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Abstract. Attribution of sea-level change to its different drivers is typically done using a sea-level budget (SLB) approach.

While the global mean SLB is considered closed, closing the SLB on a finer spatial scale is more complicated due to, for

instance, limitations in our observational system and the spatial processes contributing to regional sea-level change. Conse-

quently, the regional SLB has been mainly analysed on a basin-wide scale. Here we investigate the SLB at sub-basin scales,

using two machine learning techniques to extract domains of coherent sea-level variability: a neural network approach (Self-5

Organising Maps) and a network detection approach (δ-MAPS). The extracted domains provide a higher level of spatial detail

than entire ocean basins and besides indicating how sea-level variability is connected among different regions. Using these do-

mains we can close the regional SLB world-wide on different spatial scales. Steric variations dominate the temporal sea-level

variability and determine a significant part of the total regional change. Sea-level change due to mass transport between ocean

and land has a relatively homogeneous contribution to all regions. In highly dynamic regions (e.g., Gulf Stream region) the10

dynamic mass redistribution is significant. Regions where the SLB cannot be closed highlight processes that are affecting sea

level but are not well captured by the observations, such as the influence of western boundary currents. Hence, the use of the

SLB approach in combination with machine learning techniques leads to new insights into regional sea-level variability and its

drivers.

1 Introduction: The sea-level budget15

Sea-level change (SLC) is one of the major challenges of the coming centuries for coastal communities worldwide (Fox-

Kemper et al., 2021). Global mean SLC has been rising at a rate of 1.6 mm yr−1 since 1900, and 3.3 mm yr−1 since 1993

(Frederikse et al., 2020). However, sea level does not change uniformly: it displays strong spatial and temporal variations

(Hamlington et al., 2020). Ocean dynamics, land ice mass changes and associated gravitational effects, and vertical land

movement are some of the processes responsible for these regional differences (e.g., Stammer et al., 2013; Slangen et al.,20
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2017). Understanding the regional variability of the processes driving SLC is critical for improving our understanding of its

causes, constraining sea-level projections, and to better prepare for the impacts of climate change.

The attribution of SLC to its different drivers is typically done using a sea-level budget (SLB) approach. For 1993-2018,

about one third of the observed rate of global mean SLC can be attributed to thermal expansion of the oceans, while the rest

is due to the effect of water and ice mass exchanges between land and ocean (Frederikse et al., 2020). Since the observed rate25

of SLC matches, within uncertainties, with the sum of the contributions of the various sources, the global mean SLB for the

period 1993-2018 is considered to be closed (Cazenave et al., 2018; Frederikse et al., 2020; Chen et al., 2020; Barnoud et al.,

2021). However, locally attributing the drivers of SLC for this same period still leads to large differences between the total

measured change and the sum of the contributions (e.g., Slangen et al., 2014; Royston et al., 2020). This is partly due to the

spatial resolution of the current observational systems of the SLB components and of the processes in question, which still30

limits the closure of the SLB on a local spatial scale, for instance on a 1 degree resolution (Royston et al., 2020). Consequently,

the regional SLB has mainly been analysed on a basin-wide scale (e.g., Purkey et al., 2014; Frederikse et al., 2018, 2020;

Royston et al., 2020) and has not been closed on sub-basin scales consistently for the entire world.

The basin-scale sea-level features extracted by Thompson and Merrifield (2014) have been frequently used in regional SLB

studies (Purkey et al., 2014; Frederikse et al., 2018, 2020; Royston et al., 2020). Although these publications have made35

significant advances in understanding the regional SLC, the basin scale is still too large to really understand the causes of local

variations. In this manuscript, we argue that understanding the spatial structure of contemporary SLC is a key point to move

towards a higher spatial resolution budget. By identifying smaller physically coherent regions, some of the effects of small scale

variability can be removed, allowing to close the budget at a sub-basin scale. Machine learning techniques, such as complex

and neural networks, can be used to identify such spatial structures, determining the ideal resolution and regions of common40

sea-level variability and change. While machine learning methods have widely been used in oceanography (e.g., Richardson

et al., 2003; Liu et al., 2006; Hernández-Carrasco and Orfila, 2018; Sonnewald et al., 2019; Falasca et al., 2019, 2020), only

few examples analyzing sea-surface height can be found (e.g., Liu et al., 2016; MA et al., 2016; Sonnewald et al., 2018; Novi

et al., 2021). Here, we apply two unsupervised machine learning techniques –self-organising maps (SOM) and δ-MAPS– to

extract coherent spatial features (domains) in SLC observations.45

In this study we use the extracted domains to analyse the SLB on a sub-basin scale during the satellite altimetry period (1993-

2016), by using state-of-the-art estimates of SLC and its components. We limit our analysis to 2016 because of the temporal

span of the hydrological models used to obtain the landwater storage contribution to SLC. Additionally, instrumental problems

(e.g., in Argo salinity data and satellite drifts) have raised questions about the performance and closure of the global mean SLB

after 2016 (Chen et al., 2020; Barnoud et al., 2021; Cazenave and Moreira, 2022). We hypothesize that by investigating the50

budget in covariant and physically coherent regions, we can resolve the discrepancies (i.e., close the budget) that appear in an

increased-resolution SLB (e.g., 1x1 degree).
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2 Data and methods

In this section we introduce the data sets used for each of the different components of the SLB (Section 2.1). We also describe

the trend and budget analysis (Section 2.2) and introduce the machine learning techniques used to extract coherent regions55

(domains) of sea-level variability and change (Section 2.3).

2.1 The components of the regional sea-level budget

For the SLB, we compare the total observed SLC ηtotal to the sum of the drivers of SLC ηdrivers:

ηtotal =
∑

ηdrivers, (1)

where η stands for the rate of SLC.60

Total SLC (ηtotal) can be measured by tide gauges and satellite altimeters. Satellite altimeters measure geocentric or absolute

SLC (ηgeo(sat)), that is, the sea surface height in relation to the reference ellipsoid (Gregory et al., 2019). On the other hand,

tide gauges measure sea surface height in reference to a terrestrial landmark (ηrel(TG)), registering the relative SLC. Relative

SLC is affected by vertical land motion (VLM) due to, for instance, land subsidence and tectonics (Wöppelmann and Marcos,

2015), while geocentric sea level can not differentiate if the change is either from the solid Earth or the ocean. The relationship65

between geocentric and relative SLC is:

ηtotal = ηgeo(sat) = ηrel(TG) + V LM. (2)

From hereon, when we use ηtotal, we are referring to the geocentric SLC derived from satellite altimetry (Figure 1a). We use

multi-mission gridded Level-4 data from 4 distribution centers: CMEMS (CMEMS, 2022), JPL (Zlotnicki et al., 2019), SLcci

(SLcci, 2022) and CSIRO (CSIRO, 2022). All of these products use the same reference ellipsoid model (GRS80/WGS). All70

data is regridded to 1x1 degree, and combined into an ensemble mean, to avoid systematic errors.

SLC expresses changes in the volume of the ocean. These can be caused by changes in the ocean density, mass or area.

Density-driven changes, known as steric sea-level changes, are caused by variations in the ocean temperature and salinity (Gill

and Niller, 1973; MacIntosh et al., 2017). All sea-level variations not driven by density changes are known as manometric SLC

(Gregory et al., 2019). Thus, Equation 1 can be rewritten to:75

ηtotal =
∑

ηdrivers = ηSSL + ηMAN , (3)

where ηSSL and ηMAN refer to steric and manometric SLC, respectively.

For steric SLC (ηSSL, Figure 1c), we use the estimates of Camargo et al. (2020), which are based on 15 different ocean

temperature and salinity data sets up to 2000m depth, using Argo floats (Roemmich and Gilson, 2009; Gaillard et al., 2016;

Li et al., 2017; Lu et al., 2019), multiple in-situ observations (Ishii and Kimoto, 2009; Guinehut et al., 2012; Cabanes et al.,80

2013; Good et al., 2013; Gaillard et al., 2016; Ishii et al., 2017; Cheng et al., 2019; Szekely et al., 2019) and ocean reanalyses

(Blockley et al., 2014; Maclachlan et al., 2015; Storto and Masina, 2016; Garric and Parent, 2017; Carton et al., 2018; Zuo
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et al., 2019). We complement this data with the deep ocean steric estimate of Purkey et al. (2019, updated from Purkey and

Johnson (2010)).

Manometric SLC (ηMAN ), also referred to as the bottom pressure term (Gregory et al., 2019), can be further divided into the85

(i) ηGRD, the Gravitational, Rotational and viscoelastic Deformation response of the Earth to water and ice mass exchanges

between land and ocean, and (ii) ηDSL, the dynamic redistribution of ocean mass due to ocean circulation, atmosphere and

ocean bottom pressure changes as a result of the steric change of the oceans (Landerer et al., 2007), following:

ηMAN = ηGRD + ηDSL. (4)

The GRD component (ηGRD, Figure 1d) reflects how the mass loss of continental ice stored in glaciers and ice sheets and90

variations in land water storage affect sea level. The GRD effect can be split between responses due to contemporary changes,

and due to the response of the Earth to the last ice age, known as Glacial Isostatic Adjustment (GIA). The integrated response

of the GRD effect over the oceans, i.e. the global mean, is known as barystatic SLC (ηBSL, Gregory et al., 2019). For the GRD

component, we use the estimates from Camargo et al. (2021, under review). These are based on a suite of different estimates of

land mass change, and computed solving the sea-level equation following Farrell and Clark (1976) and Slangen et al. (2014).95

The dynamic component (ηDSL, Figure 1e) refers to mass changes driven by bottom pressure changes, that is, the redis-

tribution of mass that was already in the oceans. Note that, by our definition, the dynamic SLC is part of the ocean dynamic

SLC (∆ζ , Gregory et al., 2019), which also includes the effect of local steric anomalies (η′SSL). ηDSL is computed from the

sea-surface height of ocean reanalyses (SODA (Carton et al., 2018), C-GLORS (Storto and Masina, 2016), GLORYS (Garric

and Parent, 2017), FOAM-GloSea (Blockley et al., 2014; Maclachlan et al., 2015) and ORAS (Zuo et al., 2019)), by removing100

the sea-surface height anomaly and steric estimates from it. More detail on the estimation and validation of ηDSL is given in

Appendix A.

Finally, equation 3 can be rewritten as:

ηtotal = ηSSL + ηGRD + ηDSL, (5)

such that the total observed SLC (Figure 1a) can be compared with the sum of the components (Figure 1b). The ensemble mean105

of each term of Equation 5, used throughout this manuscript for the SLB analysis, is shown in Figure 1, where ηtotal is the

geocentric SLC from satellite altimetry, corrected for the inverted barometer and GIA (ηGIA) effects; ηSSL is the full-depth

steric SLC; ηGRD is the contemporary ocean mass redistribution due to the land-ocean mass exchange, already corrected for

ηGIA effects; and ηDSL is the mass redistribution due to purely ocean dynamics.

2.2 Computing Trends and Uncertainties110

Our SLB is based on the comparison of sea-level trends and associated uncertainties. We assume that sea-level trends are the

sum of a deterministic model (including annual and semi-annual signals) and stochastic noise (temporal uncertainty). We use

the software Hector (Bos et al., 2013) to compute the trends and the associated 1-sigma uncertainty for each of the budget

components. Following Bos et al. (2014); Royston et al. (2018); Camargo et al. (2020, 2021), we test 8 different noise-models
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Figure 1. Regional sea-level trends for 1993-2016 (mm/yr) for (a) altimetry; (b) sum of sea-level components: (c) full-depth steric, (d) GRD

effect and (e) dynamic SLC. Black contour line indicates global mean SLC.

to describe the auto-correlation between the residuals of the regression. Using the Akaike and Bayesian information criteria115

(Akaike, 1974; Schwarz, 1978), we select the best performing noise-model at each grid cell. More information on the noise-

model analysis can be found in Camargo et al. (2020, 2021). For the GRD component, in addition to the temporal uncertainties,

we also consider the spatial, structural and intrinsic uncertainties (Camargo et al., 2021).

We assume independence of the terms, and sum the trends linearly and uncertainties in quadrature. Performance of the SLB

is evaluated by (i) the magnitude of the residual, (ii) the Pearson’s correlation coefficient (r) between the altimetry trend and120

the budget components, and (iii) the normalized root mean squared error (nRMSE). nRMSE measures the distance between

the true value, in this case altimetry, and the modeled value, in this case the sum of the budget components. Contrary to r, a

nRMSE closer to 0 the better indicates a better performance.

2.3 Clustering Techniques

To answer our research questions, we must first identify regions with similar sea-level variability. To do so, we use two different125

machine learning pattern detection algorithms, one based on an neural network approach, Self-Organising Maps (SOM), and

one based on a deep network detection method, δ-MAPS. The methodological differences in these two techniques leads to
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different patterns of SLC in terms of geographical location, region size, and ocean coverage. Hence, by using both methods,

we can (i) find prevailing sea-level modes, (ii) compare the patterns and SLB for the different methods and (iii) balance

out the advantages and disadvantages of using a single method. Both methods are used to reduce the dimensionality of the130

data, transforming high-dimensional input data into low-dimensional features (Liu et al., 2006; Falasca et al., 2020). For both

clustering techniques we use satellite altimetry time-series (CMEMS, 2022), for 1993-2019, as input. Note we use a longer

time-series than the ones for the budget analysis, as longer time-series can resolve better the temporal variability. However,

additional tests (not shown) showed that the clustering is not strongly affected by the extra 3 years of data. We pre-process the

input data by removing the global mean trend, seasonality and by applying a spatial Gaussian filter of 300km width to remove135

small scale variability. Smaller seas, such as the Mediterranean, Baltic, Black and Caspian seas have been removed from the

data prior to the clustering.

SOM (Kohonen, 1982) is a feature extraction and classification method based on an unsupervised neural network (Liu et al.,

2006). We use the MatLab SOM toolbox (Vesanto et al., 2000), and follow Liu et al. (2006) and Hernández-Carrasco and

Orfila (2018) to choose the parameters. We apply the SOM algorithm in the time domain in order to extract the spatial patterns,140

herein referred to as domains, based on coherent temporal sea-level variability. Before initizaling the SOM, the 3D input

data (time,lat,lon) is concatenated to 2D (time, latxlon; Richardson et al., 2003; Liu et al., 2016), and normalized to have unit

variance. The network is initialized linearly, based on the first two principal components of the time series, and trained in a batch

mode, that is, at each step of the training process, all input data vectors are simultaneously used to update the network. Training

is performed over 10 iterations, which is necessary to stabilize and converge the network, while avoiding overfitting of the145

SOM (Liu et al., 2006). We use the ‘Epanechikov function’ as a neighborhood function, which returns the most accurate SOM

patterns, a hexagonal lattice, and a neighborhood radius (determining the radius of cells that are updated during the training

process) of 2 cells at the beginning, decreasing linearly to 1 during the training process. We tested different SOM parameters,

and verified that this combination gave the smallest quantification errors by computing the averaged Eulerian distance between

each data input vector and the best matching unit (BMU). SOM domains do not need to be geographically contiguous, that is,150

different non-connected regions can be assigned to a single domain. Initially, the strong sea-level variability of the Equatorial

Pacific Ocean dominated the clustering, hindering pattern identification in the Atlantic Ocean (Supplementary Figure B6). To

overcome this issue we perform the clustering analysis on the Atlantic and Indo-Pacific Ocean basins separately. We select

a map size of 3x3 neurons (i.e., neural network nodes) in each basin, leading to a total of 18 domains. Using different map

sizes (e.g., Supplementary Figure B6) led to more "patchy" results, hence we used map size of 3x3 neurons as a compromise155

between the amount of detail and the interpretability of the domains.

δ-MAPS (Fountalis et al., 2018) is a complex network methodology which reduces the spatiotemporal dimensionality of

a field by identifying regions (domains) with similar dynamics and their connectivity (Bracco et al., 2018; Falasca et al.,

2020). Here we focus only on the domains identification (dimensionality reduction) function of the δ-MAPS method. δ-MAPS

domains are spatially continuous (i.e., grid cells need to be physically connected to the be clustered in the same domain)160

and potentially overlapping regions that have a highly correlated temporal activity (Falasca et al., 2019). Formally, each input

grid cell is associated with a time series, including the K nearest neighbors, based on the haversine distance (angular distance
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between two points on a sphere). The local homogeneity, defined as the average Pearson cross-correlation between a grid

cell and its K-neighbors, is computed and tested against a threshold value δ. If the local homogeneity is greater than δ, with a

statistical significance level of 0.1, then the grid cell is considered a core, which then is expanded to identity domains (Fountalis165

et al., 2018; Falasca et al., 2019; Novi et al., 2021). Each domain expands to adjacent cells, as long as the local homogeneity

continues to be higher than δ. To choose the optimal neighborhood size K, we follow a heuristic approach, testing K values

from 4 to 25 following Falasca et al. (2019). As in δ-MAPS not every grid point needs to belong to a domain (in contrast to

SOM), we then choose the K-value taking into account the amount of unclustered cells (i.e., the one with most of the ocean

belonging to domains). We also use the normalized mutual information (NMI) matrix (Falasca et al., 2019) to identify the170

K-value with high NMI for it and its neighboring K-values, meaning that the results are less sensitive to the chosen K-value.

These parameters led to the use of K = 5.

3 Identifying Domains of Sea-Level Variability

Both clustering methods successfully reduce the dimensionality of the input data, despite the higher number of domains iden-

tified by δ-MAPS (Figure 2). SOM identified 18 coherent domains, with a domain area varying from 3.84 to 34.51 million175

km2, and an average and total size of 17.61 and 316.90 million km2. δ-MAPS identified 92 coherent domains, with a domain

area varying from 0.03 to 24.15 million km2, with average and total size of 2.53 and 242.01 million km2. Despite the method-

ological differences, we find that prominent sea-level features are clustered in a similar way by SOM and δ-MAPS (Figure 2).

Some of the patterns identified can be linked with known oceanic patterns, as we will discuss below. However, we note that

covariability does not imply a common forcing, and that some patterns may be statistically separated or grouped without a180

clear physical reason.

The central Pacific domain, where the variability is dominated by El Niño Southern Oscillation (ENSO) events, covers a

similar region in both methods. The ’ENSO-tongue’, starting from the coast of Peru and Ecuador and spreading west until the

central Pacific, is identified by both methods (SOM domain 12 (pink), δ-MAPS domain 45 (light green)). The Western Tropical

Pacific Ocean (WTPO), influenced by ENSO and the Pacific decadal oscillation (PDO), is also identified as a single domain by185

both methods (SOM domain 16 (light green), δ-MAPS domain 89 (light brown)). The WTPO domains matches with the region

of significant spatial correlation between steric and coastal sea-level found by (Dangendorf et al., 2021) for West Australia.

In the SOM clustering, the WTPO domain incorporates the Leeuwin Current (Western Australia, Pattiaratchi and Siji, 2020)

in the Indian Ocean, which is affected by waves travelling through the Tropical Australasian Seas (Feng et al., 2004). While

this connection is not captured by δ-MAPS, the coherence along the western coast of Australia is featured in a single domain190

(δ-MAPS domain 92, light pink). The Kuroshio Extension region is also identified in both methods (SOM domain 10 (brown),

δ-MAPS domain 88 (brown)), reflecting how strong boundary currents influence the sea-level variability. Another example is

the North Atlantic, which has similar clustering in both methods, especially in the domain south of Greenland (SOM domain

9 (light purple), δ-MAPS domain 33 (purple)), which is marked by decadal-scale SLC reflecting the strength and shape of the

wind-driven Subpolar Gyre and the Atlantic Meridional Overturning Circulation (Chafik et al., 2019). Within these domains,195
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density anomalies are known to flow southward from the Labrador Sea into the Subpolar Gyre through coastally-trapped

waves (Dangendorf et al., 2021). Another region identified in both methods is the Northwestern European Shelf (SOM domain

8 (purple), δ-MAPS domain 66 (grey)), which is part of a domain that extends along the whole western European coast,

continuing down to the Canary islands and well into the Atlantic. This connection could be related to the hypothesis that

coastally trapped waves and longshore winds cause a coherent region of sea-level variability from around the latitude of the200

Canary Islands up to the Norwegian Sea (Calafat et al., 2012; Chafik et al., 2019; Hughes et al., 2019; Hermans et al., 2020;

Dangendorf et al., 2021). These features are in a separate δ-MAPS domain (53, green) than the Northwestern European Shelf.

It is important to note that coherent features smaller than 300km are not captured in the domains because of the spatial filtering

applied before the clustering analysis.

As SOM domains do not need to be contiguous, possible pseudo-teleconnections between different ocean regions (within the205

Atlantic and Indo-Pacific Ocean basins) come out of the analysis. For example, areas adjacent to the ’ENSO-tongue’ domain,

both north and south are clustered together in domain 18 (light blue) or in domain 15 (moss green), indicating how the ENSO

signal is propagated through the Pacific, possibly through coastally trapped waves (Hughes et al., 2019) in the coastal domains

(15). However, not every region classified into the same SOM domain results from a clear connection. For example, SOM

domain 17 (blue) groups the ocean adjacent to South Africa, the region below the Kuroshio Extension (offshore of Taiwan) and210

a region south of Australia and New Zealand. Another example is SOM domain 7 (salmon-pink), which implies a connection

between the Atlantic Caribbean Sea and the west part of the South Atlantic Gyre (capturing parts of the Brazil Current). These

regions have been classified together because they have a similar behaviour in terms of sea-level variability, but probably

different forcing. Further investigation, with ocean currents, ocean-atmospheric oscillations and ocean waves are necessary to

explore and quantify the physical connection behind these patterns.215

Unlike SOM, every δ-MAPS domain is assigned a unique number and not every pixel needs to be clustered (2a, white re-

gions). Consequently, this method yields a larger number of domains with smaller size, while avoiding pseudo-teleconnections.

The dominant sea-level modes are clear on δ-MAPS clustering, reflecting the influence, for example, of ENSO and western

boundary currents on sea level. For example, the entire Caribbean (domain 87 (brown)) and Gulf of Mexico (domain 82 (red))

is in a single domain, highlighting the similarity in that region. The same goes for the Equatorial Atlantic (domain 86 (light220

purple)), the ENSO region (domains 45, 89 and 62 (light green, light brown and light brown, respectively)), and the Kuroshio

current (domain 88 (brown)).

As shown in Royston et al. (2020), the components of the SLB have a similar spectral power to the total observed sea-surface

height of altimetry between wavelengths of approximately 3,000 and 10,000 km. The clustering techniques applied here not

only reduce the dimensionality of the data, but also average out sea-level variability in regions of coherent variability, being225

ideal for a regional budget analysis (next section).
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Figure 2. Domains of coherent sea-level variability. (a): δ-MAPS method (92 domains); (b): Self-Organising Maps (SOM) method (18

domains). Numbers indicate the domain code, domain names are given through the main text and in Supplementary Table B1. δ-MAPS

domains with codes in magenta indicate selected domains for Figure 4. For visibility, small domains have not been labeled. Given the large

number of domains, δ-MAPS has a repeating color pallet, but since δ-MAPS domains need to be continuous, repeated colors do not indicate

the same domain. White regions in δ-MAPS indicate incoherent regions, which were not incorporated in any domain.
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4 The Regional Sea-Level Budget on Different Spatial Scales

4.1 Sea-Level Budget Closure

We investigate the SLB on different spatial scales, from a finer (1x1 degree) to coarser scale (δ-MAPS and SOM domains;

Figure 3). The residuals (i.e., the difference between the total SLC and the sum of the components) decrease towards a coarser230

spatial scale: for 1 degree, they range from -8.0 to 20.0 mm yr−1, while for δ-MAPS they range from -1.5 to 3.7 mm yr−1,

and for SOM from -0.3 to 0.5 mm yr−1. This shows an improvement of the budget closure (i.e., total and sum of components

agree within uncertainties) by using the pattern detection algorithms: the budget closes in all 18 SOM domains (100% of SOM

ocean area), in 77 out of 92 of the δ-MAPS domains (96% of δ-MAPS ocean area (232 million km2)) and in 85% of the grid

cells in the 1 degree budget (88% of the ocean area) (Figure 3). The good closure in the 1 degree budget is likely an artefact235

of the large uncertainties of the observations, which on a local scale can be up to 18 mm yr−1 (see Supplementary Figure B2).

This is in line with Royston et al. (2020), who found that local biases of steric estimates together with the resolution limitation

of GRACE observations over the oceans hinder the budget closure at 1 degree resolution. When the regional domains based on

SOM and δ-MAPS are considered, the uncertainties show a sixfold reduction compared to the 1 degree resolution, reaching up

to 3 mm yr−1 and an average value of 1.5 mm yr−1 (Supplementary Figure B2), while the budget still closes.240

Consequently, there is a better match between the total observed rate of SLC with the sum of the components for the clustered

regions (scatter points in Figure 3, right column), with a reduction in the spread of the scatter points and moving closer to the

1:1 line (black dashed line) for the coarser resolutions. The dashed pink lines in Figure 3 indicate the half-width of the 95%

confidence interval of the uncertainty of the residuals, showing a slightly larger width for 1 degree, and a smaller one for SOM

and δ-MAPS. Even when the components uncertainties (grey error bars) are considered, the scattered values are mostly within245

the width of the 95% confidence interval for the SOM domains, confirming the improvement of the budget for this case. There

is a strong linear correlation between the total and the sum of the drivers, with Pearson’s r varying from 0.74 for the 1 degree

budget to 0.80 for δ-MAPS and 0.98 for SOM. The RMSE also decreases for the coarser scales, from 0.95 mm/yr for the 1x1

budget to 0.30 mm yr−1 for the SOM domains.

The altimetry trends are generally larger than the sum of the SLC drivers, as indicated by the positive residuals and scatter250

points above the 1:1 line on Figure 3. This is true for more than half of the δ-MAPS domains and for all SOM domains except

one: SOM domain 9 (South of Greenland) is marked by a negative residual, that is, the sum of the drivers is larger than the

observed altimetry trend. Several δ-MAPS domains, such as Southwest of Australia (domains 92 and 67), Southeast Pacific

(domains 37 and 54), Gulf Current (domain 82) and Brazil-Malvinas confluence zone (domains 80 and 69), also have a negative

residual. This might indicate a larger temporal variability or regime shifts in this region, or might be due to the ocean dynamics255

contribution, such as the effect of the Subpolar Gyre around the south of Greenland (Chafik et al., 2019), as we will see in the

next section (Section 4.2).
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Figure 3. Sea-level budget residuals (maps(a,c,e)) and comparison between total sea-level change (y-axis) and sum of components (x-

axis) (scatter plots (b,d,f)) for 1 degree (a,b), δ-MAPS domains (c,d) and SOM domains (e,f). Gray lines indicate the uncertainties of the

components. In the scatter plots every point indicates one region (grid in case of 1degree), pink dashed lines indicate the half-width of

the 95% confidence interval of the residuals uncertainty, grey error bars indicate the component uncertainty. ** indicates that coefficient is

statistically significant (p-value <0.01).

4.2 Explaining the Sea-Level Budget Contributions

In this section, we investigate which components dominate the trend and temporal variability in each of the different domains.

For comparison and discussion purposes, we choose 18 δ-MAPS domains (magenta numbers, Figure 2b) located close to the260

18 SOM domains. Trends for all δ-MAPS domains are available online as an interactive map (see caption Figure 4).

As shown previously, we find a good match of total observed SLC and the sum of components (Figure 4a,b, green stars

and purple triangles, respectively) for all SOM and δ-MAPS domains. The largest budget uncertainties, considering both

altimetry and the sum of components, is seen in the WTPO domain (SOM 16, δ-MAPS 89). These uncertainties may be related

to: (i) poor performance of standard altimetry products in these shallow regions; (ii) poor Argo float coverage in the region265

(Kleinherenbrink et al., 2017), influencing both the steric and dynamic components; and (iii) large internal variability due

to ENSO events in this region, which may contribute to large temporal uncertainties in the steric and altimetry components

(Kleinherenbrink et al., 2017; Wagner and Böning, 2021). This region is also within the Indian-south Pacific basin (Thompson
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and Merrifield, 2014), which was the only basin in which the regional budget from 2005-2015 could not be closed (Royston

et al., 2020).270

The GRD component (Figure 4, blue) has a relatively comparable contribution to all regions, contributing about 1.5 mm yr−1

of sea-level rise. The dynamic and steric components, however, show a strong regionally varying contribution (Figure 4, red

and yellow, respectively). For example, for SOM (δ-MAPS) domains 10 (88), 13 (92), 14 (67) and 16 (89), more than 50%

of the total trend is due to steric variations. On the other hand, for SOM domains 1 and 18 and δ-MAPS domains 39, 45 and

62, the steric trend explains less than 20%. The dynamic component shows a small contribution for most of SOM domains,275

and in some domains even a negative trend (e.g., SOM domain 11, 12 and 14). An exception is the Gulf Stream domain (SOM

1, δ-MAPS 82), where almost half of the total trend is explained by the dynamic component. This dominance of the dynamic

component reflects the influence of the strong western boundary current on sea level in this region. The south of Greenland

domain (SOM 9, δ-MAPS 12) also includes a relatively large dynamic contribution, with a trend of 0.49± 0.21 mm yr−1,

reflecting the influence of the Subpolar Gyre in this region. The dynamic component also has a significant contribution to other280

δ-MAPS domains, such as domains 24, 69, 39, 66 and 67. Domain 67, located southwest of Australia, shows a large negative

dynamic trend, which can be related to the influence of the West Australian Current.

Regarding the temporal evolution (Figure 4c,d and Supplementary Figure B4), both SOM and δ-MAPS time series show a

similar behaviour. The steric component dominates the temporal sea-level variability, with a good match to the altimetry. The

time series of ’ENSO-tongue’ domain (SOM 12 and δ-MAPS 45, Figure 4d) shows the clear response of sea level to ENSO,285

with peaks coinciding with strong ENSO events, such as the El Niño of 1997 and 2015. The prominent contribution of the

dynamic component to the total trend in the Gulf Stream domain (SOM 1 and δ-MAPS 82) is not reflected in the time series

(Figure 4c). Hence, while the dynamic component has a significant impact on the overall change, it does not contribute to the

seasonal to interannual sea-level variability. This is true for all other domains (Supplementary Figure B4), except for SOM

(δ-MAPS) domain 2 (24) and 18 (85), where we find a better match between the dynamic and altimetry time series.290

4.3 Sea-Level Budget Sensitivity

Here, we investigate the sensitivity of the budget considering (i) the components included in the budget, (ii) the size of the

domains and the clustering method, and (iii) the data sets used for each component.

To illustrate the performance of the budget considering the domains used and the components included in the budget, we

show how the Pearson’s correlation coefficient (r) and the normalized root mean squared error (nRMSE) change when these295

factors vary (Figure 5). This figure firstly shows that the budget closure improves when more components are included in the

budget. While we get a poorer performance when only considering the dynamic or the GRD component, the budget with only

steric already performs relatively well. Possibly, by removing the global mean steric signal of the steric component, the local

steric anomaly and the dynamic components should have a similar performance on the budget. The budget performance is

enhanced by the addition of the dynamic and GRD components, shown by the narrowing of the box-and-whiskers plot.300

The figure also shows an improvement of the budget closure for δ-MAPS and SOM domains, in relation to the 1 degree

resolution, regardless of the budget combination. There are two possible reasons why a coarser spatial resolution leads to
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Figure 4. Sea-level budget trends (mm/yr) for (a) δ-MAPS domains and (b) SOM, and (c,d) time series for two example domains. Loca-

tion of each domain is shown in Figure 2 (domain numbers in magenta for δ-MAPS). For comparison δ-MAPS domains are matched to

the SOM domains, for example SOM domain 12 to δ-MAPS domain 45. Bar plot for all other δ-MAPS domains can be found in Sup-

plementary Figure B3. For time series, solid and dashed lines indicate SOM and δ-MAPS time series, respectively. Time series for all

SOM domains and for the 18 δ-MAPS domains in (b) are shown in Supplementary Figure B4. An interactive budget map is available at

https://carocamargo.github.io/portfolio/portfolio-1/ for both SOM and δ-MAPS.
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decreasing uncertainties and a better budget closure: (i) the spatial scale of the process itself, as changes in long-term sea

level typically occur on a coarser resolution than 1 degree; and/or (ii) there is a mismatch in the exact location between

the sum of the components and altimetry observations on a finer spatial scale, resulting from the limited resolution of the305

observations, compared to a coarser scale when such mismatches are partially averaged out. Simply upscaling the resolution

of the observations – i.e, considering 2x2 or 5x5 degrees blocks – does not have the same effect on budget performance as the

domains derived by machine learning (Supplementary Figure B5): there is demonstrated added value of considering regions

that are physically coherent, rather than artificial blocks, for the budget analysis. That is, spatially averaging over areas of

similar variability reduces the unexplained variance of the observations.310

Figure 5. The effect on budget closure for different component combinations and spatial resolutions. (a) Pearson’s correlation coefficient

(r) and (b) normalized root mean squared error (nRMSE), in mm yr−1, between total sea-level (altimetry) and the different components

included in the budget (x-axis), for the different spatial resolutions (1 degree in green, δ-MAPS in red and SOM in blue).
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When it comes to the data sets of the different SLC drivers, SLB studies often use the ensemble mean of several data sets for

each component (e.g., Cazenave et al., 2018), or they compute a range of budget combinations, by varying the data set for each

component, to find the combination that returns the best budget closure (e.g., Gregory et al., 2013). The latter approach can

result in a budget closure for the wrong reasons (Royston et al., 2020). On the other hand, while the ensemble mean approach

may reduce the systematic biases of using individual data sets (Storto et al., 2017), it may also hinder the real variability of the315

process being analysed (Rougier, 2016). Alternatively, the budget can be analysed with the data sets closest to the ensemble

means, according to the RMSE analysis, which retains the true variability of an individual data set (Rougier, 2016; Royston

et al., 2020).

All the results presented so far were computed using the ensemble means for each component, considering 15 steric, 5

dynamic, 4 barystatic and 4 altimetry data sets. Considering all single data sets plus the ensemble of each component we can320

obtain 2400 possible budget combinations (16x6x5x5). To illustrate the dependence of the budget closure on the data set used,

we now also discuss the residuals of each SOM domain considering all 2400 possible data set combinations (Figure 6). The

residual value shows a large spread for the different budget combinations, ranging from about -2 to 2 mm yr−1, and 34% of

the combinations would result in non-closure of the budget (i.e., the sum of the components does not match with the altimetry

values, indicated in red).325

The residuals of the ensemble combinations (used throughout this study, and indicated by the blue filled squares in Figure

6) are comparable with the residuals of the combinations using the data sets with the smallest RMSE to the ensemble mean

(indicated with purple filled triangles in Figure 6). With the exception of the domains 14 and 16, we see that the ensemble and

the RMSE combination have a similar residual value. This indicates that the closure of the budget is not an artefact of the data

set choice.330

5 Discussion & Conclusions

SLB assessments are important tools for understanding the processes driving SLC, for detecting temporal changes in sea-level

and its components, for identifying missing contributions to the budget, and for validating and constraining climate models

used in sea-level projections (Cazenave and Moreira, 2022). In particular, understanding the processes on a finer spatial scale

is essential for local sea-level projections and coastal management planning. In this study, we investigated the regional SLB335

for 1993-2016 on a global scale.

Regional SLB closure tends to be difficult due to the complex physical processes acting on different spatial scales. To

overcome this spatial resolution issue, we applied a neural network approach, SOM, and a deep-network detection method,

δ-MAPS, to identify domains of coherent sea-level variability (Figure 2). The identified patterns reflect, among others, the in-

fluence of natural internal climate modes (Han et al., 2017), such as ENSO, PDO and NAO. This indicates the potential of using340

machine learning and pattern detection algorithms, such as SOM and δ-MAPS, to isolate the effects of natural climate modes

from anthropogenic forcing on SLC. The domains also suggest how sea-level variability may be transferred between ocean

regions. For example, the Northwestern European Shelf SOM domain extends south down to the Strait of Gilbratar, possibly
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Figure 6. Budget residuals (mm/yr) for all possible data sets combinations for every SOM domain (separated by vertical dashed lines). The

ensemble mean combination (used for the main analysis) is indicated with squares. The RMSE combination, that is, the budget combination

using for each component the individual data set with smallest RMSE in relation to the ensemble mean, is indicated with triangles.

reflecting how coastally-trapped waves propagate sea-level variability into the North Sea (Hughes et al., 2019; Hermans et al.,

2020; Dangendorf et al., 2021). Additionally, highly energetic ocean regions, such as the Kuroshio current, the Gulf Stream345

and the Malvinas confluence zone, are also extracted as single features, matching the spectrum of sea-level variability in those

zones (Hughes and Williams, 2010).

Compared with the basin regions of Thompson and Merrifield (2014), we have identified more and smaller domains, espe-

cially in the Southern hemisphere. This means our domains can provide an additional level of spatial detail compared to ocean

basins, while remaining large enough to provide a consistently closing regional SLB. Using the domains identified with SOM350

and δ-MAPS, we presented a regional SLB assessment on an average scale of about 30 · 106km2. The performance of the

budget improves from finer (1 degree resolution) to coarser scale (SOM domains), with a residual spread of 0.8 mm yr−1 for

SOM compared to 28.0 mm yr−1 for 1-degree resolution. We also showed that the budget closes better when all components

(steric, dynamic and GRD) are included, highlighting the importance of including the deep steric and dynamic contributions

to regional SLC. Despite the large uncertainties at a regional scale (compared to the global mean) (Royston et al., 2020), we355

were able to identify dominant drivers in most domains. Regions where the SLB cannot be closed highlight processes that are

affecting sea level but are not well captured by the observations, such as the influence of western boundary currents.

The GRD component has a relatively homogeneous contribution, independent of the domain, in agreement with Frederikse

et al. (2020). The steric contribution dominates the seasonal and interannual variability, and results in the prevailing sea-level
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trend in most domains, especially for domains in the southern hemisphere and equatorial regions. The dynamic component360

is important in some regions, particularly in the Gulf Stream domain. The domains where the dynamic component plays an

important role coincide with the coastal polygons of Rietbroek et al. (2016) where a large part of the budget could not be

explained solely by the sum of steric and land-ocean mass exchange. Hence, our analysis sheds light on the unexplained

variance of previous SLB studies.

Here we showed that pattern detection techniques based on machine learning, such as SOM and δ-MAPS, are powerful365

approaches for identifying and understanding features of global sea-level change and variability. The domains identified in this

research highlight that different ocean regions are interconnected, revealing how large-scale circulation controls regional sea

level. These domains are not only a good starting point for a regional SLB analysis, but also have the potential to separate

natural and anthropogenic forcings of SLC in a detection and attribution approach, building on previous work (e.g., Marcos

and Amores, 2014; Slangen et al., 2014, 2016). Future work may include multiple linear regressions with climate modes to370

explore this potential. Additionally, these domains can also be used for coastal sea-level reconstructions (e.g., as Dangendorf

et al. (2021)) and for pattern scaling in sea-level projections (Bilbao et al., 2015).

Code and data availability. Sea-level trends and scripts used for the budget analysis are available at 10.5281/zenodo.7007331 (reserved link

to be published after manuscript acceptance) and https://github.com/carocamargo/SLB

Appendix A: Dynamic Sea-level Change Estimation and Validation375

The dynamic redistribution of mass due to ocean circulation, atmosphere and ocean bottom pressure changes as a result of

the steric change of the oceans is known as dynamic sea-level change (ηDSL Landerer et al., 2007). ηDSL refers to mass

changes driven by bottom pressure changes, that is, the redistribution of mass that was already in the oceans. Note that, by our

definition, the dynamic SLC is part of the ocean dynamic SLC (∆ζ , Gregory et al., 2019), which also includes the effect of

local steric anomalies (η′SSL). When the ocean dynamic component (∆ζ) is considered together with the global mean steric380

SLC (ηSSL), then it is known as sterodynamic SLC (ηSDSL, Gregory et al., 2019; Dangendorf et al., 2021; Wang et al., 2021).

By decomposing the steric component in a global mean (denoted with the overline bar) and local anomaly component (denoted

by the prime symbol), we can write the sterodynamic equation as:

ηSDSL = ∆ζ + ηSSL = ηDSL + η′SSL + ηSSL (A1)

To obtain ∆ζ , we use the sea-surface height of 5 ocean reanalysis data sets (SODA (Carton et al., 2018), C-GLORS (Storto385

and Masina, 2016), GLORYS (Garric and Parent, 2017), FOAM-GloSea (Blockley et al., 2014; Maclachlan et al., 2015) and

ORAS (Zuo et al., 2019)). As ocean reanalyses are mass conserving (Griffies and Greatbatch, 2012), the sea-surface height of

a reanalysis does not include the GRD component, but it does include the steric effect. We acknowledge that this method might

introduce some circularity to the budget analysis: the reanalysis, used to obtain ηDSL, assimilate satellite sea-surface height,

and in the budget analysis we compare this estimate with satellite sea-surface height (ηtotal). Following Wang et al. (2021) we390

17

https://doi.org/10.5194/egusphere-2022-876
Preprint. Discussion started: 13 September 2022
c© Author(s) 2022. CC BY 4.0 License.



compute ocean dynamic SLC by removing the time-varying global mean from the reanalysis’ sea surface height:

∆ζ = ηrea − ηrea. (A2)

Since we are interested purely in the dynamic part of ∆ζ , that is, the dynamic SLC (ηDSL), we must remove the steric local

anomaly (η′SSL) as:

ηDSL = ∆ζ − η′SSL = ∆ζ − (ηSSL − ηSSL), (A3)395

where the steric estimate has been computed with the ocean temperature and salinity of the respective reanalysis. We then

compute the ensemble mean of the 5 dynamic estimates.

To validate our estimate of ηDSL , we compare it with ηDSL estimated from Gravity Recovery and Climate Experiment

Satellite (GRACE, Tapley et al., 2004). GRACE measures total mass changes, that can be used to derive estimates of mano-

metric sea-level change over the oceans (Chambers et al., 2004; Royston et al., 2020). We use GRACE mass concentrations400

(mascons) products over the oceans from two different processing centres: RL06 from the Center for Spatial Research (CSR,

Save et al., 2016; Save, 2020) and RL06 v02 from the Jet Propulsion Laboratory (JPL, Watkins et al., 2015; Wiese et al., 2019).

In order to obtain the ηDSL, we then remove the GRD patterns obtained for the same data sets by Camargo et al. (2021). Note

that we use GRACE dynamic SLC for validation purposes, but not in our budget analysis, as this data set only starts in 2002.

Qualitatively, ηDSL obtained from GRACE (Figure A1a) and from ocean reanalysis (Figure A1b) agree on large scale405

patterns and magnitude of dynamic changes, despite local differences (Figure A1c). The main differences are in the region

surrounding Indonesia an Japan, related to the signature of the 2004 Sumatra (Indonesia) and 2011 Tokohu (Japan) mega-

thrust earthquakes (Chen et al., 2007; Ghobadi-Far et al., 2020) on GRACE observations. To a lesser extent, we also see the

effect of the 2010 Maule (Chile) earthquake and tsunami (Ghobadi-Far et al., 2020). Another strong divergence is seen in the

South Atlantic, where the positive trends of GRACE are not represented in the reanalysis, possibly suggesting that a source of410

dynamic SLC is not well parameterized in the reanalysis.

Appendix B: Supplementary Figures and Tables
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Figure A1. Dynamic SLC (ηDSL) estimated from (a) GRACE (average of JPL and CSR mascons), (b) ensemble of ocean reanalysis, (c)

difference between GRACE and reanalysis.
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Figure B1. Uncertainties of the regional sea-level trends (Figure 1) for 1993-2016 (mm/yr) for (a) altimetry; (b) sum of sea-level components:

(c) full-depth steric, (d) GRD effect and (f) dynamic SLC. Black contour line indicates global mean SLC.
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Figure B2. Distribution histograms of the altimetry (left column, green blocks), sum of the components (left column, purple blocks) and

residuals trend (right column, gray) and uncertainty (right columns, pink), for the 1x1 degree budget (top row), δ-MAPS domains (middle)

and SOM domains (bottom). The dashed pink lines indicate the 95% confidence interval of the residuals uncertainty, with the interval width

reported in the subplots titles, and was used as a reference for the residuals scatters in Figure 3
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Table B1. Names of SOM and δ-MAPS domains

SOM δ-MAPS Domain name

1 82 Gulf Stream

2 24 Southeast Atlantic

3 69 Malvinas Current

4 39 Central North Atlantic Gyre

5 34 East Africa Atlantic coast

6 75 East Equatorial Atlantic

7 63 Brazil Current

8 66 Northwest European Shelf

9 33 South of Greenland

10 88 Kuroshio Extension

11 90 Northwest Indian Ocean

12 45 ENSO-tongue’

13 92 Southwest Autralia, Freemantle region

14 67 Southweast Indian Ocean

15 62 Southwest Tropical Atlantic Ocean

16 89 West Tropical Pacific Ocean, Australiasian Seas

17 77 Agulhas Current

18 85 Central North Pacific Ocean
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Figure B3. Extension of Figure 4, showing the trend contribution for each δ-MAPS domains. An interactive budget map is available at

https://carocamargo.github.io/portfolio/portfolio-1/
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Figure B4. Extension of Figure 4, showing the time series for each of the SOM domains and corresponding δ-MAPS domains.
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Figure B5. Same as Figure 5, but including SLB considering blocks of 2x2 and 5x5 degrees. There is no clear improvement from the 1x1

degree budget to the 2x2 and 5x5, showing the added value of using the δ-MAPS and SOM domains.
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Figure B6. SOM domains for a neural map of (a) 4x4 (a) and of (b) 9x9, using the entire ocean as input for the clustering. Note that, even

with a larger neural map, the SOM patterns are still different than the δ-MAPS domains (Figure 2), proving that the difference between the

extracted patterns are not just a function of the number of SOM neurons, but due to differences between the two methods. It does, however,

leads to less regions that are geographically distant being clustered in the same domain.
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