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S1 Theoretical Derivation

How does storage of carbon in sea ice impacts the partial pressure of CO2? To answer this question,
one can consider the upper layer of the ocean, partially covered by sea ice forming and melting. The
atmospheric pCO2 and wind speed at 10m height are known, as are the ice concentration and melting-
freezing rate and the ocean surface temperature and salinity. The surface ocean pCO2 (in µatm)
would vary along the seasonal cycle due to changes in temperature, salinity, air-sea gas exchange,
dilution and concentration related to surface freshwater fluxes (either from precipitation-evaporation,
or from ice melt and formation). Biology would also impact carbonate properties due to production
and respiration. Finally, advection and mixing could also modify surface properties.

Two scenarios emerge, with for sole difference the storage and release of alkalinity and dissolved
inorganic carbon (DIC) by sea ice.

• The first scenario, called CTRL (for control), corresponding to current Earth System Models,
does not have any carbon in sea ice. In this case, sea ice melt and formation only dilutes
and concentrate carbonate properties in underlying seawater, decreasing or increasing pCO2

accordingly.

• The second scenario, called EXP (for experiment) corresponding to a more realistic approach,
stores some alkalinity and DIC in sea ice. In this case, when ice melts or freezes, on top of
diluting or concentrating carbonate properties in underlying waters, it also creates a flux of
alkalinity and DIC between ice and ocean. This will further modifies pCO2 due to chemical
equilibration processes.

The difference in pCO2 between those two scenarios will in turn modify the magnitude of the air-sea
gas exchange.

S1.1 Differential Equation

From a mathematical perspective, the difference in pCO2 between both scenarios would translate as
follow. Initial conditions are identical in both scenarios, so pCOICE

2 (t = 0) = pCOCTRL
2 (t = 0). If f is

the difference in pCO2 between both runs at each time t, Then:

∀t, pCOICE
2 (t) = pCOCTRL

2 (t) +

∫ t

0

f(s)ds

If non-linearities are neglected, temperature, salinity and biology changes would impact pCO2

similarly in both runs. DIC and Alk changes due to dilution and concentration or mixing would have
the same impact on pCO2 in both cases as well. So all those processes can be excluded from f .

The impact of the carbon flux between ice and ocean on pCO2 needs be taken into account in
f . [Alk]ice and [DIC]ice are the alkalinity and DIC concentration inside the sea ice, respectively, in
mmol m−3 and are assumed to be spatially constant. The flux of alkalinity and DIC between the ice
and the ocean is assumed to be directly proportional to the freshwater flux between ice and ocean,
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F ice−sea
FW , in m s−1. In this case, the ice-ocean flux of alkalinity would be equal to [Alk]ice F ice−sea

FW ,
and that of DIC would be [DIC]ice F ice−sea

FW .
Moreover, this carbon flux, by modifying the surface water pCO2, would induce a difference in the

air-sea gas exchange between both scenarios, written as:

∆Fair−sea
CO2

= Fair−sea,ICE
CO2

−Fair−sea,CTRL
CO2

∆Fair−sea
CO2

= −kg(t)SCO2(t)λ(t)
(
pCOICE

2 (t)− pCOCTRL
2 (t)

)
where kg is the gas piston velocity (m s−1), SCO2

is the CO2 solubility (kg m−3 Pa−1) and λ =
1− [Ice] the lead fraction (unitless). The air-sea carbon flux ∆Fair−sea

CO2
and the ice-ocean carbon flux

are the only two non-negligible processes that need to be accounted for in f .
Since f corresponds to the change in pCO2 due to those fluxes, we need to multiply the two different

fluxes by the slope of pCO2 in the alkalinity or DIC domain, ∂pCO2

∂Alk and ∂pCO2

∂DIC . Note that those two
terms are fluxes at the surface and therefore have units of µatm m−2 s−1. To match the pCO2 which
has units of µatm, we can focus on surface layer of thickness H0 (m).

Then

pCOICE
2 (t) =pCOCTRL

2 (t) +

∫ t

0

∂pCO2

∂DIC

1

H0
∆Fair−sea

CO2
(s)ds

+

∫ t

0

(
∂pCO2

∂Alk
(s)

1

H0
[Alk]iceF ice−sea

FW (s) +
∂pCO2

∂DIC
(s)

1

H0
[DIC]iceF ice−sea

FW (s)

)
ds

Then, with the notation g(s) = ∂pCO2

∂Alk (s)[Alk]ice + ∂pCO2

∂DIC (s)[DIC]ice and ∆pCOi−c
2 = pCOICE

2 −
pCOCTRL

2 , we get:

∆pCOi−c
2 (t) =

∫ t

0

∂pCO2

∂DIC

1

H0
∆Fair−sea

CO2
(s)ds+

∫ t

0

1

H0
g(s)F ice−sea

FW (s)ds (1)

So, using the gas transfer formulation:

∆pCOi−c
2 (t) =

∫ t

0

−∂pCO2

∂DIC

1

H0
kg(s)SCO2(s)λ(s)∆pCOi−c

2 (s)ds+

∫ t

0

1

H0
g(s)F ice−sea

FW (s)ds

While proving the differentiability of all those variables is beyond the scope of this study, it can be
noted that they are continuous and unlikely to present any break or cusp. We will therefore assume that
we can safely differentiate the previous expression to obtain the following linear differential equation
of the first order:

∂∆pCOi−c
2 (t)

∂t
= −∂pCO2

∂DIC

1

H0
kg(t)SCO2

(t)λ(t)∆pCOi−c
2 (t) +

1

H0
g(t)F ice−sea

FW (t) (2)

S1.2 Solving an EDL1

According to the Cauchy-Lipschitz theorem, the Ordinary Differential Equation of order 1 y′ + ay = b
has a unique general solution (Cauchy, 1844, Chapter 26) of the form:

y(t) = e−A(t)

(
K +

∫ t

t0

b(s)eA(s)ds

)
with A(t) a primitive of a(t) over the proper intervalle and K a constant that depends on initial
conditions (at t0).

So for equation 2, a general solution would be of the form:

∆pCOi−c
2 (t) = e−A(t)

(
K +

∫ t

0

1

H0
g(s)F ice−sea

FW (s)eA(s)ds

)
with A(t) a primitive of ∂pCO2

∂DIC
1
H0

kg(t)SCO2
(t)λ(t), written as A(t) =

∫ t

0
∂pCO2

∂DIC
1
H0

kg(s)SCO2
(s)λ(s)ds+

α.
Since the initial conditions for the control and sensitivity runs are identical, ∆pCOi−c

2 (t = 0) =
0 ⇒ K = 0.

So ∀t,∆pCOi−c
2 (t) = e−A(t)

∫ t

0
1
H0

g(s)F ice−sea
FW (s)eA(s)ds
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S1.3 Uptake difference

Inserting this solution in equation 1 and rearranging, we get:∫ t

0

1

H0

∂pCO2

∂DIC
∆Fair−sea

CO2
(s)ds = e−A(t)

∫ t

0

1

H0
g(s)F ice−sea

FW (s)eA(s)ds−
∫ t

0

1

H0
g(s)F ice−sea

FW (s)ds

If we consider H0 to be constant, we can move it out of the integrals and make it disappear. Similarly,
if ∂pCO2

∂DIC is constant and non-null, we can move it outside the integral and divide both side by it.
We can then rearrange as follow:∫ t

0

∆Fair−sea
CO2

(s)ds = ∆F =
1

∂pCO2

∂DIC

∫ t

0

g(s)F ice−sea
FW (s)

(
eA(s)−A(t) − 1

)
ds

Note that we can show that if λ(t) = 0, then ∆Fair−sea
CO2

(t) = 0. So we find again the result that
the difference in uptake only depends on melting flux (with the assumption that if [Ice] ̸= 1, ice is
melting).

Using realistic alkalinity, DIC and pCO2 values for the Arctic Ocean ([Alk]sw= 2300 mmol m−3,
[DIC]sw=2100 mmol m−3, [Alk]ice= 540 mmol m−3, [DIC]ice= 300 mmol m−3 and pCO2 = 280 µatm
and Revelle and alkalinity factors of 14 and -13.3 respectively), it yields g(t) ≈ −314 which is negative.

All the terms inside the integrand of A(t) =
∫ t

0
∂pCO2

∂DIC
1
H0

kg(s)SCO2(s)λ(s)ds+α are positive, meaning

A(t) is monotonously increasing with t. So t > s ⇐⇒ A(t) > A(s). This means that eA(t)−A(s) < 1.
Therefore, the sign of the integrand is determined by the sign of F ice−sea

FW .

S1.4 Idealized case

If we make the assumption that wind speed and solubility are constant for the time period when ice
is not fully covered the water (i.e. ∀t, ∂pCO2

∂DIC
1
H0

kg(t)SCO2(t) ≡ κ), we can rewrite:

A(t) =

∫ t

0

∂pCO2

∂DIC

1

H0
kg(s)SCO2

(s)λ(s)ds = κ

∫ t

0

λ(s)ds

= κΛ(t)

with Λ(t) =
∫ t

0
λ(s)ds. Similarly, we can consider that ∀t, g(t) ≡ γ. Then:∫ t

0

∆Fair−sea
CO2

(s)ds =
1

∂pCO2

∂DIC

γ

∫ t

0

F ice−sea
FW (s)

(
eκ(Λ(s)−Λ(t)) − 1

)
ds (3)

This expression can be evaluated with the ice concentration and the freezing-melting flux used to
force the 1D model, described in Section 3.a. To do so, values for γ and κ need to be determined.
Using values from Section S1.3, we can set γ = −314 µatm. Similarly, relying on values from Takahashi
et al. [1993], ∂pCO2

∂DIC = 1.9 µatm mol−1 m3. Following Wanninkhof [2014], their eq. 6, and using an
average squared wind speed of 50 m2 s−2 and a surface layer of 1m, we can set κ = 7.7× 10−4 < U2 >
∂pCO2

∂DIC
1
H0

= 7.3× 10−2.
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S2 Supplementary Figure

Figure S1: Histograms of freezing and melting as a function of ice concentration. calculated with daily
outputs for the NAPA model, from 2014 to 2019, over the 732 grid cells used for the 1D simulation
ensemble.

Figure S2: Validation of sea ice concentration: comparison between merged CryoSat2-SMOS satellite
observations and NAPA model. Colours show observations minus model ice thickness during the month
of maximum extent (March), averaged over 2014-2019. The contours show the ice extent, calculated as
the 15% isoline for ice concentration. For details about satellite product, refer to Ricker et al. (2017).
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Figure S3: Comparison of 1D numerical model outputs with mooring observations from DeGrandpre
et al. (2019) in the Beaufort Gyre station location (78°N, 150°W).
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