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Abstract. Understanding the properties of preferential flow patters is a major challenge in subsurface hydrology. Most of the
theoretical approaches in this field stem from research on karst aquifers, where typically two or three distinct flow components
with different time scales are considered. This study starts from a different concept, where a continuous spatial variation in
transmissivity and storavity-storativity over several orders of magnitude is assumed. Distribution and spatial pattern of these
properties are derived from the concept of minimum energy dissipation. While the numerical simulation of such systems is
challenging, it is found that a reduction to a dendritic flow pattern, similar to rivers at the surface, works well. It is also shown
that spectral theory ean-aew-is useful for investigating the fundamental properties of such aquifers. As a main result, the long-
term recession of the spring draining the aquifer during periods of drought becomes slower for large catchments. However,
the dependence of the respective recession coefficient on catchment size is much weaker than for homogeneous aquifers.
Concerning the short-term behavior after an instantaneous recharge event, strong deviations from the exponential recession of
a linear reservoir are observed. In particular, it takes a considerable time span until the spring discharge reaches its peak. This
rise time is in an order of magnitude of one-seventh of the e-folding recession time. Despite the strong deviations from the
linear reservoir at short times, the exponential component typically contributes more than 80 % to the total discharge. This

fraction is much higher than expected for karst aquifers and even exceeds the fraction predicted for homogeneous aquifers.

1 Introduction

The recession of spring discharge after recharge events can be seen as the fingerprint of an aquifer. In contrast to pumping tests
at wells, it is a passive method based on data that are often recorded routinely. Additionally, spring discharges depend on the
overall properties of the catchment, while pumping tests reflect the properties in a region around the well.

More than a century ago, Maillet (1905) suggested-proposed the linear reservoir where discharge () is directly proportional

to the stored volume V,

Q(t) = aV(t). (1)
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The linear reservoir is described by a single parameter o [s~!] and the stored volume follows the ordinary differential equation

%V(t) — —Q(t) + R(t) = —aV () + R(1), 2)

where R(t) [m®s™!] is the recharge. During periods with zero recharge, both the stored volume and the discharge decay

exponentially with the same decay constant «, also called recession coefficient,

V() = V(0)e ™, 3)
Q) = Q(0)e™" 4)
The inverse of the recession coefficient, 7 = i, defines the e-folding time, so the time interval over which the discharge

decreases by a factor of e.

The linear reservoir is not only appealing because it can be described by a single parameter, but even more because its
behavior during periods of drought depends only on the actual amount of water, but is independent of the recharge history. It
often provides a reasonable approximation for long periods of drought. Deviations from the exponential decay at shorter time
scales have been investigated and used for characterizing aquifers since the 1960s, where in particular karst systems have been
addressed in numerous studies and several theoretical concepts were proposed.

Forkasiewicz and Paloc (1967) suggested a superposition of three distinct linear reservoirs with different decay constants
describing three major flow components — a network of highly conductive conduits, an intermediate system of well integrated
fissures, and a network of pores or narrow fissures with low permeability. The behavior of this model is dominated by the
slowest reservoir during long periods of drought.

A-Mangin (1975) introduced a different approach using two componentswas-stggested-by-Mangin-(1975). The slow com-
ponent was described as a linear reservoir, and a fast component with a limited range was added. The parameters of the fast
components are the basis of the widely used karst classification system suggested in the same study. Several other modeling
approaches which are similar in their spirit were developed (e.g., Drogue, 1972; Atkinson, 1977; Padilla et al., 1994; Kovécs
and Perrochet, 2014; Xu et al., 2018; Basha, 2020; Kovacs, 2021). Beyond these approaches, a multitude of numerical models
designed for simulating real-world scenarios is nowadays availaible. For deeper insights, readers are referred to the review
paper by Fiorillo (2014) and to the model comparison by Jeannin et al. (2021).

While deviations from the linear reservoir are particular relevant for karst systems, it should be noted that even the simplest
Darcy-type aquifers are not linear reservoirs. Assuming a given transmissivity 7' [m?s~'] and a given storavity-storativity S

[-], the simplest Darcy-type aquifer is described by the water balance equation

h .
S— = —divg +r, &)
where h [m] is the hydraulic head,

= —TVh, ©)
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[m2s~1] the 2-D flux density (volume per time and cross section width), V the 2-D gradient operator, 7 the recharge per area
[ms~!], and div the 2-D divergence operator. Inserting Eq. (6) into Eq. (5) yields a partial differential equation of the diffusion
type for the hydraulic head h,

S% =div(TVh) +r. )

This model was investigated in several studies for constant 7" and .S in square or rectangular domains (e.g., Rorabaugh, 1964;
Nutbrown, 1975; Kovics et al., 2005; Kovacs and Perrochet, 2008). Applying spectral theory (see Sect. 2.4), it was shown that
the total discharge () (q integrated over the entire boundary) can be described by an infinite series of exponential terms with
different decay constants during periods of drought. Since the term with the smallest decay constant dominates at large times,
the behavior approaches that of the linear reservoir. However, the question how well the linear reservoir approximates the
properties of real aquifers practically or whether the linear reservoir is even some kind of preferred state from a theoretical
point of view, has been discussed controversially (e.g., Fenicia et al., 2006; de Rooij, 2014; Kleidon and Savenije, 2017;
Savenije, 2018).

Including the early recession phase in the analysis yields more information about the aquifer, but increases the dependence of
the results on the recharge history in turn. The instantaneous unit hydrograph, which dates back to concepts of Sherman (1932),
is widely used in this context. It describes the discharge arising from a unit amount of recharge that is applied instantaneously
at t = 0 over the entire domain.

The unit hydrograph of the simple Darcy aquifer differs strongly from that of the linear reservoir and as well as from the
empirical approaches proposed by Forkasiewicz and Paloc (1967) and by Mangin (1975). While these models predict a finite

discharge at £ = 0, it diverges according to a power law,
Qt) oct™2, (8)

in the limit ¢ — O for the simple Darcy aquifer (e.g., Hergarten and Birk, 2007). Such a power-law decrease also occurs in
models consisting of porous blocks connected by highly conductive conduits (Kovécs et al., 2005; Kovacs and Perrochet,
2008). However, a finite conductance of the conduits limits the power-law divergence at short times (Kovdcs and Perrochet,
2014). Hergarten and Birk (2007) extended this concept by a fractal distribution of block sizes. While this model was able
to explain a power-law recession with exponents different from —%, deriving aquifer properties from the power-law behavior
of recession curves turned out to be challenging. Birk and Hergarten (2010) investigated synthetic hydrographs for recharge

events of finite duration and found that the properties of the recharge event likely shadow-obscure the short-term dynamics of

the porous blocks.

i#n—The quantification
of heterogeneity and its representation in numerical models are still major challenges in hydrology. Carbonatic aquifers are
articularly interesting in this context due to the interplay fluid flow and structure. The spatial structure of the aquifer has
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a strong influence on fluid flow, which in turn controls dissolution and precipitation and thus also the long-term change of
the hy . . . . .. . . . .

This interaction has been addressed in modeling studies of binary karst systems consisting of a porous medium and discrete

conduits (e.g., Kaufmann and Braun, 2000; Birk et al., 2003; Kaufmann et al., 2010) as well as in the context of continuous

In the context of fluid flow, minimum energy dissipation seems to be a promising concept, which was successfully applied to

river networks (Howard, 1990; Rodriguez-Iturbe et al., 1992a, b; Rinaldo et al., 1992; Maritan et al., 1996) and to the cardio-

vascular system of mammals (West et al., 1997; Enquist et al., 1998, 1999; Banavar et al., 1999; West et al., 1999a, b).
Hergarten et al. (2014) developed a theory for an optimal spatial distribution of porosity and hydraulic conductivity in the

sense that the total energy dissipation of the flow is minimized. However;there-seem-to-be-neither-validationsbyreal-world-da

y-As a major difference towards
the studies focusing on karst systems mentioned above, this theory does not predict a binary or ternary system of distinct flow.
components, but a continuous variation in the hydraulic properties over several orders of magnitude in combination with a
highly organized spatial pattern. The predicted spatial pattern is dendritic and similar to drainage networks at the surface. So it
does not capture the variety of preferential flow patterns found in nature entirely.

The potential relation of this theoretical concept to subsurface hydrology is still unclear. Validation is limited to the statistical
distribution of catchment sizes and leaves several open questions (Hergarten et al., 2016). Even the properties of the model have
not been analyzed thoroughly, except for residence times in a steady state (Hergarten et al,, 2014).

This study investigates the dynamic properties of such preferential flow patterns based on the instantaneous unit hydrograph.
The main research question is how preferential flow patterns with minimum energy dissipation are related to the different
concepts discussed above. In more detail: How much does their behavior differ from that of a homogeneous aquifer or a linear
reservoir? Can we explain the typical behavior of karst springs without assuming two or three distinct flow components? On
which physical properties do short- and long-term properties of such an aquifer depend on?

2 Approach

2.1 Basiesetup

2.1 Linearized consideration



Tn-thisstudyThe instantaneous unit hydrograph describes the response of an aquifer to adding a unit amount of water instantaneously.

It is particularly useful for linear systems since the response to any recharge curve r(t) can be obtained by superposing multiple

120 recharge events at different times (formally, the convolution integral of r(¢) and the instantaneous unit hydrograph).
For unconfined aquifers, however, the transmissivity is proportional to the height of the water column

T= Kb, ®

where K is the hydraulic conductivity [m s~ "] and b the base of the aquifer [m]. Since this dependence introduces a nonlinearity.
in Eq. (7), we can only make use of the linear theory for small disturbances. For this, we assume a steady state at a recharge rq_

125 and apply a small additional recharge dr, so that r = 7 +- 97 Then we can write the actual head in the form h = ho + 0 with
the steady-state head 1o Equation (5) retains its shape,

Odh

e 1
o = voarorn (10)
Sa = K (50Tl £ 00) £ (hy D T a

130

R

K (g - 0) Vo + 5 )

for small dh. The first term is the effect of a change in the hydraulic gradient at constant transmissivity 7 = K

has the same form as Eg. (6). The second term describes the change in flux arising from the change in the thickness of the
water column at constant hydraulic gradient. This term is particularly relevant for sloping aquifers with thin water layers.

Since the concept developed in the following only captures the first term, the second term is neglected in this study. This

135 means that the steady-state water table should be almost horizontal and the respective water column should not be too thin. In

. (7), but with ér and T = Tj,.

For simplicity, 0k, we-assume-the simplest seenario-of-dg, and 0r are labeled h, g, and r, respectively. So we have to keep in

mind that these properties are not absolute values, but small deviations from a steady state. Furthermore, 7'is the steady-state

this case (neglecting the second term in Eq. 12), 6 is decribed by the same equation as h in E

140 2.2 Basic setup

Following the considerations of the previous section, we consider a 2-D aquifer with a given transmissivity 7' [m?s~!] and a
given steravity-storativity S [-], described by Eqs. (5) and (6). Since focus is on strongly organized preferential flow patterns,

both 1" and S are not eenstantspatially uniform, but may even vary over several orders of magnitude. As discussed in the

revious section, the head values h, the flux densit and the recharge r are not absolute values, but deviations from a stead
145 state. As the simplest boundary condition, it can be assumed that the hydraulic head at springs remains constant, which is
equivalent to the boundary condition h = 0.
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On a regular grid with a uniform grid spacing d, Egs. (5) and (6) can be discretized by a finite-volume approach according
to
O

h
2¢g Ol
d=S; e

== > a;+d’n (13)
JEN(?)

with the fluxes

hi —h;

qij = dT; 7

(14)

The nodes of the grid were numbered by a single index ¢, where N (7) denotes the nearest neighborhood of the node i, consisting
of four neighbors except for boundary nodes. The symbol ¢;; [m?s~!] refers to the flux from the node i to the node j, while
T;; is the respective transmissivity. Note that g;; already includes the length of the edge between the two nodes (first term d
in Eq. 14), so that it is no longer a flux per unit width. Inserting Eq. (14) into Eq. (13) yields the respective discrete form of
Eq. (7).

Solving this equation numerically on large grids is challenging if the transmissivity varies over several orders of magnitude.
Using an explicit scheme for the timestep requires very small time increments since small changes in hydraulic head cause large
fluxes. Employing a fully implicit scheme overcomes this limitation since fully implicit schemes are stable at arbitrary time
increments for diffusion-type equations. However, most of the available algorithms for solving the resulting linear equation
system do not perform well if T" varies strongly. This also applies to multigrid schemes (e.g., Hackbusch, 1985), which are the
only schemes with linear time complexity, so where the numerical effort per time step increases only linearly with the number

of nodes.
2.3 Dendritic flow patterns

In-the-The theory of minimum energy dissipation in Darcy flow proposed by Hergarten et al. (2014) --approximates preferential
flow patterns are-approximated-by dendritic structures. This means that each node 7 delivers its entire discharge to one of its
neighbors, b, called flow target in the following (strictly speaking, it should be labeled b;). The flow target is defined as the
neighbor with the steepest descent in hydraulic head?, which is the same as the neighbor with the lowest #-head value for a
grid with uniform spacing in both directions. Then, the neighborhood consists of three groups of nodes: (i) One flow target.
(i1) Some neighbors that deliver their discharge to the considered node, called donors in the following. (iii) Some nodes that
do not interact with the considered node. The last group of nodes makes the difference towards the original model where all

neighbored nodes interact.

Since we consider only small deviations from a steady state, we can assume that the topology of the flow pattern does not
change through time. The flow target of each node is determined from the steady state and persists. As a major advantage, this
simplification inhibits the occurrence of nodes without a flow target.

The discrete version of the balance equation (Eq. 13) turns into

Oh;
2 Yt
&5 ot

=—qi+ Y ¢+dr (15)
JeD(d)
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for a dendritic flow pattern, where the notation g; (with a single index) describes the flux from the node i to its flow target (so

¢ip in the general notation). The sum extends over all donors of the node 4, denoted D(%) here.

Since the topology of the flow pattern is static, the head value of a node may become lower than that of its flow target, in
which case Eq. (14) predicts a negative flux. In the context of small deviations from a steady state, a negative flux would not
have an immediate meaning since it just says that the flux towards the flow target is lower than in the steady state. However.

there is no problem even if backward flux occurs on an absolute scale.
Dendritic networks are widely used in the context of surface flow patterns, in particular river networks at large scales. In

order to reduce effects of anisotropy, the so-called D8 scheme is typically used on a regular, two-dimensional grid. Here, 8
neighbors (4 nearest neighbors and 4 diagonal neighbors) are considered, so that river segments are either parallel to one of
the coordinate axes or diagonal. While the numerical construction of optimized drainage patters by Hergarten et al. (2014)
also used the D8 scheme, we consider only the 4 nearest neighbors (D4 scheme) in the following. The main reason for this
limitation is the comparison to the original model in Sect. 3.1. The D4 scheme can be seen as a restriction of the original model,
while the D8 version would allow for additional flow paths. In particular, a diagonal line of points with a high transmissivity
would be a preferential flow path with regard to the D8 scheme, but not in the original model.

While the concept of dendritic flow patterns was used by Hergarten et al. (2014) for constructing patterns of porosity and
conductivity (see also Sect. 2.7), recent developments in numerics make this concept interesting for time-dependent modeling.

In the following se
two numerical approaches that are robust against strong variations in transmissivity fer-dendritic-flow-patternsare presented.

2.4 Spectral theory

Large parts of this study are based on spectral theory. Spectral theory decomposes the solution into a set of functions with a

simple behavior. F

£The functions are simple in the sense that they can be written in the form

h(z,t) = h(z,0) /(1) (16)

which means that their shape does not change through time. For r = 0, Eq. 7);-this-means-that-wetookforfunetions—(7) can

then be separated into one equation for h(a,0) and another equation for the time dependence f(t). This result is recognized

by inserting h(, 1) swith-the-property-

h(zx,t) = h(z,0)e”*,

forzero-recharge(r—=10)-where-a-is-the-deeay-econstant—Inserting-into Eq. (7) and dividing both sides by h(x.t) and by S
which yields

Lf(t)  Ldiv(TVh(z,0))
e :
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Since the left-hand side is independent of x and the right-hand side is independent of ¢, both sides must be constant. If we call
the respective constant —q, the solution for f is

Q)= (18)

since Eq. (19)-inte-16) requires f(0) = 1. So

ha,t) = Wz, 0)e 19

decreases exponentially for o > 0 and increases for o < 0. The right-hand side of Eq. (F)~fer+==0)-yields-17) yields the
eigenvalue equation

—%div(TVh) = ah. 20)

for h(z.0). This means that the funetionh{a; 0} (andthus-atse-h{z+})-mustbe-differential operator —+divI'V applied to the
function h just multiplies h by the factor o. Mathematically, & is an eigenfunction of the differential operator —éd&vqlv—&t—%he

left-hand-side-of Eq—20);-where-and « is-the respective eigenvalue.

While the eigenfunctions and the respective eigenvalues can be computed analytically for some simple geometries (e.g.,
Rorabaugh, 1964; Nutbrown, 1975; Kovécs et al., 2005; Kovacs and Perrochet, 2008, for rectangular domains) and con-
stant parameters, a heterogeneous distribution of S and 71" requires a numerical treatment. The numerical treatment requires a

transition from the continuous function h to the values h; on the discrete grid. Using the same finite volume discretization as
. . 1 . . . .
above %e—diffefeﬁ&a%@pef&{eﬁ—gdﬁ%%e%}&eﬂﬂfm&m

1
—gdiv (T'Vh) = Ah,

Egs. 13 and 14), the term —~div (7'Vh) can be approximated at the i-th node b

1
N > Tii(hi— hy), (21)

1
—div(TVR)|

i ' jEN(9)

where h-at-therig

7 —ahd S-a-Sguarema

(d = 1) fer-simplieity;-was assumed for simplicity. Aligning all values h; in a column vector, this relation can be written in

matrix form

tg-unit grid spacing

f%div(TVh) ~ Ah (22)

with a square matrix A. It is easily recognized that the nondiagonal elements of the-matrix-A are

~Ti forje NG
Ay=q T PrIENO 23)
0 else
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while the diagonal elements are
Tij
A=Y (A=Y = (24)
JEN(4) JENG) T

This matrix is the same as needed for solving the steady-state version of Eq. (7) numerically. The respective form of the

matrix for dendritic flow patterns is basically the same, where only the neighborhood has to be reduced to those points that are

connected, i.e., where either j is the flow target of ¢ or vice versa.

with-eoefficients—y—where-Since all software packages for linear algebra provide functions for computing eigenvalues, the
steps are technically not very challenging up to this point. However, each eigenvalue and the respective eigenfunction is just
one solution of Eq. (7) with » = 0 for a specific initial condition A(x,0). In turn, we need the solution for an
condition. Spectral theory expresses a given initial condition as a superposition of eigenfunctions and then uses the knowledge
about the individual eigenfunctions for predicting the full solution.

Let us assume that we computed all eigenfunctions and that ey; is the i-th-component-value of the k-th eigenveetor{so-the
J-th-eigenfunetion-evaluated-eigenfunction at the node i)-Fhen-the-hydraulie-heads-. If ,;(0) is the initial value at this node,
we need coefficients A so that ;(0) is the superposition of the respective values ey,

hz(O) = Z/\keki. (25)
k

Then the values of 1 at time ¢ are
hi(t) = Awerse” ™, (26)
k

if-therecharge-iszero-for-al#;-where oy, is the k-th eigenvalue of A. So all head values and-thus-alse-al-flaxes—can be written

as a sum of exponentially decaying terms—In-particular—the-discharge-ofa—spring-, provided that all eigenvalues are positive.

The latter can be shown for the matrix defined by Egs. (23) and (24) with the help of Gershgorin’s circle theorem.
Since all head values can be decomposed into a sum of exponential functions, the fluxes and thus also the discharge of a

spring can be expressed the same wa

Q(t) =Y MQre™ ™, 27)
k

where Q) is the discharge of the k-th eigenfunction. If we assume that the eigenvalues are sorted in increasing order, the

long-term recession coefficient is o = ;.
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H-the-matrix-The nontrivial question is whether each initial condition can be expressed as a superposition of eigenfunctions
according to Eq. (25). Mathematically, this property relies on the symmetry of the differential operator or, for the discrete
problem, on the symmetry of the matrix (A;; = A;,). If A is symmetric, even-an-orthonormal-a basis of eigenvectors exists;
so-that-a-representation-aceording to-Eqs(the representations of the eigenfunctions on the discrete grid) can be found, which
ensures the applicability of Eg. (25) and-26)-is-possible-for any initial condition with unique coefficients \x._

The symmetry of A even guarantees the existence of an orthonormal basis. As a main advantage, an orthonormal basis allows
for computing each coefficient Ay_from the inner product (scalar product) of the initial head distribution and the respective
eigenvector. So we can obtain the long-term recession coefficient o = o and the contribution of the respective component
to the total (time-integrated) discharge from the lowest eigenvalue and the respective eigenvector alone. Otherwise, we would
need all eigenvectors. Since their number equals the number of nodes, this would be expensive on large grids and would cost
the advantage over a direct forward simulation.

Since #7;=1771}; is the transmissivity between the nodes i and 7, the-matrixT;; = Tj;. Without the term .S in Eq. (23),
this property would already guarantee the symmetry of A. With this term, however, A is only symmetric if S; = 5, so if J is
st e Db hie same e e s s b b e Dol el DL e TR SR

To overcome this limitation, we need to get a bit deeper into linear algebra and consider a wider definition of symmet
coming from the concept of linear maps. Here, symmetry is related to an inner product, and the condition for symmetry is

AnR= Ak @

where - is the inner product. This condition has to be satisfied for all » and h. It is easily recognized that the criterion A;; = A
describes the specific case for the standard scalar product —While-the-tatteris-

hoh=Y"hih;. 29)

For deeper insights into the fundamentals, readers are referred to textbooks of linear algebra (e.g., Halmos, 1958).
To proof the symmetry of A in this sense, we need the custom inner product

h-h= Z S;hih;., (30)

which differs from the standard scalar product (Eq. 29) by its weighting with the storativity S. Using the definition of A
(Egs. 23 and 24), it is easily recognized that

SZA” ZSjAji7 3D

10



and thus

200 (Ah)-h = Y S| > Aih; | b (32)
i j
= 3" Sidihih (33)
i
= > S;Ajihshi (34)
i

= D Sih (ZAjiili> (33)
i,j i
- b (Aﬁ) (36)

295 This-is-the-conditionfor-the-which proves the symmetry of A with regard to the new-custom inner product. Se-the-eigenveetors

Pa A a arthagan nd-an-arthenorm

Technically, the normalization of the eigenvectors obtained numerically is the only point that requires attention. The eigenvectors
have to be normalized with respect to the custom inner product and not with respect to the standard scalar product, so accordin

to the condition
300 ep-ep= ZS’ieii =1. (37)
A

If h; are the head values at ¢t = 0, the coefficients \j in Egs. (25) and (26) are ebtained-by-then obtained from the inner products

in the form
Ao =h-ep= ZSihieki. (38)

This relation becomes particularly simple for the instantaneous unit hydrographsinee-. Applying a unit amount of water per
305 area to all nodes results in .S;h; = 1 for all nedes-heres, and thus

A= enis (39)

So the coefficient A\ is obtained by adding the head values of the respective normalized eigenfunction at all nodes.

2.5 Forward modeling

Sinee-Spectral theory is very efficient for characterizing the long-term recession since only the components with the lowest
310 recession coefficients oy, are relevant here. In turn, computing the instantaneous unit hydrograph at short times requires a large

number of eigenfunctionsfer-big-eatchments;-, so that the advantage over direct forward modeling is lost. Therefore, we also

implemented a numerical scheme for forward modeling of the dendritic model. For this purpose, we adopted the very efficient,

fully implicit scheme that was recently proposed in the context of fluvial erosion and sediment transport by Hergarten (2020).

11
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As a major advantage, the scheme is robust against strong spatial variations in transmissivity. For simplicity, the scheme is only
described for the D4 neighborhood with unit grid spacing (d = 1) in the following.

Let us consider a time step from ¢ to ¢ + Jt. Replacing the time derivative at the left-hand side of Eq. (15) by a difference
quotient and evaluating the fluxes at the right-hand side at the time ¢ + ¢ (for the fully implicit treatment) yields

hi(t+8t) — h(t)

Si ot

=—qi(t+5t)+ > q;(t+5t)+r:. (40)
JED()

The key idea behind the scheme is that all fluxes respond linearly to baselevel-changeschanges in h of the flow target b due to
the linearity of the differential equation. In particular, the flux g;(¢ 4+ d¢) depends linearly on the-head-vatue-of-itsflow-target
bhy, so that

i (t+0t) = g7 + q; (ho (t + 6t) — by (1)) . (41)

Here, ¢) is the hypothetic flux at time ¢+ 4t

assumption that hy, remains constant (hy,(t +9t) = hy(t)). It is not the same as g¢;(t) )—while-since ¢; may also change if gj,

remains constant. The second term in Eq. (41) describes the effect of changes in hy(t + dt) on ¢; (¢ + t) where ¢/ is the partial
derivative of g;(t 4 dt) with respect to the-baselevel-hy (t 4 dt).

As shown in Appendix A, ¢¥ and ¢} can be computed from the respective properties of the donors and from the known values

under the

of h at time ¢ by the expressions

0 (W —2 qé') (hi(t) = ho(t) + 30,45 + i
o =T 5 - , w0
ﬁ—’_Ti_quj'
S ,
i = Tg it 2l .
51T,-%.q

Thus, ¢? and ¢/ can be computed successively in downstream order, starting from the nodes without donors.

Gﬂe&%h&W}}tte&qQ—aﬁéq’-—hav&bee&eempufed»However ;(t + dt) cannot be computed during the downstream swee
since the actual values hy (1 + dt) required in Eq. (41) are still unknown. Computing the values h;(t + Jt) and therespeetive
fluxes-q; (t + 0t) are-computed-in-requires a second sweep over the-grid—Thissweep-works-in-upstream-direetion-all nodes,

which has to be performed in opposite direction (upstream, starting from the boundaryef-the-demain). As soon as the-head
vatae-hy (t 4 0t) of-the-flow—targetisknown—is known (since the node b is treated prior to the node 7), ¢;(t 4 dt) can be

computed from Eq. (41) e. Finally, the hydraulic head
can be calculated from Eq. (14) according to

qi(t+ot)
T, '

hi(t+ 0t) = hy(t + dt) + (44)

This scheme provides a direct solver (without the need for iterations) for the fully implicit discretization of the flow equation
on a dendritic network. It is therefore stable for arbitrary time increments ¢, and its performance is not affected by spatial

variations in transmissivity and steravitystorativity. The numerical complexity is O(n), which means the the computing effort
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increases only linearly with the total number of nodes. It is therefore perfectly suited for simulations on grids with several

millions of nodes.
2.6 Patterns-of-transmissivity-and-steravityNondimensionalization

The linearized problem (Eq. 7, where T" does not depend on h) can easily be transformed to nondimensional properties, which
makes the results independent of the absolute values of S and T and of the spatial scale. For this purpose, arbitrary reference
values Sy and T}, and an arbitrary length scale [ can be defined. Then the respective nondimensional properties

N S . T .
s T Tm M “

are defined. If we further introduce

S 12 T

and define the nondimensional properties

t=—, and 7= —, 47)

the differential equation for the nondimensional properties is the same as the original equation (Eq. 7). This result can easil

be verified by expressing the original properties in Eq. (7) in terms of the respective nondimensional properties. The scalin

factor for the flux density is Ty then, s0 ¢ = Tog..

As a consequence of these scaling properties, the shape of the instantaneous unit hydrograph depends only on the shape of
the aquifer and on the spatial pattern of S and 7', but not on their absolute values and on the absolute size of the aquifer. This
property will turn out to be useful in the following section.

2.7 Patterns of transmissivity and storativit

While systematic knowledge about the spatial structure of preferential flow paths is still limited, we need a model for generating
spatial patterns of transmissivity and steravitystorativity. In this study, we adopt the theory based on minimum energy dissipa-
tion proposed by Hergarten et al. (2014). This theory addresses the best spatial distribution of a given total pore space volume
in the sense that the total energy dissipation of steady-state flow is minimized. Assuming-The central assumption behind this
theory is a power-law dependenee-of relation between the hydraulic conductivity K on the porosity ¢,

K xo", (48)

with a given exponent n;-it-was-found-that, Some ideas how dissolution could increase K and-were discussed in that study. If
all pores have the same diameter and grow uniformly, an exponent n = 2 was obtained. The same result was obtained for an
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arbitrary distribution diameters if all pores grow by the same factor in diameter. In turn, a stronger increase in /X with ¢ must

|-

o qn+l .

K g qn+1 .

Hergarten-etak2044)-(n > 2) occurs if dissolution mainly affects the largest pores. Qverall, these simple models yield a
weaker increase in conductivity with porosity than predicted by the fundamental relation of Kozeny (1927) and Carman (1937)..
This relation predicts 7 = 3 at small porosities, which was also adopted in the numerical study of dissolution and precipitation
by Edery et al. (2021). In turn, the theoretical study of fractal pore spaces by Costa (2006) points towards n /= 2.

The exact value of the exponent n is, however, not important in the following. Theoretically, it is only important that

the increase in K with ¢ is stronger than linear (n > 1) since concentrating porosity along preferential flow structures is

energetically favorable only under this condition.
Based on the power-law relation, Hergarten et al. (2014) derived the relations

x gntT, (49)

-
|

2n

K o« grtL. (50)

and computed optimized dendritic networks on a discrete gridbased-on-theseretations-—FHorstmplieity,-we-assume-that-, This
result is, however, limited to confined aquifers with a constant thickness. Assuming S = ¢ for an unconfined aquifer is the
simplest and somehow straightforward approach. In turn, the transfer from K to 7 is not trivial and depends on the topography.
of the base b. Even if the bottom is flat, points with the same ¢ will have different values of h and thus different 7' = K (h — b
depending on their position in the network. Since this dependency would make the theory of minimum energy dissipation more
complicated, it is assumed in the following that the dependence of T"on ¢ is the same as that of /K (Eq. 50). As a modification,
we might take into account that sites with high g and thus high & may have a lower thickness . —b. Then the increase in 7
with ¢ will be weaker than the increase in K, which could be included by reducing the exponent 7.

As the most important aspect, however, Eqgs. (49) also-heldsforthe-storavity-and-Fa—(50) for-the-transmissivity both-with

Assuming a-steady state-with-uniform-and (30) refer to a steady state. The aquifer’s properties do not change on the time
scale of individual events. Instead, we assume that S and 7" are adjusted to a steady state that reflects some long-term average.
At this point, we can make use of the nondimensional formulation developed in Sect. 2.6. Single-pixel catchments (nodes
without donors) have the lowest values of 5 and 7', Let us use their storativity and transmissivity as the reference values Sq
and Tj. If we assume a uniform long-term average recharge, the flux-perunit-with-can-bereplaced-by-the respective-catchment
sizeA-For convenienee,we-define mean flux is proportional to the catchment size A; of the respective node. If we further use
the grid spacing as-thelength-seale-of-the-system-and-thus-measure-4-d as the characteristic length scale [, the nondimensional
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eneralization of Egs. (49) and (50) is
2
AT (51

~

A

2n

AT (52)

~ 0

s

Owing to the choice | = d, the catchment size A; has to be measured in grid pixels (so in units of d?) here. Then single-pixel
catchments are characterized by S; = T; = 1, corresponding to .S; = Sy and T; = Ty in physical units.

The largest catchments in the examples considered later consist of slightly more than 10° pixels, which means that the
catchment size varies by a bit more than six orders of magnitude. For n = 2, this corresponds to a variation in 7' by eight
orders of magnitude. If we assume, e.g., Ty = 107" m”s_", the values of 7' would cover the range from fresh limestone to
strongly karstified limestone at a thickness of some meters. The respective range of S is only slightly more than four orders of
magnitude for 1 = 2. However, assuming Sp = 10~ would cover the range up to S = 0.1. fr-addition e set-the factors-of

Practically, the characteristic timescale tq (Eq. 46) is the central property to be taken into account when transferring
nondimensional hydrographs to real-world coordinates. With the values So and 7y defined above, this time scale would be
tg=10" s at a grid spacing d =1 m and to =10° s at d = 10 m. Since d seems to be a numerical parameter rather than a
physical parameter, the strong dependence on d may be confusing at first. However, d is a property of the spatital pattern. It
defines the smallest cell that cannot be subdivided by a preferential flow pattern and thus some kind of representative elementary.
volume (in combination with the thickness).

The characetristic timescale ¢, can be interpreted physically in the setup used here. According to Egs. (14) and (15), the
smallest spatial unit (a single-pixel catchment) is described by the equation

Oh;
d*Si0—" = —Tio (hi — ) (53)
z 3t z
for zero recharge. So the smallest spatial units behave like a linear reservoir with a recession coefficient
T, T 1
« 0 = (54)

T @25, d28,  ty’
which means that ene-nendimensional-time-unit{y is the characteristic time of a single-pixel elementcatchment.

2.8 Considered scenarios

Based on the assumptions described in the previous section, a numerically obtained flow pattern for n = 2 on a 4096 x 4096

grid is used in this study. Peints-The algorithm for generating such patterns was described by Hergarten et al. (2014). All points

at the boundaries are considered as springs where the discharge is measured. Figure 1 illustrates the catchments of the springs.
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Figure 1. Catchments of numerically obtained dendritic flow patterns for n = 2 on a lattice of 4096 x 4096 sites. Color corresponds to the
size A of each individual catchment, measured in grid pixels. The watersheds between large catchments (A > 10000 pixels) are highlighted

in black.

Several scenarios will be considered for the same geometry in the following. Beside the reference scenario with n = 2,
the influence of n will be investigated. These investigations also include uniform transmissivity and steravity—storativity. The
suitability of the description as a dendritic network will be tested against full Darcy flow.

In order to enable a comparison of the recession curves of individual springs, the same catchments are used in all simulations.
This means that the boundaries between the catchments shown in Fig. 1 are enforced by cutting the respective connections, so

by inhibiting flow across the watersheds.

3 Results and discussion
4 Results
3.1 Dendritic flow patterns vs. full Darcy flow

As afirst step, we investigate under which conditions the reduction from full Darcy flow (taking all four neighbors into account)
to a dendritic flow pattern (a single flow target for each node) provides a suitable approximation. We start from the optimized
distribution of S and T for n = 2, so from a strongly preferential flow pattern. Figure 2 compares the long-term recession
coefficients a (a1 in Eq. 27) obtained from the dendritic flow pattern to those of full Darcy flow. The recession coefficients of
both approaches agree well, which means that the long-term recession behavior is captured well by the dendritic flow pattern.

Some deviations occur at rather small catchment sizes from about 10 to 200. Here, allowing only one single flow direction
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Figure 2. Recession coefficient « of each individual catchment with n = 2 for dendritic flow patterns against full Darcy flow. The colors

match Fig. 1 and indicate the size of the respective catchment.

leads to a slight underestimation of o, which means that the recession is slightly too slow. This underestimation is highest at

catchment sizes A ~ 16 and reaches about 10 % there.

In order to investigate the effect of the restricted flow directions in more detail, we analyzed the flow pattern of the full
Darcy scenario. For this purpose, we define the major flux component of each node as the flux towards the given flow target
(according to the dendritic pattern) and the minor flux component as the sum of the fluxes towards all other neighbors with
lower head values.

Figure 3 shows the relative contribution of the minor fluxes as a function of the size of the respective upstream catchmentsize.
The upstream catchment size refers to the individual pixels here and not to the embedding catchment. So the data point for a

A =1 describes the average over all pixels without donors, no matter whether they are draining directly to the boundary (so

are indeed single-pixel catchments) or are part of a larger catchment. {ﬂﬁfdeﬁa—&vetd—afﬁfaeﬁ—&ﬂﬁﬂgﬁmﬂ—the—fe%ﬂeted—ﬂew
-are already
restricted concerning their flow direction in the full Darcy scenario, these points are analyzed separately from inner points.

The contribution of the minor fluxes decreases with increasing catchment size, so downstream along the preferential flow

direetions-Since points at drainage divides

paths. It becomes negligible for all considered scenarios at catchment sizes A Z 200. The contribution of the minor flux is
partlcularly small 1mmed1ately after a short, uniform recharge pulse. Thisresultis-owingto-therelation-between-transmissivity
HIf all sites receive the same amount of water, the resulting change in hydraulic head
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Figure 3. Relative contribution of the minor fluxes for each grid pixel as a function of theirrespeetive-the catchment size A. The curves were

obtained by logarithmic binning with ten bins per decade. All three considered scenarios s— a steady-state initial condition, a unit recharge

pulse, and the exponentially decaying term (only the slowest component, first term in Eq. 27) — are separated-inte-analyzed separately for

grid pixels that lie within a spring catchment (flow between-towards all four neighbors; solid lines) and pixels at drainage divides (restricted

flow directions; dashed lines).

towards-sites-with-large-catchmentsizes;-which-foeus-the-fluxes-fluxes are focused towards the preferential flow paths, which
reduces the minor fluxes.

The strongest contribution of the minor fluxes is found for the long-term recession, characterized by an exponential recession
curve. The minor fluxes contribute even almost 60 % for A = 1 here (only inner points, about 35 % for drainage divides). It
may be surprising that the minor fluxes do not affect the recession coefficient strongly, as shown in Fig. 2. In an extreme
scenario where all four neighbors are at the same head values, the fluxes would be four times higher in the full Darcy model
than in the single flow target realization, which would result in a four times faster recession than predicted by Eq. 54. Although
the majority of the nodes have small upstream catchment sizes (e.g., A = 1 for 43 % of all nodes and A < 10 for 81 % of all
nodes), their behavior is obviously not crucial for the properties of the entire catchment.

These results suggest preferential flow patterns can be represented well on a discrete grid by a dendritic structure where each
node drains only towards one of its neighbors. In turn, the approximation by a dendritic flow pattern does not work well for a
spatially uniform distribution of 7" and .S as shown in Fig. 4. Here, « is underestimated by more than one order of magnitude
for large catchments, which means that the recession is more than by a factor of 10 too slow. The coefficients agree well only

for small catchments, where the minor fluxes are small or even absent due to the restricted flow directions at drainage divides.
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Figure 4. Recession coefficient « of each individual catchment with a spatially uniform distribution of 7" and S for dendritic flow patterns

against full Darcy flow. The colors match Fig. 1 and indicate the size of the respective catchment.

3.2 Scaling properties of the recession coefficient

It was already visible in Figs. 2 and 4 that the recession coefficient o decreases with increasing catchment size. The sealing

behaviorexpeetedfromexpected scaling behavior is o oc A", This result is formally obtained from the characteristic timescale

to (Eq. (Pis-aec A=l ~whicharisesfrom-the-46 with A o [?), but can also be derived directly from the occurrence of a first-
order time derivative at the left-hand side and-the-of Eq. (7) and second-order spatial derivatives at the right-hand side. If we

rescale the entire catchment including the pattern of S and T’ by a factor 3, the right-hand side of Eq. (7) changes by a factor
of 372 for 7 = 0. Then the time scale must change by the same factor. Since the catchment size A increases quadratically with
f3, the time scale is proportional to the catchment size and thus o oc A1

As shown in Fig. 5, this simple scaling behavior does not hold for the patterns of .S and 7" considered here. While the scaling

behavior follows a power law
ax AT (55)

reasonably well for all considered values of n, it seems that an exponent v = 1 is only achieved for n = 1. For all values n > 1,
we find v < 1, where vy decreases with increasing n. This means that the recession of large catchments is still slower than the
recession of small catchments, but the effect is considerably weaker than for a simple Darcy-type aquifer (y = 1).
Qualitatively, this weaker increase is the expected behavior for a preferential flow pattern. Preferential flow paths are able
to transport water rapidly over large distances, so that an increasing spatial extension does not slow down the recession as it

would-be-the-ease-for-strongly as in a homogeneous aquifer.
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Figure 5. Scaling behavior of recession coefficient « relating to catchment size A (Eq. 55) for different values of n and for a uniform
distribution of 7" and S. Full Darcy flow is plotted as solid lines, flow in dendritic patterns as dotted lines. Except for the scenario with

S =T =1, the curves of full Darcy flow and the dendritic pattern are hardly distinguishable.

The opposite behavior is observed for n < 1. Here large catchments become extremely slow. Revisiting Eqgs. (51) and (52),
it is recognized that 7" still increases with catchment size, but weaker than .S for n < 1. So flow is still facilitated along the
preferential flow paths, but the respective cells become slow due to their high steravitystorativity. This becomes visible if we
apply Eq. (54) formally to such cells, which yields o o< Az(:i;ll), so that o decreases with increasing A. However, n < 1 would
be unrealistic for porous media, where rather n > 2 should be expected. Beyond this, it was demonstrated by Hergarten et al.
(2014) that dendritic flow patterns are energetically favorable only for n > 1. So preferential flow patterns with n < 1 can be
constructed, but do not make much sense. Nevertheless, the curves are almost indistinguishable not only for n > 1, but also for
n < 1. The results reveal that the numerical approximation by a dendritic flow pattern also works well for n < 1.

As already recognized in Sect. 3.1, the approximation by a dendritic flow pattern does not work for constant transmissivity
and steravitystorativity. Figure 5 reveals that the unusual scaling behavior with v > 1 also occurs for the description by full
Darcy flow. This result is related to the subdivision of the domain into fixed catchments drained by distinct springs. In order
to test this hypothesis, we computed the recession coefficients for radial flow towards a spring in polar coordinates. Keeping
the radius of the spring constant and varying the total size of the catchment (the outer radius), we obtained roughly the same
scaling behavior, v~ 1.1, as found for the catchments considered in Fig. 5. This scaling behavior indicates that the region
around the spring is some kind of bottleneck that becomes increasingly relevant for large catchments. This result aligns well
with the result of Hergarten et al. (2014), who found that minimum energy dissipation for radial flow requires an increase in
permeability towards the spring.

The nontrivial dependence of « on the catchment size does not only affect spring hydrographs, but also the response time of

aquifers to changes in climate or hydraulic conditions at the boundaries. As a recent example, Cuthbert et al. (2019) provided
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Figure 6. Unit hydrographs of the biggest catchment for n =2 and of a homogeneous 1-D aquifer. The dashed lines correspond to the
long-term exponential recession. The data are scaled in such a way that the e-folding time 7 and the total amount of water supplied by the

recharge event are the same in both scenarios.

worldwide estimates of these groundwater response times worldwide. These estimates are based on the one-dimensional
version of Eq. (7) for homogeneous aquifers with the size of the aquifer assumed to be twice the distance L of perennial rivers.
Then the scaling arguments given above (and formally in Sect. 2.6) yields o oc L2 and thus a response time proportional to
L2 Since L increases with decreasing precipitation, this model predicts a strong negative correlation between precipitation and
groundwater response time with typical response times of several thousand years in arid and semi-arid regions. If the respective
aquifers are not homogeneous, but have a preferential flow structure as considered here, the dependence of the groundwater
response time on [ and thus on climate will be considerably weaker than predicted by Cuthbert et al. (2019).

3.3 Short-term recession

The differences between the model considered here and simple Darcy-type models are not limited to the scaling properties of
the long-term recession coefficient. As exemplified in Fig. 6 for the biggest catchment, the unit hydrograph shows a clear rising
limb at short times. In contrast, the 1-D Darcy-type aquifer shows a power-law decrease in discharge at short times, so that
Q — oo fort — 0.

For a better comparison, size and parameter values of the 1-D aquifer were adjusted in such a way that the long-term recession
coefficient «v and the total amount of water supplied by the recharge event are the same as for the considered catchment (see
Appendix B). For such a simple aquifer, a lag between a short precipitation event and the peak discharge would typically be
attributed to the infiltration process. We would then assume that the time lag is related to the transit time of the water from
the surface to the aquifer. In a model consisting of individual porous blocks connected by highly conductive fractures (e.g.,

Kovdcs et al., 2005; Hergarten and Birk, 2007), the time lag may also be owing to the finite conductivity of the fracture system.
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Figure 7. Relation between rise time %5 and e-folding time 7 of the long-term recession for the considered catchments and different values

of n.

In contrast, the finite rise time is an inherent property of the structure of the aquifer in the model considered here. It cannot be
attributed uniquely to any individual component of the system.

Figure 7 provides an analysis of the rise time %, for the considered catchments and different values of the exponent n. For
n = 2, the data suggest a linear relationship between %5, and the long-term e-folding time 7 = é The ratio of ¢, and 7 varies
from about 9 % to 19 % for the individual catchments. The rise times become slightly shorter in relation to the e-folding time
for lower n. For n = 1.5, we found ratios in a range from about 4 % to 22 %. The data obtained for n > 2 are non-unique, in
particular for small catchments (small 7). Overall, there seems to be a weak increase in the ratio of ¢, and 7 with increasing
n. This trend aligns well with the absence of a finite rise time in the simple one- and two-dimensional aquifers without a
preferential flow pattern. However, the trend is much weaker than the variation among individual catchments and therefore not
investigated further. In each case, however, ¢, is not very small compared to 7. One-seventh of the e-folding recession time
seems to be a reasonable order of magnitude. Taking into account that long-term e-folding times of karst aquifers are typically
in an order of magnitude of several weeks, the rise time is in an order of magnitude of several days.

The occurrence of a rising limb in the unit hydrograph requires that some of the coefficients \; @y in Eq. (27) are negative.
This can be seen formally by computing the derivative of Eq. (27). The derivatitve is similar to Eq. (27) itself, except that the
coefficients are —ayp A\ Q. Since the sum cannot become zero if all coefficients have the same sign, at least one of the original
coefficients A\ must be negative. Figure 8 shows the coefficients for the largest catchment. While the coefficients of the
slowest components (small o) are positive, there is no obvious preference for either sign in the faster components.

The spectrum of the considered catchment differs fundamentally from that of the 1-D aquifer. While the spectrum of the
1-D aquifer consists of distinct components with recession coefficients vy, o (2k — 1)? (see Appendix B), the spectrum of the

catchment becomes more or less continuous at large k. However, the smallest recession coefficients are still distinct. For the
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Figure 8. Coefficients A\ Q) and recession coefficients o, in Eq. (27) for the largest catchment (n = 2). Only the slowest 500 components
(k < 500) were computed. The data of the 1-D aquifer were rescaled in such a way that the lowest recession coefficient cr; and the total

discharge-recharge are the same as for the simulated catchment.

catchment analyzed in Fig. 8, the ratio is g—f = 2. While the lowest ratios among all simulated catchments are about 1.5, the
ratio is typically in a range from about 2.5 to 4 for smaller catchments. So the ratio g—f differs from catchment to catchment,
but is always clearly above unity(alse-. This also holds for n  2). This property ensures that the recession curve approaches a
single exponential function at a reasonable time and that the coefficient A1 ()1 captures the long-term recession well. However,
the ratio is much lower than the ratio 52 = 9 for-of the 1-D aquifer. Although the deviation from an exponential recession also
depends on the coefficients \;Qk, the difference is already visible in Fig. 6. While the unit hydrograph of the 1-D aquifer is
almost indistinguishable from the exponential decay at ¢ = 0.57, the difference is more than 15 % at this time for the largest
catchment. So the model with the preferential flow pattern approaches the long-term exponential recession much more slowly
than the simple 1-D aquifer.

Figure 9 illustrates the approximation of the unit hydrograph by a finite number of exponential components. In this example,
all coefficients for k£ <9 are positive. In the range 9 < k < 23, there are also negative coefficients. However, the positive
coefficients still dominate here, so that the highest peak discharge is achieved when including the components with k < 23.
The negative components become increasingly relevant for larger k. This results in a decreasing peak discharge, however, still
at t =0 for k < 60. The component with k£ = 61 is the first that shifts the peak discharge to a time ¢ > 0 an thus produces a
rising limb in the unit hydrograph. However, approximating the behavior around the peak discharge reasonably well requires
several hundred components.

The occurrence of negative coefficients in Eq. (27) is not a prineipat-fundamental problem, but impedes a simple interpreta-

tion of the decomposition into exponentially decreasing terms. If all components were positive, we could imagine the aquifer

as a set of linear reservoirs drained in parallel. However, negative components would correspond to reservoirs with a negative
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Figure 9. Recession curves of the largest catchment obtained from the numerical simulation and different numbers of exponential functions

(Eq. 27).

amount of water. Formally, the slow component (first exponential function) could even contain more water than available in
total, and the fast components (all higher exponentials) could be negative in total. In Fig. 6, this would mean that the area of the
unit hydrograph below the exponential component at short times was larger than the area above the exponential component.
In this case, the widely used characterization of karst aquifers by the contribution of the slow (exponential) component to the
total discharge (Mangin, 1975; Jeannin and Sauter, 1998) would be taken at absurdum.

Figure 10 shows the contribution of the slow component (first exponential) to the total amount of water for all catchments
considered here (n = 2). Depending on the catchment size, this contribution is between 77 % and 104 %. So there are indeed
catchments where the effect of the rising limb is so strong that the slow component is formally larger than the total recharge
and the fast components are negative in sum. However, this effect is found only for some rather small catchments. For the
largest catchments, the contribution of the slow component is about 90 %.

The obtained contributions of the slow component are high compared to other models. For the 1-D aquifer used here as a
reference, this contribution is % ~ 81 %. For an aquifer consisting of square porous blocks connected by conduits with infinite
conductance, it is % ~ 66 % (e.g., Birk and Hergarten, 2010). The contribution of the slow component was not explicitly
investigated by Hergarten and Birk (2007) in their fractal model with power-law distributed block sizes. However, since the
slowest flow component arises from the largest blocks, the total contribution of the slow component must even be considerably
smaller than the 66 % obtained for an aquifer with a uniform block size. In the widely used classification scheme of karst
aquifers proposed by Mangin (1975), even aquifers with a contribution of the slow component of less than 50 % are considered
poorly karstified (see also Jeannin and Sauter, 1998). So our continuous model of preferential flow patterns predicts even a
higher contribution of the slow component to the unit hydrograph than other models and is far off from what is typically

assumed for karst systems.
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Figure 10. Contribution of the slowest exponential component to the total discharge for the considered catchments. The red line shows the

respective contribution of % ~ 81 % for the 1-D aquifer.

At first sight, the observed high contribution of the slow component could be an effect of the finite rise time. As recognized in
Figs. 6 and 9, the unit hydrograph is below the slow component for ¢ < 0.5¢,. When investigating recession curves in reality,
the analysis typically starts from the peak in discharge (f = %,isc). The orange-colored markers in Fig. 10 show the respective
contributions of the slow component. Starting the analysis from ¢ = 5, instead of ¢ = 0 indeed yields lower contributions of
the slow components. However, the effect is only in an order of magnitude of a few percent. So the result that continuous

preferential flow patterns predict a high contribution of the slowest flow component is not an artifact of the analysis.
3.4 The effect of non-uniform recharge

While the unit hydrograph describes uniform recharge, the spatial distribution of the recharge may have a strong influence on

recession curves of large catchments. So the question arises whether the strong deviations from the exponential behavior found

for karst springs could be related to the occurrence of local rainstorms that affect only a small part of the catchment.
As a simple example, we separated the domain into a proximal part and a distal part. Both parts are equally sized, and

the distinction is made by the distance from the boundary of the domain. Since the overall domain is the same, the recession
coefficients oy, of all flow components are the same as for the entire domain. Only the coefficients ay, in Eq. (27) differ. This
difference, however, has a strong effect on the rise time and on the contribution of the slow flow component.

Figure 11 compares the results obtained numerically for the largest eatehments—catchment to those obtained by spectral
decomposition for a 1-D aquifer (for details, see Appendix B). While a-completelyfilled—-D-aquifer-the hydrograph starts
with a peak at ¢ = 0 after a spatially uniform recharge event, applying recharge only to the distal part of the domain introduces
a finite rise time. This rise time is, however, shorter (in relation to the e-folding recession time) than for the aquifer with the

preferential flow pattern. The rise time of the preferential flow pattern also changes considerably if recharge is applied only to
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Figure 11. Instantaneous unit hydrographs for partly-filled-demainsrecharge applied to a part of the domain. Solid lines refer to the largest

catchment of the simulation, and dashed lines to a homogeneous aquifer. The data are scaled in such a way that the e-folding time 7 and the

total amount of supplied water are the same in both scenarios. Proximal and distal regions cover half of the catchment each.

a part of the domain. The strong influence may be surprising at first since we could expect that the signal propagates rapidly
through the preferential flow structure from the distal part of the domain to the spring. However, preferential flow paths have
not only a high transmissivity here, but also a high steravitystorativity. Thus, the propagation of signals is not as fast as we
might expect.

The contribution of the slowest component also changes if enly-recharge is applied only to a part of the domainis—filled.
Similarly to the rise time, it increases if only the distal part of the domain is filled since the instantaneous recharge signal has
already been smoothed when it arrives at the spring. The contribution of the first exponential component is formally higher
than 100 % for the distal part. For the largest simulated catchment, it is 137 %, while it is 115 % for the 1-D aquifer. In turn, the
contribution of the first exponential component is lower for the proximal parts; 50 % for the largest catchment in the simulation
and 47 % for the 1-D aquifer. So the contribution of the first exponential component is always higher for the preferential flow

pattern than for the 1-D aquifer, and the effect of applying recharge only to a part of the domain is similar.

is-apptied-to-the proximal part of the-domain-On average, however, the effect vanishes. For the largest catchment, the 50 % for
the proximal region and the 137 % for the distal region yield a mean value of 94 % in agreement with Fig. 10 (rightmost blue
circle). This is a general property of the linear model, which allows for superposing recharge events not only concerning time,
but also spatially. It could even be generalized to arbitrary parts of the domain down to recharge events that are limited to a
single node.
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While there should theoretically be no effect on average, recharge events in the proximal region will be more prominent in
the hydrograph than those in the distal region. Therefore, the analysis of real-world hydrographs might be biased towards the
more prominent, proximal recharge events, which would yield a decreasing contribution of the slowest component for large
catchments. However, explaining the often small contribution of the exponential component this way seems guite a stretch,

4 Conclusions and perspectives

This study is a first attempt to describe the dynamics of aquifers with continuous preferential flow patterns. In contrast to
approaches based on two or three distinct flow components widely used in the context of karst aquifers, the concept used here
assumes a continuous spatial variation in hydraulic properties over several orders of magnitude.

An-A _two-dimensional aquifer with a flat-bettom—and-spatially variable, but time-independent transmissivity was consid-
eredas-the simplest seenario-, This scenario corresponds to the application of small disturbances to a steady state of an aquifer
with an almost horizontal water table. Synthetic spatial patterns of transmissivity and steravity-storativity were obtained from
principles of minimum energy dissipation based on the theory proposed by Hergarten et al. (2014).

As a major technical result, it was found that such aquifers can be approximated well by dendritic flow patterns, in which
the entire discharge of each cell is delivered to the neighbor with the steepest gradient in hydraulic head. This approximation
has been widely used for channelized flow patterns at the surface. The dendritic structure enables an efficient, fully implicit
numerical scheme with a numerical effort that increases only linearly with the number of cells, also known as O(n) complexity.
This property allows for simulations on grids consisting of several million nodes and thus for a reasonable spatial resolution of
the preferential flow pattern.

As a second, rather theoretical result, it was shown that spectral theory is not restricted to homogeneous aquifers, but can also
be applied to aquifers with any spatial distribution of transmissivity and steravitystorativity. Although the eigenvalues and the
respective eigenvectors have to be computed numerically, this approach allows for a fast computation of the long-term recession
coefficient without forward modeling over a long time span. In addition, the contribution of the slowest flow component to the

instantaneous unit hydrograph (and also to any other initial state) can be computed easily. However, the efficient numerical

scheme and spectral theory rely on the assumption of time-independent transmissivity and cannot be extended easily towards

The long-term recession coefficient o depends on the catchment size. The dependency is, however, weaker than for ho-
mogeneous aquifers and follows a power law a o« A~ (Eq. 55). The exponent v depends on the assumed relation between
transmissivity 7" and steravity-storativity S. It approaches 1 for 1" oc .S, which is also the limit where dendritic flow patterns
are energetically favorable. In this case, the scaling is the same as for homogeneous aquifers (v = 1). For relations 7" o< S™, y
decreases with increasing n. As a typical value, y = 0.4 was found for n = 2. So the decrease in the recession coefficient with
catchment size is typically less than half as strong as for homogeneous aquifers. This finding challenges previous results on

very long groundwater response times of large aquifers (e.g., Cuthbert et al., 2019).
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Since flow patterns obtained from minimum energy dissipation are typically scale-invariant, a power-law decrease of the
discharge after a short recharge pulse might be expected at first. However, the respective instantaneous unit hydrograph shows
a completely different behavior. The discharge immediately after the recharge event is quite small, and it takes a considerable
time until it reaches its peak. This rise time is in an order of magnitude of one-seventh of the e-folding recession time (7 =
a~1). It seems ner-neither to depend strongly on the catchment size neithernor on the relation between transmissivity and

The contribution of the slowest component to the unit hydrograph is in an order of magnitude of 90 % for large catchments
and even larger for small catchments. This contribution increases further if recharge is applied only to a part of the domain far
away from the spring and even exceeds 100 % then. Formally, this result arises from the occurrence of negative coefficients in
decomposition of the unit hydrograph into exponentially decaying components. The occurrence of negative coefficients also
inhibits the simple interpretation as a set of linear reservoirs draining in parallel. Measuring the contribution of the slowest
component from the peak of the unit hydrograph instead of the time at which the instantaneous recharge occurs reduces the
contribution of the slowest component only slightly. This contribution is higher than for homogeneous aquifers and much
higher than typically assumed for karst aquifers (less than 50 %).

So we have to conclude that preferential flow patterns arising from a strongly organized pattern of transmissivity and steravity
storativity differ fundamentally from karst aquifers in their properties. For future work, it would be interesting to find out
whether the difference mainly concerns the contribution of the slowest flow component or also the scaling of the recession
coefficient with catchment size.

For the further development, an extension of the numerical scheme towards unconfined sloping aquifers (e.g., Rupp and
Selker, 2006; Pauritsch et al., 2015) would be particularly useful. Although there is ongoing development in this field (e.g.,
Alemie et al., 2019; Pathania et al., 2019), including preferential flow patterns at a reasonable spatial resolution is still a
challenge here. Extending the implicit scheme for dendritic flow patterns towards unconfined sloping aquifer would still be
challenging, but might considerably contribute to understanding the response of hillslopes to precipitation events and phenom-

ena such as subsurface stormflow (e.g., Chifflard et al., 2019).

Appendix A: The fully implicit scheme for a dendritic network

In this section, Eqgs. (42) and (43), which are the basis of the implicit scheme discussed in Sect. 2.5, are proven. Inserting
Egs. (14) and (41) into Eq. (40) yields

ha(t+6t) = hi(t)

Si 5t = =T (hs(t+6t) = ho(t+80)+ > q)+ > (ha(t+6t) = ha(t)) +7s, (A1)

jeD(i)  jeD()

and thus

T (h(t+6t) — hi(£)) + 2 49 + 7

hi(t + 6t) — ha(t) = 2
s T 1= 254

(A2)
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Using Eq. (14), we can then compute the flux according to

q(t+ot) = T;(hi(t+5t) —hy(t+6t)) (A3)
l}%t+5t hi() + 32,45 +7i
Y hi(t) — hy(t + ot A4
< ST -y.q + hi(t) — hy(t + 0t) (A4)
) TZ (%- zjq;)w) ot +69) + 5,40+ "
+T qu

Then ¢ (Eq. 42) is obtained by setting hy, (t+8t) = hy(t) and and ¢} (Eq. 43) by taking the derivative with respect to hy (t+6t).

Appendix B: The unit hydrograph of a homogeneous 1-D aquifer

Let us consider a 1-D aquifer with a length L, where the spring is located at x = 0 and the drainage divide at x = L. Then
the boundary conditions are h(z,t) =0 at x = 0 and a%h(x,t) =0atx = L, and h(z,t) is periodic with a wavelength of 4L.

Thus, h(z,0) can be written as a Fourier series

Zaksm(%mx) , (BD)

where the respective terms with the cosine function are zero due to the boundary conditions and aj, = O for even values of k.

The coefficients aj are given by the relation

4L L
ay = é h(z,0)sin <2ﬂkx) = %/h x,0)sin (22§x> dz. (B2)
0 0
If we assume that the distal region, AL < « < L with X € [0,1], is initially filled to a given head value hg, we obtain
L
ak = % sin (21-?]:) dx = i—hko cos (ﬂlg)\) (B3)
AL

for uneven values of k. The time-dependent solution h(x,t) must satisfy the 1-D version of Eq. (7) with r = 0,

oh 9 (..0h
S&ax@&)' (B4)

It is easily recognized that the solution of this equation with the initial condition defined by Eq. (B1) is

Zak sin <2ﬂkx> e~ okt (B5)

T (7k\*
%S<ﬂ). (B6)
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Then the flux per unit width across the boundary is

0 = 2k 2Thy  ~— kA
t)=T —h(x,t =T 2okt — 270 v —at B7
q(t) o (z,1) » ;ak 10 ¢ 7 kgl cos( 5 )e (B7)
(uneven)

with the coefficients aj, from Eq. (B3). The respective expression for the proximal region, 0 < x < AL, is readily obtained by

subtracting this expression from the same expression with A = 0.
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