::::::
quantification

::
of

:::::::::::
heterogeneity

::::
and

::
its

::::::::::::
representation

::
in
:::::::::

numerical
:::::::
models

:::
are

:::
still

::::::
major

:::::::::
challenges

::
in

:::::::::
hydrology.

::::::::::
Carbonatic

:::::::
aquifers

:::
are

:::::::::
particularly

:::::::::
interesting

:::
in

:::
this

:::::::
context

:::
due

:::
to

:::
the

::::::::
interplay

::::
fluid

::::
flow

::::
and

::::::::
structure.

::::
The

::::::
spatial

:::::::
structure

:::
of

:::
the

::::::
aquifer

::::
has85
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:
a
::::::
strong

::::::::
influence

::
on

:::::
fluid

::::
flow,

::::::
which

::
in

::::
turn

:::::::
controls

:::::::::
dissolution

::::
and

:::::::::::
precipitation

:::
and

::::
thus

::::
also

:::
the

:::::::::
long-term

::::::
change

:::
of

the hydraulic properties over several orders of magnitude in combination with a highly organized spatial pattern.
::::::::
structure.

::::
This

:::::::::
interaction

:::
has

::::
been

:::::::::
addressed

::
in

::::::::
modeling

::::::
studies

:::
of

:::::
binary

:::::
karst

:::::::
systems

::::::::
consisting

:::
of

:
a
::::::
porous

:::::::
medium

::::
and

:::::::
discrete

:::::::
conduits

:::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::
(e.g., Kaufmann and Braun, 2000; Birk et al., 2003; Kaufmann et al., 2010) as

::::
well

:::
as

::
in

:::
the

:::::::
context

::
of

::::::::::
continuous

::::::
changes

:::
in

:::::::
porosity

::::
and

::::::::::
conductivity

:::::::::::::::::::::
(e.g., Edery et al., 2021).

::::::
Similar

:::::::::
processes

:::
can

::::
also

::::
take

:::::
place

::
in
:::::

soils
::
by

::::::::::
subsurface90

::::::
erosion

:::::::::::::::::::::::::::::::::
(e.g., Bernatek-Jakiel and Poesen, 2018).

:

However, the description of heterogeneity and its representation in numerical models is one of the major challenges in

hydrology. On the other hand, there seems to be
::
As

:::
an

:::::::::
alternative

:::
to

:::::::
forward

:::::::::
modeling,

:::::
there

::
is

:
an increasing number

of studies attempting to derive preferred stated
:::::
states of the atmosphere and the hydrosphere from principles of optimality

(e.g., Kleidon and Schymanski, 2008; Kleidon and Renner, 2013; Kleidon et al., 2014; Kleidon and Savenije, 2017; Kleidon et al., 2019; Zehe et al., 2010, 2013, 2021; Westhoff and Zehe, 2013; Westhoff et al., 2014, 2017; Zhao et al., 2016)
::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::
(e.g., Kleidon and Schymanski, 2008; Kleidon and Renner, 2013; Kleidon et al., 2014; Kleidon and Savenije, 2017; Kleidon et al., 2019; Zehe et al., 2010, 2013, 2021; Westhoff and Zehe, 2013; Westhoff et al., 2014, 2017; Zhao et al., 2016; Schroers et al., 2022).95

In the context of fluid flow, minimum energy dissipation seems to be a promising concept, which was successfully applied to

river networks (Howard, 1990; Rodriguez-Iturbe et al., 1992a, b; Rinaldo et al., 1992; Maritan et al., 1996) and to the cardio-

vascular system of mammals (West et al., 1997; Enquist et al., 1998, 1999; Banavar et al., 1999; West et al., 1999a, b).

Hergarten et al. (2014) developed a theory for an optimal spatial distribution of porosity and hydraulic conductivity in the

sense that the total energy dissipation of the flow is minimized. However, there seem to be neither validations by real-world data100

nor direct applications of this concept so far. Nevertheless, it seems to be the simplest available scheme for generating highly

organized synthetic patterns of porosity and conductivity and will therefore be used in this study.
::
As

:
a
::::::
major

::::::::
difference

:::::::
towards

::
the

:::::::
studies

:::::::
focusing

::
on

:::::
karst

:::::::
systems

:::::::::
mentioned

:::::
above,

::::
this

:::::
theory

:::::
does

:::
not

::::::
predict

:
a
::::::
binary

::
or

::::::
ternary

::::::
system

::
of

:::::::
distinct

::::
flow

::::::::::
components,

:::
but

::
a
:::::::::
continuous

::::::::
variation

::
in
:::

the
:::::::::

hydraulic
::::::::
properties

:::::
over

::::::
several

::::::
orders

::
of

:::::::::
magnitude

::
in

:::::::::::
combination

::::
with

::
a

:::::
highly

::::::::
organized

::::::
spatial

:::::::
pattern.

:::
The

::::::::
predicted

::::::
spatial

::::::
pattern

::
is

:::::::
dendritic

::::
and

::::::
similar

::
to

:::::::
drainage

::::::::
networks

::
at

:::
the

:::::::
surface.

::
So

::
it105

::::
does

:::
not

::::::
capture

:::
the

::::::
variety

::
of

::::::::::
preferential

::::
flow

:::::::
patterns

:::::
found

::
in

:::::
nature

:::::::
entirely.

:

:::
The

::::::::
potential

::::::
relation

::
of

:::
this

:::::::::
theoretical

:::::::
concept

::
to

:::::::::
subsurface

:::::::::
hydrology

:
is
::::
still

::::::
unclear.

:::::::::
Validation

::
is

::::::
limited

::
to

:::
the

::::::::
statistical

:::::::::
distribution

::
of

:::::::::
catchment

::::
sizes

:::
and

::::::
leaves

::::::
several

::::
open

::::::::
questions

::::::::::::::::::::
(Hergarten et al., 2016).

::::
Even

:::
the

::::::::
properties

::
of

:::
the

::::::
model

::::
have

:::
not

::::
been

:::::::
analyzed

::::::::::
thoroughly,

::::::
except

:::
for

::::::::
residence

::::
times

:::
in

:
a
::::::
steady

::::
state

:::::::::::::::::::
(Hergarten et al., 2014).

:

::::
This

::::
study

::::::::::
investigates

:::
the

:::::::
dynamic

:::::::::
properties

::
of

::::
such

::::::::::
preferential

::::
flow

::::::
patterns

:::::
based

:::
on

:::
the

:::::::::::
instantaneous

::::
unit

::::::::::
hydrograph.110

:::
The

:::::
main

:::::::
research

::::::::
question

::
is

::::
how

::::::::::
preferential

::::
flow

:::::::
patterns

::::
with

:::::::::
minimum

::::::
energy

:::::::::
dissipation

::::
are

::::::
related

::
to

:::
the

::::::::
different

:::::::
concepts

::::::::
discussed

::::::
above.

::
In

:::::
more

:::::
detail:

::::
How

:::::
much

:::::
does

::::
their

:::::::
behavior

:::::
differ

::::
from

::::
that

::
of

:
a
::::::::::::
homogeneous

::::::
aquifer

::
or

::
a

:::::
linear

::::::::
reservoir?

::::
Can

:::
we

::::::
explain

:::
the

::::::
typical

::::::::
behavior

::
of

::::
karst

:::::::
springs

::::::
without

:::::::::
assuming

:::
two

::
or

:::::
three

::::::
distinct

:::::
flow

:::::::::::
components?

:::
On

:::::
which

:::::::
physical

:::::::::
properties

::
do

:::::
short-

::::
and

::::::::
long-term

::::::::
properties

:::
of

::::
such

::
an

::::::
aquifer

:::::::
depend

:::
on?

:

2 Approach115

2.1 Basic setup

2.1
:::::::::

Linearized
::::::::::::
consideration
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In this study
:::
The

:::::::::::
instantaneous

::::
unit

:::::::::
hydrograph

::::::::
describes

:::
the

:::::::
response

::
of

::
an

::::::
aquifer

::
to
::::::
adding

::
a

:::
unit

::::::
amount

::
of

:::::
water

:::::::::::::
instantaneously.

:
It
::
is

::::::::::
particularly

:::::
useful

:::
for

:::::
linear

::::::
systems

:::::
since

:::
the

:::::::
response

::
to

::::
any

:::::::
recharge

:::::
curve

:::
r(t)

:::
can

:::
be

:::::::
obtained

:::
by

::::::::::
superposing

:::::::
multiple

:::::::
recharge

:::::
events

::
at
::::::::
different

::::
times

:::::::::
(formally,

:::
the

::::::::::
convolution

::::::
integral

:::
of

:::
r(t)

::::
and

:::
the

:::::::::::
instantaneous

::::
unit

::::::::::
hydrograph).

:
120

:::
For

:::::::::
unconfined

::::::::
aquifers,

:::::::
however,

:::
the

::::::::::::
transmissivity

::
is

::::::::::
proportional

::
to

:::
the

::::::
height

::
of

:::
the

:::::
water

:::::::
column,

T =K (h− b) ,
::::::::::::

(9)

:::::
where

::
K

::
is

:::
the

::::::::
hydraulic

::::::::::
conductivity [

:::::
m s−1]

:::
and

:
b
:::
the

::::
base

::
of

:::
the

::::::
aquifer [

:
m]

:
.
:::::
Since

:::
this

::::::::::
dependence

::::::::
introduces

::
a

::::::::::
nonlinearity

::
in

:::
Eq.

:::
(7),

:::
we

:::
can

::::
only

:::::
make

:::
use

::
of

:::
the

:::::
linear

::::::
theory

:::
for

::::
small

:::::::::::
disturbances.

::::
For

::::
this,

::
we

:::::::
assume

:
a
::::::
steady

::::
state

::
at

:
a
:::::::
recharge

:::
r0

:::
and

:::::
apply

:
a
:::::
small

:::::::::
additional

:::::::
recharge

:::
δr,

::
so

::::
that

::::::::::
r = r0 + δr.

:::::
Then

::
we

::::
can

::::
write

:::
the

::::::
actual

::::
head

::
in

:::
the

::::
form

:::::::::::
h= h0 + δh

::::
with125

::
the

::::::::::
steady-state

:::::
head

:::
h0.

:::::::
Equation

:::
(5)

::::::
retains

::
its

::::::
shape,

:

S
∂δh

∂t
=−divδq+ δr,

::::::::::::::::::

(10)

:::
but

::::
with

δq
::

=
:
−K ((h0 + δh− b)∇(h0 + δh)+ (h0− b)∇h0)
::::::::::::::::::::::::::::::::::::::

(11)

≈
:
−K ((h0− b)∇δh+ δh∇h0)
:::::::::::::::::::::::

(12)130

::
for

:::::
small

:::
δh.

::::
The

:::
first

::::
term

::
is
:::
the

:::::
effect

::
of

::
a

::::::
change

::
in

:::
the

::::::::
hydraulic

:::::::
gradient

:
at
::::::::
constant

:::::::::::
transmissivity

::::::::::::::
T0 =K (h0− b),::::::

which

:::
has

:::
the

:::::
same

::::
form

::
as

::::
Eq.

:::
(6).

::::
The

::::::
second

::::
term

:::::::::
describes

:::
the

::::::
change

::
in

::::
flux

::::::
arising

:::::
from

:::
the

::::::
change

::
in

:::
the

::::::::
thickness

:::
of

:::
the

::::
water

:::::::
column

::
at

:::::::
constant

::::::::
hydraulic

::::::::
gradient.

::::
This

::::
term

::
is

:::::::::
particularly

:::::::
relevant

:::
for

::::::
sloping

:::::::
aquifers

::::
with

::::
thin

:::::
water

::::::
layers.

::::
Since

::::
the

::::::
concept

:::::::::
developed

::
in

:::
the

:::::::::
following

::::
only

:::::::
captures

:::
the

::::
first

:::::
term,

:::
the

::::::
second

::::
term

::
is
:::::::::
neglected

::
in

:::
this

::::::
study.

::::
This

:::::
means

::::
that

:::
the

::::::::::
steady-state

::::
water

:::::
table

::::::
should

::
be

::::::
almost

:::::::::
horizontal

:::
and

:::
the

:::::::::
respective

::::
water

:::::::
column

::::::
should

:::
not

::
be

:::
too

:::::
thin.

::
In135

:::
this

::::
case

:::::::::
(neglecting

:::
the

::::::
second

:::::
term

::
in

:::
Eq.

::::
12),

::
δh

::
is
::::::::
decribed

::
by

:::
the

:::::
same

:::::::
equation

::
as

::
h
::
in

:::
Eq.

::::
(7),

:::
but

::::
with

::
δr

::::
and

:::::::
T = T0.

:::
For

:::::::::
simplicity,

::
δh, we assume the simplest scenario of

:::
δq,

:::
and

:::
δr

:::
are

::::::
labeled

::
h,

:::
q,

:::
and

::
r,

::::::::::
respectively.

:::
So

:::
we

::::
have

::
to

:::::
keep

::
in

::::
mind

::::
that

::::
these

:::::::::
properties

:::
are

:::
not

:::::::
absolute

::::::
values,

:::
but

:::::
small

:::::::::
deviations

::::
from

::
a

:::::
steady

:::::
state.

:::::::::::
Furthermore,

::
T

::
is

:::
the

::::::::::
steady-state

::::::::::
transissivity

::
T0::

in
:::
the

:::::::::
following.

2.2
::::

Basic
:::::
setup140

::::::::
Following

:::
the

::::::::::::
considerations

:::
of

:::
the

:::::::
previous

:::::::
section,

:::
we

:::::::
consider a 2-D aquifer with a given transmissivity T [m2s−1] and a

given storavity
::::::::
storativity

:
S [-], described by Eqs. (5) and (6). Since focus is on strongly organized preferential flow patterns,

both T and S are not constant
:::::::
spatially

:::::::
uniform, but may even vary over several orders of magnitude.

::
As

::::::::
discussed

:::
in

:::
the

:::::::
previous

::::::
section,

:::
the

:::::
head

:::::
values

::
h,

:::
the

::::
flux

::::::
density

::
q,

::::
and

:::
the

:::::::
recharge

:
r
:::
are

:::
not

::::::::
absolute

::::::
values,

:::
but

::::::::
deviations

:::::
from

:
a
::::::
steady

::::
state.

:::
As

:::
the

::::::::
simplest

::::::::
boundary

:::::::::
condition,

:
it
::::

can
::
be

::::::::
assumed

::::
that

:::
the

::::::::
hydraulic

:::::
head

::
at

::::::
springs

:::::::
remains

::::::::
constant,

::::::
which

::
is145

::::::::
equivalent

::
to

:::
the

::::::::
boundary

::::::::
condition

::::::
h= 0.
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On a regular grid with a uniform grid spacing d, Eqs. (5) and (6) can be discretized by a finite-volume approach according

to

d2Si
∂hi
∂t

=−
∑

j∈N(i)

qij + d2ri (13)

with the fluxes150

qij = dTij
hi−hj
d

. (14)

The nodes of the grid were numbered by a single index i, whereN(i) denotes the nearest neighborhood of the node i, consisting

of four neighbors except for boundary nodes. The symbol qij [m2s−1] refers to the flux from the node i to the node j, while

Tij is the respective transmissivity. Note that qij already includes the length of the edge between the two nodes (first term d

in Eq. 14), so that it is no longer a flux per unit width. Inserting Eq. (14) into Eq. (13) yields the respective discrete form of155

Eq. (7).

Solving this equation numerically on large grids is challenging if the transmissivity varies over several orders of magnitude.

Using an explicit scheme for the timestep requires very small time increments since small changes in hydraulic head cause large

fluxes. Employing a fully implicit scheme overcomes this limitation since fully implicit schemes are stable at arbitrary time

increments for diffusion-type equations. However, most of the available algorithms for solving the resulting linear equation160

system do not perform well if T varies strongly. This also applies to multigrid schemes (e.g., Hackbusch, 1985), which are the

only schemes with linear time complexity, so where the numerical effort per time step increases only linearly with the number

of nodes.

2.3 Dendritic flow patterns

In the
:::
The

:
theory of minimum energy dissipation in Darcy flow proposed by Hergarten et al. (2014) ,

:::::::::::
approximates

:
preferential165

flow patterns are approximated by dendritic structures. This means that each node i delivers its entire discharge to one of its

neighbors, b, called flow target in the following (strictly speaking, it should be labeled bi). The flow target is defined as the

neighbor with the steepest descent in hydraulic headh, which is the same as the neighbor with the lowest h
:::
head

:::::
value

:
for a

grid with uniform spacing in both directions. Then, the neighborhood consists of three groups of nodes: (i) One flow target.

(ii) Some neighbors that deliver their discharge to the considered node, called donors in the following. (iii) Some nodes that170

do not interact with the considered node. The last group of nodes makes the difference towards the original model where all

neighbored nodes interact.

::::
Since

:::
we

::::::::
consider

::::
only

:::::
small

::::::::
deviations

:::::
from

:
a
::::::

steady
:::::
state,

:::
we

:::
can

:::::::
assume

:::
that

:::
the

::::::::
topology

::
of

:::
the

::::
flow

::::::
pattern

:::::
does

:::
not

::::::
change

::::::
through

:::::
time.

::::
The

::::
flow

:::::
target

::
of

::::
each

::::
node

::
is

::::::::::
determined

::::
from

:::
the

:::::
steady

:::::
state

:::
and

:::::::
persists.

:::
As

:
a
:::::
major

:::::::::
advantage,

::::
this

:::::::::::
simplification

:::::::
inhibits

::
the

::::::::::
occurrence

::
of

:::::
nodes

:::::::
without

:
a
::::
flow

::::::
target.175

The discrete version of the balance equation (Eq. 13) turns into

d2Si
∂hi
∂t

=−qi+
∑
j∈D(i)

qj + d2ri (15)
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for a dendritic flow pattern, where the notation qi (with a single index) describes the flux from the node i to its flow target (so

qib in the general notation). The sum extends over all donors of the node i, denoted D(i) here.

::::
Since

:::
the

::::::::
topology

::
of

:::
the

:::::
flow

::::::
pattern

::
is

:::::
static,

:::
the

::::
head

:::::
value

:::
of

:
a
:::::
node

::::
may

::::::
become

:::::
lower

:::::
than

:::
that

::
of

:::
its

::::
flow

::::::
target,

::
in180

:::::
which

::::
case

:::
Eq.

::::
(14)

:::::::
predicts

:
a
::::::::

negative
::::
flux.

::
In

:::
the

:::::::
context

::
of

:::::
small

::::::::
deviations

:::::
from

:
a
::::::
steady

:::::
state,

:
a
:::::::
negative

::::
flux

::::::
would

:::
not

::::
have

::
an

:::::::::
immediate

::::::::
meaning

::::
since

::
it
::::
just

::::
says

:::
that

:::
the

::::
flux

:::::::
towards

:::
the

::::
flow

:::::
target

::
is

:::::
lower

::::
than

::
in

:::
the

::::::
steady

:::::
state.

::::::::
However,

::::
there

::
is

::
no

:::::::
problem

:::::
even

:
if
:::::::::
backward

:::
flux

::::::
occurs

:::
on

::
an

:::::::
absolute

:::::
scale.

:

Dendritic networks are widely used in the context of surface flow patterns, in particular river networks at large scales. In

order to reduce effects of anisotropy, the so-called D8 scheme is typically used
::
on

::
a
:::::::
regular,

::::::::::::::
two-dimensional

::::
grid. Here, 8185

neighbors (4 nearest neighbors and 4 diagonal neighbors) are considered, so that river segments are either parallel to one of

the coordinate axes or diagonal. While the numerical construction of optimized drainage patters by Hergarten et al. (2014)

also used the D8 scheme, we consider only the 4 nearest neighbors (D4 scheme) in the following. The main reason for this

limitation is the comparison to the original model in Sect. 3.1. The D4 scheme can be seen as a restriction of the original model,

while the D8 version would allow for additional flow paths. In particular, a diagonal line of points with a high transmissivity190

would be a preferential flow path with regard to the D8 scheme, but not in the original model.

While the concept of dendritic flow patterns was used by Hergarten et al. (2014) for constructing patterns of porosity and

conductivity (see also Sect. 2.7), recent developments in numerics make this concept interesting for time-dependent modeling.

In the following section, a numerical scheme is presented which overcomes the numerical limitations arising from
:::::::
sections,

:::
two

::::::::
numerical

::::::::::
approaches

:::
that

:::
are

::::::
robust

::::::
against

:
strong variations in transmissivity for dendritic flow patterns

::
are

::::::::
presented.195

2.4 Spectral theory

Large parts of this study are based on spectral theory. Spectral theory decomposes the solution into a set of functions with a

simple behavior. For diffusion problems, these are functions that decay through timeexponentially. For the continuous problem

(
:::
The

::::::::
functions

:::
are

:::::
simple

:::
in

::
the

:::::
sense

::::
that

::::
they

:::
can

::
be

:::::::
written

::
in

:::
the

::::
form

h(x, t) = h(x,0)f(t),
:::::::::::::::::

(16)200

:::::
which

::::::
means

:::
that

::::
their

::::::
shape

::::
does

:::
not

::::::
change

:::::::
through

:::::
time.

:::
For

::::::
r = 0, Eq. 7), this means that we look for functions

::
(7)

::::
can

:::
then

:::
be

::::::::
separated

::::
into

:::
one

::::::::
equation

:::
for

::::::
h(x,0)

::::
and

::::::
another

::::::::
equation

::
for

::::
the

::::
time

::::::::::
dependence

::::
f(t).

::::
This

:::::
result

::
is
::::::::::
recognized

::
by

:::::::
inserting

:
h(x, t) with the property

h(x, t) = h(x,0)e−αt,

for zero recharge (r = 0) , where α is the decay constant. Inserting
:::
into

:::
Eq.

:::
(7)

::::
and

:::::::
dividing

::::
both

:::::
sides

::
by

::::::
h(x, t)

::::
and

::
by

:::
S,205

:::::
which

:::::
yields

:

d
dtf(t)

f(t)
=

1
S div(T∇h(x,0))

h(x,0)
.

::::::::::::::::::::::::

(17)
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::::
Since

:::
the

::::::::
left-hand

::::
side

::
is

::::::::::
independent

::
of

::
x

:::
and

:::
the

:::::::::
right-hand

::::
side

::
is

::::::::::
independent

::
of

::
t,

::::
both

::::
sides

:::::
must

::
be

::::::::
constant.

::
If

::
we

::::
call

::
the

:::::::::
respective

:::::::
constant

::::
−α,

:::
the

:::::::
solution

:::
for

:
f
::
is
:

f(t) = e−αt
:::::::::

(18)210

::::
since

:
Eq. (19) into

:::
16)

:::::::
requires

::::::::
f(0) = 1.

:::
So

h(x, t) = h(x,0)e−αt
:::::::::::::::::

(19)

::::::::
decreases

:::::::::::
exponentially

:::
for

::::::
α > 0

:::
and

::::::::
increases

:::
for

::::::
α < 0.

::::
The

:::::::::
right-hand

::::
side

::
of

:
Eq. (7) (for r = 0) yields

:::
17)

::::::
yields

:::
the

:::::::::
eigenvalue

:::::::
equation

− 1

S
div(T∇h) = αh. (20)215

::
for

:::::::
h(x,0).

:
This means that the function h(x,0) (and thus also h(x, t)) must be

:::::::::
differential

:::::::
operator

:::::::::
− 1
S divT∇

:::::::
applied

::
to

:::
the

:::::::
function

:
h
::::
just

::::::::
multiplies

::
h

::
by

:::
the

:::::
factor

:::
α.

:::::::::::::
Mathematically,

::
h

:
is
:
an eigenfunction of the differential operator − 1

S divT∇ at the

left-hand side of Eq. (20), where
::
and

:
α is the respective eigenvalue.

While the eigenfunctions and the respective eigenvalues can be computed analytically for some simple geometries (e.g.,

Rorabaugh, 1964; Nutbrown, 1975; Kovács et al., 2005; Kovács and Perrochet, 2008, for rectangular domains) and con-220

stant parameters, a heterogeneous distribution of S and T requires a numerical treatment.
:::
The

::::::::
numerical

::::::::
treatment

:::::::
requires

::
a

::::::::
transition

::::
from

:::
the

:::::::::
continuous

::::::::
function

:
h
::
to
:::
the

::::::
values

::
hi:::

on
:::
the

:::::::
discrete

::::
grid.

:
Using the same finite volume discretization as

above , the differential operator − 1
S divT∇ can be written in matrix form

− 1

S
div(T∇h) =̂Ah,

::::
(Eqs.

:::
13

:::
and

::::
14),

:::
the

::::
term

::::::::::::
− 1
S div(T∇h)

:::
can

:::
be

:::::::::::
approximated

::
at

:::
the

:::
i-th

:::::
node

::
by

:
225

− 1

S
div(T∇h)

∣∣∣∣
i

≈ 1

Si

∑
j∈N(i)

Tij(hi−hj),

::::::::::::::::::::::::::::::::::

(21)

where h at the right-hand side is a vector consisting of all head values hi and A is a square matrix. Assuming unit grid spacing

(d= 1) for simplicity,
::::
was

:::::::
assumed

:::
for

:::::::::
simplicity.

::::::::
Aligning

::
all

::::::
values

:::
hi ::

in
:
a
:::::::
column

::::::
vector,

::::
this

::::::
relation

::::
can

::
be

:::::::
written

::
in

:::::
matrix

:::::
form

− 1

S
div(T∇h)≈Ah

:::::::::::::::::

(22)230

::::
with

:
a
::::::
square

:::::
matrix

:::
A.

::
It

:
is
::::::
easily

:::::::::
recognized

:::
that

:
the nondiagonal elements of the matrix

:
A

:
are

Aij =

 −
Tij

Si
for j ∈N(i)

0 else
, (23)
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while the diagonal elements are

Aii =
∑

j∈N(i)

(−Aij) =
∑

j∈N(i)

Tij
Si
. (24)

::::
This

::::::
matrix

::
is

:::
the

:::::
same

::
as

::::::
needed

::::
for

::::::
solving

:::
the

:::::::::::
steady-state

::::::
version

:::
of

:::
Eq.

:::
(7)

:::::::::::
numerically.

:
The respective form of the235

matrix for dendritic flow patterns is basically the same, where only the neighborhood has to be reduced to those points that are

connected, i.e., where either j is the flow target of i or vice versa.

The prerequisite for applying spectral theory is that each initial distribution of hydraulic head values can be written as a

linear combination of eigenvectors (discrete representations of eigenfunctions on the grid) in the form

hi(0) =
∑
k

λkeki,240

with coefficients λk, where
::::
Since

:::
all

:::::::
software

::::::::
packages

:::
for

::::::
linear

::::::
algebra

:::::::
provide

::::::::
functions

:::
for

:::::::::
computing

:::::::::::
eigenvalues,

:::
the

::::
steps

:::
are

:::::::::
technically

::::
not

::::
very

::::::::::
challenging

::
up

::
to

::::
this

:::::
point.

::::::::
However,

::::
each

::::::::::
eigenvalue

:::
and

:::
the

:::::::::
respective

:::::::::::
eigenfunction

::
is
::::
just

:::
one

:::::::
solution

::
of

::::
Eq.

:::
(7)

::::
with

:::::
r = 0

:::
for

:
a
:::::::

specific
:::::
initial

:::::::::
condition

:::::::
h(x,0).

::
In

::::
turn,

:::
we

:::::
need

:::
the

:::::::
solution

:::
for

:::
any

:::::
given

::::::
initial

::::::::
condition.

:::::::
Spectral

::::::
theory

::::::::
expresses

:
a
:::::
given

:::::
initial

::::::::
condition

::
as

::
a
:::::::::::
superposition

::
of

::::::::::::
eigenfunctions

::::
and

::::
then

::::
uses

:::
the

:::::::::
knowledge

::::
about

:::
the

:::::::::
individual

::::::::::::
eigenfunctions

:::
for

:::::::::
predicting

:::
the

:::
full

:::::::
solution.

:
245

:::
Let

::
us

::::::
assume

::::
that

:::
we

::::::::
computed

:::
all

::::::::::::
eigenfunctions

::::
and

:::
that

:
eki is the i-th component

::::
value of the k-th eigenvector (so the

k-th eigenfunction evaluated
:::::::::::
eigenfunction at the node i). Then the hydraulic heads .

::
If
:::::
hi(0)::

is
:::
the

:::::
initial

:::::
value

::
at
::::
this

:::::
node,

::
we

:::::
need

:::::::::
coefficients

:::
λk::

so
::::
that

:::::
hi(0) :

is
:::
the

::::::::::::
superposition

::
of

:::
the

::::::::
respective

::::::
values

:::
eki,:

hi(0) =
∑
k

λkeki.

:::::::::::::::

(25)

::::
Then

:::
the

::::::
values

::
of

:
h
:
at time t are250

hi(t) =
∑
k

λkekie
−αkt, (26)

if the recharge is zero for all t, where αk is the k-th eigenvalue of A. So all head values and thus also all fluxes can be written

as a sum of exponentially decaying terms. In particular, the discharge of a spring
:
,
:::::::
provided

::::
that

::
all

::::::::::
eigenvalues

:::
are

::::::::
positive.

:::
The

:::::
latter

:::
can

::
be

::::::
shown

:::
for

:::
the

::::::
matrix

::::::
defined

::
by

::::
Eqs.

::::
(23)

::::
and

:::
(24)

:::::
with

::
the

::::
help

:::
of

::::::::::
Gershgorin’s

:::::
circle

::::::::
theorem.

::::
Since

:::
all

::::
head

::::::
values

:
can be decomposed into a sum of exponential functions,

:::
the

:::::
fluxes

::::
and

::::
thus

::::
also

:::
the

::::::::
discharge

::
of

::
a255

:::::
spring

::::
can

:::
be

::::::::
expressed

:::
the

:::::
same

::::
way,

Q(t) =
∑
k

λkQke
−αkt, (27)

where Qk is the discharge of the k-th eigenfunction. If we assume that the eigenvalues are sorted in increasing order, the

long-term recession coefficient is α= α1.
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If the matrix
:::
The

::::::::
nontrivial

:::::::
question

::
is

:::::::
whether

::::
each

:::::
initial

::::::::
condition

::::
can

::
be

::::::::
expressed

:::
as

:
a
:::::::::::
superposition

::
of

:::::::::::::
eigenfunctions260

::::::::
according

::
to

::::
Eq.

::::
(25).

::::::::::::::
Mathematically,

:::
this

::::::::
property

:::::
relies

:::
on

:::
the

::::::::
symmetry

:::
of

:::
the

:::::::::
differential

::::::::
operator

:::
or,

:::
for

:::
the

:::::::
discrete

:::::::
problem,

:::
on

:::
the

::::::::
symmetry

:::
of

:::
the

::::::
matrix

::::::::::
(Aij =Aji).::

If
:
A is symmetric, even an orthonormal

:
a basis of eigenvectors exists,

so that a representation according to Eqs
:::
(the

:::::::::::::
representations

::
of

:::
the

:::::::::::::
eigenfunctions

::
on

:::
the

:::::::
discrete

:::::
grid)

:::
can

::
be

::::::
found,

::::::
which

::::::
ensures

:::
the

::::::::::
applicability

:::
of

::
Eq. (25) and (26) is possible.

::
for

:::
any

::::::
initial

::::::::
condition

::::
with

::::::
unique

:::::::::
coefficients

::::
λk.

:::
The

:::::::::
symmetry

::
of

::
A

::::
even

:::::::::
guarantees

::
the

::::::::
existence

::
of

:::
an

::::::::::
orthonormal

:::::
basis.

::
As

::
a
::::
main

:::::::::
advantage,

::
an

:::::::::::
orthonormal

::::
basis

::::::
allows265

::
for

::::::::::
computing

::::
each

:::::::::
coefficient

:::
λk ::::

from
:::
the

:::::
inner

:::::::
product

::::::
(scalar

:::::::
product)

:::
of

:::
the

:::::
initial

:::::
head

:::::::::
distribution

::::
and

:::
the

:::::::::
respective

::::::::::
eigenvector.

::
So

:::
we

::::
can

::::::
obtain

:::
the

::::::::
long-term

::::::::
recession

:::::::::
coefficient

:::::::
α= α1:::

and
::::

the
::::::::::
contribution

::
of

:::
the

:::::::::
respective

::::::::::
component

::
to

:::
the

::::
total

::::::::::::::
(time-integrated)

::::::::
discharge

::::
from

:::
the

::::::
lowest

:::::::::
eigenvalue

:::
and

:::
the

:::::::::
respective

::::::::::
eigenvector

:::::
alone.

:::::::::
Otherwise,

:::
we

::::::
would

::::
need

::
all

:::::::::::
eigenvectors.

:::::
Since

:::::
their

::::::
number

::::::
equals

:::
the

:::::::
number

::
of

::::::
nodes,

:::
this

:::::
would

:::
be

::::::::
expensive

:::
on

::::
large

:::::
grids

:::
and

::::::
would

::::
cost

::
the

:::::::::
advantage

::::
over

:
a
:::::
direct

:::::::
forward

::::::::::
simulation.270

Since Tij = Tji ::
Tij::

is
:::
the

::::::::::::
transmissivity

:::::::
between

:::
the

::::::
nodes

:
i
:::
and

::
j, the matrix

::::::::
Tij = Tji.:::::::

Without
:::
the

::::
term

:::
Si::

in
:::
Eq.

:::::
(23),

:::
this

:::::::
property

::::::
would

::::::
already

::::::::
guarantee

:::
the

:::::::::
symmetry

::
of

:
A

:
.
::::
With

:::
this

:::::
term,

::::::::
however,

::
A

::
is

::::
only

:::::::::
symmetric

::
if

:::::::
Si = Sj ,::

so
::
if

::
S is

symmetric if the storavity Si is the same at all nodes, but symmetry is broken for a spatially variable storavity. This problem

can be fixed by defining a specific inner product instead of
::::::::::
everywhere.

::
To

:::::::::
overcome

:::
this

:::::::::
limitation,

:::
we

::::
need

:::
to

:::
get

:
a
:::

bit
::::::
deeper

::::
into

:::::
linear

:::::::
algebra

:::
and

::::::::
consider

:
a
:::::
wider

:::::::::
definition

::
of

:::::::::
symmetry275

::::::
coming

:::::
from

:::
the

:::::::
concept

::
of

:::::
linear

:::::
maps.

:::::
Here,

:::::::::
symmetry

::
is

::::::
related

::
to

::
an

:::::
inner

:::::::
product,

:::
and

:::
the

::::::::
condition

:::
for

:::::::::
symmetry

:
is
:

Ah · h̃= h ·Ah̃,
:::::::::::::

(28)

:::::
where

:
·
::
is

:::
the

::::
inner

:::::::
product.

::::
This

::::::::
condition

:::
has

::
to

:::
be

:::::::
satisfied

::
for

:::
all

:
h
::::
and

::
h̃.

:
It
::
is
:::::
easily

:::::::::
recognized

::::
that

:::
the

:::::::
criterion

:::::::::
Aij =Aji

:::::::
describes

:::
the

:::::::
specific

::::
case

:::
for the standard scalar product . While the latter is

h · h̃=
∑
i

hih̃i280

for any h and h̃, we define

h · h̃=
∑
i

hih̃i.

:::::::::::::

(29)

:::
For

::::::
deeper

::::::
insights

::::
into

:::
the

::::::::::::
fundamentals,

::::::
readers

:::
are

:::::::
referred

::
to

::::::::
textbooks

::
of

:::::
linear

:::::::
algebra

:::::::::::::::::
(e.g., Halmos, 1958).

:

::
To

:::::
proof

:::
the

::::::::
symmetry

:::
of

::
A

::
in

:::
this

:::::
sense,

:::
we

::::
need

:::
the

:::::::
custom

::::
inner

:::::::
product

h · h̃=
∑
i

Sihih̃i., (30)285

:::::
which

::::::
differs

::::
from

::::
the

:::::::
standard

::::::
scalar

::::::
product

:::::
(Eq.

:::
29)

:::
by

::
its

:::::::::
weighting

::::
with

::::
the

::::::::
storativity

:::
S.

:
Using the definition of A

(Eqs. 23 and 24), it is easily recognized that

SiAij = SjAji, (31)
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and thus

(Ah) · h̃ =
∑
i

Si

∑
j

Aijhj

 h̃i (32)290

=
∑
i,j

SiAijhj h̃i (33)

=
∑
i,j

SjAjihj h̃i (34)

=
∑
i,j

Sjhj

(∑
i

Ajih̃i

)
(35)

= h ·
(
Ah̃
)
., (36)

This is the condition for the
:::::
which

::::::
proves

:::
the symmetry of A with regard to the new

::::::
custom

:
inner product. So the eigenvectors295

ek of A are orthogonal, and an orthonormal basis is obtained by normalizing them in such a way that

::::::::::
Technically,

::
the

::::::::::::
normalization

::
of

:::
the

::::::::::
eigenvectors

::::::::
obtained

:::::::::
numerically

::
is
:::
the

::::
only

::::
point

::::
that

:::::::
requires

:::::::
attention.

::::
The

::::::::::
eigenvectors

::::
have

::
to

::
be

:::::::::
normalized

::::
with

:::::::
respect

:
to
:::
the

:::::::
custom

::::
inner

:::::::
product

:::
and

:::
not

::::
with

::::::
respect

::
to

:::
the

:::::::
standard

:::::
scalar

:::::::
product,

::
so

:::::::::
according

::
to

:::
the

:::::::::
condition

ek · ek =
∑
i

Sie
2
ki = 1. (37)300

If hi are the head values at t= 0, the coefficients λk in Eqs. (25) and (26) are obtained by
:::
then

::::::::
obtained

::::
from

:::
the

::::
inner

::::::::
products

::
in

:::
the

:::::
form

λk = h · ek =
∑
i

Sihieki. (38)

This relation becomes particularly simple for the instantaneous unit hydrographsince .
::::::::
Applying

::
a
::::
unit

::::::
amount

::
of
::::::

water
:::
per

:::
area

::
to
:::
all

:::::
nodes

::::::
results

::
in Sihi = 1 for all nodes here

:
i, and thus305

λk =
∑
i

eki. (39)

::
So

:::
the

:::::::::
coefficient

:::
λk :

is
::::::::
obtained

::
by

::::::
adding

:::
the

::::
head

::::::
values

::
of

:::
the

:::::::::
respective

:::::::::
normalized

::::::::::::
eigenfunction

::
at

::
all

::::::
nodes.

2.5 Forward modeling

Since
:::::::
Spectral

:::::
theory

::
is
:::::

very
:::::::
efficient

:::
for

::::::::::::
characterizing

:::
the

::::::::
long-term

::::::::
recession

:::::
since

::::
only

:::
the

:::::::::::
components

::::
with

:::
the

::::::
lowest

:::::::
recession

::::::::::
coefficients

:::
αk :::

are
:::::::
relevant

::::
here.

::
In

::::
turn,

:
computing the instantaneous unit hydrograph at short times requires a large310

number of eigenfunctionsfor big catchments, ,
:::
so

:::
that

:::
the

:::::::::
advantage

::::
over

:::::
direct

:::::::
forward

::::::::
modeling

::
is

::::
lost.

:::::::::
Therefore,

:
we also

implemented a numerical scheme for forward modeling of the dendritic model. For this purpose, we adopted the very efficient,

fully implicit scheme that was recently proposed in the context of fluvial erosion and sediment transport by Hergarten (2020).
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::
As

::
a

:::::
major

:::::::::
advantage,

:::
the

::::::
scheme

::
is

:::::
robust

::::::
against

::::::
strong

:::::
spatial

:::::::::
variations

::
in

::::::::::::
transmissivity. For simplicity, the scheme is only

described for the D4 neighborhood with unit grid spacing (d= 1) in the following.315

Let us consider a time step from t to t+ δt. Replacing the time derivative at the left-hand side of Eq. (15) by a difference

quotient and evaluating the fluxes at the right-hand side at the time t+ δt (for the fully implicit treatment) yields

Si
hi(t+ δt)−hi(t)

δt
=−qi(t+ δt)+

∑
j∈D(i)

qj(t+ δt)+ ri. (40)

The key idea behind the scheme is that all fluxes respond linearly to baselevel changes
::::::
changes

::
in

::
h

::
of

:::
the

::::
flow

:::::
target

:
b
:
due to

the linearity of the differential equation. In particular, the flux qi(t+ δt) depends linearly on the head value of its flow target320

b
::
hb, so that

qi(t+ δt) = q0i + q′i (hb(t+ δt)−hb(t)) . (41)

Here, q0i is the
:::::::::
hypothetic flux at time t+ δt if the baselevel remains constant , i.e., hb(t+ δt) = hb(t) (so not

:::::
under

:::
the

:::::::::
assumption

::::
that

::
hb:::::::

remains
::::::::
constant

:::::::::::::::::
(hb(t+ δt) = hb(t)).::

It
::
is

:::
not

:::
the

:::::
same

::
as

:
qi(t) ), while

::::
since

::
qi::::

may
::::

also
:::::::
change

:
if
:::
qb

::::::
remains

::::::::
constant.

::::
The

::::::
second

::::
term

::
in

:::
Eq.

::::
(41)

::::::::
describes

:::
the

:::::
effect

::
of

:::::::
changes

::
in

::::::::
hb(t+ δt)

:::
on

::::::::
qi(t+ δt)

:::::
where

:
q′i is the

:::::
partial325

derivative of qi(t+ δt) with respect to the baselevel hb(t+ δt).

As shown in Appendix A, q0i and q′i can be computed from the respective properties of the donors and from the known values

of h at time t by the expressions

q0i = Ti

(
Si

δt −
∑
j q
′
j

)
(hi(t)−hb(t))+

∑
j q

0
j + ri

Si

δt +Ti−
∑
j q
′
j

, (42)

q′i = −Ti
Si

δt −
∑
j q
′
j

Si

δt +Ti−
∑
j q
′
j

. (43)330

Thus, q0i and q′i can be computed successively in downstream order, starting from the nodes without donors.

Once the values q0j and q′j have been computed,
::::::::
However,

::::::::
qi(t+ δt)

::::::
cannot

:::
be

:::::::::
computed

:::::
during

::::
the

::::::::::
downstream

::::::
sweep

::::
since

:::
the

::::::
actual

:::::
values

:::::::::
hb(t+ δt)

:::::::
required

::
in

::::
Eq.

::::
(41)

:::
are

:::
still

:::::::::
unknown.

:::::::::
Computing

:
the values hi(t+ δt) and the respective

fluxes qi(t+ δt) are computed in
::::::
requires

:
a second sweep over the grid. This sweep works in upstream direction

::
all

::::::
nodes,

:::::
which

:::
has

::
to
:::

be
:::::::::
performed

::
in

::::::::
opposite

:::::::
direction

:::::::::
(upstream, starting from the boundaryof the domain

:
). As soon as the head335

value hb(t+ δt) of the flow target is known ,
::
is

::::::
known

:::::
(since

:::
the

:::::
node

::
b

::
is

::::::
treated

::::
prior

:::
to

:::
the

:::::
node

::
i),

:::::::::
qi(t+ δt)

:::
can

:::
be

::::::::
computed

::::
from

:
Eq. (41)can be used for computing the flux qi(t+ δt) from the considered node. Finally, the hydraulic head

can be calculated from Eq. (14) according to

hi(t+ δt) = hb(t+ δt)+
qi(t+ δt)

Ti
. (44)

This scheme provides a direct solver (without the need for iterations) for the fully implicit discretization of the flow equation340

on a dendritic network. It is therefore stable for arbitrary time increments δt, and its performance is not affected by spatial

variations in transmissivity and storavity
:::::::::
storativity. The numerical complexity is O(n), which means the the computing effort

12



increases only linearly with the total number of nodes. It is therefore perfectly suited for simulations on grids with several

millions of nodes.

2.6 Patterns of transmissivity and storavity
::::::::::::::::::::
Nondimensionalization345

:::
The

::::::::
linearized

::::::::
problem

::::
(Eq.

::
7,

:::::
where

::
T

::::
does

:::
not

::::::
depend

:::
on

::
h)

:::
can

::::::
easily

::
be

::::::::::
transformed

::
to

:::::::::::::
nondimensional

:::::::::
properties,

::::::
which

:::::
makes

:::
the

::::::
results

::::::::::
independent

::
of

:::
the

::::::::
absolute

:::::
values

::
of

::
S
::::
and

::
T

:::
and

::
of

:::
the

::::::
spatial

:::::
scale.

:::
For

::::
this

:::::::
purpose,

::::::::
arbitrary

::::::::
reference

:::::
values

:::
S0 :::

and
:::
T0 :::

and
::
an

::::::::
arbitrary

:::::
length

:::::
scale

:
l
:::
can

:::
be

::::::
defined.

:::::
Then

:::
the

:::::::::
respective

:::::::::::::
nondimensional

::::::::
properties

:

Ŝ =
S

S0
, T̂ =

T

T0
, and x̂=

x

l
::::::::::::::::::::::::::::

(45)

::
are

:::::::
defined.

::
If
:::
we

::::::
further

::::::::
introduce350

t0 =
S0l

2

T0
and r0 =

T0
l

:::::::::::::::::::::

(46)

:::
and

:::::
define

:::
the

:::::::::::::
nondimensional

:::::::::
properties

ĥ=
h

l
, t̂=

t

t0
, and r̂ =

r

r0
,

:::::::::::::::::::::::::::

(47)

::
the

::::::::::
differential

:::::::
equation

:::
for

:::
the

::::::::::::::
nondimensional

::::::::
properties

::
is

:::
the

:::::
same

::
as

:::
the

:::::::
original

:::::::
equation

::::
(Eq.

:::
7).

::::
This

:::::
result

:::
can

::::::
easily

::
be

:::::::
verified

::
by

:::::::::
expressing

:::
the

:::::::
original

:::::::::
properties

::
in

:::
Eq.

:::
(7)

::
in

:::::
terms

:::
of

:::
the

::::::::
respective

::::::::::::::
nondimensional

:::::::::
properties.

:::
The

:::::::
scaling355

:::::
factor

::
for

:::
the

::::
flux

::::::
density

::
is
:::
T0 ::::

then,
::
so

::::::::
q = T0q̂.

:

::
As

::
a

::::::::::
consequence

:::
of

::::
these

::::::
scaling

::::::::::
properties,

:::
the

:::::
shape

::
of

:::
the

:::::::::::
instantaneous

::::
unit

::::::::::
hydrograph

:::::::
depends

::::
only

::
on

:::
the

::::::
shape

::
of

::
the

:::::::
aquifer

:::
and

:::
on

:::
the

:::::
spatial

::::::
pattern

:::
of

::
S

:::
and

::
T ,

:::
but

::::
not

::
on

::::
their

:::::::
absolute

::::::
values

::::
and

::
on

:::
the

:::::::
absolute

::::
size

::
of

:::
the

:::::::
aquifer.

::::
This

:::::::
property

:::
will

::::
turn

:::
out

::
to

:::
be

:::::
useful

::
in

:::
the

::::::::
following

:::::::
section.

2.7
:::::::

Patterns
::
of

::::::::::::
transmissivity

::::
and

:::::::::
storativity360

While systematic knowledge about the spatial structure of preferential flow paths is still limited, we need a model for generating

spatial patterns of transmissivity and storavity
::::::::
storativity. In this study, we adopt the theory based on minimum energy dissipa-

tion proposed by Hergarten et al. (2014). This theory addresses the best spatial distribution of a given total pore space volume

in the sense that the total energy dissipation of steady-state flow is minimized. Assuming
::::
The

::::::
central

:::::::::
assumption

::::::
behind

::::
this

:::::
theory

::
is a power-law dependence of

::::::
relation

:::::::
between

:
the hydraulic conductivity K on the porosity φ,365

K ∝ φn, (48)

with a given exponent n, it was found that
:
.
:::::
Some

:::::
ideas

:::
how

::::::::::
dissolution

:::::
could

:::::::
increase K and

::::
were

::::::::
discussed

::
in

::::
that

:::::
study.

::
If

::
all

:::::
pores

::::
have

:::
the

:::::
same

::::::::
diameter

:::
and

:::::
grow

:::::::::
uniformly,

::
an

::::::::
exponent

:::::
n= 2

::::
was

::::::::
obtained.

:::
The

:::::
same

:::::
result

::::
was

:::::::
obtained

:::
for

:::
an

13



:::::::
arbitrary

::::::::::
distribution

::::::::
diameters

::
if

::
all

:::::
pores

:::::
grow

::
by

:::
the

:::::
same

:::::
factor

::
in

::::::::
diameter.

::
In

::::
turn,

::
a
:::::::
stronger

:::::::
increase

::
in

::
K

:::::
with φ must

depend on the volumetric flux density (Darcy velocity) q in the form370

φ ∝ q
2

n+1 ,

K ∝ q
2n

n+1 .

Hergarten et al. (2014)
::::::
(n > 2)

::::::
occurs

::
if

:::::::::
dissolution

:::::::
mainly

::::::
affects

:::
the

::::::
largest

:::::
pores.

::::::::
Overall,

:::::
these

::::::
simple

::::::
models

:::::
yield

::
a

::::::
weaker

:::::::
increase

::
in

::::::::::
conductivity

::::
with

:::::::
porosity

::::
than

::::::::
predicted

::
by

:::
the

::::::::::
fundamental

:::::::
relation

::
of

::::::::::::::::
Kozeny (1927) and

:::::::::::::
Carman (1937).

::::
This

::::::
relation

:::::::
predicts

:::::
n= 3

::
at

:::::
small

:::::::::
porosities,

:::::
which

::::
was

:::
also

:::::::
adopted

::
in

:::
the

:::::::::
numerical

::::
study

::
of
::::::::::
dissolution

:::
and

:::::::::::
precipitation375

::
by

::::::::::::::::
Edery et al. (2021).

::
In

::::
turn,

:::
the

:::::::::
theoretical

:::::
study

::
of

::::::
fractal

::::
pore

::::::
spaces

::
by

::::::::::::::::
Costa (2006) points

:::::::
towards

::::::
n≈ 2.

:::
The

:::::
exact

:::::
value

:::
of

:::
the

::::::::
exponent

::
n

:::
is,

::::::::
however,

:::
not

:::::::::
important

::
in

:::
the

:::::::::
following.

::::::::::::
Theoretically,

::
it

::
is

::::
only

:::::::::
important

::::
that

::
the

::::::::
increase

::
in

:::
K

::::
with

::
φ
::
is

:::::::
stronger

:::::
than

:::::
linear

:::::::
(n > 1)

:::::
since

:::::::::::
concentrating

::::::::
porosity

:::::
along

::::::::::
preferential

::::
flow

:::::::::
structures

::
is

::::::::::
energetically

::::::::
favorable

::::
only

:::::
under

::::
this

::::::::
condition.

:

:::::
Based

::
on

:::
the

:::::::::
power-law

:::::::
relation,

:::::::::::::::::::::::::
Hergarten et al. (2014) derived

:::
the

::::::::
relations380

φ
:
∝
:

q
2

n+1 ,
::::

(49)

K
:
∝
:

q
2n

n+1 .
::::

(50)

:::
and computed optimized dendritic networks on a discrete gridbased on these relations. For simplicity, we assume that

:
.
::::
This

::::
result

:::
is,

::::::::
however,

::::::
limited

::
to

::::::::
confined

:::::::
aquifers

::::
with

::
a
:::::::
constant

:::::::::
thickness.

:::::::::
Assuming

:::::
S = φ

:::
for

:::
an

:::::::::
unconfined

:::::::
aquifer

::
is

:::
the

:::::::
simplest

:::
and

::::::::
somehow

:::::::::::::
straightforward

::::::::
approach.

::
In

::::
turn,

:::
the

:::::::
transfer

::::
from

:::
K

::
to

:
T
::
is
:::
not

:::::
trivial

::::
and

:::::::
depends

::
on

:::
the

::::::::::
topography385

::
of

:::
the

::::
base

:
b.
:::::
Even

::
if

:::
the

::::::
bottom

::
is

:::
flat,

:::::
points

::::
with

:::
the

:::::
same

:
q
::::
will

::::
have

:::::::
different

::::::
values

::
of

::
h

:::
and

::::
thus

:::::::
different

:::::::::::::
T =K(h− b),

::::::::
depending

:::
on

::::
their

:::::::
position

::
in

:::
the

:::::::
network.

:::::
Since

:::
this

::::::::::
dependency

::::::
would

::::
make

:::
the

::::::
theory

::
of

::::::::
minimum

::::::
energy

:::::::::
dissipation

:::::
more

::::::::::
complicated,

::
it

::
is

:::::::
assumed

::
in

:::
the

::::::::
following

::::
that

:::
the

::::::::::
dependence

::
of

::
T

::
on

::
q

:
is
:::
the

:::::
same

::
as

::::
that

::
of

::
K

:
(Eq.

::::
50).

::
As

::
a

:::::::::::
modification,

::
we

::::::
might

:::
take

::::
into

:::::::
account

::::
that

::::
sites

::::
with

::::
high

::
q

:::
and

::::
thus

::::
high

::
K

:::::
may

::::
have

:
a
:::::
lower

::::::::
thickness

::::::
h− b.

::::
Then

:::
the

::::::::
increase

::
in

::
T

::::
with

:
φ
::::
will

::
be

:::::::
weaker

:::
than

:::
the

:::::::
increase

::
in
:::
K,

::::::
which

:::::
could

::
be

:::::::
included

:::
by

:::::::
reducing

:::
the

::::::::
exponent

::
n.

:
390

::
As

:::
the

:::::
most

::::::::
important

::::::
aspect,

::::::::
however,

::::
Eqs. (49) also holds for the storavity and Eq. (50) for the transmissivity, both with

q as the flux per unit width.

Assuming a steady state with uniform
:::
and

::::
(50)

:::::
refer

::
to

:
a
::::::
steady

:::::
state.

::::
The

:::::::
aquifer’s

:::::::::
properties

::
do

::::
not

::::::
change

::
on

::::
the

::::
time

::::
scale

::
of

:::::::::
individual

::::::
events.

:::::::
Instead,

::
we

:::::::
assume

:::
that

::
S

:::
and

::
T
:::
are

:::::::
adjusted

:::
to

:
a
::::::
steady

::::
state

:::
that

::::::
reflects

:::::
some

:::::::::
long-term

:::::::
average.

::
At

::::
this

:::::
point,

:::
we

:::
can

:::::
make

::::
use

::
of

:::
the

::::::::::::::
nondimensional

::::::::::
formulation

:::::::::
developed

::
in

:::::
Sect.

::::
2.6.

::::::::::
Single-pixel

::::::::::
catchments

::::::
(nodes395

::::::
without

:::::::
donors)

::::
have

:::
the

::::::
lowest

::::::
values

::
of

::
S

:::
and

:::
T .

:::
Let

:::
us

:::
use

::::
their

:::::::::
storativity

:::
and

::::::::::::
transmissivity

::
as

:::
the

::::::::
reference

::::::
values

:::
S0

:::
and

:::
T0.

::
If

:::
we

::::::
assume

:
a
:::::::
uniform

:::::::::
long-term

::::::
average

:
recharge, the flux per unit with can be replaced by the respective catchment

size A. For convenience, we define
:::::
mean

:::
flux

::
is
:::::::::::
proportional

::
to

:::
the

::::::::
catchment

::::
size

::
Ai:::

of
:::
the

::::::::
respective

:::::
node.

::
If

:::
we

::::::
further

:::
use

the grid spacing as the length scale of the system and thus measure A
:
d

::
as

:::
the

:::::::::::
characteristic

:::::
length

:::::
scale

::
l,

::
the

::::::::::::::
nondimensional

14



:::::::::::
generalization

::
of
::::
Eqs.

::::
(49)

::::
and

::::
(50)

:
is
:

400

Si
:

=
:

A
2

n+1

i ,
:::::

(51)

Ti
:

=
:

A
2n

n+1

i .
:::::

(52)

:::::
Owing

:::
to

:::
the

:::::
choice

:::::
l = d,

:::
the

:::::::::
catchment

::::
size

:::
Ai :::

has
::
to

::
be

:::::::::
measured in grid pixels

:::
(so

::
in

::::
units

::
of
::::
d2)

::::
here.

:::::
Then

::::::::::
single-pixel

:::::::::
catchments

:::
are

:::::::::::
characterized

:::
by

::::::::::
Si = Ti = 1,

::::::::::::
corresponding

::
to

:::::::
Si = S0::::

and
::::::
Ti = T0::

in
::::::::
physical

:::::
units.

:::
The

::::::
largest

::::::::::
catchments

::
in

:::
the

:::::::::
examples

:::::::::
considered

::::
later

:::::::
consist

::
of

:::::::
slightly

:::::
more

::::
than

:::
106

::::::
pixels,

::::::
which

::::::
means

::::
that

:::
the405

::::::::
catchment

::::
size

:::::
varies

:::
by

::
a
:::
bit

::::
more

::::
than

:::
six

::::::
orders

:::
of

:::::::::
magnitude.

::::
For

:::::
n= 2,

::::
this

::::::::::
corresponds

:::
to

:
a
::::::::
variation

::
in

::
T
:::

by
:::::
eight

:::::
orders

::
of

::::::::::
magnitude.

::
If

:::
we

:::::::
assume,

::::
e.g.,

:::::::::
T0 = 10−9

:::::::
m2s−1,

:::
the

::::::
values

::
of

::
T

::::::
would

:::::
cover

:::
the

:::::
range

::::
from

:::::
fresh

:::::::::
limestone

::
to

:::::::
strongly

:::::::
karstified

:::::::::
limestone

::
at

:
a
::::::::
thickness

::
of

:::::
some

::::::
meters.

::::
The

::::::::
respective

:::::
range

::
of
::
S
::
is
::::
only

:::::::
slightly

::::
more

::::
than

::::
four

::::::
orders

::
of

::::::::
magnitude

:::
for

::::::
n= 2.

::::::::
However,

:::::::::
assuming

:::::::::
S0 = 10−5

:::::
would

:::::
cover

:::
the

:::::
range

:::
up

::
to

:::::::
S = 0.1. In addition, we set the factors of

proportionality to unity, so that410

Si = A
2

n+1

i ,

Ti = A
2n

n+1

i .

Practically, setting the factors of proportionality to unity defines a nondimensional time scale in addition to the spatial scale.

:::::::::
Practically,

:::
the

::::::::::::
characteristic

::::::::
timescale

:::
t0 ::::

(Eq.
:::
46)

:::
is

:::
the

::::::
central

::::::::
property

::
to

:::
be

:::::
taken

::::
into

:::::::
account

::::::
when

::::::::::
transferring

:::::::::::::
nondimensional

::::::::::
hydrographs

:::
to

:::::::::
real-world

::::::::::
coordinates.

:::::
With

:::
the

:::::
values

:::
S0::::

and
:::
T0 ::::::

defined
::::::
above,

::::
this

::::
time

:::::
scale

:::::
would

:::
be415

:::::::
t0 = 104

:
s
:::

at
:
a
::::
grid

:::::::
spacing

:::::
d= 1

::
m

::::
and

:::::::
t0 = 106

::
s
::
at

::::::
d= 10

:::
m.

:::::
Since

::
d

:::::
seems

::
to

:::
be

:
a
:::::::::

numerical
:::::::::
parameter

:::::
rather

::::
than

::
a

:::::::
physical

:::::::::
parameter,

:::
the

:::::
strong

::::::::::
dependence

:::
on

::
d

::::
may

::
be

:::::::::
confusing

::
at

::::
first.

::::::::
However,

::
d

::
is

:
a
::::::::
property

::
of

:::
the

::::::
spatital

:::::::
pattern.

::
It

::::::
defines

::
the

:::::::
smallest

::::
cell

:::
that

::::::
cannot

::
be

:::::::::
subdivided

:::
by

:
a
:::::::::
preferential

::::
flow

::::::
pattern

::::
and

:::
thus

:::::
some

::::
kind

::
of

:::::::::::
representative

::::::::::
elementary

::::::
volume

:::
(in

::::::::::
combination

::::
with

:::
the

:::::::::
thickness).

:

:::
The

:::::::::::
characetristic

:::::::::
timescale

::
t0:::

can
:::
be

:::::::::
interpreted

:::::::::
physically

::
in

:::
the

:::::
setup

:::::
used

::::
here.

:
According to Eqs. (14) and (15), the420

smallest spatial unit (a single-pixel catchment) is described by the equation

d2Si0
∂hi
∂t

=−T i0 (hi−hb) (53)

for zero recharge. So the smallest spatial units behave like a linear reservoir with a recession coefficient

α=
Ti
d2Si

T0
d2S0
::::

= 1
1

t0
::

, (54)

which means that one nondimensional time unit
:
t0:is the characteristic time of a single-pixel element

::::::::
catchment.425

2.8 Considered scenarios

Based on the assumptions described in the previous section, a numerically obtained flow pattern for n= 2 on a 4096× 4096

grid is used in this study. Points
::::
The

::::::::
algorithm

:::
for

::::::::
generating

::::
such

:::::::
patterns

::::
was

::::::::
described

::
by

:::::::::::::::::::
Hergarten et al. (2014).

:::
All

::::::
points

at the boundaries are considered as springs where the discharge is measured. Figure 1 illustrates the catchments of the springs.
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Figure 1. Catchments of numerically obtained dendritic flow patterns for n= 2 on a lattice of 4096× 4096 sites. Color corresponds to the

size A of each individual catchment, measured in grid pixels. The watersheds between large catchments (A≥ 10000 pixels) are highlighted

in black.

Several scenarios will be considered for the same geometry in the following. Beside the reference scenario with n= 2,430

the influence of n will be investigated. These investigations also include uniform transmissivity and storavity.
::::::::
storativity.

:
The

suitability of the description as a dendritic network will be tested against full Darcy flow.

In order to enable a comparison of the recession curves of individual springs, the same catchments are used in all simulations.

This means that the boundaries between the catchments shown in Fig. 1 are enforced by cutting the respective connections, so

by inhibiting flow across the watersheds.435

3
::::::
Results

::::
and

:::::::::
discussion

4 Results

3.1 Dendritic flow patterns vs. full Darcy flow

As a first step, we investigate under which conditions the reduction from full Darcy flow (taking all four neighbors into account)

to a dendritic flow pattern (a single flow target for each node) provides a suitable approximation. We start from the optimized440

distribution of S and T for n= 2, so from a strongly preferential flow pattern. Figure 2 compares the long-term recession

coefficients α (α1 in Eq. 27) obtained from the dendritic flow pattern to those of full Darcy flow. The recession coefficients of

both approaches agree well, which means that the long-term recession behavior is captured well by the dendritic flow pattern.

Some deviations occur at rather small catchment sizes from about 10 to 200. Here, allowing only one single flow direction
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Figure 2. Recession coefficient α of each individual catchment with n= 2 for dendritic flow patterns against full Darcy flow. The colors

match Fig. 1 and indicate the size of the respective catchment.

leads to a slight underestimation of α
:
,
:::::
which

::::::
means

:::
that

:::
the

::::::::
recession

::
is
:::::::
slightly

:::
too

::::
slow. This underestimation is highest at445

catchment sizes A≈ 16 and reaches about 10 % there.

While a slower recession (a decrease in α) is the expected behavior when restricting the flow pattern to certain directions, it

may be surprising at first that the effect vanishes for very small catchments. However, we have to keep in mind that we used a

subdivision into predefined catchments. So nodes at drainage divides between two catchments are already restricted concerning

their drainage directions for the full Darcy flow scenario.450

In order to investigate the effect of the restricted flow directions in more detail, we analyzed the flow pattern of the full

Darcy scenario. For this purpose, we define the major flux component of each node as the flux towards the given flow target

(according to the dendritic pattern) and the minor flux component as the sum of the fluxes towards all other neighbors with

lower head values.

Figure 3 shows the relative contribution of the minor fluxes as a function of the size of the respective upstream catchmentsize.455

The upstream catchment size refers to the individual pixels here and not to the embedding catchment. So the data point for a

A= 1 describes the average over all pixels without donors, no matter whether they are draining directly to the boundary (so

are indeed single-pixel catchments) or are part of a larger catchment. In order to avoid artifacts arising from the restricted flow

directions
:::::
Since

:::::
points

:
at drainage divides , inner points and points at drainage divides were investigated separately

::
are

:::::::
already

:::::::
restricted

::::::::::
concerning

::::
their

::::
flow

::::::::
direction

::
in

:::
the

:::
full

:::::
Darcy

::::::::
scenario,

:::::
these

:::::
points

:::
are

:::::::
analyzed

:::::::::
separately

::::
from

:::::
inner

:::::
points.460

The contribution of the minor fluxes decreases with increasing catchment size, so downstream along the preferential flow

paths. It becomes negligible for all considered scenarios at catchment sizes A' 200. The contribution of the minor flux is

particularly small immediately after a short, uniform recharge pulse. This result is owing to the relation between transmissivity

and storavity. The initial distribution of
:
If

::
all

:::::
sites

::::::
receive

:::
the

:::::
same

::::::
amount

:::
of

:::::
water,

:::
the

::::::::
resulting

::::::
change

::
in

::::::::
hydraulic

:::::
head

:
is
::::::::
inversely

:::::::::::
proportional

::
to

:::
the

:::::::::
storativity.

:::::
Since

::::
high

::::::::::::
transmissivity

:::::
goes

:::::
along

::::
with

::::
high

:::::::::
storativity,

:::
the

:::::::::
hydraulic

:::::::
gradient465
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Figure 3. Relative contribution of the minor fluxes for each grid pixel as a function of their respective
::
the

:
catchment size A. The curves were

obtained by logarithmic binning with ten bins per decade. All three considered scenarios ,
:
– a steady-state initial condition, a unit recharge

pulse, and the exponentially decaying term
::::
(only

::
the

::::::
slowest

:::::::::
component,

::::
first

::::
term

:
in
:::

Eq.
:::

27)
::

– are separated into
::::::
analyzed

::::::::
separately

:::
for

grid pixels that lie within a spring catchment (flow between
::::::
towards all four neighbors; solid lines) and pixels at drainage divides (restricted

flow directions; dashed lines).

:::::::
becomes

:::::
more

::::::
focused

:::::::
towards

:::::::::
increasing

::::::::
catchment

:::::
size.

::
As

::
a

:::::::::::
consequence, the head values is inverse to the storavity, which

is high along preferential flow paths. So there are strong gradients in hydraulic head from sites with small catchment sizes

towards sites with large catchment sizes, which focus the fluxes
:::::
fluxes

:::
are

::::::
focused

:
towards the preferential flow paths,

::::::
which

::::::
reduces

:::
the

:::::
minor

::::::
fluxes.

The strongest contribution of the minor fluxes is found for the long-term recession, characterized by an exponential recession470

curve. The minor fluxes contribute even almost 60 % for A= 1 here (only inner points, about 35 % for drainage divides). It

may be surprising that the minor fluxes do not affect the recession coefficient strongly, as shown in Fig. 2. In an extreme

scenario where all four neighbors are at the same head values, the fluxes would be four times higher in the full Darcy model

than in the single flow target realization, which would result in a four times faster recession than predicted by Eq. 54. Although

the majority of the nodes have small upstream catchment sizes (e.g., A= 1 for 43 % of all nodes and A≤ 10 for 81 % of all475

nodes), their behavior is obviously not crucial for the properties of the entire catchment.

These results suggest preferential flow patterns can be represented well on a discrete grid by a dendritic structure where each

node drains only towards one of its neighbors. In turn, the approximation by a dendritic flow pattern does not work well for a

spatially uniform distribution of T and S as shown in Fig. 4. Here, α is underestimated by more than one order of magnitude

for large catchments, which means that the recession is more than by a factor of 10 too slow. The coefficients agree well only480

for small catchments, where the minor fluxes are small or even absent due to the restricted flow directions at drainage divides.
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Figure 4. Recession coefficient α of each individual catchment with a spatially uniform distribution of T and S for dendritic flow patterns

against full Darcy flow. The colors match Fig. 1 and indicate the size of the respective catchment.

3.2 Scaling properties of the recession coefficient

It was already visible in Figs. 2 and 4 that the recession coefficient α decreases with increasing catchment size. The scaling

behavior expected from
:::::::
expected

::::::
scaling

::::::::
behavior

:
is
:::::::::
α∝A−1.

::::
This

::::
result

::
is

:::::::
formally

::::::::
obtained

::::
from

:::
the

:::::::::::
characteristic

::::::::
timescale

::
t0 :

(Eq. (7)is α∝A−1, which arises from the
::
46

::::
with

:::::::
A∝ l2),

:::
but

::::
can

:::
also

:::
be

::::::
derived

:::::::
directly

::::
from

:::
the

::::::::::
occurrence

::
of

:
a
:
first-485

order time derivative at the left-hand side and the
::
of

:::
Eq.

:::
(7)

::::
and second-order spatial derivatives at the right-hand side. If we

rescale the entire catchment including the pattern of S and T by a factor β, the right-hand side of Eq. (7) changes by a factor

of β−2
::
for

:::::
r = 0. Then the time scale must change by the same factor. Since the catchment size A increases quadratically with

β, the time scale is proportional to the catchment size and thus α∝A−1.

As shown in Fig. 5, this simple scaling behavior does not hold for the patterns of S and T considered here. While the scaling490

behavior follows a power law

α∝A−γ (55)

reasonably well for all considered values of n, it seems that an exponent γ = 1 is only achieved for n= 1. For all values n > 1,

we find γ < 1, where γ decreases with increasing n. This means that the recession of large catchments is still slower than the

recession of small catchments, but the effect is considerably weaker than for a simple Darcy-type aquifer (γ = 1).495

Qualitatively, this weaker increase is the expected behavior for a preferential flow pattern. Preferential flow paths are able

to transport water rapidly over large distances, so that an increasing spatial extension does not slow down the recession as it

would be the case for
::::::
strongly

::
as

::
in
:
a homogeneous aquifer.
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Figure 5. Scaling behavior of recession coefficient α relating to catchment size A (Eq. 55) for different values of n and for a uniform

distribution of T and S. Full Darcy flow is plotted as solid lines, flow in dendritic patterns as dotted lines. Except for the scenario with

S = T = 1, the curves of full Darcy flow and the dendritic pattern are hardly distinguishable.

The opposite behavior is observed for n < 1. Here large catchments become extremely slow. Revisiting Eqs. (51) and (52),

it is recognized that T still increases with catchment size, but weaker than S for n < 1. So flow is still facilitated along the500

preferential flow paths, but the respective cells become slow due to their high storavity
::::::::
storativity. This becomes visible if we

apply Eq. (54) formally to such cells, which yields α∝A
2(n−1)
n+1 , so that α decreases with increasing A. However, n < 1 would

be unrealistic for porous media, where rather n≥ 2 should be expected. Beyond this, it was demonstrated by Hergarten et al.

(2014) that dendritic flow patterns are energetically favorable only for n > 1. So preferential flow patterns with n < 1 can be

constructed, but do not make much sense. Nevertheless, the curves are almost indistinguishable not only for n≥ 1, but also for505

n < 1. The results reveal that the numerical approximation by a dendritic flow pattern also works well for n < 1.

As already recognized in Sect. 3.1, the approximation by a dendritic flow pattern does not work for constant transmissivity

and storavity
:::::::::
storativity. Figure 5 reveals that the unusual scaling behavior with γ > 1 also occurs for the description by full

Darcy flow. This result is related to the subdivision of the domain into fixed catchments drained by distinct springs. In order

to test this hypothesis, we computed the recession coefficients for radial flow towards a spring in polar coordinates. Keeping510

the radius of the spring constant and varying the total size of the catchment (the outer radius), we obtained roughly the same

scaling behavior, γ ≈ 1.1, as found for the catchments considered in Fig. 5. This scaling behavior indicates that the region

around the spring is some kind of bottleneck that becomes increasingly relevant for large catchments. This result aligns well

with the result of Hergarten et al. (2014), who found that minimum energy dissipation for radial flow requires an increase in

permeability towards the spring.515

:::
The

::::::::
nontrivial

::::::::::
dependence

::
of

::
α
:::
on

:::
the

::::::::
catchment

::::
size

::::
does

:::
not

::::
only

:::::
affect

:::::
spring

:::::::::::
hydrographs,

:::
but

::::
also

:::
the

::::::::
response

::::
time

::
of

::::::
aquifers

:::
to

:::::::
changes

::
in

::::::
climate

::
or

::::::::
hydraulic

:::::::::
conditions

::
at

:::
the

::::::::::
boundaries.

:::
As

:
a
::::::
recent

:::::::
example,

::::::::::::::::::::::::::
Cuthbert et al. (2019) provided
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Figure 6. Unit hydrographs of the biggest catchment for n= 2 and of a homogeneous 1-D aquifer. The dashed lines correspond to the

long-term exponential recession. The data are scaled in such a way that the e-folding time τ and the total amount of water
::::::
supplied

::
by

:::
the

::::::
recharge

::::
event

:
are the same in both scenarios.

:::::::::
worldwide

::::::::
estimates

::
of

:::::
these

:::::::::::
groundwater

::::::::
response

:::::
times

::::::::::
worldwide.

::::::
These

::::::::
estimates

:::
are

:::::
based

:::
on

::::
the

::::::::::::::
one-dimensional

::::::
version

::
of

:::
Eq.

:::
(7)

:::
for

:::::::::::
homogeneous

:::::::
aquifers

::::
with

:::
the

::::
size

::
of

:::
the

::::::
aquifer

:::::::
assumed

::
to

:::
be

::::
twice

:::
the

:::::::
distance

::
L
::
of

::::::::
perennial

::::::
rivers.

::::
Then

:::
the

::::::
scaling

:::::::::
arguments

:::::
given

:::::
above

:::::
(and

:::::::
formally

::
in

:::::
Sect.

:::
2.6)

::::::
yields

::::::::
α∝ L−2

:::
and

::::
thus

:
a
::::::::

response
::::
time

:::::::::::
proportional

::
to520

:::
L2.

:::::
Since

:
L
::::::::
increases

::::
with

:::::::::
decreasing

:::::::::::
precipitation,

::::
this

:::::
model

:::::::
predicts

:
a
::::::
strong

:::::::
negative

:::::::::
correlation

:::::::
between

::::::::::
precipitation

::::
and

::::::::::
groundwater

::::::::
response

::::
time

:::
with

::::::
typical

::::::::
response

:::::
times

::
of

::::::
several

:::::::
thousand

:::::
years

::
in

::::
arid

:::
and

::::::::
semi-arid

:::::::
regions.

:
If
:::
the

:::::::::
respective

::::::
aquifers

::::
are

:::
not

::::::::::::
homogeneous,

:::
but

::::
have

::
a
::::::::::
preferential

::::
flow

:::::::
structure

:::
as

:::::::::
considered

:::::
here,

:::
the

::::::::::
dependence

::
of

:::
the

:::::::::::
groundwater

:::::::
response

::::
time

:::
on

:
L
::::
and

::::
thus

::
on

:::::::
climate

:::
will

:::
be

::::::::::
considerably

::::::
weaker

::::
than

::::::::
predicted

:::
by

::::::::::::::::::
Cuthbert et al. (2019).

:

3.3 Short-term recession525

The differences between the model considered here and simple Darcy-type models are not limited to the scaling properties of

the long-term recession coefficient. As exemplified in Fig. 6 for the biggest catchment, the unit hydrograph shows a clear rising

limb at short times. In contrast, the 1-D Darcy-type aquifer shows a power-law decrease in discharge at short times, so that

Q→∞ for t→ 0.

For a better comparison, size and parameter values of the 1-D aquifer were adjusted in such a way that the long-term recession530

coefficient α and the total amount of water
:::::::
supplied

:::
by

:::
the

:::::::
recharge

:::::
event

:
are the same as for the considered catchment (see

Appendix B). For such a simple aquifer, a lag between a short precipitation event and the peak discharge would typically be

attributed to the infiltration process. We would then assume that the time lag is related to the transit time of the water from

the surface to the aquifer. In a model consisting of individual porous blocks connected by highly conductive fractures (e.g.,

Kovács et al., 2005; Hergarten and Birk, 2007), the time lag may also be owing to the finite conductivity of the fracture system.535
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Figure 7. Relation between rise time trise and e-folding time τ of the long-term recession for the considered catchments and different values

of n.

In contrast, the finite rise time is an inherent property of the structure of the aquifer in the model considered here. It cannot be

attributed uniquely to any individual component of the system.

Figure 7 provides an analysis of the rise time trise for the considered catchments and different values of the exponent n. For

n= 2, the data suggest a linear relationship between trise and the long-term e-folding time τ = 1
α . The ratio of trise and τ varies

from about 9 % to 19 % for the individual catchments. The rise times become slightly shorter in relation to the e-folding time540

for lower n. For n= 1.5, we found ratios in a range from about 4 % to 22 %. The data obtained for n > 2 are non-unique, in

particular for small catchments (small τ ). Overall, there seems to be a weak increase in the ratio of trise and τ with increasing

n. This trend aligns well with the absence of a finite rise time in the simple one- and two-dimensional aquifers without a

preferential flow pattern. However, the trend is much weaker than the variation among individual catchments and therefore not

investigated further. In each case, however, trise is not very small compared to τ . One-seventh of the e-folding recession time545

seems to be a reasonable order of magnitude. Taking into account that long-term e-folding times of karst aquifers are typically

in an order of magnitude of several weeks, the rise time is in an order of magnitude of several days.

The occurrence of a rising limb in the unit hydrograph requires that some of the coefficients λkQk in Eq. (27) are negative.

This can be seen formally by computing the derivative of Eq. (27). The derivatitve is similar to Eq. (27) itself, except that the

coefficients are −αkλkQk. Since the sum cannot become zero if all coefficients have the same sign, at least one of the original550

coefficients λkQk must be negative. Figure 8 shows the coefficients for the largest catchment. While the coefficients of the

slowest components (small αk) are positive, there is no obvious preference for either sign in the faster components.

The spectrum of the considered catchment differs fundamentally from that of the 1-D aquifer. While the spectrum of the

1-D aquifer consists of distinct components with recession coefficients αk ∝ (2k− 1)2 (see Appendix B), the spectrum of the

catchment becomes more or less continuous at large k. However, the smallest recession coefficients are still distinct. For the555
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Figure 8. Coefficients λkQk and recession coefficients αk in Eq. (27) for the largest catchment (n= 2). Only the slowest 500 components

(k ≤ 500) were computed. The data of the 1-D aquifer were rescaled in such a way that the lowest recession coefficient α1 and the total

discharge
::::::
recharge

:
are the same as for the simulated catchment.

catchment analyzed in Fig. 8, the ratio is α2

α1
≈ 2. While the lowest ratios among all simulated catchments are about 1.5, the

ratio is typically in a range from about 2.5 to 4 for smaller catchments. So the ratio α2

α1
differs from catchment to catchment,

but is always clearly above unity(also .
::::
This

::::
also

:::::
holds for n 6= 2). This property ensures that the recession curve approaches a

single exponential function at a reasonable time and that the coefficient λ1Q1 captures the long-term recession well. However,

the ratio is much lower than
::
the

::::
ratio

:

α2

α1
= 9 for

::
of the 1-D aquifer. Although the deviation from an exponential recession also560

depends on the coefficients λkQk, the difference is already visible in Fig. 6. While the unit hydrograph of the 1-D aquifer is

almost indistinguishable from the exponential decay at t= 0.5τ , the difference is more than 15 % at this time for the largest

catchment. So the model with the preferential flow pattern approaches the long-term exponential recession much more slowly

than the simple 1-D aquifer.

Figure 9 illustrates the approximation of the unit hydrograph by a finite number of exponential components. In this example,565

all coefficients for k ≤ 9 are positive. In the range 9< k ≤ 23, there are also negative coefficients. However, the positive

coefficients still dominate here, so that the highest peak discharge is achieved when including the components with k ≤ 23.

The negative components become increasingly relevant for larger k. This results in a decreasing peak discharge, however, still

at t= 0 for k ≤ 60. The component with k = 61 is the first that shifts the peak discharge to a time t > 0 an thus produces a

rising limb in the unit hydrograph. However, approximating the behavior around the peak discharge reasonably well requires570

several hundred components.

The occurrence of negative coefficients in Eq. (27) is not a principal
::::::::::
fundamental problem, but impedes a simple interpreta-

tion of the decomposition into exponentially decreasing terms. If all components were positive, we could imagine the aquifer

as a set of linear reservoirs drained in parallel. However, negative components would correspond to reservoirs with a negative
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Figure 9. Recession curves of the largest catchment obtained from the numerical simulation and different numbers of exponential functions

(Eq. 27).

amount of water. Formally, the slow component (first exponential function) could even contain more water than available in575

total, and the fast components (all higher exponentials) could be negative in total. In Fig. 6, this would mean that the area of the

unit hydrograph below the exponential component at short times was larger than the area above the exponential component.

In this case, the widely used characterization of karst aquifers by the contribution of the slow (exponential) component to the

total discharge (Mangin, 1975; Jeannin and Sauter, 1998) would be taken at absurdum.

Figure 10 shows the contribution of the slow component (first exponential) to the total amount of water for all catchments580

considered here (n= 2). Depending on the catchment size, this contribution is between 77 % and 104 %. So there are indeed

catchments where the effect of the rising limb is so strong that the slow component is formally larger than the total recharge

and the fast components are negative in sum. However, this effect is found only for some rather small catchments. For the

largest catchments, the contribution of the slow component is about 90 %.

The obtained contributions of the slow component are high compared to other models. For the 1-D aquifer used here as a585

reference, this contribution is 8
π2 ≈ 81 %. For an aquifer consisting of square porous blocks connected by conduits with infinite

conductance, it is 64
π4 ≈ 66 % (e.g., Birk and Hergarten, 2010). The contribution of the slow component was not explicitly

investigated by Hergarten and Birk (2007) in their fractal model with power-law distributed block sizes. However, since the

slowest flow component arises from the largest blocks, the total contribution of the slow component must even be considerably

smaller than the 66 % obtained for an aquifer with a uniform block size. In the widely used classification scheme of karst590

aquifers proposed by Mangin (1975), even aquifers with a contribution of the slow component of less than 50 % are considered

poorly karstified (see also Jeannin and Sauter, 1998). So our continuous model of preferential flow patterns predicts even a

higher contribution of the slow component to the unit hydrograph than other models and is far off from what is typically

assumed for karst systems.
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Figure 10. Contribution of the slowest exponential component to the total discharge for the considered catchments. The red line shows the

respective contribution of 8
π2 ≈ 81 % for the 1-D aquifer.

At first sight, the observed high contribution of the slow component could be an effect of the finite rise time. As recognized in595

Figs. 6 and 9, the unit hydrograph is below the slow component for t/ 0.5trise. When investigating recession curves in reality,

the analysis typically starts from the peak in discharge (t= trise). The orange-colored markers in Fig. 10 show the respective

contributions of the slow component. Starting the analysis from t= trise instead of t= 0 indeed yields lower contributions of

the slow components. However, the effect is only in an order of magnitude of a few percent. So the result that continuous

preferential flow patterns predict a high contribution of the slowest flow component is not an artifact of the analysis.600

3.4 The effect of non-uniform recharge

While the unit hydrograph describes uniform recharge, the spatial distribution of the recharge may have a strong influence on

recession curves of large catchments.
::
So

:::
the

:::::::
question

:::::
arises

:::::::
whether

:::
the

::::::
strong

::::::::
deviations

:::::
from

::
the

::::::::::
exponential

::::::::
behavior

:::::
found

::
for

:::::
karst

::::::
springs

:::::
could

::
be

::::::
related

::
to

:::
the

::::::::::
occurrence

::
of

::::
local

:::::::::
rainstorms

::::
that

:::::
affect

::::
only

:
a
:::::
small

:::
part

:::
of

:::
the

:::::::::
catchment.

As a simple example, we separated the domain into a proximal part and a distal part. Both parts are equally sized, and605

the distinction is made by the distance from the boundary of the domain. Since the overall domain is the same, the recession

coefficients αk of all flow components are the same as for the entire domain. Only the coefficients ak in Eq. (27) differ. This

difference, however, has a strong effect on the rise time and on the contribution of the slow flow component.

Figure 11 compares the results obtained numerically for the largest catchments
::::::::
catchment

:
to those obtained by spectral

decomposition for a 1-D aquifer (for details, see Appendix B). While a completely filled 1-D aquifer
::
the

::::::::::
hydrograph

:
starts610

with a peak at t= 0
::::
after

:
a
::::::::
spatially

:::::::
uniform

:::::::
recharge

:::::
event, applying recharge only to the distal part of the domain introduces

a finite rise time. This rise time is, however, shorter (in relation to the e-folding recession time) than for the aquifer with the

preferential flow pattern. The rise time of the preferential flow pattern also changes considerably if recharge is applied only to
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Figure 11. Instantaneous unit hydrographs for partly filled domains
::::::
recharge

::::::
applied

::
to

:
a
::::
part

::
of

::
the

::::::
domain. Solid lines refer to the largest

catchment of the simulation, and dashed lines to a homogeneous aquifer. The data are scaled in such a way that the e-folding time τ and the

total amount of
:::::::
supplied water are the same in both scenarios. Proximal and distal regions cover half of the catchment each.

a part of the domain. The strong influence may be surprising at first since we could expect that the signal propagates rapidly

through the preferential flow structure from the distal part of the domain to the spring. However, preferential flow paths have615

not only a high transmissivity here, but also a high storavity
::::::::
storativity. Thus, the propagation of signals is not as fast as we

might expect.

The contribution of the slowest component also changes if only
:::::::
recharge

::
is

::::::
applied

::::
only

:::
to a part of the domainis filled.

Similarly to the rise time, it increases if only the distal part of the domain is filled since the instantaneous recharge signal has

already been smoothed when it arrives at the spring. The contribution of the first exponential component is formally higher620

than 100 % for the distal part. For the largest simulated catchment, it is 137 %, while it is 115 % for the 1-D aquifer. In turn, the

contribution of the first exponential component is lower for the proximal parts; 50 % for the largest catchment in the simulation

and 47 % for the 1-D aquifer. So the contribution of the first exponential component is always higher for the preferential flow

pattern than for the 1-D aquifer, and the effect of applying recharge only to a part of the domain is similar.

These results substantiate the relevance of the spatial distribution of the recharge for the short-term recession. The difference625

between the preferential flow pattern and a homogeneous 1-D aquifer is , however, rather small. It mainly concerns the behavior

at very short times, with a finite rise time for the preferential flow pattern and a peak at t= 0 for the 1-D aquifer if the recharge

is applied to the proximal part of the domain.
:::
On

:::::::
average,

::::::::
however,

:::
the

:::::
effect

:::::::
vanishes.

::::
For

:::
the

:::::
largest

::::::::::
catchment,

::
the

:::::
50 %

:::
for

::
the

::::::::
proximal

::::::
region

:::
and

:::
the

::::::
137 %

:::
for

:::
the

:::::
distal

:::::
region

:::::
yield

:
a
:::::
mean

:::::
value

::
of

:::::
94 %

::
in

:::::::::
agreement

::::
with

:::
Fig.

:::
10

:::::::::
(rightmost

::::
blue

::::::
circle).

::::
This

::
is

:
a
::::::
general

::::::::
property

::
of

:::
the

:::::
linear

::::::
model,

:::::
which

::::::
allows

:::
for

::::::::::
superposing

:::::::
recharge

::::::
events

:::
not

::::
only

:::::::::
concerning

:::::
time,630

:::
but

:::
also

::::::::
spatially.

::
It

:::::
could

::::
even

:::
be

::::::::::
generalized

::
to

:::::::
arbitrary

:::::
parts

::
of

:::
the

:::::::
domain

:::::
down

::
to

:::::::
recharge

::::::
events

::::
that

:::
are

::::::
limited

::
to

::
a

:::::
single

:::::
node.
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:::::
While

::::
there

::::::
should

:::::::::::
theoretically

::
be

:::
no

:::::
effect

::
on

::::::::
average,

:::::::
recharge

::::::
events

::
in

:::
the

:::::::
proximal

::::::
region

::::
will

::
be

:::::
more

:::::::::
prominent

::
in

::
the

::::::::::
hydrograph

::::
than

:::::
those

::
in

:::
the

:::::
distal

::::::
region.

:::::::::
Therefore,

:::
the

:::::::
analysis

::
of

:::::::::
real-world

:::::::::::
hydrographs

:::::
might

::
be

::::::
biased

:::::::
towards

:::
the

::::
more

:::::::::
prominent,

::::::::
proximal

::::::::
recharge

::::::
events,

:::::
which

::::::
would

:::::
yield

:
a
:::::::::
decreasing

:::::::::::
contribution

::
of

:::
the

:::::::
slowest

:::::::::
component

:::
for

:::::
large635

:::::::::
catchments.

:::::::::
However,

:::::::::
explaining

::
the

:::::
often

:::::
small

::::::::::
contribution

::
of

:::
the

::::::::::
exponential

:::::::::
component

::::
this

::::
way

:::::
seems

:::::
quite

:
a
::::::
stretch.

:

4 Conclusions and perspectives

This study is a first attempt to describe the dynamics of aquifers with continuous preferential flow patterns. In contrast to

approaches based on two or three distinct flow components widely used in the context of karst aquifers, the concept used here

assumes a continuous spatial variation in hydraulic properties over several orders of magnitude.640

An
::
A

::::::::::::::
two-dimensional aquifer with a flat bottom and

:::::::
spatially

::::::::
variable,

:::
but

:
time-independent transmissivity was consid-

eredas the simplest scenario .
::::
This

::::::::
scenario

::::::::::
corresponds

::
to

:::
the

:::::::::
application

::
of

:::::
small

:::::::::::
disturbances

::
to

:
a
::::::
steady

::::
state

::
of

:::
an

::::::
aquifer

::::
with

::
an

::::::
almost

::::::::
horizontal

:::::
water

:::::
table. Synthetic spatial patterns of transmissivity and storavity

::::::::
storativity

:
were obtained from

principles of minimum energy dissipation based on the theory proposed by Hergarten et al. (2014).

As a major technical result, it was found that such aquifers can be approximated well by dendritic flow patterns, in which645

the entire discharge of each cell is delivered to the neighbor with the steepest gradient in hydraulic head. This approximation

has been widely used for channelized flow patterns at the surface. The dendritic structure enables an efficient, fully implicit

numerical scheme with a numerical effort that increases only linearly with the number of cells, also known asO(n) complexity.

This property allows for simulations on grids consisting of several million nodes and thus for a reasonable spatial resolution of

the preferential flow pattern.650

As a second, rather theoretical result, it was shown that spectral theory is not restricted to homogeneous aquifers, but can also

be applied to aquifers with any spatial distribution of transmissivity and storavity
::::::::
storativity. Although the eigenvalues and the

respective eigenvectors have to be computed numerically, this approach allows for a fast computation of the long-term recession

coefficient without forward modeling over a long time span. In addition, the contribution of the slowest flow component to the

instantaneous unit hydrograph (and also to any other initial state) can be computed easily.
::::::::
However,

:::
the

:::::::
efficient

:::::::::
numerical655

::::::
scheme

:::
and

:::::::
spectral

::::::
theory

::::
rely

::
on

:::
the

::::::::::
assumption

::
of

::::::::::::::
time-independent

::::::::::::
transmissivity

::::
and

::::::
cannot

::
be

::::::::
extended

:::::
easily

:::::::
towards

::::::
sloping

:::::::
aquifers.

:

The long-term recession coefficient α depends on the catchment size. The dependency is, however, weaker than for ho-

mogeneous aquifers and follows a power law α∝A−γ (Eq. 55). The exponent γ depends on the assumed relation between

transmissivity T and storavity
::::::::
storativity

:
S. It approaches 1 for T ∝ S, which is also the limit where dendritic flow patterns660

are energetically favorable. In this case, the scaling is the same as for homogeneous aquifers (γ = 1). For relations T ∝ Sn, γ

decreases with increasing n. As a typical value, γ = 0.4 was found for n= 2. So the decrease in the recession coefficient with

catchment size is typically less than half as strong as for homogeneous aquifers.
:::
This

:::::::
finding

:::::::::
challenges

:::::::
previous

::::::
results

:::
on

::::
very

::::
long

::::::::::
groundwater

::::::::
response

::::
times

:::
of

::::
large

:::::::
aquifers

:::::::::::::::::::::::
(e.g., Cuthbert et al., 2019).
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Since flow patterns obtained from minimum energy dissipation are typically scale-invariant, a power-law decrease of the665

discharge after a short recharge pulse might be expected at first. However, the respective instantaneous unit hydrograph shows

a completely different behavior. The discharge immediately after the recharge event is quite small, and it takes a considerable

time until it reaches its peak. This rise time is in an order of magnitude of one-seventh of the e-folding recession time (τ =

α−1). It seems nor
::::::
neither to depend strongly on the catchment size neither

::
nor

:
on the relation between transmissivity and

storavity
::::::::
storativity.670

The contribution of the slowest component to the unit hydrograph is in an order of magnitude of 90 % for large catchments

and even larger for small catchments. This contribution increases further if recharge is applied only to a part of the domain far

away from the spring and even exceeds 100 % then. Formally, this result arises from the occurrence of negative coefficients in

decomposition of the unit hydrograph into exponentially decaying components. The occurrence of negative coefficients also

inhibits the simple interpretation as a set of linear reservoirs draining in parallel. Measuring the contribution of the slowest675

component from the peak of the unit hydrograph instead of the time at which the instantaneous recharge occurs reduces the

contribution of the slowest component only slightly. This contribution is higher than for homogeneous aquifers and much

higher than typically assumed for karst aquifers (less than 50 %).

So we have to conclude that preferential flow patterns arising from a strongly organized pattern of transmissivity and storavity

::::::::
storativity

:
differ fundamentally from karst aquifers in their properties. For future work, it would be interesting to find out680

whether the difference mainly concerns the contribution of the slowest flow component or also the scaling of the recession

coefficient with catchment size.

For the further development, an extension of the numerical scheme towards unconfined sloping aquifers (e.g., Rupp and

Selker, 2006; Pauritsch et al., 2015) would be particularly useful. Although there is ongoing development in this field (e.g.,

Alemie et al., 2019; Pathania et al., 2019), including preferential flow patterns at a reasonable spatial resolution is still a685

challenge here. Extending the implicit scheme for dendritic flow patterns towards unconfined sloping aquifer would still be

challenging, but might considerably contribute to understanding the response of hillslopes to precipitation events and phenom-

ena such as subsurface stormflow (e.g., Chifflard et al., 2019).

Appendix A: The fully implicit scheme for a dendritic network

In this section, Eqs. (42) and (43), which are the basis of the implicit scheme discussed in Sect. 2.5, are proven. Inserting690

Eqs. (14) and (41) into Eq. (40) yields

Si
hi(t+ δt)−hi(t)

δt
=−Ti (hi(t+ δt)−hb(t+ δt))+

∑
j∈D(i)

q0j +
∑
j∈D(i)

q′j (hi(t+ δt)−hi(t))+ ri, (A1)

and thus

hi(t+ δt)−hi(t) =
Ti (hb(t+ δt)−hi(t))+

∑
j q

0
j + ri

Si

δt +Ti−
∑
j q
′
j

. (A2)
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Using Eq. (14), we can then compute the flux according to695

qi(t+ δt) = Ti (hi(t+ δt)−hb(t+ δt)) (A3)

= Ti

(
Ti (hb(t+ δt)−hi(t))+

∑
j q

0
j + ri

Si

δt +Ti−
∑
j q
′
j

+hi(t)−hb(t+ δt)

)
(A4)

= Ti

(
Si

δt −
∑
j q
′
j

)
(hi(t)−hb(t+ δt))+

∑
j q

0
j + ri

Si

δt +Ti−
∑
j q
′
j

. (A5)

Then q0i (Eq. 42) is obtained by setting hb(t+δt) = hb(t) and and q′i (Eq. 43) by taking the derivative with respect to hb(t+δt).

Appendix B: The unit hydrograph of a homogeneous 1-D aquifer700

Let us consider a 1-D aquifer with a length L, where the spring is located at x= 0 and the drainage divide at x= L. Then

the boundary conditions are h(x,t) = 0 at x= 0 and ∂
∂xh(x,t) = 0 at x= L, and h(x,t) is periodic with a wavelength of 4L.

Thus, h(x,0) can be written as a Fourier series

h(x,0) =

∞∑
k=1

ak sin

(
2πkx

4L

)
, (B1)

where the respective terms with the cosine function are zero due to the boundary conditions and ak = 0 for even values of k.705

The coefficients ak are given by the relation

ak =
2

4L

4L∫
0

h(x,0)sin

(
2πkx

4L

)
dx=

2

L

L∫
0

h(x,0)sin

(
2πkx

4L

)
dx. (B2)

If we assume that the distal region, λL≤ x≤ L with λ ∈ [0,1], is initially filled to a given head value h0, we obtain

ak =
2h0
L

L∫
λL

sin

(
2πkx

4L

)
dx=

4h0
πk

cos

(
πkλ

2

)
(B3)

for uneven values of k. The time-dependent solution h(x,t) must satisfy the 1-D version of Eq. (7) with r = 0,710

S
∂h

∂t
=

∂

∂x

(
T
∂h

∂x

)
. (B4)

It is easily recognized that the solution of this equation with the initial condition defined by Eq. (B1) is

h(x,t) =

∞∑
k=1

ak sin

(
2πkx

4L

)
e−αkt, (B5)

where

αk =
T

S

(
πk

2L

)2

. (B6)715
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Then the flux per unit width across the boundary is

q(t) = T
∂

∂x
h(x,t)

∣∣∣∣
x=0

= T

∞∑
k=1

ak
2πk

4L
e−αkt =

2Th0
L

∞∑
k = 1

(uneven)

cos

(
πkλ

2

)
e−αkt (B7)

with the coefficients ak from Eq. (B3). The respective expression for the proximal region, 0≤ x≤ λL, is readily obtained by

subtracting this expression from the same expression with λ= 0.
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