
In the following, we present our responses to the referees.  

Referees’ comments are in blue. 

 

Referee #1 

 
General comments 

The paper presents a Bayesian framework for forward and inverse problems in stochastic rain models 

based on time series observations of rainfall-runoff. The focus of the paper is on HMC as a scalable 

inference method. The paper provides a detailed study of the hydrological problem, giving a detailed 

description of the model, the parameters, and the priors.  The discussion of the results is convincing. 

We are grateful for the positive comments and the very interesting remarks and questions, which give 

us the opportunity to clarify some important points. We answer the specific comments one by one 

below. 

Specific comments 

1. It would be good to explicitly list the contributions, making it easier for the reader to see the 

high-level differences between this paper and Albert et al. (2016).  

In Albert et al. (2016) we described a novel implementation of an HMC algorithm combined 

with a multiple time-scale integration for Bayesian parameter inference with nonlinear 

stochastic differential equation models, and we demonstrated the performance of the method 

using a simple rainfall-runoff toy model and synthetic data time-series. For purely didactic 

purposes, the rain input to the system was modeled using a smooth sinusoidal function. 

In the present work instead, we apply the HMC method with the time-scale separation approach 

from Albert et al. (2016) for the first time to a real-world case study in urban hydrology, using 

real time-series of observed rainfall and outflows. Moreover, in this work we carry out the 

inference process using intentionally inaccurate rainfall observations and demonstrate the 

ability of the algorithm to reconstruct with great accuracy the unknown true average rainfall 

over the catchment. The reconstructed precipitation is then used to infer the hydrological model 

parameters, which are thus protected from the corrupting effect of the uncertainty on the rainfall 

observations. 

We have expanded section 5 (“Conclusions”) to clarify the points above.  

2. I wanted to clarify some of the results. Looking at Fig. 5-6 for predictions, it seems that the 

discharge data alone is mostly enough to provide good predictions for the rainfall. Is that 

generally true? How good would be the estimates of the parameters, and the predicted rainfall 

if you had no rain observation data? Would it be better or worse than the low-quality data of 

Sc2? 

This is indeed a very interesting point. We have run the HMC inference without rainfall data, 

obtaining both model parameter marginals and a predicted rainfall pattern that are substantially 

identical to those obtained with the inaccurate data of Sc2. Therefore, in Sc2 the HMC 

algorithm “learns” that the observed rain should be essentially ignored, thus producing results 

which are practically the same as if the inference was run without any rain data at all. However, 

in most applications the accuracy and reliability of the measured precipitation data is unknown 



a priori. We show here that in those cases the rainfall observations can be safely used in the 

inference process, since the algorithm itself will assess its accuracy and possibly disregard it in 

favor of a more reliable reconstructed rainfall.  

We believe that this result is interesting and worth a remark. Therefore, we have added it at the 

end of section 4.2 (“Results”). 

3. In Fig 3, you show that with a more accurate dataset (Sc1) the estimates of the parameters are 

more sharply peaked (less uncertain), which makes sense. There seems to be a mismatch for 

some of these parameters, e.g. lambda and gamma. I guess the problem of inferring gamma 

and lambda jointly is ill-posed as they both define the transformation. If so, that could be an 

interesting point to discuss. 

This is also an interesting point. The inferred posterior distribution does not show any 

correlations between the parameters, e.g., lambda and gamma. Therefore, the problem of 

inferring them does not seem to be ill-posed. 

Instead, in Sc1 the HMC algorithm tunes the parameters of the rainfall potential transformation 

to match the (accurate) rainfall data. This is evident for the large precipitation peak near time = 

60 min, as clearly visible in the lower halves of figures 5 and 6. The smaller value of the inferred 

parameter gamma in Sc1 reflects exactly this attempt of the algorithm to find a better fit to the 

rain observations, especially where precipitation values are large. The smaller observational 

error for the precipitation in Sc1 is also an obvious consequence of a better match of predictions 

and data. All other parameter marginals exhibit much smaller discrepancies between Sc1 and 

Sc2.  

This point is now clearly addressed in the revised version of the manuscript (section 4.2, 

“Results”). 

4. I'm also generally curious what is the end goal of this study,  for example, can these results be 

used to aid policy making? Are quantities like groundwater flow, or retention time important 

to know for planning purposes? Would there ever be a need to run a system like this in real-

time?  

This work is intended to be a purely methodological study. Its main goal is to demonstrate that 

the HMC algorithm combined with a multiple time-scale integration presented in Albert et al. 

(2016) can be successfully applied to solve real-world hydrological inference problems with 

computationally expensive stochastic models. This method is especially very well-suited for 

cases, far from rare in hydrology, where the precipitation data is inaccurate and unreliable. 

It reduces considerably the bias in the inferred parameters by shielding them from the 

deteriorating effect of the rainfall data inaccuracy, thus leading to more reliable runoff 

predictions. The knowledge of all model parameters, including the groundwater flow and the 

retention time, is essential for making robust probabilistic predictions, which can certainly be 

useful in planning and policy making. This method is definitely a powerful and versatile tool 

for Bayesian inference with expensive stochastic models, whereas it might not be the optimal 

solution for real-time control of hydrological systems, where faster algorithms might be 



preferable. This topic, however, is not discussed in detail here since it goes beyond the scope 

of this study. We have added a short remark in section 1, “Introduction”.  

Technical comments 

1. Some references need fixing, e.g. Line 510, some papers are missing titles. 

2. Line 290: construct e reversible ->  construct a reversible 

We thank the reviewer for pointing out these two technical issues, which have been fixed in the revised 

manuscript. 

 

  



Referee #2 

 
General comments  

This manuscript presents a Bayesian framework for forward and inverse problems and presents the 

Hamiltonian Monte Carlo (HMC) as a scalable inference method for calibration of models to noisy time 

series. The paper details an application of this framework in stochastic rain models based on time series 

observations of rainfall-runoff. The paper provides a case study of a single storm event over a 

single catchment, and although the paper is technically well written, it currently reads more like a 

technical note rather than a research article. Overall, the implications of the study were unclear – floods 

are mentioned briefly but discussion of whether this approach holds up when considering 1. different 

hydrological modelling approaches, 2. climate variability and non-stationarity, 3. different catchment 

types and antecedent conditions, and 4. flash floods, could further strengthen the argument for using 

this novel approach.  

This paper is more akin to a technical report and is therefore not entirely suited for HESS audiences as 

a research article in its current form. However, the approach detailed in the paper and its suitability to 

model real world hydrological impacts are of interest to HESS audiences. Thus, the manuscript could 

be strengthened with some moderate revisions and reframing; to demonstrate the superiority of this 

methodology and approach, where the application of such an approach is most beneficial, and, what the 

implications of using this approach are in terms of hydrological services to aid decision makers. The 

inclusion of the above would go most of the way to addressing “relevant scientific questions within the 

scope of HESS” as well as providing more tangible implications for the reader.   

Unfortunately, as a reviewer I only have an option to choose between minor and major revisions so I 

chose major to reflect the fact that the effort required to address my comments would be greater than 

that of addressing minor comments. However, I suspect that the effort needed to revise this manuscript 

would fall somewhere in between – i.e. moderate revisions. I sincerely hope these comments and the 

more specific ones below are helpful to the authors. 

We are grateful to Referee #2 for the helpful remarks and questions. We agree that some aspects of our 

work needed to be clarified and therefore we have added further comments and explanations in the 

revised manuscript.  

Here, before we set off to answer the specific comments, we would like to make some general remarks. 

This work is indeed intended to be a methodological article with emphasis on a powerful and versatile 

inference method for stochastic models rather than on specific hydrological problems and models. 

Nevertheless, we believe that this study is of great interest for the hydrological community and therefore 

for the HESS audiences. Stochastic models in hydrology are very useful and widespread tools for 

making reliable probabilistic predictions. However, such models can be used for making predictions 

only if model parameters are first of all calibrated to measured data in a consistent framework such as 

the  Bayesian one. Unfortunately, Bayesian parameter calibration, a.k.a. inference, with stochastic 

models, turns out to be an often computationally intractable problem. Therefore, the computational 

obstacle is often overcome by employing over-simplified error models, which lead to biased parameter 

estimates and unreliable predictions. Our goal in this work is to present a HMC algorithm that makes 

Bayesian parameter inference with stochastic models possible, from which hydrology can potentially 

take great advantages: a sound calibration of model parameters is essential for making robust 

probabilistic predictions, which can certainly be useful in planning and policy making. Discussing 



specific hydrological models or systems is outside the scope of our present work, and will be the focus 

of further studies.  

Specific comments  

1. I was not sure what the benefits of this approach are versus other methods. For example, why 

is this approach is beneficial over other hydrological modelling approaches, such as 

hydraulic or other physics-based approaches (e.g. flow routing) or conceptual models (e.g. pipe 

flow simulations) in terms of computational efficiency and accuracy. For example, could you 

run this simulation in real time for now casting? 

This is a very interesting question that gives us the opportunity to clarify an important point. In 

this work we do not propose a new hydrological modeling approach, but rather a method for 

the calibration (i.e., inference) of the model parameters of computationally expensive stochastic 

models. Stochastic models are becoming very popular in hydrology as they allow a more 

realistic description of real systems by incorporating the noise directly into the model. In 

particular, input errors associated with an inaccurate knowledge of the rainfall, which often 

represent a major source of uncertainty in hydrological modeling, can be integrated in the model 

in the form of a stochastic input process. Moreover, Bayesian inference methods bear the great 

advantage over traditional optimization algorithms of providing an uncertainty estimation for 

the calibrated parameters in the form of a probability distribution. The knowledge of such 

uncertainty is of paramount importance for making probabilistic predictions, which can be in 

turn a very important aid to decision makers. The HMC method presented in this work is a fast, 

efficient, parallelizable and scalable algorithm that makes Bayesian inference with stochastic 

models feasible in spite of its computational hardships. However, it might not be the best option 

for real-time control of hydrological systems, where faster algorithms should be preferable. 

This latter point is not discussed in detail since it goes beyond the scope of this study.  

We have added a comment in section 1, “Introduction”. 

2. What catchment conditions is this method suitable for? I assume modelling storm water is 

the reason for choosing an urban catchment for a case study, but perhaps the paper could be 

strengthened by stating that explicitly and focusing on the difficulty of modeling storm water 

runoff accurately.   

The case study presented here was chosen to put emphasis on input uncertainties, which often 

lead to biased parameters, badly calibrated models and unreliable predictions. Precipitation is 

often the biggest source of uncertainty in hydrological modeling in general, not just in urban 

catchments. Therefore, the HMC method is by no means limited to urban hydrology, and could 

certainly be applied in natural catchment hydrology as well. The latter, however, goes beyond 

the scope of this work, since our focus is on parameter inference with a stochastic input process. 

More information on possible hydrological applications can be found in Del Giudice et al., 

Water Resour. Res., 52, 2016.  

This is discussed more clearly in section 1, “Introduction”, of the revised text. 



3. What applications is this methodology suited for? Floods are briefly mentioned and storm water 

is the focus, but does this methodology enhance the modelled accuracy of any other flood 

impacts such as inundation? 

The HMC algorithm presented in this paper is a powerful method for high-dimensional 

inference problems, where not only a few model parameters are calibrated, but the full rainfall 

pattern is also reconstructed with great accuracy. However, the HMC algorithm in the form 

described in the paper is limited to non-spatially resolved models depending only on a time 

variable. In principle, the method could cope with further spatial dimensions (e.g., inundations), 

but this would require a non-trivial adaptation of the algorithm, which is not discussed here. In 

other words, our goal is to show that high-dimensional Bayesian inference with stochastic 

hydrological models is possible in spite of its computational difficulty. However, how far one 

can go in terms of additional dimensions remains an open question, which will be the subject 

of further studies.  

We have clarified this point in section 5 of the revised manuscript (“Conclusions”). 

4. The methods section takes up the bulk of the paper, even allowing for the fact that the focus is 

on the novelty of the method. Could some of the details be put into supplementary information? 

It is unclear as to how novel the methodology or framework proposed is given that a prior 

paper on the HMC has been published. Could the authors please highlight what is “new”? 

The method is the main focus of this work, which is the reason why it takes up most of the 

paper. We believe that the details presented in the text are important for the reader to grasp the 

subtleties that make HMC a powerful and efficient inference method for stochastic models. It 

is important to underline that the HMC method itself was first proposed in the 1980s and it is 

thus not new at all. In the present work, we apply an HMC method with a novel time-scale 

separation approach (from Albert et al., 2016) for the first time to a real-world hydrological 

case study, using real time-series of observed rainfall and outflows. Moreover, we also 

demonstrate for the first time the ability of the algorithm to reconstruct with great accuracy the 

unknown true average rainfall over the catchment using only prior knowledge and the observed 

outflow. The reconstructed precipitation is then used to calibrate the hydrological model 

parameters, which are thus protected against the degrading effect of the possible rainfall data 

inaccuracy. This considerably reduces the bias in the inferred parameters, thus leading to more 

realistic models and reliable runoff predictions.  

We have modified section 5 (“Conclusions”) to address more clearly the novelty of this work.  

5. The case study description is a bit light on in detail. I could not discern the reasons why the 

single storm event and catchment were chosen from the case study description. A reader is 

likely to be skeptical as to the broad applicability of any method when only one catchment and 

event are modelled, can the case study be expanded to include multiple events and/or multiple 

catchments? In addition, the reasons for the two ScX datasets could be made clearer to the 

reader in the case study description. Also is there a third case that could be explored? No Sc1 

or Sc2 data? 



One can find more details on the case study and a more comprehensive analysis based on 

multiple independent time-series in Del Giudice et al., Water Resour. Res., 52, 2016. Here, the 

goal is to introduce the HMC method and demonstrate its performance with the computationally 

hard task of inferring simultaneously both the model parameters and the true average rainfall 

over the catchment using real-world observations. The single event considered in the paper 

represents a worst-case scenario due to the large inaccuracy of the rainfall data, and therefore a 

more challenging and probative test ground for the inference method. Since the focus of this 

paper is purely on the methodology and not the exploration of different hydrological models 

and systems, we are planning to consider other possible applications in future studies. 

We have expanded section 4 (“Case study”) to address the above points. 

6. Figure 3 could be further or more thoroughly explained in terms of the whys – e.g. why does 

gamma show the largest shift? Is it due to, for example, the event characteristics or catchment 

characteristics or both?  

This is another very good point. Essentially, the algorithm tunes the model parameters to match 

the different rainfall data of Sc1 and Sc2. So, for instance, the smaller value of the inferred 

parameter gamma in Sc1 reflects exactly this attempt of the algorithm to find a better fit to the 

rain observations, especially at time points where precipitation values are large, such as the 

precipitation peak near time = 60 min clearly visible in the lower halves of figures 5 and 6.  

We have expanded our discussion of Figure 3 to clarify this important aspect (section 4.2, 

“Results”). 

7. The comparison between poor quality and good quality rainfall is a bit confusing (Figures 5-6) 

but looks like an interesting result? It appears that the discharge data alone is enough to provide 

good predictions for the rainfall. What is the purpose of using Sc2 then – can the authors please 

explain this in detail? Also, it would be good to know whether this is the case across the board 

(i.e. more than one event in one catchment). 

This is indeed a fundamental point of our work. We have run the HMC inference without 

rainfall data, obtaining both model parameter marginals and a predicted rainfall pattern that are 

substantially identical to those obtained with the inaccurate data of Sc2. Therefore, in Sc2 the 

HMC algorithm “learns” that the observed rain should be essentially ignored, thus producing 

results which are practically the same as if the inference was run without any rain data at all. 

However, in most applications the accuracy and reliability of the measured precipitation data 

is unknown a priori. We show here that in those cases the rainfall observations can be safely 

used in the inference process, since the algorithm itself will assess its accuracy and possibly 

disregard it in favor of a more reliable reconstructed rainfall. This is a very important result, 

which is explicitly discussed in the revised manuscript at the end of section 4.2, “Results”. 

8. Results overall: A discussion of the limitations and applicability/suitability of the method along 

with the implications of its use would strengthen the paper. The figure discussions could be 

improved by relating the results to the characteristics of the event and catchment. Could the 



authors please detail a real-world application using this approach (e.g. nowcasting of storm 

water runoff during an event)? 

As already mentioned above, we believe that the HMC method presented here is in general not 

optimal for real-time control applications. Instead, the HMC algorithm is an inference method 

for the data-driven calibration of hydrological model parameters, especially very well-suited 

for 1) computationally expensive stochastic models, and 2) cases, far from rare in hydrology, 

where the precipitation data is inaccurate and unreliable. It considerably reduces the bias in the 

inferred parameters by shielding them from the deteriorating effect of the rain inaccuracy, thus 

leading to more reliable runoff predictions based on rainfall predictions. The section 

“Conclusions” of the revised text has been expanded to better clarify these points. 

9. In considering the citations and reference list, it appears to me that the authors have considered 

all the major technical HMC and related publications (although I am far from a leading expert 

in the field of HMC), however I note here, that in addressing the above and general comments, 

more citations for the background and contextual information will need to be included.  

We have updated our references in the introduction. More references to the hydrological 

literature can also be found in Del Giudice et al., Water Resour. Res., 52, 2016.   

 

Technical comments  

Given that the paper could be improved and strengthened by reframing and providing more context for 

the reader, and thus would need moderate revisions, I have not gone through the manuscript with a fine-

tooth comb, however I have picked a couple of things up:  

References: Some references need fixing, for example, some papers are missing titles.  

Edits: Line 290: construct e reversible should be “construct a reversible”  

 

Finally, we thank the reviewer for pointing out a couple of technical issues, which have been fixed.  

  



Referee #3 
 

General comments  

The paper deals with the calibration of a hydrological process model subject to stochastic input. The 

calibration is performed using Bayesian inference with two different data sets that use the same runoff 

time series. However, the first data set relies on high-resolution rainfall data, while the rainfall data in 

the second case are marred by low correlation with the output and lower temporal resolution. To 

successfully accomplish calibration, the authors describe and use a method a called Hamiltonian Monte 

Carlo, which uses the posterior density as the potential energy of a dynamic system that is integrated in 

auxiliary time. Although the hydrological model is fairly simple, the paper is interesting to the broader 

community as it uses a very powerful (but fairly unknown) inference approach to solve a difficult task 

of widespread interest. Additionally, the paper is very well-written. I recommend publication after the 

major concerns described below are addressed.  

We thank Referee #3 for the interesting comments, and we are glad to address the specific issues one 

by one below. 

Specific issues 

1. Throughout the manuscript the authors state that the approach is very general and easy to port to 

different use cases. For example, from the Introduction:  

“In Albert et al. (2016), we claimed that the HMC algorithm, combined with the multiple time-scale 

integration, would be applicable to a wide range of inference problems […]. We show that with only a 

little analytical effort the HMC method can be extended from the toy model and the smooth synthetic 

data used in Albert et al. (2016) to a real-world hydrological case study with real noisy rainfall and 

runoff time series. […]. Indeed, the HMC method is by no means limited to an OU process, unlike the 

original SIP approach of Del Giudice et al. (2016) […]. Although in this study we also opt for an OU 

process for the sake of simplicity, it should be clear that such process could be arbitrarily replaced by 

any other stochastic process […].”  

By reading the paper, I am not convinced that the method is as simple, easy to generalize, apply, and 

scale as claimed. It worries me that the "little analytical effort" for a relatively simple case-study like 

this one amounts to about 20 equations in the main text plus three appendices, and still falls short, as 

there is not an explicit working-out of eq. (6) from (5). Hence, my questions:  

• Is it always granted that the “analytical steps" are doable? 

• Given that in Appendix A the definition of the Langevin dynamics is explicitly used for the 

derivation, what would happen with a stochastic process more complex than Langevin?  

Given the above, here are my suggested minimal actions required for publication:      

• Please, substitute "little analytical effort", with "substantial analytical effort" or similar 

wording.      

• In the Introduction, please, make it clear that the requirement to integrate the Hamiltonian 

dynamics implies the need for a full analytical specification of the model. This includes being 

explicit about the form of ƒ(ξ), which might be difficult for more complex cases. Please, be 

also explicit that this is a characteristic (a drawback really) of HMC, as with more traditional 



sampling techniques one would just sample from ƒ(ξ), without the need for calculating the 

relevant action. Please, be also upfront about the physical meaning of the action, which is a 

bit obscure, and whether there are any limitations attached. 

• Please, add a Discussion section (or embed it in the Conclusion) to discuss the analytical 

requirements, efforts, and foreseeable limitations for different use cases.  

Several very interesting points are raised here, which certainly need clarification in the next revision 

of the manuscript. It is definitely true that the integration of the Hamiltonian dynamics requires both 

a full analytical specification of the model and an explicit form for f(ξ). It is also true, however, that 

the HMC method presented here is applicable to generic stochastic models. Indeed, writing an 

explicit form for f(ξ) is not actually difficult and always doable, even for more complex cases. 

Consider for instance a SDE model in the generic form (upon discretization):  

ξi+1 = F(ξi) + G(ξi) ηi  

with noise η. The analytical steps to obtain f(ξ) essentially consist in writing the density for a full 

model realization as the product of the probabilities of the individual ηi, that is, 

f(η1, η2, ...) = ∏i f(ηi) 

then change coordinates from to the state variable of interest, in this case ξ, using the model above, 

i.e.,  

ηi = (ξi+1 - F(ξi))/G(ξi),  

without forgetting the Jacobian dξ/dη. In the specific case presented in this work, although we use 

a linear SDE model for the rainfall potential , we actually never exploit its linearity. The derivation 

of the density f(ξ) is thus by no means limited to linear SDE models.    

It should be noted, however, that while f(ξ) does not represent a major issue, the actual limitation 

of the HMC method lies rather in the hydrological ODE model, which we discretize using an 

explicit forward scheme, which imposes strict limitations on the time step to guarantee numerical 

stability. As explained in the text, in regions where the solution shows a rapidly varying behavior, 

an implicit method would be numerically more stable, although more difficult to implement. 

Moreover, in the case of more complex models, when an explicit discretized version is not readily 

available, one might need to resort to appropriate numerical ODE solvers, often employing 

advanced implicit schemes, which may make automated differentiation problematic.  

We agree that we should discuss such limitations more clearly in the next revision of the paper.  

Moreover, we will also be more upfront about the physical meaning of the action and state explicitly 

that it is simply the negative log of the probability density f(ξ). This is a particularly interesting 

point. Indeed, in this regard, traditional sampling techniques require the same analytical effort as 

the HMC method since they need to know the probability density f(ξ), which is essentially the same 

as the action. Instead, we would like to point out more clearly that the main characteristic (or 

drawback) of the HMC method as described in this work, compared to other sampling techniques, 

is that it requires an explicit discretized version of the hydrological ODE model. Such analytical 

expressions might not be always easily available. 

In the revised text, we have replaced expressions like “little analytical effort”, “easily scalable”, 

“effortless” with more appropriate expressions. Moreover, we have expanded section 2.5 (“The 

priors”), Appendix A and section 5 (“Conclusions”) to address all the points above.                        



 

As somewhat minor issues, but still quite important, I would like to point out what follows.  

2. Given the description of the time discretization, that is: "For this purpose, we subdivide each interval 

between consecutive rain observations into Jp bins […]. The number of discretization points is thus the 

same (N) in both rainfall and runoff dimensions, and it defines the discretization time step dt=T/(N−1), 

where T is the total time interval covered by observations"      

• If the observations were irregularly spaced in time, would different observation windows have 

finer/coarser time discretization as Jp is constant? What would this imply?  

• Is it required to have the same discretization points for rainfall and runoff?       

I suggest not to miss the opportunity to shed light on the above questions explicitly.  

These are certainly interesting as well as important implementation details, which we are very glad to 

clarify. The only requirement of the method is that the total number N of discretization points is large 

enough compared to the number of measurement points in order to accurately probe the fine dynamics 

occurring on short time scales between observations. Other features described in this paper, such as for 

instance having the same number of discretization points for rainfall and runoff, are just arbitrary 

choices to ease the practical implementation of the method, which could be removed without altering 

the results and conclusions of our work. The same holds if the observations were irregularly spaced in 

time, in which case one could use observation windows with more/less intermediate discretization 

points. In other words, using equally spaced observations and the same discretization points for rainfall 

and runoff simplify some implementation details, which we did not deem essential in order to 

demonstrate the applicability of the method and its potential benefits. Note that increasing the number 

of discretization points (N), with a fixed number of observation points, does only moderately increase 

the computational effort, since the part of the Hamiltonian dynamics that scales with N can be calculated 

analytically. We have explicitly addressed the points above in section 2 (“Bayesian inference with a 

stochastic rain model”) of the revised text.     

3. The calculations to go from eq. (5) to eq. (6) should be included in an Appendix.  

The calculations to go from eq. (5) to (6) are actually straightforward and can be easily included in the 

main text, rather than in a dedicated appendix.  

4. Given the sentence "Our prior knowledge of the rainfall potential ξ is defined in terms of a function 

S(ξ), called action (Lau and Lubensky,2007; Albert et al., 2016) […],": 

• How general is the definition of action?           

• Does it depend on the stochastic process at hand? Does eq. (16) depend on the chosen stochastic 

process?       

I recommend that the authors discuss the above questions explicitly in the manuscript.  

We will gladly address these questions explicitly. The action is by definition just the negative log of the 

probability density of the process and as such it depends on the specific stochastic process at hand. 

Therefore, eq. (16) depends on the stochastic process of eq. (2). However, we would like to remark 

again that calculating the action, given a stochastic process, is in general a relatively simple task. This 

is explained in the revised text in both section 2.5 and appendix A.  



5. By reading "Before setting off to implement the HMC algorithm, we need to take one further 

fundamental step, i.e., we apply the transformation from the coordinates ξ to the so-called staging 

variables u", I should ask:      

• It seems a transformation to canonical coordinates, but besides this guess, it is unclear why this 

step that adds to the complexity of the overall strategy (eq. (17) - (21)) is essential.       

• Is this transformation dependent on the choice of model, stochastic process, etc. made by the 

authors? How generalizable is this step?  

I believe that the authors should not miss the opportunity to discuss the above questions explicitly.  

We will certainly discuss these points in more detail. The Referee is actually right that the 

transformation ξ→u is analogous to a transformation to canonical coordinates, and it is also true that 

such transformation adds a further degree of complexity to the overall strategy. However, it also bears 

significant benefits. The transformation makes it possible to decouple dynamics occurring on very 

different time scales, and allows us to integrate analytically the fast component, analogous to a system 

of coupled harmonic oscillators, yielding a substantial computational speed-up. Therefore, although the 

coordinate transformation is not essential for the HMC method (which would work without it), it turns 

out to be computationally very convenient, and we consider its advantages worth the implementation 

effort.      

Regarding the generalizability of this approach, as explained in Albert et al. (2016), the decoupling of 

the different dynamics is always possible for 1D SDE models. In this work we focus only on 1D models 

and we leave the exploration of higher-dimensional models to future studies. 

These points are discussed in the revised manuscript at the end of sections 2.5 (“The priors”) and 3 

(“The HMC algorithm”).  

 

6. It is unclear to this reviewer what equations (22) and (23) add, as the posterior ƒ is explicit on both 

sides of the equation.  

The purpose of eq. (23) is to show how auxiliary degrees of freedom, i.e., the momenta π and p, are 

added to the system. The HMC method samples this higher-dimensional space. Then, eq. (22) shows 

how the auxiliary momenta are integrated out, thus yielding the sought posterior. This is in essence how 

HMC methods work. 

7. From "The HMC algorithm iterates the following steps. First, vectors of momenta π and p are drawn 

from the normal distributions defined by the kinetic terms in Eq. 23." it is unclear how eq. (23) defines 

the kinetic energy.       

• What's the "effective temperature of the system"?           

• In a complex scenario, how is the magnitude of the momenta chosen to make sure that all the 

local minima of the Hamiltonian can be escaped while assuring that relatively flat areas are 

not overlooked?      

Please, discuss these points in the paper.  

This is an important point. The Hamiltonian of eq. (23) contains a “potential energy” term, that is, the 

negative log of the posterior f, and two additional terms depending on the auxiliary momenta π and p, 



akin to the kinetic energies associated with the degrees of freedom of a fictitious statistical mechanics 

system. The HMC method describes such system dynamics through the integration of Hamilton 

equations. We do not control these Hamiltonian dynamics with an effective temperature, but rather by 

tuning the fictitious masses in eq.(23), which represent the variances of the normal distributions for the 

corresponding momenta. Therefore, small/large masses correspond to small/large momenta. This is 

described in more detail in Albert et al. (2016). Moreover, in this work we opt for a manual tuning of 

the masses for ease of implementation, although more advanced and automated methods are available, 

as explained in section 4.1. The presence of pronounced local minima might present an insurmountable 

obstacle, even for refined HMC methods and necessitate further enhancements such as Metadynamics. 

However, they do not seem to be an issue here. 

This is discussed explicitly text in section 3 (“The HMC algorithm”) of the revised text, after eq. (23). 

8. Referring to the sentence "Using the definitions of Sections 2.1, 2.2, 2.3, 2.4 and 2.5, we write the 

HMC Hamiltonian as […].", please add “eq. (1)” to the list of what has been used.  

Done. 

9. Referring to "In particular, we exploit the fact that the much faster dynamics of the intermediate 

discretization points described by HN is analogous to a system of uncoupled harmonic oscillators that 

can be solved analytically. This analytical solution gives a significant boosting contribution to the 

intrinsic efficiency of the HMC algorithm.": 

• How general is this statement with respect to the assumptions made in this study, e.g., chosen 

stochastic process, hydrological model, observational error models, etc.?  

• Is it granted that such an "analytical boost" can always be enjoyed by any SDE model? 

Please, discuss these points in the paper.  

The statement is always true for 1-dimensional SDE models, such as the toy model of Albert et al. 

(2016) or the case study presented in this work. It also holds true in the case of multiple independent 

variables, where the decoupling procedure can be applied to each of them individually. In this way, the 

approach covers a significant range of possible hydrological modeling scenarios. This is clarified at the 

end of section 3.  

10. Figure 6. - Can the y-axis be limited to the extent of Figure 5? This would ease comparisons.  

Maybe we misunderstood the point raised by the Reviewer, but the y-axis of figures 5 and 6 are the 

same. In any case, figures 5 and 6 have been replaced in the revised manuscript by a single figure.   

11. For comparisons, it could be useful to generate a Figure where P and Q densities from Sc1 and Sc2 

are overlaid with transparency.  

We agree that the comparison of figures 5 and 6 should be more straightforward. However, in order to 

avoid a single overcrowded figure, we prefer to place figures 5 and 6 side by side in one figure spanning 

two columns. 


