
First reviewer

Gong et al. is an excellent and important article addressing urgent research needs in the
integrated assessment modeling (IAM) community. IAMs results are heavily used in IPCC
reports, informing global and regional mitigation pathways and energy systems projections.
Power system planning and capacity expansion is a key for system-wide deep
decarbonization. Driven by the rapid decline of renewable costs and the increasing role of
energy storage, higher spatial and temporal resolution and feedback are necessary to inform
a reasonable capacity expansion pathway. However, IAMs typically run every 5- or 10-year
modeling period. In contrast, power system operations details need to be resolved at much
finer scales (such as hours) to capture meaningful dynamics, especially related to
intermediate capacity dispatch and energy storage operation. The authors proposed a
solution to address this bottleneck via a bidirectional coupling between a well-established
IAM and an hourly power sector model, allowing bidirectional feedback between the two
models. Authors leveraged the advantages of both models and, more importantly, provided
theoretical bases for their approach. I appreciate authors provided extensive details about
their modeling approaches and designed different thought and numerical experiments to
enhance the readability.

The authors thank the reviewer for the positive summary of the paper and comments.

I think this paper is suitable for publication, but I appreciate authors could elaborate a little
more on the following aspects:

1) This study mainly compared results between REMIND and DIETER, demonstrating good
consistency. However, It could be helpful to also compare with other studies/scenarios for
some simple metrics, such as the total capacity or generation in a net-zero scenario. One
primary application and improvement through this study is to enhance REMIND’s capability
for long-term system planning, so it’s straightforward to compare with existing literature and
show the literature range.

We are thankful for the reviewer’s suggestions. For net-zero scenarios, one of the most
up-to-date model comparison using state-of-the-art models for Germany is the report of the
flagship project “Ariadne” funded by the German ministry for Education and Research
(BMBF)
(https://ariadneprojekt.de/media/2022/03/2022-03-16-Big5-Szenarienvergleich_final.pdf,
page 16-18, accessed 16.04.2023). The modeled results in our paper are closest to the
“Ariadne-REMIND-Mix” scenario for net-zero Germany (using uncoupled REMIND), and to
the “Ariadne-REMod-Mix” (using the energy system model REMod). However, some
differences remain, which we explain below.

For generation and capacity of solar, onshore wind and offshore wind in 2045, the following
comparison can be made:

https://ariadneprojekt.de/media/2022/03/2022-03-16-Big5-Szenarienvergleich_final.pdf


Generation (2045) solar PV
(TWh)

wind onshore
(TWh)

wind offshore
(TWh) total (TWh)

this study (Fig 10) 600 592 92 1344

Ariadne-REMIND-Mix 325 582 114 1100

Ariadne-REMod-Mix 473 545 360 1487

Capacity (2045) solar PV
(GW)

wind onshore
(GW)

wind offshore
(GW)

this study (Fig 10) 750 232 28

Ariadne-REMIND-Mix 329 218 29

Ariadne-REMod-Mix 456 216 75

Compared to uncoupled REMIND, the largest difference can be observed for total
generation, solar PV capacity and solar PV generation. This is likely due to the fact that
uncoupled REMIND only has parametrized power sector investment and dispatch, so the
electricity price is higher than in coupled REMIND, where the price is calculated via iteration
with DIETER. Lower electricity prices in REMIND incentivizes more power usage. Since
power is more competitive compared to other types of energy carriers, total generation is
higher in the coupled version in our paper than “Ariadne-REMIND-Mix” which uses
uncoupled REMIND. This could be due to the fact that in the uncoupled REMIND, solar PV
is parametrized to be integrated at higher cost than in DIETER, where solar generation is
explicitly modeled. Another reason could be due to the fact that solar is the cheapest form of
electricity in the model per unit generation, as total power demand increases, solar PV is
disproportionately used more. This is why we observe more solar in the coupled version than
in the uncoupled version. For reference, REMod, which is an hourly resolution energy
system model, has results which differ with both coupled and uncoupled versions of
REMIND, mostly in offshore wind. This difference likely comes from different assumptions
about technology cost and resource availability as well as modeling approaches between
REMIND and REMod. However, the metrics are broadly consistent and also comparable to
other models in the Ariadne project report.

We added this in the main text under Section 5.1.2, and in Supplemental material S4.



2) In Appendix E, I found the solution time for the coupled run, taking 6-10 hours for a
detailed configuration under a climate policy. Understandably, bidirectional coupling takes
time to solve. Still, I’m concerned that this may indicate a significant barrier to moving
forward someday when more regions are added or improve German with sub-national
details. Plus, with more regions, power system transmission has to be considered (I think the
authors already noted this). This coupled modeling framework will ultimately be limited by
computation capacity despite a well-presented theory behind the model. Therefore, a section
should be devoted to discussing a little more about how the authors would envision a
solution for increasing computational cost.

We thank the reviewer for their valuable suggestion.

Even though via soft-coupling IAM can obtain hourly resolution with only a moderate

computational cost increase, it nevertheless increases the complexity of the whole problem,

increasing the solver time of the IAM, especially before convergence is reached under the

iteration with a PSM. With additional complexity of endogenous climate policies,

computational time can be long for scenarios under climate constraint (see Appendix E).

This can be potentially overcome by several measures, which can be the topics for future

research:

1) Optimize for computational costs in individual models. Individual IAM and PSM are

usually developed incrementally, which results over time in less overall computational

efficiency. However, because individually the models are not too costly to run, there is

less incentive to manage computational cost when they are run as standalone

models. However, when coupled, the computational cost may become a barrier. One

of the easiest ways to reduce coupled run time is to reduce run times of the individual

coupled models. Because the soft-coupling takes many iterations, a small reduction

in computational time in either model will multiply to give a large reduction in

iteratively soft-coupled runs.

2) Other internal iterations of the IAM (if they exist) can be optimized. For example, in

REMIND, most of the iterations (usually 30-50 iterations) in the coupled runs are

dedicated to converging inter-regional trade between the 21 regions in the model,

because DIETER iteration converges usually quite fast (5-10 iterations). By making

the algorithm for the convergence of inter-regional trade faster, we can reduce total

coupled iterations, therefore reducing overall computational cost. Less computational

time can also be achieved, if DIETER is no longer run together with REMIND after

DIETER-REMIND iteration convergence is reached, and when trade adjustment (or

other internal adjustments in REMIND) is small enough to not have substantial

impact on the power sector results. This is especially the case if PSM gets more

complex and its computational time exceeds far more than single-iteration REMIND



time (also see Appendix E for the contribution to runtime due to REMIND internal

iteration and due to PSM).

3) Limiting endogenous investments of capacities of certain technologies only in one

model. For example, in the case of electricity transmission, more than one region

(e.g. Germany with neighboring European countries) will need to be hard-coupled

together in the PSM, which naturally increases computational cost of the PSM. But

when the solutions are passed to the IAM, the regions can again be parallelized, as

long as IAM does not engage in the endogenous investment of the transmission

capacity. Hence the increased cost of computation due to implementing transmission

is only limited to PSM. This is also the case if within Germany the spatial resolution is

increased.

4) Only include essential features in PSM. Some PSMs are quite detailed and

complicated for the purpose of studying specific technologies and the behavior of

many agents or users. To couple to IAM, PSM should consider coarse-graining or

aggregating some details, while retaining the essence of the dynamics being studied.

For example, to implement smart EV charging (e.g. vehicle-to-grid), modelers of PSM

should create a version for coupling which aggregates the many time series of

charging and discharging of EVs to only one or two time series

Faster solvers and faster supercomputers will also contribute to improving the computational

efficiency of the coupled model.

We added a section 6.4 with four suggestions on how to manage computational cost.

3) To what extent the building energy demand is consistent with the weather year (and
climate projections)? i.e., what are the climate scenario assumptions to determine the
building cooling/heating demand?

Thank you for the question. The heating and cooling demand (final energy) in REMIND
(baseline scenario) is calculated based on yearly degree days calculated on gridded daily
temperature data from the ISIMIP project
(https://www.pnas.org/doi/10.1073/pnas.1312330110). This calculation is carried out in an
energy demand model for buildings “EDGE-B” (Levesque et al., 2018). We assume constant
climate from now on into the future as REMIND generally does not include climate impacts in
its current default version for consistency with other parts of the model. Extremes are not
captured by averaging to obtain yearly degree days. Therefore we also don't use
representative weather years or the like in REMIND. DIETER’s time series data for power
demand uses historical data from 2019, and therefore also does not explicitly model future
demand changes due to increasing climate impact, nor investigates the impact of extreme
weather variability.

This is an ongoing development for the whole IAM and energy system modeling community.

https://www.pnas.org/doi/10.1073/pnas.1312330110


We also added this to the section on limitation.

Antoine Levesque, Robert C. Pietzcker, Lavinia Baumstark, Simon De Stercke, Arnulf
Grübler, Gunnar Luderer, “How much energy will buildings consume in 2100? A global
perspective within a scenario framework”, Energy, Volume 148, 2018, 514-527,
https://doi.org/10.1016/j.energy.2018.01.139.

4) For educational purposes, a brief overview (or a table like Table A1) of detailed capacity
planning models for German (or the EU) will be helpful. In the “Current modeling approaches
and limitation” section, the authors just indicated: “PSMs typically have narrower spatial and
sectoral scopes and shorter time horizons, but provide higher resolutions and increased
technological detail”. A set of citations are provided in this statement, but general readers
wouldn’t necessarily know what those models are or what level of resolution and
technological details are.

Thank you for the suggestion. We added a section S5 in supplemental material (table S4) to
compare several PSMs and their specifications, including references to more systematic and
comprehensive reviews.

5) My last comment will be more of a philosophical question (I don’t know the answer
myself): REMIND is an inter-temporal optimization model (perfect foresight), and DIETER is
also an optimization model. With this bidirectional coupling, this paper presents a picture of
“perfect power sector planning and operation”, and even a near-term capacity projection
would “know” the long-term net-zero goal. In reality, however, the lock-in emission by
existing energy infrastructures is a known and major issue for deep decarbonization (for
example, see https://www.nature.com/articles/s41586-019-1364-3). In other words, power
system planning never has a “perfect foresight.”. The basic modeling philosophy (whether
having inter-temporal optimization) would have completely different real-world implications,
for example, for the financial risk of stranded assets. Even though this is a methodological
paper, I would love to hear the authors’ opinion about how “perfect” our models should be to
capture the real-world “imperfect” human decisions.

We thank the reviewer for this important reflection. It ties into many existing discussions
related to the differences between the “ideal world” depicted in IAM and energy system
modeling on the one hand and “imperfect” but realistic real-world decision making and
political economy on the other (Ellenbeck and Lilliestam, 2019; Geels et al., 2016; Keppo et
al., 2021; Staub-Kaminski et al., 2014; Pahle et al., 2022). It is important to acknowledge that
most IPCC scenarios contain models using “perfect foresight” assumptions. These models
are interpreted often as producing benchmark scenarios that guide policy decisions on
technology support and carbon pricing. Furthermore, perfect foresight assumptions are
relaxed for example when “delayed action scenarios” are analyzed. Here two phases are
distinguished: i) a near-term future of implemented national policies and ii) a mid-to-long
term future (e.g. >2030) with a sudden change to very ambitious mitigation policies that try
reaching global climate targets.

In addition, it makes sense to compare perfect foresight models to so-called “myopic
models”, where agents have limited time horizons. Considering perfect foresight models
such as REMIND dominate IPCC model results, it is especially important to understand the
differences between the two approaches. Such work has been carried out in studies such as



Fuso Nerini et al., 2017; Sitarz et al., 2023. If myopia is introduced in the model, the climate
policy exemplified by carbon prices still follows an increasing expectation for more and more
stringent climate policies, but the trajectory can be less smooth, and in the near-term looks
more “flat”, hence inducing the lock-in effect the reviewer mentioned. Without quantitative
methodologies developed to model both types of behavior, we cannot obtain quantitative
differences between the two, and try to understand what additional policies are needed to
ensure agents behave less myopically, and the expectation about future climate policies can
be made more certain.

In addition, I think it is important to realize that ultimately no models are perfect. Even in
real-world policy making, not all policy makers’ decisions are based on short-term
constraints, and some decisions are indeed made more long-term, usually by “patient
capital” which has more tolerance for risks, such as governments, state-owned banks and
public financial entities. This is why despite the high cost at the time, German government
around early 2000 heavily encouraged the use of renewable energies using climate
protection policies. This mass adoption of PV solar (and to a lesser extent wind) generation
technologies eventually lowered their learning curves, making them cheaper (Buchholz et
al., 2019). The German government preemptively acted to foster technologies and lower
their production cost via economies of scale, which lowers overall mitigation cost when
considering the decades following this action. Implementing endogenous learning using
perfect foresight helps our scenarios to imitate this type of long-term strategic thinking.

A shortened version of this reply has been added under point 8) under sec 6.3 on limitation
of coupled results.
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Minor

1) In Figure 4a, I suggest changing the color scheme into a two-color version (red and blue)
to indicate positive and negative price differences.

This has been corrected as the reviewer suggests.

2) In Figure 13, the y-axis labels in panels a and b overlap.

This has been corrected as the reviewer suggests.

3) Figure 13, panel c, why is there some discontinuity between the first two modes on the left
and in the right-most few hours?

There are some switching behaviors between more and less battery discharging over
summer nights, as well as PtG H2 being produced at consecutively discontinuous levels
over the same period as battery discharge. The authors believe these are minor artifacts due
to the fact that there are no ramping costs applied to electrolyzers. In reality, modern
electrolyzers are quite flexible, so potentially no ramping costs need to be applied in a model
with an hourly resolution. In future research, potentially such discontinuities can be
smoothed over to create better visualizations.
A short sentence has been added to Fig 13 caption to explain this.

Second reviewer

This is a proof-of-concept study presenting a new method of soft-coupling (or linking) an IAM
with a coarse temporal and spatial resolution and a power system model with an hourly
temporal resolution for Germany.

The authors address an important area of research as it is acknowledged that improving the
technical representation of power systems with high levels of renewables within IAM is
needed from a policy and technical perspective. From a technical perspective, the coupling
methodology maps Karush–Kuhn–Tucker Lagrangians of reduced versions of both the IAM
and power model

The coupling method has been demonstrated to attain a high degree of convergence
between models and the equations and method presented seem reasonable.

The limitations of the methodology are well articulated in terms of legacy issues spilling over
from IAM assumptions in existing plant, neighbour effects from broader regions in REMIND
not represented in DIETER/copperplate/limited weather years etc.

the converged results of the two models are compared in the study by examining the
long-term capacity and generation power mix , prices of electricity, dispatch and are shown



to find good agreement (tolerances are presented within the study) between the two models
at the end of convergence.

We thank the reviewer for their positive summary and reaction towards our study.

The portfolio results are not remarkable or surprising and reflect the proof-of-concept nature
of the study rather than any explicit policy message. The least-cost pathway under net zero
scenario shown to have very high levels of wind and solar, storage and decarbonised gas as
a back up. The results are likely constrained somewhat by the limited options for
decarbonisation within the case study. Nuclear is exogenously forced, limited offshore wind
capacity and limited number of non V-RES alternatives and this is not a weakness of the
method presented but a consequence of how they were applied.

We agree with the reviewer, that the resulting mix is largely due to limited options within the
available energy portfolio due to Germany’s energy policy and natural resources. In future
research, we would like to apply the same method to other world regions, where technology
options may be less constrained. This has been added to Sec. 6.3 (9).

The authors outline a vision for future work which would add value to the presented
concepts, namely the broadening of the methodology to vectors other than electricity such
as heat and perhaps a wider sector coupling. It would be beneficial to the wider community
to develop the methodology to have a more realistic representation of grid/transmission
development as this is likely influencing the results for storage. Currently a simplified grid
capacity equation is used that seems to be linked to the % of V-RES curtailment and it not
clear how sensitive results are to this assumption.

The reviewer is correct in pointing out that the methodology presented in this work would
benefit from being expanded to include a realistic representation of grid and transmission.
Currently our team is working on applying the same coupling method to REMIND and
PyPSA-Eur, which contains a detailed representation of the European power grid.

Currently, the grid capacity equation is parametrized to be proportional to pre-curtailment
variable renewable generation, and the parametrization is rather optimistic based on PSM
studies conducted in Pietzcker et al., 2017. As hinted in a recent work by Frysztacki et al.,
2022, lower level of spatial detail results in an underestimation of constraints present in a
real electric system, leading to an underestimation of system cost.

Frysztacki, M. M., Hörsch, J., Hagenmeyer, V. and Brown, T.: The strong effect of network
resolution on electricity system models with high shares of wind and solar, Applied Energy,
291, 116726, https://doi.org/10.1016/j.apenergy.2021.116726, 2021.

Further note:
1. All references in author's reply which have not been part of the previous version have

been added.
2. Recent work on soft-coupling long- and short-term energy system models have been

added to the references under Sec. 1.2.
3. It has come to the attention of the authors that our proposed methodology bears

certain similarities (but also differences) to Benders Decomposition method. We have
added a paragraph on this under Sec. 1.2.

https://doi.org/10.1016/j.apenergy.2021.116726

