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Abstract. Understanding the properties of preferential flow patters
:::::::
patterns is a major challenge in subsurface hydrology. Most

of the theoretical approaches in this field stem from research on karst aquifers, where typically two or three distinct flow

components with different time scales are considered. This study starts from a different concept, where a continuous spatial

variation in transmissivity and storativity over several orders of magnitude is assumed. Distribution and spatial pattern of

these properties are derived from the concept of minimum energy dissipation. While the numerical simulation of such systems5

is challenging, it is found that a reduction to a dendritic flow pattern, similar to rivers at the surface, works well. It is also

shown that spectral theory is useful for investigating the fundamental properties of such aquifers. As a main result, the long-

term recession of the spring draining the aquifer during periods of drought becomes slower for large catchments. However,

the dependence of the respective recession coefficient on catchment size is much weaker than for homogeneous aquifers.

Concerning the short-term behavior after an instantaneous recharge event, strong deviations from the exponential recession10

of a linear reservoir are observed. In particular, it takes a considerable time span until the spring discharge reaches its peak.

This rise time is in an
:::
The order of magnitude of

:::
this

:::
rise

:::::
time

::
is one-seventh of the e-folding recession time

:::::::::::
characteristic

::::
time

::
of

:::
the

::::::
aquifer. Despite the strong deviations from the linear reservoir at short times, the exponential component typically

contributes more than 80 % to the total discharge. This fraction is much higher than expected for karst aquifers and even

exceeds the fraction predicted for homogeneous aquifers.15

1 Introduction

The recession of spring discharge after recharge events can be seen as the fingerprint of an aquifer. In contrast to pumping tests

at wells, it is a passive method based on data that are often recorded routinely. Additionally, spring discharges depend on the

overall properties of the catchment, while pumping tests reflect the properties in a region around the well.

More than a century ago, Maillet (1905) proposed the linear reservoir where discharge Q is directly proportional to the20

stored volume V ,

Q(t) = αV (t). (1)
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The linear reservoir is described by a single parameter α [s−1] and the stored volume follows the ordinary differential equation

d

dt
V (t) =−Q(t)+R(t) =−αV (t)+R(t), (2)25

where R(t) [m3s−1] is the recharge. During periods with zero recharge, both the stored volume and the discharge decay

exponentially with the same decay constant α, also called recession coefficient,

V (t) = V (0)e−αt, (3)

Q(t) = Q(0)e−αt. (4)

The inverse of the recession coefficient, τ = 1
α , defines the e-folding time, so the time interval over which the discharge30

decreases by a factor of e.

The linear reservoir is not only appealing because it can be described by a single parameter, but even more because its

behavior during periods of drought depends only on the actual amount of water, but is independent of the recharge history. It

often provides a reasonable approximation for long periods of drought. Deviations from the exponential decay at shorter time

scales have been investigated and used for characterizing aquifers since the 1960s, where in particular karst systems have been35

addressed in numerous studies and several theoretical concepts were proposed.

Forkasiewicz and Paloc (1967) suggested a superposition of three distinct linear reservoirs with different decay constants

describing three major flow components – a network of highly conductive conduits, an intermediate system of well integrated

fissures, and a network of pores or narrow fissures with low permeability. The behavior of this model is dominated by the

slowest reservoir during long periods of drought.40

Mangin (1975) introduced a different approach using two components. The slow component was described as a linear

reservoir, and a fast component with a limited range was added. The parameters of the fast components are the basis of the

widely used karst classification system suggested in the same study. Several other modeling approaches which are similar in

their spirit were developed (e.g., Drogue, 1972; Atkinson, 1977; Padilla et al., 1994; Kovács and Perrochet, 2014; Xu et al.,

2018; Basha, 2020; Kovács, 2021). Beyond these approaches, a multitude of numerical models designed for simulating real-45

world scenarios is nowadays availaible
:::::::
available. For deeper insights, readers are referred to the review paper by Fiorillo (2014)

and to the model comparison by Jeannin et al. (2021).

While deviations from the linear reservoir are particular relevant for karst systems, it should be noted that even the simplest

Darcy-type aquifers are not linear reservoirs. Assuming a given transmissivity T [m2s−1] and a given storativity S [-], the

simplest Darcy-type aquifer is described by the water balance equation50

S
∂h

∂t
=−divq+ r, (5)

where h [m] is the hydraulic head,

q =−T∇h, (6)
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[m2s−1] the 2-D flux density (volume per time and cross section width), ∇ the 2-D gradient operator, r the recharge per area

[ms−1], and div the 2-D divergence operator. Inserting Eq. (6) into Eq. (5) yields a partial differential equation of the diffusion55

type for the hydraulic head h,

S
∂h

∂t
= div(T∇h)+ r. (7)

This model was investigated in several studies for constant T and S in square or rectangular domains (e.g., Rorabaugh, 1964;

Nutbrown, 1975; Kovács et al., 2005; Kovács and Perrochet, 2008). Applying spectral theory (see Sect. 2.4), it was shown that

the total discharge Q (q integrated over the entire boundary) can be described by an infinite series of exponential terms with60

different decay constants during periods of drought. Since the term with the smallest decay constant dominates at large times,

the behavior approaches that of the linear reservoir. However, the question how well the linear reservoir approximates the

properties of real aquifers practically or whether the linear reservoir is even some kind of preferred state from a theoretical

point of view, has been discussed controversially (e.g., Fenicia et al., 2006; de Rooij, 2014; Kleidon and Savenije, 2017;

Savenije, 2018).65

Including the early recession phase in the analysis yields more information about the aquifer, but increases the dependence of

the results on the recharge history in turn. The instantaneous unit hydrograph, which dates back to concepts of Sherman (1932),

is widely used in this context. It describes the discharge arising from a unit amount of recharge that is applied instantaneously

at t= 0 over the entire domain.

The unit hydrograph of the simple Darcy aquifer differs strongly from that of the linear reservoir and as well as from the70

empirical approaches proposed by Forkasiewicz and Paloc (1967) and by Mangin (1975). While these models predict a finite

discharge at t= 0, it diverges according to a power law,

Q(t)∝ t− 1
2 , (8)

in the limit t→ 0 for the simple Darcy aquifer (e.g., Hergarten and Birk, 2007). Such a power-law decrease also occurs in

models consisting of porous blocks connected by highly conductive conduits (Kovács et al., 2005; Kovács and Perrochet,75

2008). However, a finite conductance of the conduits limits the power-law divergence at short times (Kovács and Perrochet,

2014). Hergarten and Birk (2007) extended this concept by a fractal distribution of block sizes. While this model was able

to explain a power-law recession with exponents different from − 1
2 , deriving aquifer properties from the power-law behavior

of recession curves turned out to be challenging. Birk and Hergarten (2010) investigated synthetic hydrographs for recharge

events of finite duration and found that the properties of the recharge event likely obscure the short-term dynamics of the porous80

blocks.

The quantification of heterogeneity and its representation in numerical models are still major challenges in hydrology.

Carbonatic aquifers are particularly interesting in this context due to the interplay
:::::::
between fluid flow and structure. The spatial

structure of the aquifer has a strong influence on fluid flow, which in turn controls dissolution and precipitation and thus also the

long-term change of the
::::::::
large-scale

:
structure. This interaction has been addressed in modeling studies of binary karst systems85

consisting of a porous medium and discrete conduits (e.g., Kaufmann and Braun, 2000; Birk et al., 2003; Kaufmann et al.,
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2010) as well as in the context of continuous changes in porosity and conductivity (e.g., Edery et al., 2021). Similar processes

can also take place in soils by subsurface erosion (e.g., Bernatek-Jakiel and Poesen, 2018).

As an alternative to forward modeling, there is an increasing number of studies attempting to derive preferred states of the

atmosphere and the hydrosphere from principles of optimality (e.g., Kleidon and Schymanski, 2008; Kleidon and Renner,90

2013; Kleidon et al., 2014; Kleidon and Savenije, 2017; Kleidon et al., 2019; Zehe et al., 2010, 2013, 2021; Westhoff and

Zehe, 2013; Westhoff et al., 2014, 2017; Zhao et al., 2016; Schroers et al., 2022). In the context of fluid flow, minimum energy

dissipation seems to be a promising concept, which was successfully applied to river networks (Howard, 1990; Rodriguez-

Iturbe et al., 1992a, b; Rinaldo et al., 1992; Maritan et al., 1996) and to the cardiovascular system of mammals (West et al.,

1997; Enquist et al., 1998, 1999; Banavar et al., 1999; West et al., 1999a, b).95

Hergarten et al. (2014) developed a theory for an optimal spatial distribution of porosity and hydraulic conductivity in the

sense that the total energy dissipation of the flow is minimized. As a major difference towards
::::
with the studies focusing on karst

systems mentioned above, this theory does not predict a binary or ternary system of distinct flow components, but a continuous

variation in the hydraulic properties over several orders of magnitude in combination with a highly organized spatial pattern.

The predicted spatial pattern is dendritic and similar to drainage networks at the surface. So it does not capture the variety of100

preferential flow patterns found in nature entirely.

The potential relation of this theoretical concept to subsurface hydrology is still unclear. Validation is limited to the statistical

distribution of catchment sizes and leaves several open questions (Hergarten et al., 2016). Even the properties of the model

have not been analyzed thoroughly, except for residence times in a steady state (Hergarten et al., 2014).

This study investigates the dynamic properties of such preferential flow patterns based on the instantaneous unit hydrograph.105

The main research question is how preferential flow patterns with minimum energy dissipation are related to the different

concepts discussed above. In more detail: How much does their behavior differ from that of a homogeneous aquifer or a linear

reservoir? Can we explain the typical behavior of karst springs without assuming two or three distinct flow components? On

which physical properties do short- and long-term properties of such an aquifer depend on?

2 Approach110

2.1 Linearized consideration

The instantaneous unit hydrograph describes the response of an aquifer to adding a unit amount of water instantaneously. It is

particularly useful for linear systems since the response to any recharge curve r(t) can be obtained by superposing multiple

recharge events at different times (formally, the convolution integral of r(t) and the instantaneous unit hydrograph).

For unconfined aquifers, however, the transmissivity is proportional to the height of the water column,115

T =K (h− b) , (9)

whereK is the hydraulic conductivity [m s−1] and b the base of the aquifer [m]. Since this dependence introduces a nonlinearity

in Eq. (7), we can only make use of the linear theory for small disturbances. For this, we assume a steady state at a recharge r0
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and apply a small additional recharge δr, so that r = r0 + δr. Then we can write the actual head in the form h= h0 + δh with

the steady-state head h0. Equation (5) retains its shape,120

S
∂δh

∂t
=−divδq+ δr, (10)

but with

δq = −K ((h0 + δh− b)∇(h0 + δh)+ (h0− b)∇h0) (11)

≈ −K ((h0− b)∇δh+ δh∇h0) (12)

for small δh. The first term is the effect of a change in the hydraulic gradient at constant transmissivity T0 =K (h0− b), which125

has the same form as Eq. (6). The second term describes the change in flux arising from the change in the thickness of the

water column at constant hydraulic gradient. This term is particularly relevant for sloping aquifers with thin water layers.

Since the concept developed in the following only captures the first term, the second term is neglected in this study. This

means that the steady-state water table should be almost horizontal and the respective water column should not be too thin. In

this case (neglecting the second term in Eq. 12), δh is decribed
:::::::
described

:
by the same equation as h in Eq. (7), but with δr and130

T = T0. For simplicity, δh, δq, and δr are labeled h, q, and r, respectively. So we have to keep in mind that these properties

are not absolute values, but small deviations from a steady state. Furthermore, T is the steady-state transissivity
:::::::::::
transmissivity

T0 in the following.

2.2 Basic setup

Following the considerations of the previous section, we consider a 2-D aquifer with a given transmissivity T [m2s−1] and a135

given storativity S [-], described by Eqs. (5) and (6). Since focus is on strongly organized preferential flow patterns, both T

and S are not spatially uniform, but may even vary over several orders of magnitude. As discussed in the previous section, the

head values h, the flux density q, and the recharge r are not absolute values, but deviations from a steady state. As the simplest

boundary condition, it can be assumed that the hydraulic head at springs remains constant, which is equivalent to the boundary

condition h= 0.140

On a regular grid with a uniform grid spacing d, Eqs. (5) and (6) can be discretized by a finite-volume approach according

to

d2Si
∂hi
∂t

=−
∑

j∈N(i)

qij + d2ri (13)

with the fluxes

qij = dTij
hi−hj
d

. (14)145

The nodes of the grid were numbered by a single index i, whereN(i) denotes the nearest neighborhood of the node i, consisting

of four neighbors except for boundary nodes. The symbol qij [m2s−1] refers to the flux from the node i to the node j, while
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Tij is the respective transmissivity. Note that qij already includes the length of the edge between the two nodes (first term d

in Eq. 14), so that it is no longer a flux per unit width. Inserting Eq. (14) into Eq. (13) yields the respective discrete form of

Eq. (7).150

Solving this equation numerically on large grids is challenging if the transmissivity varies over several orders of magnitude.

Using an explicit scheme for the timestep requires very small time increments since small changes in hydraulic head cause large

fluxes. Employing a fully implicit scheme overcomes this limitation since fully implicit schemes are stable at arbitrary time

increments for diffusion-type equations. However, most of the available algorithms for solving the resulting linear equation

system do not perform well if T varies strongly. This also applies to multigrid schemes (e.g., Hackbusch, 1985), which are the155

only schemes with linear time complexity, so where the numerical effort per time step increases only linearly with the number

of nodes.

2.3 Dendritic flow patterns

The theory of minimum energy dissipation in Darcy flow proposed by Hergarten et al. (2014) approximates preferential flow

patterns by dendritic structures. This means that each node i delivers its entire discharge to one of its neighbors, b, called flow160

target in the following (strictly speaking, it should be labeled bi). The flow target is defined as the neighbor with the steepest

descent in hydraulic head, which is the same as the neighbor with the lowest head value for a grid with uniform spacing in

both directions. Then, the neighborhood consists of three groups of nodes: (i) One flow target. (ii) Some neighbors that deliver

their discharge to the considered node, called donors in the following. (iii) Some nodes that do not interact with the considered

node. The last group of nodes makes the difference towards the original model where all neighbored nodes interact.165

Since we consider only small deviations from a steady state, we can assume that the topology of the flow pattern does not

change through time. The flow target of each node is determined from the steady state and persists. As a major advantage, this

simplification inhibits the occurrence of nodes without a flow target.

The discrete version of the balance equation (Eq. 13) turns into

d2Si
∂hi
∂t

=−qi+
∑

j∈D(i)

qj + d2ri (15)170

for a dendritic flow pattern, where the notation qi (with a single index) describes the flux from the node i to its flow target (so

qib in the general notation). The sum extends over all donors of the node i, denoted D(i) here.

Since the topology of the flow pattern is static, the head value of a node may become lower than that of its flow target, in

which case Eq. (14) predicts a negative flux. In the context of small deviations from a steady state, a negative flux would not

have an immediate meaning since it just says that the flux towards the flow target is lower than in the steady state. However,175

there is no problem even if backward flux occurs on an absolute scale.

Dendritic networks are widely used in the context of surface flow patterns, in particular river networks at large scales. In

order to reduce effects of anisotropy, the so-called D8 scheme is typically used on a regular, two-dimensional grid. Here, 8

neighbors (4 nearest neighbors and 4 diagonal neighbors) are considered, so that river segments are either parallel to one of

the coordinate axes or diagonal. While the numerical construction of optimized drainage patters by Hergarten et al. (2014)180
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also used the D8 scheme, we consider only the 4 nearest neighbors (D4 scheme) in the following. The main reason for this

limitation is the comparison to the original model in Sect. 3.1. The D4 scheme can be seen as a restriction of the original model,

while the D8 version would allow for additional flow paths. In particular, a diagonal line of points with a high transmissivity

would be a preferential flow path with regard to the D8 scheme, but not in the original model.

While the concept of dendritic flow patterns was used by Hergarten et al. (2014) for constructing patterns of porosity and185

conductivity (see also Sect. 2.7), recent developments in numerics make this concept interesting for time-dependent modeling.

In the following sections, two numerical approaches that are robust against strong variations in transmissivity are presented.

2.4 Spectral theory

Large parts of this study are based on spectral theory. Spectral theory decomposes the solution into a set of functions with a

simple behavior. The functions are simple in the sense that they can be written in the form190

h(x, t) = h(x,0)f(t), (16)

which means that their shape does not change through time. For r = 0, Eq. (7) can then be separated into one equation for

h(x,0) and another equation for the time dependence f(t). This result is recognized by inserting h(x, t) into Eq. (7) and

dividing both sides by h(x, t) and by S, which yields

d
dtf(t)

f(t)
=

1
S div(T∇h(x,0))

h(x,0)
. (17)195

Since the left-hand side is independent of x and the right-hand side is independent of t, both sides must be constant. If we call

the respective constant −α, the solution for f is

f(t) = e−αt (18)

since Eq. (16) requires f(0) = 1. So

h(x, t) = h(x,0)e−αt (19)200

decreases exponentially for α > 0 and increases for α < 0. The right-hand side of Eq. (17) yields the eigenvalue equation

− 1

S
div(T∇h) = αh. (20)

for h(x,0). This means that the differential operator − 1
S divT∇ applied to the function h just multiplies h by the factor α.

Mathematically, h is an eigenfunction of the differential operator and α the respective eigenvalue.

While the eigenfunctions and the respective eigenvalues can be computed analytically for some simple geometries (e.g.,205

Rorabaugh, 1964; Nutbrown, 1975; Kovács et al., 2005; Kovács and Perrochet, 2008, for rectangular domains) and constant

parameters, a heterogeneous distribution of S and T requires a numerical treatment. The numerical treatment requires a transi-

tion from the continuous function h to the values hi on the discrete grid. Using the same finite volume discretization as above
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(Eqs. 13 and 14), the term − 1
S div(T∇h) can be approximated at the i-th node by

− 1

S
div(T∇h)

∣∣∣∣
i

≈ 1

Si

∑

j∈N(i)

Tij(hi−hj), (21)210

where unit grid spacing (d= 1) was assumed for simplicity. Aligning all values hi in a column vector, this relation can be

written in matrix form

− 1

S
div(T∇h)≈Ah (22)

with a square matrix A. It is easily recognized that the nondiagonal elements of A are

Aij =




−Tij

Si
for j ∈N(i)

0 else
, (23)215

while the diagonal elements are

Aii =
∑

j∈N(i)

(−Aij) =
∑

j∈N(i)

Tij
Si
. (24)

This matrix is the same as needed for solving the steady-state version of Eq. (7) numerically. The respective form of the

matrix for dendritic flow patterns is basically the same, where only the neighborhood has to be reduced to those points that are

connected, i.e., where either j is the flow target of i or vice versa.220

Since all software packages for linear algebra provide functions for computing eigenvalues, the steps are technically not very

challenging up to this point. However, each eigenvalue and the respective eigenfunction is just one solution of Eq. (7) with r = 0

for a specific initial condition h(x,0). In turn, we need the solution for any given initial condition. Spectral theory expresses

a given initial condition as a superposition of eigenfunctions and then uses the knowledge about the individual eigenfunctions

for predicting the full solution.225

Let us assume that we computed all eigenfunctions and that eki is the value of the k-th eigenfunction at the node i. If hi(0)

is the initial value at this node, we need coefficients λk so that hi(0) is the superposition of the respective values eki,

hi(0) =
∑

k

λkeki. (25)

Then the values of h at time t are

hi(t) =
∑

k

λkekie
−αkt, (26)230

where αk is the k-th eigenvalue of A. So all head values can be written as a sum of exponentially decaying terms, provided that

all eigenvalues are positive. The latter can be shown for the matrix defined by Eqs. (23) and (24) with the help of Gershgorin’s

circle theorem.
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Since all head values can be decomposed into a sum of exponential functions, the fluxes and thus also the discharge of a

spring can be expressed the same way,235

Q(t) =
∑

k

λkQke
−αkt, (27)

where Qk is the discharge of the k-th eigenfunction. If we assume that the eigenvalues are sorted in increasing order, the

long-term recession coefficient is α= α1.

The nontrivial question is whether each initial condition can be expressed as a superposition of eigenfunctions according to

Eq. (25). Mathematically, this property relies on the symmetry of the differential operator or, for the discrete problem, on the240

symmetry of the matrix (Aij =Aji). If A is symmetric, a basis of eigenvectors (the representations of the eigenfunctions on

the discrete grid) can be found, which ensures the applicability of Eq. (25) for any initial condition with unique coefficients λk.

The symmetry ofA even guarantees the existence of an orthonormal basis. As a main advantage, an orthonormal basis allows

for computing each coefficient λk from the inner product (scalar product) of the initial head distribution and the respective

eigenvector. So we can obtain the long-term recession coefficient α= α1 and the contribution of the respective component245

to the total (time-integrated) discharge from the lowest eigenvalue and the respective eigenvector alone. Otherwise, we would

need all eigenvectors. Since their number equals the number of nodes, this would be expensive on large grids and would cost

the advantage over a direct forward simulation.

Since Tij is the transmissivity between the nodes i and j, Tij = Tji. Without the term Si in Eq. (23), this property would

already guarantee the symmetry ofA. With this term, however,A is only symmetric if Si = Sj , so if S is the same everywhere.250

To overcome this limitation, we need to get a bit deeper into linear algebra and consider a wider definition of symmetry

coming from the concept of linear maps. Here, symmetry is related to an inner product, and the condition for symmetry is

Ah · h̃= h ·Ah̃, (28)

where · is the inner product. This condition has to be satisfied for all h and h̃. It is easily recognized that the criterionAij =Aji

describes the specific case for the standard scalar product255

h · h̃=
∑

i

hih̃i. (29)

For deeper insights into the fundamentals, readers are referred to textbooks of linear algebra (e.g., Halmos, 1958).

To proof the symmetry of A in this sense, we need the custom inner product

h · h̃=
∑

i

Sihih̃i, (30)

which differs from the standard scalar product (Eq. 29) by its weighting with the storativity S. Using the definition of A260

(Eqs. 23 and 24), it is easily recognized that

SiAij = SjAji, (31)
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and thus

(Ah) · h̃ =
∑

i

Si


∑

j

Aijhj


 h̃i (32)

=
∑

i,j

SiAijhj h̃i (33)265

=
∑

i,j

SjAjihj h̃i (34)

=
∑

i,j

Sjhj

(∑

i

Ajih̃i

)
(35)

= h ·
(
Ah̃
)
, (36)

which proves the symmetry of A with regard to the custom inner product.

Technically, the normalization of the eigenvectors obtained numerically is the only point that requires attention. The eigen-270

vectors have to be normalized with respect to the custom inner product and not with respect to the standard scalar product, so

according to the condition

ek · ek =
∑

i

Sie
2
ki = 1. (37)

If hi are the head values at t= 0, the coefficients λk in Eqs. (25) and (26) are then obtained from the inner products in the form

275

λk = h · ek =
∑

i

Sihieki. (38)

This relation becomes particularly simple for the instantaneous unit hydrograph. Applying a unit amount of water per area to

all nodes results in Sihi = 1 for all i, and thus

λk =
∑

i

eki. (39)

So the coefficient λk is obtained by adding the head values of the respective normalized eigenfunction at all nodes.280

2.5 Forward modeling

Spectral theory is very efficient for characterizing the long-term recession since only the components with the lowest recession

coefficients αk are relevant here. In turn, computing the instantaneous unit hydrograph at short times requires a large number

of eigenfunctions, so that the advantage over direct forward modeling is lost. Therefore, we also implemented a numerical

scheme for forward modeling of the dendritic model. For this purpose, we adopted the very efficient, fully implicit scheme285

that was recently proposed in the context of fluvial erosion and sediment transport by Hergarten (2020). As a major advantage,

the scheme is robust against strong spatial variations in transmissivity. For simplicity, the scheme is only described for the D4

neighborhood with unit grid spacing (d= 1) in the following.
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Let us consider a time step from t to t+ δt. Replacing the time derivative at the left-hand side of Eq. (15) by a difference

quotient and evaluating the fluxes at the right-hand side at the time t+ δt (for the fully implicit treatment) yields290

Si
hi(t+ δt)−hi(t)

δt
=−qi(t+ δt)+

∑

j∈D(i)

qj(t+ δt)+ ri. (40)

The key idea behind the scheme is that all fluxes respond linearly to changes in h of the flow target b due to the linearity of the

differential equation. In particular, the flux qi(t+ δt) depends linearly on hb, so that

qi(t+ δt) = q0i + q′i (hb(t+ δt)−hb(t)) . (41)

Here, q0i is the hypothetic flux at time t+ δt under the assumption that hb remains constant (hb(t+ δt) = hb(t)). It is not the295

same as qi(t) since qi may also change if qb remains constant. The second term in Eq. (41) describes the effect of changes in

hb(t+ δt) on qi(t+ δt) where q′i is the partial derivative of qi(t+ δt) with respect to hb(t+ δt).

As shown in Appendix A, q0i and q′i can be computed from the respective properties of the donors and from the known values

of h at time t by the expressions

q0i = Ti

(
Si

δt −
∑
j q
′
j

)
(hi(t)−hb(t))+

∑
j q

0
j + ri

Si

δt +Ti−
∑
j q
′
j

, (42)300

q′i = −Ti
Si

δt −
∑
j q
′
j

Si

δt +Ti−
∑
j q
′
j

. (43)

Thus, q0i and q′i can be computed successively in downstream order, starting from the nodes without donors.

However, qi(t+δt) cannot be computed during the downstream sweep since the actual values hb(t+δt) required in Eq. (41)

are still unknown. Computing the values hi(t+ δt) and qi(t+ δt) requires a second sweep over all nodes, which has to be

performed in opposite direction (upstream, starting from the boundary). As soon as hb(t+ δt) is known (since the node b305

is treated prior to the node i), qi(t+ δt) can be computed from Eq. (41). Finally, the hydraulic head can be calculated from

Eq. (14) according to

hi(t+ δt) = hb(t+ δt)+
qi(t+ δt)

Ti
. (44)

This scheme provides a direct solver (without the need for iterations) for the fully implicit discretization of the flow equation

on a dendritic network. It is therefore
::
As

:::::::::
mentioned

::
at

:::
the

::::
end

::
of

:::::
Sect.

::::
2.2,

::::
fully

:::::::
implicit

::::::::
schemes

:::
are stable for arbitrary310

time increments δt, and its performance .
:::
As

::
a
::::
main

:::::::::
advantage

::::
over

:::::
other

:::::::
efficient

::::::::
schemes

:::::
(e.g.,

::::::::
multigrid

:::::::::
schemes),

:::
the

::::::::::
performance

::
of

::::
this

::::::
scheme

:
is not affected by spatial variations in transmissivity and storativity. The numerical complexity is

O(n), which means the the computing effort increases only linearly with the total number of nodes. It is therefore perfectly

suited for simulations on grids with several millions of nodes.

2.6 Nondimensionalization315

The linearized problem (Eq. 7, where T does not depend on h) can easily be transformed to nondimensional properties, which

makes the results independent of the absolute values of S and T and of the spatial scale. For this purpose, arbitrary reference
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values S0 and T0 and an arbitrary length scale l can be defined. Then the respective nondimensional properties

Ŝ =
S

S0
, T̂ =

T

T0
, and x̂=

x

l
(45)

are defined. If we further introduce320

t0 =
S0l

2

T0
and r0 =

T0
l

(46)

and define the nondimensional properties

ĥ=
h

l
, t̂=

t

t0
, and r̂ =

r

r0
, (47)

the differential equation for the nondimensional properties is the same as the original equation (Eq. 7). This result can easily

be verified by expressing the original properties in Eq. (7) in terms of the respective nondimensional properties. The scaling325

factor for the flux density is T0 then, so q = T0q̂.

As a consequence of these scaling properties, the shape of the instantaneous unit hydrograph depends only on the shape of

the aquifer and on the spatial pattern of S and T , but not on their absolute values and on the absolute size of the aquifer. This

property will turn out to be useful in the following section.

2.7 Patterns of transmissivity and storativity330

While systematic knowledge about the spatial structure of preferential flow paths is still limited, we need a model for generating

spatial patterns of transmissivity and storativity. In this study, we adopt the theory based on minimum energy dissipation

proposed by Hergarten et al. (2014). This theory addresses the best spatial distribution of a given total pore space volume in

the sense that the total energy dissipation of steady-state flow is minimized. The central assumption behind this theory is a

power-law relation between the hydraulic conductivity K on the porosity φ,335

K ∝ φn, (48)

with a given exponent n. Some ideas how dissolution could increase K were discussed in that study. If all pores have the same

diameter and grow uniformly, an exponent n= 2 was obtained. The same result was obtained for an arbitrary distribution
::
of

diameters if all pores grow by the same factor in diameter. In turn, a stronger increase in K with φ (n > 2) occurs if dissolution

mainly affects the largest pores. Overall, these simple models yield a weaker increase in conductivity with porosity than340

predicted by the fundamental relation of Kozeny (1927) and Carman (1937). This relation predicts n= 3 at small porosities,

which was also adopted in the numerical study of dissolution and precipitation by Edery et al. (2021). In turn, the theoretical

study of fractal pore spaces by Costa (2006) points towards n≈ 2.

The exact value of the exponent n is, however, not important in the following. Theoretically, it is only important that

the increase in K with φ is stronger than linear (n > 1) since concentrating porosity along preferential flow structures is345

energetically favorable only under this condition.
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Based on the power-law relation, Hergarten et al. (2014) derived the relations

φ ∝ q
2

n+1 , (49)

K ∝ q
2n

n+1 . (50)

and computed optimized dendritic networks on a discrete grid. This result is, however, limited to confined aquifers with a350

constant thickness. Assuming S = φ for an unconfined aquifer is the simplest and somehow straightforward approach. In turn,

the transfer from K to T is not trivial and depends on the topography of the base b. Even if the bottom is flat, points with

the same q will have different values of h and thus different T =K(h− b), depending on their position in the network. Since

this dependency would make the theory of minimum energy dissipation more complicated, it is assumed in the following that

the dependence of T on q is the same as that of K (Eq. 50). As a modification, we might take into account that sites with355

high q and thus high K may have a lower thickness h− b. Then the increase in T with φ will be weaker than the increase in

K, which could be included by reducing the exponent n.
::
In

::::
each

:::::
case,

:::::::
however,

::::
this

::::::::::::::
two-dimensional

:::::::
approach

:::::
only

:::::::
captures

::::::::
horizontal

::::::::::::
heterogeneity.

::
A

::::
high

:::::
value

::
of

::
T
:::::::
requires

::::
that

::
K

::
is
:::::
high

::::
over

:::
the

:::::
entire

::::::::
thickness,

:::
so

:::
that

::::::::::
neighbored

::::
sites

::::
with

::
a

::::
high

:::::::::::
transmissivity

:::
are

:::::::::
connected

::::
well.

:

As the most important aspect, however, Eqs. (49) and (50) refer to a steady state. The aquifer’s properties do not change on360

the time scale of individual events. Instead, we assume that S and T are adjusted to a steady state that reflects some long-term

average. At this point, we can make use of the nondimensional formulation developed in Sect. 2.6. Single-pixel catchments

(nodes without donors) have the lowest values of S and T . Let us use their storativity and transmissivity as the reference values

S0 and T0. If we assume a uniform long-term average recharge, the mean flux is proportional to the catchment size Ai of the

respective node. If we further use the grid spacing d as the characteristic length scale l, the nondimensional generalization of365

Eqs. (49) and (50) is

Si = A
2

n+1

i , (51)

Ti = A
2n

n+1

i . (52)

Owing to the choice l = d, the catchment size Ai has to be measured in grid pixels (so in units of d2) here. Then single-pixel

catchments are characterized by Si = Ti = 1, corresponding to Si = S0 and Ti = T0 in physical units.370

The largest catchments in the examples considered later consist of slightly more than 106 pixels, which means that the

catchment size varies by a bit more than six orders of magnitude. For n= 2, this corresponds to a variation in T by eight

orders of magnitude. If we assume, e.g., T0 = 10−9 m2s−1, the values of T would cover the range from fresh limestone to

strongly karstified limestone at a thickness of some meters. The respective range of S is only slightly more than four orders of

magnitude for n= 2. However, assuming S0 = 10−5 would cover the range up to S = 0.1.375

Practically, the characteristic timescale t0 (Eq. 46) is the central property to be taken into account when transferring nondi-

mensional hydrographs to real-world coordinates. With the values S0 and T0 defined above, this time scale would be t0 = 104 s

at a grid spacing d= 1 m and t0 = 106 s at d= 10 m. Since d seems to be a numerical parameter rather than a physical param-

eter, the strong dependence on d may be confusing at first. However, d is a property of the spatital
:::::
spatial

:
pattern. It defines the

13



100

101

102

103

104

105

106

C
at

ch
m

en
t s

iz
e 

A

Figure 1. Catchments of numerically obtained dendritic flow patterns for n= 2 on a lattice of 4096× 4096 sites. Color corresponds to the

size A of each individual catchment, measured in grid pixels. The watersheds between large catchments (A≥ 10000 pixels) are highlighted

in black.

smallest cell that cannot be subdivided by a preferential flow pattern and thus some kind of representative elementary volume380

(in combination with the thickness).

The characetristic
::::::::::
characteristic

:
timescale t0 can be interpreted physically in the setup used here. According to Eqs. (14) and

(15), the smallest spatial unit (a single-pixel catchment) is described by the equation

d2S0
∂hi
∂t

=−T0 (hi−hb) (53)

for zero recharge. So the smallest spatial units behave like a linear reservoir with a recession coefficient385

α=
T0
d2S0

=
1

t0
, (54)

which means that t0 is the characteristic time of a single-pixel catchment.

2.8 Considered scenarios

Based on the assumptions described in the previous section, a numerically obtained flow pattern for n= 2 on a 4096× 4096

grid is used in this study. The algorithm for generating such patterns was described by Hergarten et al. (2014). All points at the390

boundaries are considered as springs where the discharge is measured. Figure 1 illustrates the catchments of the springs.

Several scenarios will be considered for the same geometry in the following. Beside the reference scenario with n= 2, the

influence of n will be investigated. These investigations also include uniform transmissivity and storativity. The suitability of

the description as a dendritic network will be tested against full Darcy flow.
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Figure 2. Recession coefficient α of each individual catchment with n= 2 for dendritic flow patterns against full Darcy flow. The colors

match Fig. 1 and indicate the size of the respective catchment.

In order to enable a comparison of the recession curves of individual springs, the same catchments are used in all simulations.395

This means that the boundaries between the catchments shown in Fig. 1 are enforced by cutting the respective connections, so

by inhibiting flow across the watersheds.

3 Results and discussion

3.1 Dendritic flow patterns vs. full Darcy flow

As a first step, we investigate under which conditions the reduction from full Darcy flow (taking all four neighbors into account)400

to a dendritic flow pattern (a single flow target for each node) provides a suitable approximation. We start from the optimized

distribution of S and T for n= 2, so from a strongly preferential flow pattern. Figure 2 compares the long-term recession

coefficients α (α1 in Eq. 27) obtained from the dendritic flow pattern to those of full Darcy flow. The recession coefficients of

both approaches agree well, which means that the long-term recession behavior is captured well by the dendritic flow pattern.

Some deviations occur at rather small catchment sizes from about 10 to 200. Here, allowing only one single flow direction405

leads to a slight underestimation of α, which means that the recession is slightly too slow. This underestimation is highest at

catchment sizes A≈ 16 and reaches about 10 % there.

In order to investigate the effect of the restricted flow directions in more detail, we analyzed the flow pattern of the full

Darcy scenario. For this purpose, we define the major flux component of each node as the flux towards the given flow target

(according to the dendritic pattern) and the minor flux component as the sum of the fluxes towards all other neighbors with410

lower head values.

Figure 3 shows the relative contribution of the minor fluxes as a function of the size of the respective upstream catchment.

The upstream catchment size refers to the individual pixels here and not to the embedding catchment. So the data point for a
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Figure 3. Relative contribution of the minor fluxes for each grid pixel as a function of the catchment size A. The curves were obtained by

logarithmic binning with ten bins per decade. All three considered scenarios – a steady-state initial condition, a unit recharge pulse, and the

exponentially decaying term (only the slowest component, first term in Eq. 27) – are analyzed separately for grid pixels that lie within a

spring catchment (flow towards all four neighbors; solid lines) and pixels at drainage divides (restricted flow directions; dashed lines).

A= 1 describes the average over all pixels without donors, no matter whether they are draining directly to the boundary (so

are indeed single-pixel catchments) or are part of a larger catchment. Since points at drainage divides are already restricted415

concerning their flow direction in the full Darcy scenario, these points are analyzed separately from inner points.

The contribution of the minor fluxes decreases with increasing catchment size, so downstream along the preferential flow

paths. It becomes negligible for all considered scenarios at catchment sizes A' 200. The contribution of the minor flux is

particularly small immediately after a short, uniform recharge pulse. If all sites receive the same amount of water, the resulting

change in hydraulic head is inversely proportional to the storativity. Since high transmissivity goes along with high storativity,420

the hydraulic gradient becomes more focused towards increasing catchment size
::::::
between

::::
sites

::::
with

::::
low

:::::::::::
transmissivity

::::
and

::::
sites

::::
with

::::
high

:::::::::::
transmissivity

::::::::
increases. As a consequence, the fluxes are focused

::::::::::
concentrated towards the preferential flow paths,

which reduces the minor fluxes.

The strongest contribution of the minor fluxes is found for the long-term recession, characterized by an exponential recession

curve. The minor fluxes contribute even almost 60 % for A= 1 here (only inner points, about 35 % for drainage divides). It425

may be surprising that the minor fluxes do not affect the recession coefficient strongly, as shown in Fig. 2. In an extreme

scenario where all four neighbors are at the same head values, the fluxes would be four times higher in the full Darcy model

than in the single flow target realization, which would result in a four times faster recession than predicted by Eq. 54
:::
(54).

Although the majority of the nodes have small upstream catchment sizes (e.g., A= 1 for 43 % of all nodes and A≤ 10 for

81 % of all nodes), their behavior is obviously not crucial for the properties of the entire catchment.430
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Figure 4. Recession coefficient α of each individual catchment with a spatially uniform distribution of T and S for dendritic flow patterns

against full Darcy flow. The colors match Fig. 1 and indicate the size of the respective catchment.

These results suggest
:::
that

:
preferential flow patterns can be represented well on a discrete grid by a dendritic structure where

each node drains only towards one of its neighbors. In turn, the approximation by a dendritic flow pattern does not work well for

a spatially uniform distribution of T and S as shown in Fig. 4. Here, α is underestimated by more than one order of magnitude

for large catchments, which means that the recession is more than by a factor of 10 too slow. The coefficients agree well only

for small catchments, where the minor fluxes are small or even absent due to the restricted flow directions at drainage divides.435

3.2 Scaling properties of the recession coefficient

It was already visible in Figs. 2 and 4 that the recession coefficient α decreases with increasing catchment size. The expected

scaling behavior is α∝A−1. This result is formally obtained from the characteristic timescale t0 (Eq. 46 with A∝ l2), but can

also be derived directly from the occurrence of a first-order time derivative at the left-hand side of Eq. (7) and second-order

spatial derivatives at the right-hand side. If we rescale the entire catchment including the pattern of S and T by a factor β, the440

right-hand side of Eq. (7) changes by a factor of β−2 for r = 0. Then the time scale must change by the same factor. Since the

catchment size A increases quadratically with β, the time scale is proportional to the catchment size and thus α∝A−1.

As shown in Fig. 5, this simple scaling behavior does not hold for the patterns of S and T considered here. While the scaling

behavior follows a power law

α∝A−γ (55)445

reasonably well for all considered values of n, it seems that an exponent γ = 1 is only achieved for n= 1. For all values n > 1,

we find γ < 1, where γ decreases with increasing n. This means that the recession of large catchments is still slower than the

recession of small catchments, but the effect is considerably weaker than for a simple Darcy-type aquifer (γ = 1).
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Figure 5. Scaling behavior of recession coefficient α relating to catchment size A (Eq. 55) for different values of n and for a uniform

distribution of T and S. Full Darcy flow is plotted as solid lines, flow in dendritic patterns as dotted lines. Except for the scenario with

S = T = 1, the curves of full Darcy flow and the dendritic pattern are hardly distinguishable.

Qualitatively, this weaker increase is the expected behavior for a preferential flow pattern. Preferential flow paths are able

to transport water rapidly over large distances, so that an increasing spatial extension does not slow down the recession as450

strongly as in a homogeneous aquifer.

The opposite behavior is observed for n < 1. Here large catchments become extremely slow. Revisiting Eqs. (51) and (52),

it is recognized that T still increases with catchment size, but weaker than S for n < 1. So flow is still facilitated along the

preferential flow paths, but the respective cells become slow due to their high storativity. This becomes visible if we apply

Eq. (54) formally to such cells, which yields α∝A
2(n−1)
n+1 , so that α decreases with increasing A. However, n < 1 would be455

unrealistic for porous media, where rather n≥ 2 should be expected. Beyond this, it was demonstrated by Hergarten et al.

(2014) that dendritic flow patterns are energetically favorable only for n > 1. So preferential flow patterns with n < 1 can be

constructed, but do not make much sense. Nevertheless, the curves are almost indistinguishable not only for n≥ 1, but also for

n < 1. The results reveal that the numerical approximation by a dendritic flow pattern also works well for n < 1.

As already recognized in Sect. 3.1, the approximation by a dendritic flow pattern does not work for constant transmissivity460

and storativity. Figure 5 reveals that the unusual scaling behavior with γ > 1 also occurs for the description by full Darcy flow.

This result is related to the subdivision of the domain into fixed catchments drained by distinct springs. In order to test this

hypothesis, we computed the recession coefficients for radial flow towards a spring in polar coordinates. Keeping the radius

of the spring constant and varying the total size of the catchment (the outer radius), we obtained roughly the same scaling

behavior, γ ≈ 1.1, as found for the catchments considered in Fig. 5. This scaling behavior indicates that the region around465

the spring is some kind of bottleneck that becomes increasingly relevant for large catchments. This result aligns well with the
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Figure 6. Unit hydrographs of the biggest catchment for n= 2 and of a homogeneous 1-D aquifer. The dashed lines correspond to the

long-term exponential recession. The data are scaled in such a way that the e-folding time τ and the total amount of water supplied by the

recharge event are the same in both scenarios.

result of Hergarten et al. (2014), who found that minimum energy dissipation for radial flow requires an increase in permeability

towards the spring.

The nontrivial dependence of α on the catchment size does not only affect spring hydrographs, but also the response time of

aquifers to changes in climate or hydraulic conditions at the boundaries. As a recent example, Cuthbert et al. (2019) provided470

worldwide estimates of these groundwater response times worldwide. These estimates are based on the one-dimensional ver-

sion of Eq. (7) for homogeneous aquifers with the size of the aquifer assumed to be twice the distance L of perennial rivers.

Then the scaling arguments given above (and formally in Sect. 2.6) yields α∝ L−2 and thus a response time proportional to

L2. Since L increases with decreasing precipitation, this model predicts a strong negative correlation between precipitation and

groundwater response time with typical response times of several thousand years in arid and semi-arid regions. If the respective475

aquifers are not homogeneous, but have a preferential flow structure as considered here, the dependence of the groundwater

response time on L and thus on climate will be considerably weaker than predicted by Cuthbert et al. (2019).

3.3 Short-term recession

The differences between the model considered here and simple Darcy-type models are not limited to the scaling properties of

the long-term recession coefficient. As exemplified in Fig. 6 for the biggest catchment, the unit hydrograph shows a clear rising480

limb at short times. In contrast, the 1-D Darcy-type aquifer shows a power-law decrease in discharge at short times, so that

Q→∞ for t→ 0.

For a better comparison, size and parameter values of the 1-D aquifer were adjusted in such a way that the long-term recession

coefficient α and the total amount of water supplied by the recharge event are the same as for the considered catchment (see
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Figure 7. Relation between rise time trise and e-folding time τ of the long-term recession for the considered catchments and different values

of n.

Appendix B). For such a simple aquifer, a lag between a short precipitation event and the peak discharge would typically be485

attributed to the infiltration process. We would then assume that the time lag is related to the transit time of the water from

the surface to the aquifer. In a model consisting of individual porous blocks connected by highly conductive fractures (e.g.,

Kovács et al., 2005; Hergarten and Birk, 2007), the time lag may also be owing to the finite conductivity of the fracture system.

In contrast, the finite rise time is an inherent property of the structure of the aquifer in the model considered here. It cannot be

attributed uniquely to any individual component of the system.490

Figure 7 provides an analysis of the rise time trise for the considered catchments and different values of the exponent n. For

n= 2, the data suggest a linear relationship between trise and the long-term e-folding time τ = 1
α . The ratio of trise and τ varies

from about 9 % to 19 % for the individual catchments. The rise times become slightly shorter in relation to the e-folding time

for lower n. For n= 1.5, we found ratios in a range from about 4 % to 22 %. The data obtained for n > 2 are non-unique, in

particular for small catchments (small τ ). Overall, there seems to be a weak increase in the ratio of trise and τ with increasing495

n. This trend aligns well with the absence of a finite rise time in the simple one- and two-dimensional aquifers without a

preferential flow pattern. However, the trend is much weaker than the variation among individual catchments and therefore not

investigated further. In each case, however, trise is not very small compared to τ . One-seventh of the e-folding recession time

seems to be a reasonable order of magnitude. Taking into account that long-term e-folding times of karst aquifers are typically

in an order of magnitude of several weeks, the rise time is in an order of magnitude of several days.500

The occurrence of a rising limb in the unit hydrograph requires that some of the coefficients λkQk in Eq. (27) are negative.

This can be seen formally by computing the derivative of Eq. (27). The derivatitve
:::::::
derivative

:
is similar to Eq. (27) itself, except

that the coefficients are −αkλkQk. Since the sum cannot become zero if all coefficients have the same sign, at least one of the
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Figure 8. Coefficients λkQk and recession coefficients αk in Eq. (27) for the largest catchment (n= 2). Only the slowest 500 components

(k ≤ 500) were computed. The data of the 1-D aquifer were rescaled in such a way that the lowest recession coefficient α1 and the total

recharge are the same as for the simulated catchment.

original coefficients λkQk must be negative. Figure 8 shows the coefficients for the largest catchment. While the coefficients

of the slowest components (small αk) are positive, there is no obvious preference for either sign in the faster components.505

The spectrum of the considered catchment differs fundamentally from that of the 1-D aquifer. While the spectrum of the

1-D aquifer consists of distinct components with recession coefficients αk ∝ (2k− 1)2 (see Appendix B), the spectrum of the

catchment becomes more or less continuous at large k. However, the smallest recession coefficients are still distinct. For the

catchment analyzed in Fig. 8, the ratio is α2

α1
≈ 2. While the lowest ratios among all simulated catchments are about 1.5, the

ratio is typically in a range from about 2.5 to 4 for smaller catchments. So the ratio α2

α1
differs from catchment to catchment,510

but is always clearly above unity. This also holds for n 6= 2. This property ensures that the recession curve approaches a

single exponential function at a reasonable time and that the coefficient λ1Q1 captures the long-term recession well. However,

the ratio is much lower than the ratio α2

α1
= 9 of the 1-D aquifer. Although the deviation from an exponential recession also

depends on the coefficients λkQk, the difference is already visible in Fig. 6. While the unit hydrograph of the 1-D aquifer is

almost indistinguishable from the exponential decay at t= 0.5τ , the difference is more than 15 % at this time for the largest515

catchment. So the model with the preferential flow pattern approaches the long-term exponential recession much more slowly

than the simple 1-D aquifer.

Figure 9 illustrates the approximation of the unit hydrograph by a finite number of exponential components. In this example,

all coefficients for k ≤ 9 are positive. In the range 9< k ≤ 23, there are also negative coefficients. However, the positive

coefficients still dominate here, so that the highest peak discharge is achieved when including the components with k ≤ 23.520

The negative components become increasingly relevant for larger k. This results in a decreasing peak discharge, however, still

at t= 0 for k ≤ 60. The component with k = 61 is the first that shifts the peak discharge to a time t > 0 an thus produces a
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Figure 9. Recession curves of the largest catchment obtained from the numerical simulation and different numbers of exponential functions

(Eq. 27).

rising limb in the unit hydrograph. However, approximating the behavior around the peak discharge reasonably well requires

several hundred components.

The occurrence of negative coefficients in Eq. (27) is not a fundamental problem, but impedes a simple interpretation of the525

decomposition into exponentially decreasing terms. If all components were positive, we could imagine the aquifer as a set of

linear reservoirs drained in parallel. However, negative components would correspond to reservoirs with a negative amount of

water. Formally, the slow component (first exponential function) could even contain more water than available in total, and

the fast components (all higher exponentials) could be negative in total. In Fig. 6, this would mean that the area of the unit

hydrograph below the exponential component at short times was larger than the area above the exponential component. In this530

case, the widely used characterization of karst aquifers by the contribution of the slow (exponential) component to the total

discharge (Mangin, 1975; Jeannin and Sauter, 1998) would be taken at absurdum.

Figure 10 shows the contribution of the slow component (first exponential) to the total amount of water for all catchments

considered here (n= 2). Depending on the catchment size, this contribution is between 77 % and 104 %. So there are indeed

catchments where the effect of the rising limb is so strong that the slow component is formally larger than the total recharge535

and the fast components are negative in sum. However, this effect is found only for some rather small catchments. For the

largest catchments, the contribution of the slow component is about 90 %.

The obtained contributions of the slow component are high compared to other models. For the 1-D aquifer used here as a

reference, this contribution is 8
π2 ≈ 81 %. For an aquifer consisting of square porous blocks connected by conduits with infinite

conductance, it is 64
π4 ≈ 66 % (e.g., Birk and Hergarten, 2010). The contribution of the slow component was not explicitly540

investigated by Hergarten and Birk (2007) in their fractal model with power-law distributed block sizes. However, since the

slowest flow component arises from the largest blocks, the total contribution of the slow component must even be considerably
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Figure 10. Contribution of the slowest exponential component to the total discharge for the considered catchments. The red line shows the

respective contribution of 8
π2 ≈ 81 % for the 1-D aquifer.

smaller than the 66 % obtained for an aquifer with a uniform block size. In the widely used classification scheme of karst

aquifers proposed by Mangin (1975), even aquifers with a contribution of the slow component of less than 50 % are considered

poorly karstified (see also Jeannin and Sauter, 1998). So our continuous model of preferential flow patterns predicts even a545

higher contribution of the slow component to the unit hydrograph than other models and is far off from what is typically

assumed for karst systems.

At first sight, the observed high contribution of the slow component could be an effect of the finite rise time. As recognized

in Figs. 6 and 9, the unit hydrograph is below the slow component for t/ 0.5trise :::::::::
t/ 0.5 trise. When investigating recession

curves in reality, the analysis typically starts from the peak in discharge (t= trise). The orange-colored markers in Fig. 10 show550

the respective contributions of the slow component. Starting the analysis from t= trise instead of t= 0 indeed yields lower

contributions of the slow components. However, the effect is only in an order of magnitude of a few percent. So the result that

continuous preferential flow patterns predict a high contribution of the slowest flow component is not an artifact of the analysis.

3.4 The effect of non-uniform recharge

While the unit hydrograph describes uniform recharge, the spatial distribution of the recharge may have a strong influence on555

recession curves of large catchments. So the question arises whether the strong deviations from the exponential behavior found

for karst springs could be related to the occurrence of local rainstorms that affect only a small part of the catchment.

As a simple example, we separated the domain into a proximal part and a distal part. Both parts are equally sized, and

the distinction is made by the distance from the boundary of the domain. Since the overall domain is the same, the recession

coefficients αk of all flow components are the same as for the entire domain. Only the coefficients ak in Eq. (27) differ. This560

difference, however, has a strong effect on the rise time and on the contribution of the slow flow component.
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Figure 11. Instantaneous unit hydrographs for recharge applied to a part of the domain. Solid lines refer to the largest catchment of the

simulation, and dashed lines to a homogeneous aquifer. The data are scaled in such a way that the e-folding time τ and the total amount of

supplied water are the same in both scenarios. Proximal and distal regions cover half of the catchment each.

Figure 11 compares the results obtained numerically for the largest catchment to those obtained by spectral decomposition

for a 1-D aquifer (for details, see Appendix B). While the hydrograph starts with a peak at t= 0 after a spatially uniform

recharge event, applying recharge only to the distal part of the domain introduces a finite rise time. This rise time is, however,

shorter (in relation to the e-folding recession time) than for the aquifer with the preferential flow pattern. The rise time of the565

preferential flow pattern also changes considerably if recharge is applied only to a part of the domain. The strong influence

may be surprising at first since we could expect that the signal propagates rapidly through the preferential flow structure from

the distal part of the domain to the spring. However, preferential flow paths have not only a high transmissivity here, but also a

high storativity. Thus, the propagation of signals is not as fast as we might expect.

The contribution of the slowest component also changes if recharge is applied only to a part of the domain. Similarly to the570

rise time, it increases if only the distal part of the domain is filled since the instantaneous recharge signal has already been

smoothed when it arrives at the spring. The contribution of the first exponential component is formally higher than 100 % for

the distal part. For the largest simulated catchment, it is 137
:
%, while it is 115

:
% for the 1-D aquifer. In turn, the contribution

of the first exponential component is lower for the proximal parts; 50 % for the largest catchment in the simulation and 47 %

for the 1-D aquifer. So the contribution of the first exponential component is always higher for the preferential flow pattern575

than for the 1-D aquifer, and the effect of applying recharge only to a part of the domain is similar.

On average, however, the effect vanishes. For the largest catchment, the 50
:
% for the proximal region and the 137 % for

the distal region yield a mean value of 94
:
% in agreement with Fig. 10 (rightmost blue circle). This is a general property of

the linear model, which allows for superposing recharge events not only concerning time, but also spatially. It could even be

generalized to arbitrary parts of the domain down to recharge events that are limited to a single node.580
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While there should theoretically be no effect on average, recharge events in the proximal region will be more prominent in

the hydrograph than those in the distal region. Therefore, the analysis of real-world hydrographs might be biased towards the

more prominent, proximal recharge events, which would yield a decreasing contribution of the slowest component for large

catchments. However, explaining the often small contribution of the exponential component this way seems quite a stretch.

4 Conclusions and perspectives585

This study is a first attempt to describe the dynamics of aquifers with continuous preferential flow patterns. In contrast to

approaches based on two or three distinct flow components widely used in the context of karst aquifers, the concept used here

assumes a continuous spatial variation in hydraulic properties over several orders of magnitude.

A two-dimensional aquifer with a spatially variable, but time-independent transmissivity was considered. This scenario

corresponds to the application of small disturbances to a steady state of an aquifer with an almost horizontal water table.590

Synthetic spatial patterns of transmissivity and storativity were obtained from principles of minimum energy dissipation based

on the theory proposed by Hergarten et al. (2014).

As a major technical result, it was found that such aquifers can be approximated well by dendritic flow patterns, in which

the entire discharge of each cell is delivered to the neighbor with the steepest gradient in hydraulic head. This approximation

has been widely used for channelized flow patterns at the surface. The dendritic structure enables an efficient, fully implicit595

numerical scheme with a numerical effort that increases only linearly with the number of cells, also known asO(n) complexity.

This property allows for simulations on grids consisting of several million nodes and thus for a reasonable spatial resolution of

the preferential flow pattern.

As a second, rather theoretical result, it was shown that spectral theory is not restricted to homogeneous aquifers, but

can also be applied to aquifers with any spatial distribution of transmissivity and storativity. Although the eigenvalues and the600

respective eigenvectors have to be computed numerically, this approach allows for a fast computation of the long-term recession

coefficient without forward modeling over a long time span. In addition, the contribution of the slowest flow component to the

instantaneous unit hydrograph (and also to any other initial state) can be computed easily. However, the efficient numerical

scheme and spectral theory rely on the assumption of time-independent transmissivity and cannot be extended easily towards

sloping aquifers.605

The long-term recession coefficient α depends on the catchment size. The dependency is, however, weaker than for ho-

mogeneous aquifers and follows a power law α∝A−γ (Eq. 55). The exponent γ depends on the assumed relation between

transmissivity T and storativity S. It approaches 1 for T ∝ S, which is also the limit where dendritic flow patterns are energet-

ically favorable. In this case, the scaling is the same as for homogeneous aquifers (γ = 1). For relations T ∝ Sn, γ decreases

with increasing n. As a typical value, γ = 0.4 was found for n= 2. So the decrease in the recession coefficient with catchment610

size is typically less than half as strong as for homogeneous aquifers. This finding challenges previous results on very long

groundwater response times of large aquifers (e.g., Cuthbert et al., 2019).
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Since flow patterns obtained from minimum energy dissipation are typically scale-invariant, a power-law decrease of the

discharge after a short recharge pulse might be expected at first. However, the respective instantaneous unit hydrograph shows

a completely different behavior. The discharge immediately after the recharge event is quite small, and it takes a considerable615

time until it reaches its peak. This rise time is in an
:::
The order of magnitude of

:::
this

:::
rise

::::
time

::
is
:
one-seventh of the e-folding

recession time
:::::::::::
characteristic

::::
time

::
of

:::
the

::::::
aquifer

:
(τ = α−1). It seems neither to depend strongly on the catchment size nor on

the relation between transmissivity and storativity.

The contribution of the slowest component to the unit hydrograph is in an order of magnitude of 90 % for large catchments

and even larger for small catchments. This contribution increases further if recharge is applied only to a part of the domain far620

away from the spring and even exceeds 100 % then. Formally, this result arises from the occurrence of negative coefficients

in
:::
the decomposition of the unit hydrograph into exponentially decaying components. The occurrence of negative coefficients

also inhibits the simple interpretation as a set of linear reservoirs draining in parallel. Measuring the contribution of the slowest

component from the peak of the unit hydrograph instead of the time at which the instantaneous recharge occurs reduces the

contribution of the slowest component only slightly. This contribution is higher than for homogeneous aquifers and much625

higher than typically assumed for karst aquifers (less than 50 %).

So we have to conclude that preferential flow patterns arising from a strongly organized pattern of transmissivity and stora-

tivity differ fundamentally from karst aquifers in their properties. For future work, it would be interesting to find out whether

the difference mainly concerns the contribution of the slowest flow component or also the scaling of the recession coefficient

with catchment size.630

For the further development, an extension of the numerical scheme towards unconfined sloping aquifers (e.g., Rupp and

Selker, 2006; Pauritsch et al., 2015) would be particularly useful. Although there is ongoing development in this field (e.g.,

Alemie et al., 2019; Pathania et al., 2019), including preferential flow patterns at a reasonable spatial resolution is still a

challengehere. Extending the implicit scheme for dendritic flow patterns towards unconfined sloping aquifer
::::::
aquifers

:
would

still be challenging, but might considerably contribute to understanding the response of hillslopes to precipitation events and635

phenomena such as subsurface stormflow (e.g., Chifflard et al., 2019).

Appendix A: The fully implicit scheme for a dendritic network

In this section, Eqs. (42) and (43), which are the basis of the implicit scheme discussed in Sect. 2.5, are proven. Inserting

Eqs. (14) and (41) into Eq. (40) yields

Si
hi(t+ δt)−hi(t)

δt
=−Ti (hi(t+ δt)−hb(t+ δt))+

∑

j∈D(i)

q0j +
∑

j∈D(i)

q′j (hi(t+ δt)−hi(t))+ ri, (A1)640

and thus

hi(t+ δt)−hi(t) =
Ti (hb(t+ δt)−hi(t))+

∑
j q

0
j + ri

Si

δt +Ti−
∑
j q
′
j

. (A2)
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Using Eq. (14), we can then compute the flux according to

qi(t+ δt) = Ti (hi(t+ δt)−hb(t+ δt)) (A3)

= Ti

(
Ti (hb(t+ δt)−hi(t))+

∑
j q

0
j + ri

Si

δt +Ti−
∑
j q
′
j

+hi(t)−hb(t+ δt)

)
(A4)645

= Ti

(
Si

δt −
∑
j q
′
j

)
(hi(t)−hb(t+ δt))+

∑
j q

0
j + ri

Si

δt +Ti−
∑
j q
′
j

. (A5)

Then q0i (Eq. 42) is obtained by setting hb(t+δt) = hb(t) and and q′i (Eq. 43) by taking the derivative with respect to hb(t+δt).

Appendix B: The unit hydrograph of a homogeneous 1-D aquifer

Let us consider a 1-D aquifer with a length L, where the spring is located at x= 0 and the drainage divide at x= L. Then

the boundary conditions are h(x,t) = 0 at x= 0 and ∂
∂xh(x,t) = 0 at x= L, and h(x,t) is periodic with a wavelength of 4L.650

Thus, h(x,0) can be written as a Fourier series

h(x,0) =
∞∑

k=1

ak sin

(
2πkx

4L

)
, (B1)

where the respective terms with the cosine function are zero due to the boundary conditions and ak = 0 for even values of k.

The coefficients ak are given by the relation

ak =
2

4L

4L∫

0

h(x,0)sin

(
2πkx

4L

)
dx=

2

L

L∫

0

h(x,0)sin

(
2πkx

4L

)
dx.655

ak
::

=
:

2

4L

4L∫

0

h(x,0)sin

(
2πkx

4L

)
dx

::::::::::::::::::::::::

(B2)

=
:

2

L

L∫

0

h(x,0)sin

(
2πkx

4L

)
dx.

:::::::::::::::::::::::

(B3)

If we assume that the distal region, λL≤ x≤ L with λ ∈ [0,1], is initially filled to a given head value h0, we obtain

ak =
2h0
L

L∫

λL

sin

(
2πkx

4L

)
dx=

4h0
πk

cos

(
πkλ

2

)
(B4)660

for uneven values of k. The time-dependent solution h(x,t) must satisfy the 1-D version of Eq. (7) with r = 0,

S
∂h

∂t
=

∂

∂x

(
T
∂h

∂x

)
. (B5)
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It is easily recognized that the solution of this equation with the initial condition defined by Eq. (B1) is

h(x,t) =
∞∑

k=1

ak sin

(
2πkx

4L

)
e−αkt, (B6)

where665

αk =
T

S

(
πk

2L

)2

. (B7)

Then the flux per unit width across the boundary is

q(t) = T
∂

∂x
h(x,t)

∣∣∣∣
x=0

= T
∞∑

k=1

ak
2πk

4L
e−αkt =

2Th0
L

∞∑

k = 1
(uneven)

cos

(
πkλ

2

)
e−αkt

q(t)
:::

=
:

T
∂

∂x
h(x,t)

∣∣∣∣
x=0

:::::::::::::

(B8)670

=
:

T
∞∑

k=1

ak
2πk

4L
e−αkt

:::::::::::::::

(B9)

=
:

2Th0
L

∞∑

k = 1
(uneven)

cos

(
πkλ

2

)
e−αkt

:::::::::::::::::::::::::::

(B10)

with the coefficients ak from Eq. (B4). The respective expression for the proximal region, 0≤ x≤ λL, is readily obtained by

subtracting this expression from the same expression with λ= 0.

Code and data availability. All codes and simulated data are available in a Zenodo repository at https://doi.org/10.5281/zenodo.7050521675
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research.
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