
Bayesian parameter inference in hydrological modelling using a
Hamiltonian Monte Carlo approach with a stochastic rain model
Simone Ulzega1 and Carlo Albert2

1Institute of Computational Life Sciences, Zurich University of Applied Sciences, Wädenswil, Switzerland
2Swiss Federal Institute of Aquatic Science and Technology, Dübendorf, Switzerland

Correspondence: Simone Ulzega (simone.ulzega@zhaw.ch)

Abstract. Conceptual models of the rainfall-runoff behaviour of hydrological catchments have proven to be useful tools for

making probabilistic predictions. However, model parameters need to be calibrated to measured data and their uncertainty

quantified. Bayesian statistics is a consistent framework for learning from observed data, in which knowledge about model pa-

rameters is described through probability distributions. One of the dominant sources of uncertainty in rainfall-runoff modelling

is the true rainfall over the catchment, which often needs to be inferred from a few rain-gauge and runoff measurements. Mod-5

elling this uncertainty naturally leads to stochastic differential equation models, which render traditional inference algorithms

such as the Metropolis algorithm infeasible due to their expensive likelihood functions. Therefore, in hydrology and other

applied fields of research, error models are traditionally oversimplified for ease of inference as additive errors on the output,

leading to biased parameter estimates and unreliable predictions. However, thanks to recent advancements in algorithms and

computing power, full-fledged Bayesian inference with stochastic models is no longer off-limits for hydrological applications.10

We demonstrate this with a case study from urban hydrology, for which we employ a highly efficient Hamiltonian Monte Carlo

inference algorithm with a time-scale separation.

1 Introduction

A fundamental and highly non-trivial question in many applied sciences is how to make reliable predictions about the dynamics

of a complex system. In hydrological modelling in particular the ability of predicting extreme events like floods is obviously15

of paramount importance. Conceptual rainfall-runoff models that incorporate only a few state variables and a few system

parameters often represent a very practical and efficient solution for making probabilistic predictions. The basic idea is to

describe slow processes occurring at our observation scale by phenomenological differential equations and include all other

processes as noise. Incorporating the noise in the model, where it arises, naturally leads to stochastic differential equation

(SDE) models. Model parameters then need to be calibrated on observed data, usually provided in the form of noisy time20

series. The goal of the calibration process is to determine the parameters that allow the model to reproduce the observed

data and quantify their uncertainties, expressed as probability distributions. For this purpose, Bayesian statistics is a consistent

framework where our knowledge about model parameters is described by probability distributions and learning as a data-driven

updating process of prior beliefs. Bayesian inference turns out to be computationally very expensive for non-trivial stochastic

1



models. In Albert et al. (2016) we presented an efficient Hamiltonian Monte Carlo (HMC) based algorithm for the calibration of25

SDE models on noisy time series. The proposed HMC method, combining molecular dynamics principles with the well-known

Metropolis algorithm, relies on the reinterpretation of the Bayesian posterior probability distribution as the partition function

of a statistical mechanics system. This interpretation reduces the parameter inference problem to the task of simulating the

dynamics of a fictitious statistical mechanics system, which can be solved in a computationally efficient way. The dynamics

of the statistical mechanics system may occur on very different time scales, which can be exploited by a multiple time-scale30

integration approach. Moreover, HMC belongs to the broad family of Markov Chain Monte Carlo (MCMC) methods, which are

very well suited for parallel computing. In Albert et al. (2016), we claimed that the HMC algorithm, combined with the multiple

time-scale integration, would be applicable to a wide range of inference problems, making many SDE models amenable to a

consistent Bayesian parameter inference. The method was demonstrated using a simple, albeit general, rainfall-runoff toy

model. Here we present a first application to a real-world case study from hydrology.35

Uncertainty in rainfall-runoff hydrological modelling arises mostly from input errors associated with an inaccurate estima-

tion of the integrated rainfall over a catchment
::::::::::::::::::
(Kavetski et al., 2006). These input errorsare

:
, typically due to a combination of

heterogeneous rainfalland ,
:
sparse rain-gauge measurements

:::
and

:::::::::
insufficient

::::::::
temporal

::::::::
resolution

::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::
(McMillan et al., 2011; Renard et al., 2011; Ochoa-Rodriguez et al., 2015)

:
,

:::
can

:::::::
seriously

:::::::::
deteriorate

:::
the

::::::
quality

::
of

:::::
model

:::::::::
calibration

::::::
results

:::
for

::::::
heavily

::::::::::
input-driven

:::::::::::
hydrological

::::::
systems

:::::::::::::::::::::
(Bárdossy and Das, 2008)

.
:
A

::::::
variety

::
of

:::::::::
stochastic

::::::
weather

:::::::::
generators

::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::
(Rodriguez-Iturbe et al., 1987; Cowpertwait et al., 1996; Deidda et al., 1999; Paschalis et al., 2013; Langousis and Kaleris, 2014)40

::::
have

::::
been

::::::::
proposed

::
to

::::::::
simulate

:::::::::::
precipitation

::::
with

:::
its

::::::::::
uncertainty.

::::::::
Although

::::
such

:::::::
weather

:::::::::
generators

::::
can

:::::::
provide

::::::::
uncertain

:::::
inputs

::
to

::::::::::::
rainfall-runoff

:::::::
models,

::::
and

:::::::
therefore

:::::::::
reproduce

:::
the

:::::
effect

:::
of

::::::
rainfall

:::::
errors

:::
on

:::::
runoff

:::::::::
predictive

:::::::::::
uncertainties,

:::::
such

::::
input

:::::::::::
uncertainties

:::::
have

::::
been

:::::::
largely

::::::::
neglected

:::
in

::::::
studies

::::::::
focusing

:::
on

::::::
model

::::::::
parameter

:::::::::
inference

::::::::::::::::::
(Sikorska et al., 2012)

:
,

:::::::
probably

:::::::
because

:::
of

:::
the

::::::::::::
computational

::::::::
difficulty

::
of

:::::::::
including

:::::
them

::
in

::
a

::::::::
likelihood

::::::::
function

::::::::::::::::
(Honti et al., 2013).

:
Input un-

certainties should be included directly in the input as a stochastic contribution, then transported through the model and thereby45

naturally incorporated in the likelihood function describing the probability distribution of observations given model parame-

ters. In the Bayesian framework, the sought posterior probability distribution for the model parameters is proportional to the

product of the likelihood function and the prior probability distribution describing our prior knowledge about model parame-

ters. However, it is still common practice in hydrology, as well as in other applied disciplines, to consider an over-simplified

error model based on likelihood functions defined as uncorrelated normal distributions centred on the outputs of a deterministic50

model (Yang et al., 2008; Reichert and Schuwirth, 2012; Sikorska et al., 2012). This inevitably leads to biased parameters and

unreliable predictions (Renard et al., 2011; Honti et al., 2013; Del Giudice et al., 2015). Although so-called rainfall multipliers

can mitigate this problem (Kavetski et al., 2006; Sun and Bertrand-Krajewski, 2013), they fail in assessing input uncertainties

when a rainfall event is not detected by the available rain-gauges
:::::::::::::::::::::::::::::::::::
(Kavetski et al., 2006; Renard et al., 2011). Del Giudice et al.

(2016) proposed a method based on an input uncertainty model describing the rainfall as a continuous stochastic process. The55

method is called SIP (acronym for Stochastic Input Process). The idea of describing selected model parameters or inputs as

stochastic time-dependent processes in order to take intrinsic uncertainties realistically into account in hydrological modelling

has gained momentum in recent years (Tomassini et al., 2009; Reichert and Mieleitner, 2009; Reichert et al., 2021; Bacci et al.,

2022). The SIP technique uses i) possibly inaccurate rain-gauge precipitation data, ii) runoff data from a flowmeter at the catch-
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ment outlet, iii) a hydrological runoff model, iv) a rainfall model in the form of a transformed stochastic Ornstein–Uhlenbeck60

(OU) process, v) models for rainfall and runoff observation errors, and vi) prior distributions, to infer in a Bayesian manner

both the marginal posterior distributions for the parameters of interest and a "true" spatially-integrated average rainfall over the

catchment. The SIP method uses the catchment as an additional rain-gauge to gather information about a catchment-averaged

real rain, which is inferred from both prior knowledge and observations of rainfall and runoff. Both the hydrological model

describing the catchment dynamics and runoff observations are assumed to be accurate in comparison to the rainfall data. The65

inferred rainfall pattern can then be used to calibrate the model and significantly reduce the bias in the estimated parameters,

despite the inaccuracy of the rainfall data. As described in detail in Del Giudice et al. (2016), the likelihood function turns out

to be a high-dimensional discretized version of an infinite-dimensional path-integral that makes this approach computationally

demanding.

Here we combine the HMC and SIP methods to perform Bayesian inference with a stochastic input model. We show that70

with only a little analytical effort the HMC method can be extended from the toy model and the smooth synthetic data used

in Albert et al. (2016) to a real-world hydrological case study with real noisy rainfall and runoff time series
:
,
:::::
albeit

::
at

:::
the

::::
cost

::
of

:
a

:::::::::
somewhat

:::::::::
substantial

::::::::
analytical

:::::
effort. We intentionally use sparse and inaccurate precipitation data, provided by a rain-

gauge located far away from the catchment area, to demonstrate that a "true" average rainfall pattern can be reconstructed from

the corresponding runoff data, and we compare the inferred rain to the more accurate observations obtained from rain-gauges75

within or very close to the catchment.

The HMC method bears valuable advantages with regard to both generality and efficiency. Indeed, the HMC method
:
it

:
is by

no means limited to an OU process, unlike the original SIP approach of Del Giudice et al. (2016), which strictly requires a linear

stochastic process as a rain generator. Although in this study we also opt for an OU process for the sake of simplicity, it should

be clear that such process could be arbitrarily replaced by any other stochastic process, thus giving the method significantly80

more flexibility in reproducing the statistical properties of real rainfall.
:::
The

::::::
HMC

::::::
method

::
is

::::
also

:::
not

::
at

:::
all

::::::
limited

:::
to

:::::
urban

:::::::::
hydrology,

:::
and

:::::
could

::
be

::::::
applied

:::
for

:::::::
instance

::
in

::::::
natural

:::::::::
catchment

::::::::
hydrology

::
as

:::::
well.

:::
The

:::::::
specific

::::
case

::::
study

::::::::
presented

::::
here

::::
was

::::::
chosen

:
to

:::
put

::::::::
emphasis

:::
on

::::
input

:::::::::::
uncertainties,

::::::
which

::::
often

::::::::
represent

:::
the

::::::
biggest

:::::
source

::
of

::::::::::
uncertainty

::
in

::::::::::
hydrological

:::::::::
modelling

::
in

:::::::
general.

::::
More

::::::::::
information

:::
on

:::::::
possible

:::::::::::
hydrological

::::::::::
applications

:::
can

:::
be

:::::
found

::
in

:::::::::::::::::::::
Del Giudice et al. (2016)

:
. Moreover, the

HMC algorithm allows us to sample from the posterior probability density both model parameters and a true averaged rainfall85

pattern that are simultaneously compatible with data, models and prior distributions. This yields very high acceptance rates

even in the context of expensive high-dimensional problems, with great benefits in terms of performance and efficiency of

the algorithm. Another interesting method from the family of particle filters to tackle high-dimensional inference problems

for stochastic model calibration is Particle Markov Chain Monte Carlo (PMCMC) (Andrieu et al., 2010), which combines

piece-wise forward simulations of the stochastic model with data-based importance sampling. Like HMC, PMCMC methods90

can be applied to any stochastic process, including (unlike HMC) processes with discrete states (e.g., numbers of organisms in

ecological models). A generally low implementation effort could be an additional argument in favor of PMCMC algorithms,

which do not require the differentiation of the posterior distribution like HMC methods. However, PMCMC methods may

suffer significantly in terms of efficiency when compared to an HMC-based approach. A detailed comparison, based on the
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same case study presented here, of different methods for Bayesian inference with stochastic models, can be found in Bacci95

et al. (2023).

Hydrology can potentially take great advantages from more realistic stochastic models and a fast and reliable method for

their calibration.
:::::::
Bayesian

::::::::
inference

:::::::
methods

::::
bear

:::
the

::::
great

:::::::::
advantage

::::
over

::::::::
traditional

:::::::::::
optimization

:::::::::
algorithms

::
of

::::::::
providing

:::
an

:::::::::
uncertainty

:::::::::
estimation

::
for

:::
the

:::::::::
calibrated

:::::::::
parameters

::
in

:::
the

::::
form

::
of

:
a
:::::::::
probability

:::::::::::
distribution.

:::
The

:::::::::
knowledge

::
of

::::
such

::::::::::
uncertainty

:
is

:::::::::
important

::
for

:::::::
making

::::::::::
probabilistic

::::::::::
predictions,

:::::
which

::::
can

::
be

::
in

::::
turn

:
a

:::::
useful

::::
tool

:::
for

:::::::
decision

:::::::
makers.

:::
The

:::::::
method

::::::::
presented100

:::
here

::
is

::::::
meant

:::
for

::::::::::::::
offline-calibration

:::
of

::::::::
stochastic

:::::::
models,

:::
not

:::
for

:::::::
real-time

::::::::
updating,

::::::
which

:::::
might

::
be

:::::::
needed

::
in

:
a

:::::::::::
model-based

::::::
control

::::::
setting.

:::
For

::::
the

::::
latter

::::::::
problem,

:::::::
filtering

:::::::::
algorithms

:::::
might

:::
be

:::::
more

::::::::::
appropriate,

:::
but

:::
we

:::
do

:::
not

::::::
discuss

::::
this

::::
topic

:::::
here.

The HMC approach is very general and suitable for a broad range of applications requiring Bayesian inference with stochastic

models. Moreover, HMC is inherently a MCMC method and it is therefore embarrassingly parallelizable by breaking it up into

an arbitrary number of independent Markov chains. This makes HMC very well-suited for applications in the big-data regime105

or with expensive models.

2 Bayesian inference with a stochastic rain model

The SIP method of Del Giudice et al. (2016) describes the rain input to a hydrological system based on an unobserved and

continuous stochastic process, the rainfall potential �(t). The latter should not be interpreted as a potential in the physical

sense, but rather as a rain generator based on a latent, i.e., "potential", stochastic process that can be transformed into real110

precipitation P by a suitable empirical transformation P (t) = r(�(t)), which will be addressed below in Section 2.1. The

inference process allows us to learn from noisy rainfall and runoff time series, P obs and Qobs, respectively, the parameters

� of the hydrological system, the uncertainties �� and �z of both rainfall and runoff observation models, respectively, and

the unobserved true rainfall over the catchment expressed as a discretized rainfall potential � = f�ig, to be interpreted as an

evaluation of the stochastic process �(t) at a discrete set of time points ti, with i= 1; :::;N . For this purpose, we subdivide115

each interval between consecutive rain observations into jP bins, yielding a total of nP jP +1 =N discretization points, where

nP + 1 is the number of rain observations, that is, the length of the precipitation time-series P obs. Analogously, the system

output dimension is discretized by partitioning the intervals between consecutive runoff observations into jQ sub-intervals,

such that the total number of discretization points is nQjQ + 1 =N , where nQ + 1 is the number of data points in Qobs. The

number of discretization points is thus the same (N ) in both rainfall and runoff dimensions, and it defines the discretization120

time step dt= T=(N � 1), where T is the total time interval covered by observations. We will provide numerical values for

all these constants later in Section 4.
::::
Here,

::::::
suffice

::
it

::
to

:::
say

::::
that

:::
the

::::
only

::::::::
important

::::::::::
requirement

:::
of

:::
the

::::::
method

::
is

::::
that

:::
the

::::
total

::::::
number

:::
N

::
of

:::::::::::
discretization

::::::
points

::
is

::::
large

:::::::
enough

::::::::
compared

:::
to

:::
the

::::::
number

:::
of

:::::::::::
measurement

::::::
points,

:::
nP::::

and
:::
nQ,

:::
in

:::::
order

::
to

::::::::
accurately

:::::
probe

:::
the

::::
fine

::::::::
dynamics

::::::::
occurring

:::
on

:::::
short

::::
time

:::::
scales

:::::::
between

::::::::::::
observations.

:::::
Other

:::::::
features,

::::
such

:::
as

:::
for

:::::::
instance

:::::
having

::::
the

::::
same

:::::::
number

:::
N

::
of

::::::::::::
discretization

:::::
points

:::
for

:::::::
rainfall

:::
and

:::::::
runoffs,

::::
are

:::
just

::::::::
arbitrary

:::::::
choices

::
to

::::
ease

:::
the

::::::::
practical125

:::::::::::::
implementation

::
of

:::
the

:::::::
method,

:::::
which

::::::
could

::
be

::::::::
removed

::::::
without

:::::::
altering

:::
the

::::::
results

:::
and

::::::::::
conclusions

:::
of

:::
this

:::::
work.

::::
The

:::::
same

::::
holds

::
if

:::
the

:::::::::::
observations

:::::
were

:::::::::
irregularly

::::::
spaced

::
in

:::::
time,

::
in

:::::
which

::::
case

::::
one

:::::
could

:::
use

::::::::::
observation

::::::::
windows

::::
with

:::::::::
more/less
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::::::::::
intermediate

:::::::::::
discretization

:::::::
points.

::::
Note

::::
that

:
a
:::::
large

:::::::
number

::
of

::::::::::::
discretization

:::::
points

:::
N ,

::::
with

::
a

:::::
�xed

::::::
number

:::
of

::::::::::
observation

:::::
points,

:::::
does

::::
only

:::::::::
moderately

::::::::
increase

:::
the

::::::::::::
computational

:::::
effort

::
of

:::
the

:::::::::
algorithm,

:::::
since

:::
the

:::
part

:::
of

:::
the

::::::::::
Hamiltonian

:::::::::
dynamics

:::
that

:::::
scales

::::
with

:::
N

:::
can

::
be

:::::::::
calculated

::::::::::
analytically,

::
as

::::::
shown

::::::
below.130

The inference goal is to sample both parameter combinations(� ; � � ; � z ) and realizations� of the stochastic process� (t)

from a posterior distribution obeying Bayes
:
' equation, which reads in its discretized form as,

f (� ; � ; � � ; � z j P obs;Qobs) / f (Qobs j � ; � ; � z ) f (P obs j � ; � � ) f (� ) f (� ; � � ; � z ) ; (1)

wheref (� ; � � ; � z ) is the joint prior distribution for the model parameters, andf (Qobs j � ; � ; � z ) f (P obs j � ; � � ) is thelikeli-

hoodexpressing the probability of observed data(P obs;Qobs) given model parameters(� ; � � ; � y ) and a system realization� ,135

weighted by the prior probability densityf (� ).

The stochastic process realization� in Eq. 1 is a time-series of lengthN � 1. The high dimensionality of the problem renders

the likelihood computationally expensive, thus making the inference problem intractable with traditional Bayesian inference

algorithms, such as random walk Metropolis algorithms, which require a large number of likelihood evaluations. On the other

hand, when the inference target is only the posterior distribution for the model parameters(� ; � � ; � z ) and model simulations are140

fast, one may resort to Approximate Bayesian Computation (ABC) algorithms (e.g., Albert et al. (2015)), which approximate

the parameters posterior through repeated comparisons of model simulations with observations in terms of a low-dimensional

set of summary statistics. However, here we are interested in the joint inference of model parameters and the real rainfall� ,

which makes ABC an inef�cient approach.

To tackle this problem, we apply a Hamiltonian Monte Carlo (HMC) algorithm (Duane et al., 1987; Neal, 2011; Albert et al.,145

2016), which exploits the principles of Hamiltonian dynamics to attain very high acceptance rates and low auto-correlation even

on high-dimensional sampling spaces. This makes it possible to explore such spaces with large steps, without compromising

the acceptance rate, and thus making the algorithm very ef�cient. The inherent high ef�ciency of HMC is further boosted here

by a time-scale separation analogous to the one described in Albert et al. (2016). The HMC algorithm allows us to sample

simultaneously from the posterior of Eq. 1 both model parameters(� ; � � ; � z ) and realizations of the stochastic process� . In150

particular, the rainfall potential� is inferred indirectly using prior knowledge, the observed runoffQobs, and the possibly

inaccurate observed precipitationP obs. The discharge data is used as an indirect source of knowledge about the rainfall, that

complements the unreliable information due to the sparse rain-gauge measurements.

The method described here requires a stochastic input process, i.e., a rainfall model, a hydrological rainfall-runoff model

to describe the observed dischargesQobs, observation models for both rainfall and runoff, and prior probability distributions,155

which are all outlined below.
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2.1 The rainfall model

The rainfall potential is described by a normal and linear Ornstein-Uhlenbeck (OU) process with mean zero and standard

deviation unity, which can be written in the form of a Langevin equation as,

_� (t) = �
�
�

+

r
2
�

� (t) ; (2)160

where� (t) represents zero-mean Gaussian white noise and� is the process correlation time. The latter is set equal to 636 sec-

onds and will not be inferred. A list of model parameters that are assumed to be known and are not inferred is given in Table 1

at the end of Section 2.

The rainfall potential� (t) is then transformed into real rainP(t) by the nonlinear transformation(Sigrist et al., 2012; Del Giudice et al., 2016)

::::::::::::::::::::::::::::::::::::::::::::::::::::
(Sigrist et al., 2012; Ailliot et al., 2015; Del Giudice et al., 2016),165

P(t) = r
�
� (t)

�
=

8
<

:

�
�
� (t) � � r

� 1+ 

if � (t) > � r

0 if � (t) � � r

; (3)

where the zero/nonzero rain threshold� r , the scaling factor� and the exponent
 are all inferred parameters. A list of all

inferred parameters is shown in Table 2 (see end of Section 2). The inherent rainfall stochasticity is thus accounted for by the

stochastic process of Eq. 2, while the skewness of the rainfall distribution and a �nite probability of zero rain are embedded in

the model by the transformation of Eq. 3. Note that sincer (� ) = 0 for every� � � r , the transformationr is not invertible when170

the precipitation is zero. We will discuss this point in detail in Section 2.4.

2.2 The hydrological model

The stormwater runoff is modelled by a linear reservoir alimented by rainfall precipitations,P(t), and a constant groundwater

�ow, Qgw. The dynamics of the water volumeS(t) in the reservoir is thus governed by,

_S(t) = AP (t) + Qgw � QM (t) with QM (t) =
S(t)
K

; (4)175

whereA is the estimated catchment area contributing to the rainfall-runoff dynamics,QM is the hydrological model describing

the runoff at the outlet of the system andK is the retention time of the reservoir. It should be noted that the original hydrological

model used in Del Giudice et al. (2016) is simpli�ed here by omitting the daily variation due to the wastewater contribution.

This is justi�ed by the fact that in the present work we focus only on a single short dataset of 4 hours, whereas in Del Giudice

et al. (2016) the authors consider 3 independent datasets covering a time span of about 48 days. One may refer to Section 4 for180

more details.

The discretized form of Eq. 4 reads as,

Si =
�

1 �
dt
K

�
Si � 1 +

�
AP i � 1 + Qgw

�
dt ; (5)

whereSi andPi areS(t i ) andP(t i ), respectively, withi = 1 ; :::;N . It should be noted that explicit methods, such as the

forward Euler scheme applied in Eq. 5, are very easy to implement, however, they impose stringent limitations on the time step185
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size to ensure numerical stability. In general, explicit methods might not be suf�ciently accurate in regions where the solution

exhibits a rapidly varying behaviour. In that case it would be advisable to apply an implicit backward scheme, numerically

more stable, albeit more dif�cult to implement. In the application discussed here, we reckon that the problem is simple enough

to opt for the explicit forward scheme, thus trading off accuracy for an easier implementation. The intrinsic inaccuracy of

the method is attenuated by choosing a discretization time stepdt that is suf�ciently small compared to the system dynamics190

timescale.

FromEq.5, lenghtybutstraightforwardalgebraiccalculationsleadto the
:::
The predicted dischargeQM;i (� ; � ) = QM (t i ) (i =

1; :::;N )
:::
can

::
be

:::::::::
calculated

:::::::::
recursively

:::::
using

:::
Eq.

::
5

::::
with

:::
the

:::::
initial

::::::::
condition

::::::::::::::::::
QM; 1(� ; � ) = S1=K .

:::::::::::::
Straightforward

::::::::::
calculations

:::
then

:::::
yield,

QM;i (� ; � ) =
S1

K

�
1�

dt
K

� i � 1

+ A
dt
K

Q( � )
M;i +

"

1�
�

1 �
dt
K

� i � 1
#

Qgw ; (6)195

whereQ( � )
M;i is the� - dependent contribution de�ned recursively asQ( � )

M; 1 = 0 and

Q( � )
M;i = (1 �

dt
K

)Q( � )
M;i � 1 + r (� i � 1) with i = 2 ; :::;N ; (7)

where we have used the rainfall potential transformationPi = r (� i ) of Eq. 3. The parameters of the hydrological modelK ,

Qgw and the initial water volumeS1 are unknown and to be inferred (see Table 2), while the catchment area is known and

�xed as A = 11815:8 m2 (Table 1).200

2.3 Runoff observation model

The probability distribution for the observed dischargesQobs given the model predictionsQM;i (� ; � ) is assumed to be a normal

error model with standard deviation� z , which reads as,

f (Qobs j � ; � ; � z ) / exp

"

� (nQ + 1) log( � z ) �
n Q +1X

s=1

(H (Qobs;s ) � H (QM; (s� 1) j Q +1 (� ; � ))) 2

2� 2
z

#

; (8)

where(s� 1)j Q +1 , with s = 1 ; :::;nQ +1 , are the indices corresponding to real observations in the discretized runoff dimension,205

andH is a transformation introduced to take the heteroscedasticity of the errors into account (Del Giudice et al., 2016),

H (Q) = � log
�

sinh
�

� + Q
�

��
; (9)

with the parameters� = 25 l/s and� = 50 l/s (Table 1). Since we are interested only in terms depending on the parameters to

be inferred, in Eq. 8 we can neglect constant multiplicative factors such as the Jacobian
Q n Q +1

s=1
dH
dQ (Qobs;s ).

2.4 Rainfall observation model210

The observation error model for the rainfall, given the rainfall potential� (t), is de�ned in the space of the rainfall potential

as a normal distribution centered on� (t) and with standard deviation� � . Its discretized form can be expressed in terms of the
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discretized potential� as a product of normal distributions,

f (� obs j � ; � � ) =
n P +1Y

s=1

N( � ( s � 1) j P +1 ;� � ) (� obs;s ) ; (10)

where� obs is de�ned as the effective rainfall potential generating the observed rainfall andN ( �;� � ) denotes a normal distribution215

with mean� and standard deviation� � . Note that in Eq. 10 the� (s� 1) j P +1 with s = 1 ; :::;nP + 1 are the elements of the

discretized potential� corresponding to time points where rainfall observations are available. This distribution is transformed

to real rainfall by the inverse transformation� obs = r � 1 (Pobs) (Eq. 3). However, since all� -values below� r are transformed

to zero rain, the transformationr is invertible only wherePobs 6= 0 . Therefore, we need to distinguish two possible regimes,

with and without rain:220

– At time points wherePobs 6= 0 , the probability density of Eq. 10 reads,

f P 6=0 (P obs j � ; � � ) / exp

"

� nP 6=0 log(� � ) �

P
i;P 6=0

�
r � 1 (Pobs;i ) � � ( i � 1) j P +1

� 2

2� 2
�

#
Y

i;P 6=0

1
J i

(11)

where the sum
P

i;P 6=0 extends only over time pointst i wherePobs;i 6= 0 andnP 6=0 is the total number of such points.

Moreover, the transformation from� � to P� values requires the JacobiansJ i de�ned as,

J i =
dr
d�

(r � 1 (Pobs;i )) = � (1 + 
 )
�
r � 1(Pobs;i ) � � r

� 

= � (1 + 
 )

�
Pobs;i

�

� 

1+ 


: (12)225

– At time points wherePobs = 0 and therefore� obs can take any value below� r , we integrate the probability density of

Eq. 10 over the interval[�1 ; � r ]. This yields the probability of zero observed rain, which turns out to be the cumulative

distribution function of the normal distribution, that is,

f P =0 (P obs j � ; � � ) =
Y

i;P =0

1
2

"

1 + erf

 
� r � � ( i � 1) j P +1

� �
p

2

!#

; (13)

where the product
Q

i;P =0 extends over time pointst i wherePobs;i = 0 .230

Therefore,f (P obs j � ; � � ) = f P 6=0 (P obs j � ; � � ) f P =0 (P obs j � ; � � ).

2.5 The priors

At this point, the only elements of Eq. 1 that still need to be de�ned are the prior distributionsf (� ; � � ; � z ) andf (� ). The

former is simply the product of normal or log-normal univariate probability densities for each individual parameter to be

inferred. The parameter vector� here includes the parameters of the hydrological model,K , Qgw andS1, as well as those of235

the transformationr (Eq. 3), that is,� r , � and
 . We infer a total of 8 parameters, listed in Table 2. For the parametersS1 and

� r the prior densities are assumed to be normal distributions, whereas for the other parameters (K , Qgw, � and
 ) the prior

densities are assumed to be log-normal distributions,

f (� ) / exp
�
� log� �

(log � � � LN)2

2� 2
LN

�
; (14)
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with mean and standard deviation� LN and� LN, respectively. Analogous log-normal distributions are assumed for the rainfall240

and discharge observation uncertainties,� � and� z , respectively. The prior distributions for all parameters to be inferred, with

their mean values and standard deviations, are summarized in Table 2.

Our prior knowledge of the rainfall potential� is de�ned in terms of a functionS(� ), calledaction (Lau and Lubensky,

2007; Albert et al., 2016), as,

f (� ) / exp
�
�S (� ) � � 2

1=2
�

; (15)245

where the action can be written in its discretized form
::
for

:::
the

::::
SDE

::::::
model

::
of

:::
Eq.

:
2
:::
as (see Appendix A)as,

S(� ) �
� 2

N

4
�

� 2
1

4
+

NX

i =2

�
�

4dt
(� i � � i � 1)2 +

dt
4�

� 2
i

�
; (16)

and the initial condition for� is speci�ed as the marginal distribution of a standard OU process, which is a standard normal

distribution for� 1.

:
It

::
is

:::::::::
noteworthy

::::
that

:::
the

:::::
HMC

::::::
method

::::::::
described

::::
here

::::::
always

:::::::
requires

::
an

::::::
explicit

:::::::::
analytical

::::
form

:::
for

::
the

::::::
action

:::::
S(� ),

:::::
which

::
is250

::::::::
essentially

::::
just

:::
the

:::::::
negative

:::
log

::
of

::
the

:::::
prior

::::::
density

:::::
f (� ),

:::::
which

::
is

:::
also

::::::
needed

::
in

::::
any

::::
other

:::::::::::::
Metropolis-type

::::::::
sampling

:::::::::
algorithm.

::::::::
Although

::
in

:::
this

:::::
study

:::
we

:::::
follow

:::
the

::::::::
approach

::
of

:::::::::::::::::::::
Del Giudice et al. (2016)

:::
and

:::::
resort

::
to

::
a

:::::
linear

:::
OU

:::::::
process

::
as

:
a

:::::::::::
precipitation

::::::::
generator,

:::
an

::::::::
analytical

:::::::::
expression

:::
for

::::
the

:::::
action

::
is

::::::::
generally

:::::::
readily

:::::::
available

:::::
even

:::
for

:::::
more

:::::::
complex

::::
and

::::::::
nonlinear

:::::
SDE

::::::
models.

:::::
More

::::::
details

:::::
about

:::
the

::::::::
procedure

::
to

::::::
derive

:::
the

:::::
action

:::
for

::::::
generic

:::::
SDE

::::::
models

:::
can

::
be

::::::
found

::
in

::::::::
Appendix

:::
A.

Table 1.List of model parameters that are assumed to be known, with their values and units.

Parameter Value Units Description

� 636 s Autocorrelation time of the stochastic process� (t)

A 11815.8 m2 Catchment area

� 25 l=s Coef�cient of transformationH (Q)

� 50 l=s Coef�cient of transformationH (Q)

Before setting off to implement the HMC algorithm, weneedto take one furtherfundamental
::::::::
convenient

:
step, i.e., we apply255

the transformation from the coordinates� to the so-called staging variablesu (Tuckerman et al., 1993) using,

usj P +1 = � sj P +1 with s = 0 ; :::;nP ; (17)

which leaves the components corresponding to measurement points unchanged, and

usj P + k = � sj P + k � � �
sj P + k with s = 0 ; :::;nP � 1 and k = 2 ; :::; j P ; (18)

and with,260

� �
sj P + k =

(k � 1)� sj P + k+1 + � sj P +1

k
; (19)
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Table 2. Prior probability densities for the inferred parameters, with their mean values (� ), standard deviations (� ) and units. N and LN

stand for normal and log-normal distributions, respectively. Note that here, also for log-normal distributions,� and� refer to the mean value

and standard deviation of a parameter, not itslog. The mean and standard deviation for thelog, � LN and � LN , respectively, are given by

� LN = log( � 2=
p

� 2 + � 2) and� LN =
p

log(1 + � 2=� 2).

Parameter Prior distribution � � Units Description

K LN 284.4 57.6 s Retention time

Qgw LN 6 1 l=s Groundwater �ow

� z LN 4.5 0.45 l=s Runoff observation uncertainty

� � LN 0.65 0.3 - Rainfall observation uncertainty

� LN 0.1/60 0.05/60 l=(s � m2) Scaling factor of transformationr (� )


 LN 0.5 0.25 - Exponent of transformationr (� )

� r N 0.5 0.1 - Zero/nonzero rain threshold

S1 N truncated to interval[0;1 ) 0 5000 l Initial water volume

for the intermediate discretization points. Also relevant are the inverse transformations for the discretization points,

� sj P + k =
j P +1X

l = k

k � 1
l � 1

usj P + l +
j P � k + 1

j P
usj p +1 with s = 0 ; :::;nP � 1 and k = 2 ; :::; j P : (20)

The actionS(� ) (Eq. 16) can be formulated in the space ofu-coordinates (see Appendix B) as,

S(u ) =
k�

4(k � 1)dt

n PX

s=1

j PX

k=2

u2
(s� 1) j P + k +

�
4j P dt

n PX

s=1

(u(s� 1) j P +1 � usj P +1 )2265

+
u2

N

4
�

u2
1

4
+

dt
4�

n PX

s=1

2

4u2
sj P +1 +

j PX

k=2

 
j P +1X

l = k

k � 1
l � 1

u(s� 1) j P + l +
j P � k + 1

j P
u(s� 1) j P +1

! 23

5 ; (21)

while the initial condition� 2
1=2can be simply replaced byu2

1=2. The
::::
This

::::::::
coordinate

:::::::::::::
transformation,

:::::::::
analogous

::
to

:
a

::::::::::::
transformation

::
to

::::::::
canonical

::::::::::
coordinates,

::
is

:::
not

:
a
:::::
strict

::::::::::
requirement

::
of

:::
the

:::::
HMC

:::::::
method

:::
and

:::::::::::
undoubtedly

::::
adds

:
a
::::::
further

::::::
degree

::
of

::::::::::
complexity

::
to

:::
the

::::::
overall

:::::::
strategy.

::::::::
However,

::
it

:::
also

:::::
bears

::::::::::
remarkable

::::::::::::
computational

:::::::
bene�ts.

:::::::
Indeed,

:::
the �rst term on the right-hand side

of Eq. 21 describes the potential of a system of uncoupled harmonic oscillators, which can be effortlessly solved analytically.270

These dynamics also turn out to be much faster than all other characteristic timescales of the system. In Section 3 we will

describe in detail how this can be exploited.

3 The HMC algorithm

The HMC algorithm interprets the negative logarithm of the posterior density as a potential energy driving the dynamics

of a �ctitious statistical mechanics system whose con�gurations, namely, the system's degrees of freedom, are described by275

combinations of both parameters(� ; � � ; � z ) and realizations� of the stochastic process� (t). The degrees of freedom of the
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system are coupled to conjugate variables, that is, tomomenta� , paired with the parameters(� ; � � ; � z ), andp, paired with the

realizations� . The posterior density of Eq. 1 can be rewritten in the following discretized form,

f (� ; � ; � � ; � z j P obs;Qobs) /
Z

exp[�H HMC (� ; � ; � � ; � z ; � ;p)] d� dp ; (22)

with the HamiltonianHHMC de�ned as,280

HHMC (� ; � ; � � ; � z ; � ;p) = � log [f (� ; � ; � � ; � z j P obs;Qobs)] +
N pX

� =1

� 2
�

2m�
+

NX

i =1

p2
i

2mi
; (23)

whereNp is the number of parameters to be inferred (8 in our case) and we have introduced twokinetic
::::::::
auxiliary terms

on the right-hand side using the vectors of momenta� and p
:
,

::::
akin

::
to

:::
the

:::::::
kinetic

:::::::
energies

:::::::::
associated

::::
with

:::
the

:::::::
degrees

:::
of

:::::::
freedom

::
of

:::
the

::::::::
�ctitious

::::::::
statistical

:::::::::
mechanics

::::::
system. The massesm� andmi are tuning parameters of the algorithm. Since

we want the coordinates� i corresponding to actual observations to be more tightly constrained than those corresponding285

to the intermediate discretization points, we setmsj P +1 = M with s = 0 ; :::;nP , for the "heavy" measurement points, and

msj P + k = m with s = 0 ; :::;nP � 1 andk = 2 ; :::; j P , for the "lighter" intermediate discretization points, withM � m. The

potential energy, proportional to� log [f (� ; � ; � � ; � z j P obs;Qobs)], guarantees that each state of the system is compatible

with the observations, and constrained within their measurement uncertainties, as well as with the prior distributions for both

model parameters and rainfall potential realizations� .290

The HMC algorithm iterates the following steps. First, vectors of momenta� andp are drawn from the normal distributions

de�ned by the kinetic terms in Eq. 23. Then, the system is let to evolve for a �ctitious time intervald� in the(� ; � ; � � ; � z ; � ;p)

phase space according to Hamilton's equations.
:::
This

:::::::::::
Hamiltonian

::::::::
dynamics

::
is

:::::::::
controlled

:::
by

:::::
tuning

:::
the

::::::::
�ctitious

::::::
masses

:::
in

:::
Eq.

:::
23,

:::::
which

::::::::
represent

:::
the

:::::::::
variances

::
of

:::
the

::::::
normal

:::::::::::
distributions

:::
for

:::
the

::::::::::::
corresponding

:::::::::
momenta. Finally, the discretization

error on the energy conservation introduced with the integration of Hamilton's equations is corrected by a Metropolis accep-295

t/reject step. The resulting marginal distributions of the Markov chains of the system con�gurations(� ; � ; � � ; � z ) represent

a sample of the sought posterior density. The method is described in detail in Albert et al. (2016).
::::
Note

::::
that

:::
the

:::::::
presence

:::
of

:::::::::
pronounced

:::::
local

::::::
minima

::
in

::
a

::::::::::::::
high-dimensional

:::::
phase

:::::
space

:::::
might

::::::::
represent

::
an

:::::::::::::
insurmountable

:::::::
obstacle

::::
even

:::
for

:::::
more

::::::
re�ned

:::::::::::::
implementations

::
of

:::
the

:::::
HMC

:::::::
method,

::::
e.g.,

::::
with

:::::::::
automatic

:::::
tuning

::
of

:::
the

:::::::::
algorithm

::::::::::::::
hyper-parameters

::::
(see

::::::
Section

:::
4.1

:::
for

:::::
more

::::::
details).

:::
In

::::
that

::::
case

:::
one

::::::
would

:::::
have

::
to

:::::
resort

:::
to

::::::
further

::::::::::::
enhancements

::::
such

:::
as

::::::::::::
Metadynamics

::::::::::::::::::::::
(Laio and Gervasio, 2008)

:
.300

::::::::
However,

:::
this

::
is

:::
not

::
an

:::::
issue

::
in

:::
the

::::::
speci�c

::::::::::
application

::::::::
discussed

::::
here.

:

Using
:::
Eq.

::
1

:::
and the de�nitions of Sections 2.1, 2.2, 2.3, 2.4 and 2.5, we write the HMC Hamiltonian as,

HHMC = H N + H n + H 1 ; (24)

where the three components describe dynamics occurring on different timescales. Let us consider them individually. The �rst

component,305

H N =
n PX

s=1

j PX

k=2

"
p2

(s� 1) j P + k

2m
+

k�
4(k � 1)dt

u2
(s� 1) j P + k

#

; (25)
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contains the harmonic term for the intermediate discretization points from the action of Eq.21 and scales like the total number

of discretization pointsN . The second component,

H n =
n P +1X

s=1

p2
(s� 1) j P +1

2M
+

n PX

s=1

�
4j P dt

�
u(s� 1) j P +1 � usj P +1

� 2

+
n Q +1X

s=1

(H (Qobs;s ) � H (QM; (s� 1) j Q +1 (u ; � ))) 2

2� 2
z

+ ( nQ + 1) log( � z )310

+
X

i;P 6=0

" �
r � 1 (Pobs;i ) � u( i � 1) j P +1

� 2

2� 2
�

+ log J i

#

+ nP 6=0 log(� � ) �
X

i;P =0

log

"
1
2

 

1 + erf

 
� r � u( i � 1) j P +1

� �
p

2

!!#

; (26)

contains a harmonic term for the measurement points from Eq.21 and the observation error modelsf (Qobs j u ; � ; � z ) and

f (P obs j u ; � � ) from Sections 2.3 and 2.4, respectively. All the components of Eq. 26 scale like the number of observations

nP or nQ . Note that both the observation models for runoff and rainfall are rewritten in the space ofu-coordinates. While the

coordinate transformation� ! u is straightforward for the rainfall observation model, which depends only on measurement315

points, it is somewhat more cumbersome for the runoff observation model, which requires the� -dependent componentQ( � )
M;i

(see Eqs. 6 and 7) to be rewritten in theu-space asQ(u )
M;i . Such transformation is described in Appendix C. The third component

of the HamiltonianHHMC is,

H 1 =
N pX

� =1

� 2
�

2m�
+

u2
N

4
+

u2
1

4
+

dt
4�

n PX

s=1

2

4u2
sj P +1 +

j PX

k=2

 
j P +1X

l = k

k � 1
l � 1

u(s� 1) j P + l +
j P � k + 1

j P
u(s� 1) j P +1

! 23

5

+
X

� 2 � N

(� � � � )2

2� 2
�

+
X

� 2 � LN

"

log� +
(log � � � LN;� )2

2� 2
LN;�

#

; (27)320

which includes the remaining terms from the rainfall potential prior (Eq. 15) and the model parameter priors. The latter, i.e., the

last two terms in Eq. 27, are sums over the parameters� N = ( S1; � r ) and� LN =
�
K;Q gw; �; 
; � � ; � z

�
, whose prior densities

are normal and log-normal distributions, respectively. Note the sign change in front of the termu2
1=4 with respect to Eq. 21 due

to the initial condition foru1 (see Eq. 15). The componentH 1 does not grow unbounded with neitherN nornP or nQ (notice

thatdt / 1=N).325

Let us now exploit the different timescales characterizing the three components of the HamiltonianHHMC. We assume the

regimeH N � H n � H 1, implying that the number of data points is not too large and that the total number of discretization

points is instead large compared to the number of data points. Under these conditions the dynamics of the system occur

on very different time scales. In particular, the dynamics described byH N are much faster than the other components of

the Hamiltonian and therefore impose the most stringent limitations on the step size for the numerical integration of Hamilton330

equations. However, we use Trotter's formula (Tuckerman et al., 1992) to constructe
:
a reversible molecular dynamics integrator

to take the different time scales into account as described in Albert et al. (2016). In particular, we exploit the fact that the much

faster dynamics of the intermediate discretization points described byH N is analogous to a system of uncoupled harmonic

oscillators that can be solved analytically. This analytical solution gives a signi�cant boosting contribution to the intrinsic

12



ef�ciency of the HMC algorithm. The "slow" remaining components of the Hamiltonian,H n andH 1, can be integrated using a335

much larger integration step, which allows us to explore the high-dimensional parameter space of the system with remarkable

ef�ciency.
::
As

:::::::::
explained

::
in

::::::::::::::::
Albert et al. (2016),

::::
the

:::::::::
decoupling

:::
of

:::
the

:::::::
different

:::::::::
dynamics

:::
and

:::
the

:::::::::
analytical

:::::::
solution

:::
of

:::
the

::::::::
expensive

::::
fast

:::::::::
component

::
is

:::::::
always

:::::::
possible

:::
for

::::::::::::::
one-dimensional

:::::
SDE

:::::::
models.

::
It

::
is

::::
also

:::::::
possible

::
in

::::
the

::::
case

::
of

::::::::
multiple

::::::::::
independent

::::::::
variables,

::::::
where

:::
the

:::::::::
decoupling

:::::::::
procedure

:::
can

:::
be

:::::::
applied

::
to

::::
each

:::
of

::::
them

:::::::::::
individually.

::
In

::::
this

::::
way,

:::
our

::::::
HMC

:::::::
approach

::::::
covers

:
a
:::::::::
signi�cant

:::::
range

::
of

::::::::
possible

::::::::::
hydrological

:::::::::
modelling

::::::::
scenarios.

::::::::
However,

::
in

::::
this

::::
work

:::
we

:::::
focus

::::
only

:::
on

:::
1D340

::::::
models,

:::::::
leaving

:::
the

:::::::::
exploration

::
of

::::::::::::::::
higher-dimensional

:::::::
models

::
to

:::::
future

::::::
studies.

:

4 Case study

In this work we apply a HMC method with a stochastic input model (SIP) following Del Giudice et al. (2016) to investigate

the rainfall-runoff dynamics of an urban catchment based on real rainfall and runoff observations. The catchment is a small

and fast-reacting sewer network in Adliswil, near Zurich, Switzerland. Two typical scenarios of possible rainfall data are345

considered here, that is, we use: 1) high-resolution data, with a time resolution of 1 minute, recorded by two pluviometers

:::::::
(denoted

::::
P1a :::

and
::::
P1b )

:
located in the immediate vicinity of the catchment area, 2) low-resolution data, with a time resolution

of 10 minutes, recorded by a pluviometer
:::::::
(denoted

:::
P2)

:
located further away from the catchment, at a distance of about 6 Km.

We shall refer to the two scenarios as scenario 1 (Sc1) and scenario 2 (Sc2), respectively.
::::
More

::::::::::
information

::::
can

::
be

::::::
found

::
in

::::::::::::::::::::
Del Giudice et al. (2016).

:
350

The precipitation dataP obs used in this study containnP +1 = 241 observations in Sc1 andnP +1 = 25 observations in Sc2,

covering a total observation timeT = 240 minutes. The initial and �nal observation time points are the same for both scenarios

and include a storm event that took place in the evening of June 10, 2013, approximately between 18:00 and 20:00. We should

mention here a substantial difference with respect to Del Giudice et al. (2016). In their work, the authors base the inference

process on three independent time series covering a total observation time of 1710 minutes distributed over a time span of 48355

days. In the work presented here, instead, we consider only the �rst of the 3 time-series, which happens to be also the shortest.

This
::::::::
Although

:::
the

:::::
HMC

:::::::::
algorithm

:::::
could

::::
deal

::::
with

:::
the

::::::::
multiple

::::::::::
independent

::::::::::
time-series

::::
used

:::
by

::::::::::::::::::::
Del Giudice et al. (2016)

:
,

:::
our simpli�cation �nds its justi�cation in that it reducessigni�cantly the computational requirements of the problem, without

compromising the goal of our work, that is, showing the feasibility of Bayesian inference of both model parameters and high-

dimensional system states (i.e., the� 's) under the considerable hardship of a stochastic input process.360

The discharge �ow at the outlet of the catchment was measured with a time resolution of 4 minutes, and the output obser-

vationsQobs, containingnQ + 1 = 61 measurements, are the same for both scenarios and considered accurate compared to

the precipitation data. The initial and �nal observation times are the same as for the input time-series. The time-series for the

observed outputs (Qobs) as well as the observed precipitation (P obs) for both Sc1 and Sc2 are shown in Fig. 5.

Scenario 1 represents a best-case scenario of input data availability, and we shall therefore classify it as the accurate input365

scenario, while scenario 2 is a typical example of inaccurate and unreliable input data due to both its sparsity and the distance

of the rain-gauge
::
P2 from the area of interest. The

:::::
runoff

:
observationsQobs exhibit an important rainfall event (the storm)
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represented by an evident discharge peak. While this event is properly recorded by the rain-gauges of Sc1, the inaccurate input

data of Sc2
::::::::::
misleadingly

:
recorded the event at an earlier time period

:
,
::::::::::
presumably

:::::
when

:::
the

:::::
storm

::::::
passed

::::
over

::::
the

:::::::
location

::
of

:::
the

::::::
distant

::::::::::
pluviometer

:::
P2. We are particularly interested in the performance of the combined SIP-HMC method in the370

latter case,
:::::::::::
characterized

::
by

:::::
faulty

:::::::::::
precipitation

::::
data,

:
which clearly represents the most challenging scenario and therefore the

hardest test for the HMC method.Themodelis thuscalibratedusingtheinaccuraterainfall data
::::::::
Therefore,

:::
our

:::::
work

:::::::
consists

::
of

::::
three

:::::
main

:::::
steps.

:::::
First,

:::
we

:::
use

:::
the

:::::::::
combined

:::::::::
SIP-HMC

::::::::
approach

::::::::
described

::::::
above,

::::
with

:::
the

:::::::::
inaccurate

:::::::::::
precipitation

::::
data

::::
P obs:

of Sc2anda
:
,

::
to

:::::::
calibrate

:::
the

::::::
model

:::
and

:::::
infer

:::
the

::::::::
unknown

:
"true" average rainfall patternis inferredby the combined

SIP-HMC approach.The accurateinput measurementsfrom scenario1 arethenused
::::
over

:::
the

:::::::::
catchment.

:::::
Then,

:::
we

::::
use

:::
the375

:::::::
accurate

::::::
rainfall

:::::::::::
observations

::::
from

::::
Sc1 as a reference to assess the quality of the simulated "true" rain. Finally,

::
we

::::::
repeat the

calibration processis carriedoutalsofor
::::
using

:::
the

:::::::
accurate

::::
data

::
of

:
Sc1 as a further validation for the method.

4.1 Implementation

The HMC algorithm is implemented in C++14 using the open-source ADEPT library (Automatic Differentiation using Ex-

pression Templates, version 1.1) for the calculation of the gradients of the HamiltonianHHMC (Hogan, 2014). Automated380

differentiation allows us to automatize the algorithm to a large extent, thus making it applicable to a broad range of models

with relatively little implementation effort. Indeed, for the hydrological application presented here we resorted to the algorithm

already implemented for the much simpler toy model studied in Albert et al. (2016). The implementation of the algorithm re-

mained essentially unaltered, except only for the HamiltonianHHMC that had to be modi�ed according to Eqs. 25, 26 and 27.

The simulations were run on 2.6-3.7 GHz processors Xeon-Gold 6142 with 196 GB of memory. We observed a relatively short385

burn-in phase for all inferred parameters, suggesting the possibility of a straightforward (embarrassingly simple) parallelization

of the algorithm obtained by simply breaking up the Markov chains into smaller independent chains that can then be executed

as parallel processes. It is well-known that Markov Chain Monte Carlo (MCMC) methods, like the HMC algorithm employed

here, are indeed very well suited for parallel computing. This kind of approach was proven successfully in Albert et al. (2016)

with a toy system. In that case we used an OpenMP-based parallel implementation of the algorithm and observed a reasonably390

linear strong scaling behaviour with up to 16 parallel processes. In the present work, for Sc2, after an initial single burn-in

chain of 75k steps, which is then disregarded, we limited ourselves to running 4 independent Markov chains each of length

100k steps based on a serial implementation of the algorithm. For Sc1, which is faster than Sc2 due to the much smaller number

of intermediate discretization points (see below for more details), we considered a single chain of 750k steps and disregarded

the �rst 150k steps. The extension of the current serial version to an OpenMP parallel implementation of the HMC code would395

be straightforward.

We set a �ne-grid time stepdt = 10 seconds and a total number of discretization pointsN = 1441 for both scenarios. It

is easy to verify that these conditions are ful�lled by setting the number of bins between consecutive observations toj P = 6

or j P = 60 on the precipitation dimension for Sc1 and Sc2, respectively, andj Q = 24 for the runoff dimension. The initial

con�guration of the system state� for the burn-in chain is a random realization of the OU process of Eq. 2, while the parameters400

are set equal to the mean values of their prior distributions (see Table 2).
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The algorithm requires tuning of two sets of parameters, that is, the parameters de�ning the Hamiltonian propagator in the

molecular dynamics part of the HMC algorithm (see Eq. 26 in Albert et al. (2016)), and the massesm, M andm� de�ning

the kinetic energy of the system inHHMC. Thus, in the Hamiltonian propagator we set the integration time� � = 0 :015and

the number of integration stepsP = 3 , while the masses were set tom = 0 :4 for the intermediate discretization points and405

M = 1 :6 for the measurement points. The masses for the inferred parameters are given in Table 3. It should be noted that the

integration time interval of the Hamiltonian propagator could be automatically optimized by employing the so-called No-U-

Turn Sampler (NUTS) (Hoffman and Gelman, 2014) and the masses of the kinetic terms could be tuned by adapting their

values to the curvature of the energy landscape (Girolami and Calderhead, 2011; Hartmann et al., 2022). The ef�ciency of the

HMC algorithm would surely bene�t from these approaches, but at some cost in terms of implementation efforts. In this work410

we simply opt for a manual tuning of the hyper-parameters mentioned above.

In Sc2, a full Markov chain of 100k steps requires approximately 1 hour and 20 minutes on our hardware, while a chain

of 750k in Sc1 requires about 2.5 hours. At each iteration of the chain the algorithm infers1449parameters, that is, 8 model

parameters(� ; � � ; � z ) plusN = 1441 coordinates of the system state� . The algorithm spends� 96%of the total run time in

the molecular dynamics part, that is, in the loop for the integration of Hamilton's equations. The loop is called once in each415

step of the Markov chain. At each call, the HMC algorithm performs one evaluation of the posterior functionHHMC, for the

calculation of the system energy, and 6 evaluations of its derivatives. In our case study and implementation of the algorithm,

the differentiation of the posterior function turns out to be about 6 times more expensive than its plain evaluation. Although

this factor is only indicative and may vary to some extent between different implementations, the calculation of the derivatives

represents in general the major bottleneck in the performance of the HMC algorithm.420

Table 3.Parameter massesm � for the kinetic term of Eq. 27.

Parameter K Qgw � z � � � 
 � r S1

Mass 10� 5 1:0 1:0 1:0 2 � 105 0:5 15:0 10� 7

4.2 Results

The Markov chains for the model parameters generated using the unreliable input data of Sc2 are shown in Fig. 1. A simple

visual inspection leads us to conclude with a good con�dence that the chains have appropriately converged and the mixing

in parameters space is satisfactory. Figure 2 shows the Markov chains for the same model parameters, generated using the

accurate rainfall observations of Sc1. The corresponding marginal posterior probability densities for the model parameters, for425

both Sc2 and Sc1, are shown in Fig. 3 together with the initial prior distributions. The two scenarios bear some interesting albeit

not surprising differences. In general, the posterior distributions generated in Sc1 tend to be narrower than the corresponding

distributions in Sc2, clearly re�ecting the accuracy of the precipitation data. The rainfall observational error� � appears to be

also strongly shifted to lower values in Sc1, indicative of the reduced uncertainty compared to the faulty Sc2. On the other

hand, the practically identical posterior densities for the runoff observational error� z re�ect the fact that the discharge data430
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Qobs are the same for both scenarios. Moreover, Figure 3 shows that among the rain-related parameters of the transformation

of Eq. 3, the marginal posterior for the exponent
 exhibits the largest shift towards smaller values when going from Sc2 to Sc1,

while the zero/nonzero rain threshold� r is only mildly shifted to larger values and the scaling factor� seems to be essentially

unaltered, besides the narrowing effect due to the improved accuracy of the precipitation data.
:::
The

::::::::
algorithm

::::::::::::
automatically

::::
tunes

:::
the

::::::::::
parameters

::
of

::::
the

::::::
rainfall

::::::::
potential

::::::::::::
transformation

:::
to

:::::
match

::::
the

:::::::
available

:::::::
rainfall

:::::
data.

:::
The

:::::::
smaller

:::::
value

:::
of

:::
the435

:::::::
exponent

::



::
in

::::
Sc1

::::::::
compared

:::
to

:::
Sc2

:::::::
re�ects

::::::
exactly

:::
this

:::::::
attempt

::
of

:::
the

:::::::::
algorithm

::
to

::::
�nd

:
a

:::::
better

:::
�t

::
to

:::
the

::::
rain

:::::::::::
observations,

::::::::
especially

:::::
where

:::::::::::
precipitation

::::::
values

:::
are

:::::
large. Among the parameters of the hydrological model, the marginal distribution of

the retention timeK appears to be clearly shifted to smaller values in Sc1, suggesting a faster reacting system compared to

Sc2, while the groundwater contributionsQgw and the initial water volumeS1 exhibit only very minor shifts.

In Fig. 4 we also show two typical Markov chains from Sc2 for the stochastic process� , evaluated at two time-points440

with and without rain. The two chains clearly �uctuate above (point with rain) and below (point without rain) the inferred

zero/nonzero rain threshold� r . Analogously to the model parameters, the Markov chains for� appear to have converged and

to be well mixed. The� chains in Sc1 are qualitatively identical to those of Sc2 and are not shown here.

SameasFig. ??, with predictionsof bothdischargesandrainfall from theaccuratescenarioSc1.

In
:::
the

:::
left

::::::
panels

::
of

:
Fig. ??

:
5
:

we compare the inferred discharge and rainfall patterns,QM (� ; � ) andr (� ), respectively,445

based on the inaccurate rainfall data of Sc2, with the observed runoffQobs and precipitationP obsfrom bothSc1andSc2. The

measured out�ow (upper panel, open red squares) clearly exhibits discharge peaks that are coupled to corresponding peaks

in the observed rainfall in Sc1 (lower panel, open purple squares) but not in Sc2 (lower panel, �lled blue squares). These

"missing" peaks are indications that some rainfall events were either not detected, or recorded at a different time point, by the

rain-gauge
::::
(P2) that produced those data. This is of course in line with the inaccuracy of Sc2. The observed output peaks are450

used by the HMC algorithm as an additional source of information about the rain falling over the catchment area during the

observation time. This new information, together with the stochastic input model, is used to attempt a reconstruction of a true

rainfall pattern. The simulated rainfall and out�ow patterns are represented by the medians of their inferred distributions (black

line) and an uncertainty given by the 2.5%-97.5% quantiles (gray area). The rainfall pattern reconstructed using the inaccurate

data of Sc2 (Fig.??, lower
:::::
lower

:::
left

:
panel) clearly displays the peaks corresponding to the rainfall events that had been missed455

by the pluviometer
::
P2

:
located away from the catchment (�lled blue squaresin Fig. ??). Such predicted peaks reproduce very

accurately in both time and duration the rainfall events detected in Sc1 by the rain-gauges
:::
P1a::::

and
::::
P1b in the proximity of

the area of interest (open purple squaresin Fig. ??). Figure?? compares
:::
The

:::::
right

::::::
panels

::
of

::::::
Figure

::
5

:::::::
compare

:
runoff and

precipitation observations with the inferred discharge and rainfall patterns in the accurate framework of Sc1. Although the

simulated rain in Sc1 features somewhat less intense peaks than in Sc2, the remarkable fact that emerges from the comparison460

of Figures??(
:::
the

:::
left

:::
and

::::
right

::::::
panels

::
of

::::::
Figure

:
5

::::::::
(referring

::
to

:
Sc2) and??(

:::
and Sc1

:
,

::::::::::
respectively) is that the rainfall patterns

predicted in the two scenarios are qualitatively very similar, despite the signi�cant difference in the accuracy of the data used

for the inference.

::::::::
Although

::
not

::::::
shown

::::
here,

:::
we

::::
have

::::
also

:::
run

:::
the

:::::
HMC

:::::::
inference

:::::::
without

::::::
rainfall

::::
data

::
at

::
all,

::::
i.e.,

:::::::
omitting

:::
the

::::
term

:::::::::::::
f (P obs j � ; � � )

::
in

::
the

::::::::
posterior

::::::
density,

::::::::
obtaining

::::
both

::::::
model

::::::::
parameter

::::::::
marginals

::::
and

:
a

::::::::
predicted

::::::
rainfall

::::::
pattern

:::
that

:::
are

::::::::::
substantially

::::::::
identical465
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Figure 1. Markov chains for the model parameters generated using the faulty input data of Sc2. As explained in Section 4.1, we have 4

independent chains for each parameter.

::
to

::::
those

::::::::
obtained

::::
with

:::
the

:::::::::
inaccurate

::::
data

:::
of

::::
Sc2.

:::::::::
Essentially,

:::
in

:::
Sc2

:::
the

::::::
HMC

::::::::
algorithm

:::::::
“learns”

::::
that

:::
the

::::::::
observed

::::
rain

::
is

::::::::
unreliable

:::
and

::::::
should

::::
thus

::
be

:::::::
ignored.

::::::::
However,

::
in

:::::
most

::::::::::
applications

:::
the

:::::::
accuracy

::::
and

::::::::
reliability

::
of

:::
the

::::::::
measured

:::::::::::
precipitation

:::
data

::
is

::::::::
unknown

:
a
::::::
priori.

::
In

::::
those

:::::
cases

:::
the

::::::
rainfall

:::::::::::
observations

:::
can

::
be

:::::
safely

::::
used

::
in

:::
the

::::::::
inference

:::::::
process,

:::::
since

:::
the

::::::::
algorithm

::::
itself

::::
will

:::::
assess

::
its

::::::::
accuracy

:::
and

::::::::
possibly

:::::::
disregard

::
it

::
in

:::::
favor

::
of

:
a
:::::
more

::::::
reliable

::::::::::::
reconstructed

::::::
rainfall.

:
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