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Abstract. The Common Community Physics Package (CCPP) is a collection of atmospheric physical parameterizations for

use in Earth system models and a framework that couples the physics to a host model’s dynamical core. A primary goal for

this effort is to facilitate research and development of physical parameterizations and experimentation with physics-dynamics

coupling methods, while simultaneously offering capabilities for use in numerical weather prediction (NWP) operations. The

CCPP Framework supports configurations ranging from process studies to operational NWP as it enables host models to5

assemble the parameterizations in flexible suites. Framework capabilities include variability of scheme call order, ability to

group parameterizations for calls in different parts of the host model allowing intervening computation or coupling to additional

components, options to call some parameterizations more often than others, and automatic variable transformations.

The CCPP Framework was developed by the Developmental Testbed Center and is distributed with a single-column model

that can be used to test innovations and to conduct hierarchical studies in which physics and dynamics are decoupled. It is also10

an integral part of the Unified Forecast System, a community-based, coupled, comprehensive Earth modeling system designed

to support research and be the source system for NOAA’s operational NWP applications. Finally, the CCPP Framework is

under various stages of adoption by a number of other models in the wider community.

1 Introduction

The existence of shortcomings in the representation of physical processes has been identified as one of the primary sources15

of errors in numerical weather prediction (NWP) models, with other contributing factors being the imperfect specifications

of initial conditions and inaccuracies introduced by the dynamical core, for example (Bauer et al., 2015; Du et al., 2018). In

a NWP model, many physical processes are accounted for by often oversimplified parameterizations rather than as a result

of strictly self-consistent consequences of the (nominally nonlinear and reactive) fluid dynamics both mediating and underly-

ing weather systems (adapted from the glossary by American Meteorological Society, 2022). Therefore, the improvement in20
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forecasts from NWP models hinges on the continuous advancement of physical parameterizations in concert with increases in

numerical accuracy required to accommodate realistic transport and scale interactions as well in spatio-temporal resolutions of

observations and their correct assimilation.

Examples of processes represented by the physical parameterizations in a NWP model are radiation, moist physics, vertical

mixing, and interactions between the atmosphere and the underlying surface (Stensrud, 2007). State-of-the-art NWP models25

employ parameterizations of diverse complexity and may include representation of chemical processes that impact air compo-

sition and feed back on meteorological processes (Ahmadov et al., 2017). Parameterizations are typically used in sets called

suites, which are constructed using compatible tasks that interact, ideally, consistently, often in addition to or with the aid of

intermediate calculations. An important example of inter-parameterization communication is cloud-radiation feedback, which

demands that the condensed water produced by the microphysics, macrophysics, convection, and planetary boundary layer pa-30

rameterizations be communicated to the radiation parameterization to modify the radiative fluxes due to the presence of clouds

(Črnivec and Mayer, 2019; Han et al., 2017; Bourgeois et al., 2016).

Parameterizations in modern NWP models are sophisticated and are typically the result of many years of work by a sizable

number of subject matter experts. A suite may evolve through the incremental improvement in a parameterization, with a single

code base being augmented to include the representation of additional processes (Han and Bretherton, 2019) or discretely,35

through the substitution of a parameterization with a distinct, more advanced, code base (Ukkonen et al., 2020). Therefore, it

is crucial to have a software framework that can support collaborative and flexible development.

To meet this demand, the Developmental Testbed Center (DTC) has spearheaded the development of the Common Commu-

nity Physics Package (CCPP), a model-agnostic collection of codes containing atmospheric physical parameterizations (CCPP

Physics) along with a framework that connects the physics to host models (CCPP Framework). It is distributed with a Single-40

Column Model (CCPP SCM), a simple host model that can be used with CCPP-compliant physics. This initiative is part of a

broader effort to develop and improve the Unified Forecast System (UFS; Jacobs, 2021), a “community-based, coupled, com-

prehensive Earth modeling system [that spans] local to global domains and predictive time scales from sub-hourly analyses

to seasonal predictions [and] is designed to support the weather enterprise and to be the source system for NOAA’s opera-

tional NWP applications” (Unified Forecast System - Steering Committee (UFS-SC) and Writing Team, 2021). The CCPP45

Physics contains the parameterizations that are used operationally in the atmospheric component of the UFS Weather Model

(UFS Atmosphere), as well as parameterizations that are under development for possible transition to operations in the future

(Zhang et al., 2020). The CCPP aims to support the broad community while simultaneously benefiting from the commu-

nity. To realize that, the code is kept in public code repositories on GitHub (https://github.com/NCAR/ccpp-framework and

https://github.com/NCAR/ccpp-physics). Contributions to the CCPP Framework are reviewed and approved by representatives50

of the organizations conducting the majority of the development, DTC and NCAR, while contributions to the CCPP Physics

are reviewed by the DTC and by points-of-contact for each parameterization. Any necessary changes in rules and standards are

discussed and settled in the multi-institutional CCPP Framework developers committee or the CCPP Physics code management

group.. Parameterizations have been contributed by a number of scientists from various organizations, creating an ecosystem

in which the CCPP can be used not only by operational centers to produce operational forecasts, but also by the research55
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community to conduct investigation and development (see, for example, He et al., 2021). The CCPP provides the means for

the necessary partnership and collaboration required to ensure that innovations created and effectively tested by the research

community can be funneled back to the operational centers for further improvement of the operational forecasts.

There have been six major public releases of the CCPP thus far, starting with the v1 release in March of 2018. The latest

version is CCPP v6, released in June 2022 (Firl et al., 2022). The CCPP is a component in the public releases of the UFS60

Medium-Range Weather Application v1.1 (UFS Community, 2021) and the UFS Short-Range Weather Application (SRW

App) v2.0 (UFS Community, 2022), and has been adopted by NOAA’s National Weather Service as the physics infrastructure

for all upcoming operational implementations of the UFS (Unified Forecast System Steering Committee and Writing Team

2021). It is targeted for transition to operations (Tallapragada et al., 2022) in 2023 as a component of the Hurricane Analysis

and Prediction System (HAFS) and in 2024 as part of the Global Forecast System (GFS), Global Ensemble Forecast System65

(GEFS), and Rapid Refresh Forecast System (RRFS). In addition to the CCPP SCM and the UFS Atmosphere, the CCPP is

being used in an experimental version of the Navy Environmental Prediction System Using the NUMA Core (NEPTUNE;

Doyle et al., 2022), where NUMA stands for the Non-hydrostatic Unified Model of the Atmosphere. Furthermore, NCAR

is investing in advancements for the CCPP Framework with the intention of adopting it as the physics interface for future

versions of their System for Integrated Modeling of the Atmosphere (SIMA; Davis et al., 2019; Gill et al., 2020). The CCPP70

Framework is also part of the Multi-Scale Infrastructure for Chemistry and Aerosols (MUSICA), the NCAR-driven next-

generation community infrastructure for research involving atmospheric chemistry and aerosols (Pfister et al., 2020).

Many current NWP models, such as the GFS and the NCAR Model for Prediction Across Scales (MPAS), rely on physics

drivers to to call parameterizations embedded in the host model code base. This lack of separation of concerns between host

and physics compromises computational extensibility (because adding new parameterizations makes long drivers even longer),75

computational performance (because compiler optimization is hindered by all the possible runtime permutations), and ease-of-

use (because code inspection is made difficult by the many paths and branches on the code). Additionally, this approach does

not empower parameterization developers to simplify the development workflow by using the same code base in various host

models. To enable the community involvement demanded by the aforementioned collaborations, the CCPP was established

with several considerations: interoperability (the ability to run a given physics suite in various host models), portability, ex-80

tensibility, computational efficiency, and ease-of-use. This effort builds on previous quests for physics interoperability, which

started as early as the 1980s with the establishment of the so-called Kalnay rules (Kalnay et al., 1989) that outline coding

standards to facilitate the exchange of parameterizations among models. These rules were later revised by members of the

multi-agency National Earth System Prediction Capability (ESPC; now ICAMS) Physics Interoperability committee to reflect

advances in computational hardware and software used for operational NWP (Doyle et al., 2015). The CCPP further evolves85

earlier efforts in interoperability for physics, such as the noteworthy implementation of an infrastructure for interoperability is

the Interoperable Physics Driver (IPD) devised by the NOAA Environmental Modeling Center (EMC), and later augmented

by the NOAA Geophysical Fluid Dynamics Laboratory (GFDL), to run the physics used in the GFS in other host models

(Whitaker et al., 2017). It complements similar efforts in other aspects of Earth system modeling, such as those aimed at

3



enabling interoperability of component models (i. e., the atmospheric model, the ocean model) among various hosts via the90

standardization of interfaces (Theurich et al., 2016; Wieters and Barbi, 2019) and of physical constants (Chen et al., 2020).

This paper focuses on the CCPP Framework and provides an overview of the technical approach (Section 2), a description

of the implementation (Section 3), an example of CCPP use in various host models (Section 4), and an outlook for the package

(Section 5).

2 Design95

The design of the CCPP relies on standardization and automation, the latter requiring the former for an efficient implementa-

tion. All CCPP-compliant parameterizations have up to five entry point subroutines, corresponding to the model initialization,

timestep initialization, timestep execution (time integration), timestep finalization, and model finalization phases of the pa-

rameterization. Each entry point subroutine is accompanied by metadata describing the variables that are passed to and from

that subroutine, including attributes such as standard name, long name, intent, units, type, rank, and activity status— circum-100

stances under which variables are used if they are optional. Similarly, the host model contains metadata about variables that

are available to be used by the parameterizations. The CCPP Framework compares and matches the standard names, much like

a database key, of variables requested by the parameterizations against those supplied by the host model, making it possible

for a given parameterization to be usable by various hosts. The CCPP Framework can convert units between requested and

supplied variables, thus reducing the need for developers to build converters into their parameterizations. The Framework is105

further capable of handling blocked host model data that is used for improving the run time performance of the physics calls

by processing them in parallel with multiple threads. It also provides debugging features that assist developers in their efforts

by automatically checking variable allocations as well as the size and dimensions of variables.

The variable metadata that accompany the parameterizations are also used to generate aspects of the Scientific Documenta-

tion (Zhang et al., 2022). The CCPP employs the Doxygen software (van Heesch, 2022) to parse inline comments and additional110

information, such as parameterization descriptions, figures, and bibliography. This data is combined with the information from

the metadata tables to generate documentation in HyperText Markup Language (HTML) format.

The CCPP Framework has access to a pool of compliant parameterizations contained in the CCPP Physics. The library can

contain multiple parameterizations for different physical processes that a host model may execute during the physics calls.

The choice of parameterizations (referred to as a suite) that will be invoked at runtime, and the order in which they will be115

executed, are defined through a Suite Definition File (SDF). The SDF is organized into groups of parameterizations, which

are subsets of a suite that can be called from different locations in the host model. In other words, the physics suite does not

have to be executed in a single step, but can be interspersed with calls to other parts of the host model, such as dynamics and

coupling with external components. In models that have shorter timesteps for calls to dynamics than to physics, this CCPP

capability enables the use of fast and slow physics, that is, enables calling selected parameterizations from the dynamical core120

and executing them more often than the rest of the physics suite.
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Figure 1. Architecture of the CCPP and its connection to a host model. The CCPP Framework auto-generates the CCPP API and physics

caps that connect the schemes in CCPP Physics with the host model through a host model cap/CCPP driver.

Through specifications in the SDF, the CCPP Framework allows the subcycling of parameterizations, that is, executing one

or more parameterizations more than once in a physics timestep. Subcycling can be used to increase the stability of the model

and enable larger timesteps by reducing the magnitude of the tendencies that need to be applied during each update of the

model state variables. Subcycles can also be used to emulate an iteration, and a set of two subcycles can be used to set up a125

first guess and correction step for a parameterization. It is important to note that subcycling of schemes is only available in the

run phase (see Section 3.2 for more information on the CCPP phases).

The CCPP Framework can be considered a data broker that only plays a role at model build time, but is not part of the actual

model executable. At build time, one or more SDFs are provided and the Framework is invoked to check consistency between

variables requested by and supplied to the physics and to auto-generate calling interfaces for each SDF (the physics and suite130

interface code, also referred to as caps). The framework further auto-generates the application programming interface (API)

that the host model calls to connect to the physics through a host model cap. At runtime, a SDF must be chosen to determine the

suite that will be actually used in the run, which typically happens during the model configuration and initialization. Figure 1

shows the general architecture of a modeling system that employs the CCPP, and Section 3 provides details on the CCPP

technical implementation.135

While the original design and current use of the CCPP are centered on physics in atmospheric models, the system is general

enough to be used in various host modeling systems, including complex coupled Earth system models, and for different types of

processes. For instance, a coupled ocean-atmosphere-chemistry model could call CCPP from the atmospheric component, the

ocean component, and the chemistry component to execute atmospheric physics parameterizations, ocean physics parameteri-

zations, and chemical processes, respectively. It should be noted that currently all CCPP-compliant physical parameterizations140

and all host models using CCPP are written in Fortran, which is traditionally the dominant programming language in NWP.

The concept and design of the CCPP Framework do not preclude host models or schemes using other programming languages
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(e. g., C/C++), but currently these are not supported by the CCPP Framework. However, this was considered as an advantage

of the current CCPP Framework over alternative approaches that rely on native Fortran code files for declaring variables and

types.145

It should be noted that an early version of the CCPP Framework used a different approach. All available compliant physics

schemes were compiled into a dynamic library that was linked to the executable at build time, without specifying an SDF.

The SDF was parsed at runtime, and the schemes were called in the order specified in the SDF using a Fortran-C-Fortran

interface, in which the C layer dynamically loaded (dlload) the scheme from the Fortran physics library. This dynamic

approach had many disadvantages, for example that arguments were passed by reference from Fortran to C to Fortran space.150

Besides the poor computational performance, this approach made it much more difficult to debug the code, since developers

were not able to “read” the code that gets executed at runtime, and since important tools like debuggers were not able to detect

errors. Further, operations as of today still require static executables for portability and debugging of crashes in production.

The current design of the CCPP framework enables compiler optimizations, compiler checks, debugging, “reading” the final

code that gets compiled into the executable, static linking, delivers the necessary performance for operations, and presents a155

compromise between flexibility and performance by generating multiple suites at the same time.

3 Implementation

Designed as an infrastructure for connecting physical parameterizations to atmospheric models, the CCPP Framework requires

a host model for both development and testing. The supported host models range from basic stubs that can be used to test

the framework itself to fully coupled three-dimensional Earth system models that contain multiple connections to the CCPP160

Physics through the auto-generated code from the CCPP Framework. This section describes in detail the implementation of the

CCPP in two atmospheric host models, the CCPP SCM and the UFS, based on the design requirements outlined in Section 2.

The two models will be discussed in detail in Section 4.

3.1 Supported parallelism

Computational efficiency is an important aspect of the design of the CCPP. The system must deliver the necessary performance165

for operational applications while at the same time providing options for flexibility. CCPP supports Message Passing Interface

(MPI) task parallelism, OpenMP threading, and hybrid MPI+OpenMP parallelism. To accommodate the different requirements

of physical parameterizations and host modeling systems, the implementation of the CCPP Framework and Physics is based

on the two following paradigms:

1. Physics are column-based and there can be no communication between neighboring columns in the physical parameter-170

izations during the time integration phase (also referred to as timestep execution or run phase).

2. The physics and timestep initialization and finalization phases cannot be called by multiple threads in parallel.

With the above requirements in mind, the following limitations apply:
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Table 1. Supported phases during a model run. The third column contains information on how blocked data structures are handled in the

different phases.

Phase Purpose Blocked/chunked data supported?

init Initialize physics: read/compute lookup tables, set runtime options No, requires access to all data

timestep_init Initialize timestep: update time, solar insolation, lookup table data No, requires access to all data

run Integrate physics forward Yes

timestep_finalize Finalize timestep: compute statistics and diagnostic tendencies No, requires access to all data

finalize Finalize physics: deallocate variables, close files No, requires access to all data

1. MPI communication is only allowed in the physics during the physics initialization, timestep initialization, timestep

finalization, and physics finalization phases. The parameterizations must use the MPI communicator provided by the175

host model as an argument to the physics schemes.

2. The time integration (run) phase can be called by multiple threads in parallel. Threading inside the physics is allowed in

every phase, but the parameterizations must use the number of available OpenMP threads provided by the host model as

an argument. It is the responsibility of the host model to handle any synchronization of MPI tasks or threads.

3.2 CCPP phases180

The CCPP Framework supports five phases in a model run, which are summarized in Table 1. The table further contains

information on how blocked data structures are handled in the individual phases. With exception of the time integration (run)

phase, blocked data structures must be combined into contiguous data such that a physics scheme has access to all data that

an MPI task owns. The need to have access to all data and the limitations on OpenMP threading described in the previous

section are a result of potential file Input/Output (I/O) operations, computations of statistics such as minimum values of a185

variable, interpolation of lookup table data (e. g., ozone concentration from climatology), and global communication during

those phases.

For better computational performance, NWP models often make use of parallel execution of the physics using multiple

threads, in which each thread operates on a subset of the data owned by an MPI task. The exact implementation is model-

dependent and can range from passing different start and end indices of a contiguous array to splitting up contiguous arrays190

into separate blocks. To support the latter case, the CCPP Framework is capable of combining blocked data structures into

contiguous arrays in the auto-generated physics caps. The CCPP metadata plays an important role in determining whether such

operations are required, how the data needs to be combined, and whether a variable needs to be skipped because it is inactive

and may not be allocated or initialized properly (see Section 3.5 for details). Figure 2 and Listing 1 illustrate this capability.
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Figure 2. The CCPP Framework automatically combines blocked data structures into contiguous arrays during certain phases of the physics

calls, as shown here for the variable bar that is part of derived data type foo, which is split up into four blocks.

Listing 1: Auto-generated code that combines the blocked data structure foo(:)%bar(...) from Figure 2 into a contiguous array. The

Fortran syntax highlighting represents keywords in red, user expressions in blue, and comments in gray. Note that data copy operations are

only applied if absolutely necessary, as it is the case for converting blocked data into contiguous arrays, otherwise the host model variables

are passed to the CCPP schemes directly.

allocate(bar_local(1:ncolumns))

ib = 1

do nb=1,nblocks

bar_local(ib:ib+blocksize(nb)-1) = foo(nb)%bar

ib = ib+blocksize(nb)

end do

call myscheme_init(bar=bar_local)

ib = 1

do nb=1,nblocks

foo(nb)%bar = bar_local(ib:ib+blocksize(nb)-1)

ib = ib+blocksize(nb)

end do

deallocate(bar_local)

3.3 CCPP-compliant schemes195

CCPP-compliant parameterizations are Fortran modules with a number of requirements on formatting, naming and coding

standards, and that are accompanied by a metadata file. The name of the Fortran source file should, but does not have to,

match the name of the Fortran module, and the metadata file must match the name of the Fortran source file and carry the
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extension .meta. The Fortran module name defines the name of the CCPP scheme and of the entry point subroutines. For

example, a Fortran module/scheme with name myscheme can have up to five entry points, one for each of the CCPP phases,200

with names myscheme_init, myscheme_timestep_init, etc. Each CCPP entry point must be preceded by CCPP

metadata hooks that instruct the code generator to parse the associated metadata file for the metadata for the variables used in

the argument list to the particular subroutine/entry point call. As mentioned earlier in Section 2, the concept and design of the

CCPP Framework do not preclude host models or schemes using other programming languages, but currently all host models

and all CCPP-compliant parameterizations are written in Fortran.205

The full set of requirements for CCPP-compliant parameterizations is described in the CCPP technical documentation

(Bernardet et al., 2022, Chapter 2). In brief, CCPP-compliant parameterizations should follow modern Fortran programming

standards, be written in Fortran 90 free-form, use implicit none, avoid the use of goto statements, and use named end

constructs for modules and subroutines to support the CCPP Framework parser. Neither Fortran common blocks nor the local

definition or importing of physical constants or functions from other physical parameterizations are allowed. Physical con-210

stants must be passed to the physics schemes via the argument list. Each CCPP scheme may define its own dependencies (i. e.,

Fortran, C, C++, . . . modules) that are required for the scheme, as long as these do not depend on the presence of other schemes

and vice versa. One exception to this rule is the definition of floating point kinds, which are currently provided in the form of

a Fortran module that resides in CCPP Physics and that can be imported by the physics schemes and the host model.

The restriction on Fortran common blocks has several reasons. First, a scheme must not share its data (variables, constants,215

types) with other schemes, and common blocks not only allow this, but also make it difficult to detect violations of this

requirement. Not sharing data with other schemes is to ensure that each scheme is self-contained, and that at the same time

all schemes use a consistent set of physical constants defined by the host model. Second, the requirement for CCPP schemes

to be Fortran modules following modern programming standards essentially forbids using old Fortran 77 constructs such as

common blocks. Third, Fortran common blocks are inherently dangerous, because they permit the declaration of the same220

block differently in different procedures and evade proper type checking.

Each entry point that is in use (i. e., that is not empty) and that is preceded by CCPP metadata hooks must accept two

mandatory variables that are used by the CCPP error handler: an error code and an error message. CCPP schemes are not

allowed to stop the model execution, and writing to stdout and stderr is discouraged. In the event of an error, a scheme

must set the error code to a non-zero value, assign a meaningful error message and return control to the caller. Listing 2 presents225

a complete CCPP-compliant parameterization side-by-side with its metadata, which will be discussed in detail in Section 3.5.1.

3.4 Host model variable definitions

The host model is responsible for declaring, allocating, initializing and, if applicable, resetting all variables that are required to

execute the physical parameterizations. Each variable passed to the physics must be a Fortran standard variable (real, integer,

. . . ) of rank zero or greater, or a derived data type (DDT) that is defined by the receiving physical parameterization itself. DDTs230

defined by the host model cannot be passed to the physical parameterizations, as doing so would create a dependency of the

CCPP Physics on a particular host model. However, the Fortran standard variables or physics DDTs can be constituents of
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Listing 2: A complete CCPP-compliant parameterization with Fortran source code (left) and corresponding metadata (right). Details for

allowed metadata descriptions can be found in Bernardet et al. (2022, Chapter 2).

myscheme.F90 myscheme.meta

module myscheme

use kind_defs, only: kind_phys

implicit none

contains

! Inactive entry points can be omitted

!> \section arg_table_myscheme_run Argument Table

!! \htmlinclude myscheme_run.html

!!

subroutine myscheme_run (bar, errmsg, errflg)

! arguments

real(kind_phys), intent(inout) :: bar(:,:)

character(len=*), intent(out) :: errmsg

integer, intent(out) :: errflg

! local variables

! add your local variables here

! initialize CCPP error handling variables

errmsg = ''

errflg = 0

! initialize intent(out) variables

! add your code here

! in case of errors, set errflg != 0, assign

! a meaningful message to errmsg and return

end subroutine myscheme_run

end module myscheme

[ccpp-table-properties]

name = myscheme

type = scheme

dependencies = kind_defs.F90

[ccpp-arg-table]

name = myscheme_run

type = scheme

[bar]

standard_name = std_name_for_bar

long_name = description of bar

units = valid unit for bar

dimensions = \

(horizontal_loop_extent, \

vertical_layer_dimension)

type = real

kind = kind_phys

intent = inout

[errmsg]

standard_name = ccpp_error_message

long_name = error handling message

units = none

dimensions = ()

type = character

kind = len=*

intent = out

[errflg]

standard_name = ccpp_error_code

long_name = error handling code

units = 1

dimensions = ()

type = integer

intent = out

10



host model DDTs, and they can be statically or dynamically allocated, or pointers. Host model variables must be accessible

from a module, because the auto-generated CCPP API (see Section 3.7) imports the variables (in case of Fortran standard

variables) or the parent DDTs and passes them to the auto-generated physics caps. Listing 3 provides an example of a host235

model Fortran module and metadata that define variables for use by the physics. The host model metadata will be discussed

further in Section 3.5.2.

Variables that are in use by the physical parameterizations selected for use at runtime (see Section 3.6) must be allocated

and initialized by the host model. Depending on the choice of physics or their runtime configuration, variables may be left

unallocated when being passed to the physical parameterizations. These variables are considered to be inactive and must have240

the corresponding metadata attribute active (see Section 3.5.3) set accordingly in the host model metadata so that the CCPP

Framework skips any variable transformations that would lead to an invalid memory access. This mechanism was created

to reduce the memory footprint of the application. A consequence of potentially unallocated host variables is that dummy

argument variable arrays within schemes should be declared as assumed-shape to avoid compilation errors. Some variables

need to be reset at certain times, such as accumulation “buckets” for diagnostics, and the host model is required to perform245

these actions. Likewise, the CCPP Framework does not provide a mechanism for writing diagnostics or restart data to disk – it

is the responsibility of the host model to know which data to write to disk and when.

To ensure a consistent set of physical constants for use by all physical parameterizations, these constants must be defined

by the host model and passed to the physics via the argument list, in other words, they are treated like normal variables. The

host model in this case imports these kind/DDT definitions from the physics to allocate the necessary variables. In other words,250

while interoperability considerations preclude a dependence of the CCPP Physics on the host model, the need to manage the

memory and initialization of variables in use by the physics creates a dependency of the host model on the CCPP Physics.

3.5 Metadata

The metadata are the essential pieces of information that allow the code generator (presented in Section 3.7) to connect the

individual physics parameterizations to the host model. The implementation of the metadata follows a relaxed Python config-255

style format, except that a CCPP metadata file can contain the same keyword more than once. As mentioned before, the CCPP

requires an associated metadata file for each scheme’s Fortran source file containing the scheme entry points to be located in

the same directory, with the same filename and extension .meta. Similarly, for each Fortran source file on the physics and

host model side that contains the kind, type or variable definitions needed to run the CCPP Physics, a metadata file is required

in the same directory, with the same filename and extension .meta. The two different types of metadata are referred to as260

scheme metadata and host metadata and will be described in detail in the following sections.

3.5.1 Scheme metadata

The role of metadata for CCPP-compliant schemes is to describe in detail the variables that are required to call a scheme

for each of the phases described in Section 3.3. Each CCPP scheme has a set of metadata that consists of a header section

[ccpp-table-properties] and individual sections labeled with [ccpp-arg-table], one for each phase in use,265
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followed by a list of all variables and their attributes required to call the scheme phase. The header section must contain the

name of the scheme and a type = scheme option that tells CCPP that this is scheme metadata. It can also contain one or

more dependencies = ... options, and each of them can be a comma-separated list of dependencies for this scheme. A

further relative_path option can be used to append a relative path to all dependencies listed in the header section.

Each [ccpp-arg-table] section repeats the type = scheme and lists the name of the CCPP entry point, which270

consists of the name of the scheme and the CCPP phase, connected by an underscore. Each variable is then described in a

separate section with the local name of the variable as the section identifier, see Listing 2, right column, for an example. With

the exception of the kind option, all attributes shown in Listing 2 for variable bar are mandatory. It is recommended, although

not yet enforced, that the order of variables in the metadata file matches the argument list of the Fortran subroutine for ease of

debugging.275

3.5.2 Host model metadata

The host model metadata, as well as kind and type definitions in CCPP Physics, are used to define kinds, DDTs and variables

that are used by the host model to execute the chosen physics schemes. The host model variables and the scheme variables

are paired by their standard names. The CCPP Framework code generator compares the variables provided by the host model

against the variables requested by the physics schemes in the list of suites provided at compile time (see Section 3.7 for details).280

In case of a mismatch, the Framework throws an error. Likewise, variables have to match in all their attributes except their local

names (due to differing variable scopes), long names and units (see Section 3.5.3).

The construction of metadata information in the host model is complicated by the fact that the metadata alone must provide

the CCPP Framework code generator with enough information on where to find the variables required by the physical parame-

terizations. The metadata table in Listing 3 illustrates this. While it is straightforward to declare Fortran standard variables on285

a module level (example baz in Listing 3), a variable that is a constituent of a DDT requires a metadata table for the DDT,

and a definition and an instance of the DDT in the correct module metadata following the exact syntax in Listing 3. The DDT

type foo_type in this example is used to store blocked data of a two-dimensional array bar and is defined and allocated in

module physics_var_defs. Array bar is of kind kind_phys, which is defined in and imported from CCPP Physics.
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Listing 3: Host model variable declaration and associated metadata. The definition of kind_phys is imported from the CCPP Physics,

which contains kind_defs.F90 and kind_defs.meta. Details for allowed metadata descriptions can be found in Bernardet et al.

(2022, Chapter 6).

physics_var_defs.F90 physics_var_defs.meta

module physics_var_defs

use kind_defs, only: kp => kind_phys

implicit none

!> \section arg_table_physics_var_defs

Argument Table

!! \htmlinclude physics_var_defs.html

!!

integer, parameter :: baz = 1

!> \section arg_table_foo_type Argument Table

!! \htmlinclude foo_type.html

!!

type foo_type

real(kp), pointer :: bar(:,:)

contains

procedure :: create => foo_create

procedure :: reset => foo_reset

end type foo_type

type(foo_type), allocatable :: foo(:)

contains

subroutine foo_create (foo,ncol,nlev)

class(foo_type) :: foo

integer, intent(in) :: ncol, nlev

allocate(foo%bar(ncol,nlev))

call foo%reset()

end subroutine foo_create

subroutine foo_reset (foo)

class(foo_type) :: foo

foo%bar = 0.0_kp

end subroutine foo_reset

end module physics_var_defs

[ccpp-table-properties]

name = physics_var_defs

type = module

relative_path = /path/to/physics

dependencies = kind_defs.F90

[ccpp-arg-table]

name = physics_var_defs

type = module

[baz]

standard_name = std_name_for_baz

long_name = description for baz

units = 1

dimensions = ()

type = integer

[foo_type]

standard_name = foo_type

long_name = definition of type foo_type

units = DDT

dimensions = ()

type = foo_type

[foo(ccpp_block_number)]

standard_name = foo_type_instance

long_name = instance of derived type foo_type

units = DDT

dimensions = ()

type = foo_type

[ccpp-table-properties]

name = foo_type

type = ddt

relative_path = /path/to/physics

dependencies = kind_defs.F90

...
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Listing 3 (continued).

...

[ccpp-arg-table]

name = foo_type

type = ddt

[bar]

standard_name = std_name_for_bar

long_name = description of bar

units = valid unit for bar

dimensions = \

(horizontal_loop_extent, \

vertical_layer_dimension)

type = real

kind = kind_phys

kind_defs.F90 kind_defs.meta

module kind_defs

implicit none

private

public :: kind_phys

!> \section arg_table_kind_defs Argument Table

!! \htmlinclude kind_defs.html

!!

integer, parameter :: kind_phys = 8

end module kind_defs

[ccpp-table-properties]

name = kind_defs

type = module

dependencies =

[ccpp-arg-table]

name = kind_defs

type = module

[kind_phys]

standard_name = kind_phys

long_name = definition of kind_phys

units = none

dimensions = ()

type = integer
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Figure 3. Example for automatic unit conversions in the auto-generated physics cap.

3.5.3 Variable attributes290

Each variable is defined by a local name and a set of variable attributes. The local name can be different in each of the physics

schemes and in the host model. The physics schemes and the host model share the following variable attributes:

standard_name The standard name is key for matching variables between the host model and a physics scheme. It must

therefore be unique in the host model and within each scheme. To secure interoperability, the CCPP standard names are

derived from a clear set of rules. These rules follow and extend the NetCDF Climate and Forecast (CF) metadata con-295

ventions (Hassell et al., 2017) and are defined in the CCPPStandardNames GitHub repository (Earth System Community

Modeling Portal, 2022a). The repository also contains information about acronyms and units of variables, as well as a

table with all standard names that are currently in use in any of the CCPP-compliant physics. Users developing new

schemes or importing schemes into CCPP must consult the existing standard names before creating new standard names.

long_name The long name contains a brief description of the variable. This can be used to further clarify the purpose of this300

variable. The long name can be different in each of the physics schemes and the host model to provide the necessary

clarification in the given context.

units The variable units must follow the definitions in the UDUNITS package (Unidata, 2022). If a host model variable

and a physics variable matched by their standard name differ in their units, the CCPP Framework is capable of per-

forming automatic unit conversions in the auto-generated physics caps. Unit conversions are implemented in the CCPP305

Framework code generation scripts. An error will be thrown when running the CCPP Framework in the code generation

step if a particular unit conversion is requested but not implemented. In the event of such an error, one may define the

appropriate unit conversion in the CCPP Framework or otherwise manually write conversions in the scheme’s code to

ensure unit consistency. Figure 3 provides an example of an automatic unit conversion for cloud effective radii between

a host model (using micrometer [um]) and a physics scheme (using meter [m]).310

dimensions The dimensions of a variable are listed in the form of CCPP standard names and are explained further in

Section 3.5.4. The variable’s dimensions must be the same for the host model and the physics schemes. The only excep-

tion are horizontal_dimension or horizontal_loop_extent, depending on the CCPP phase and whether

blocked data structures are used (see Section 3.5.4 for details).

15



Listing 4: Metadata for variable surface_snow_area_fraction_over_ice in the host model and a physics scheme.

physics_var_defs.meta (host model metadata) my_scheme.meta (physics scheme metadata

[sncovr_frac_ice]

standard_name = \

surface_snow_area_fraction_over_ice

long_name = surface snow area fraction ice

units = frac

dimensions = (horizontal_loop_extent)

type = real

kind = kind_phys

active = (control_for_land_surface_scheme \

== identifier_for_ruc_land_surface_scheme)

[sncovr_ice]

standard_name = \

surface_snow_area_fraction_over_ice

long_name = ice surface snow area fraction

units = frac

dimensions = (horizontal_loop_extent)

type = real

kind = kind_phys

intent = in

type The type of a variable can either be a Fortran standard type (integer, real, logical, complex) or a DDT (ddt).315

The use of DDTs in a physics scheme is possible as long as the DDT itself is defined in the physics scheme, not in the

host model. The type of a variable must be the same for the host models and the physics scheme.

kind This is an optional attribute that is only required for Fortran variables that use a kind specifier. The kind of a variable

must match between the host model and the schemes.

Variable metadata for physics schemes in addition contain an intent attribute, which is identical to the definition in Fortran320

(in, inout, out). It is important to use the correct value for this attribute, because the CCPP Framework may omit certain

variable transformations in the auto-generated caps based on its value. For example, if a variable is declared as intent =

in, automatic unit conversions will only be performed on the temporary variable before entering the scheme, and the reverse

operation after returning from the scheme will be omitted. Likewise, for a variable declared as intent = out, the temporary

variable for combining blocked data structures will be allocated but left uninitialized before entering the physics scheme, since325

the scheme is expected to overwrite the contents of this variable completely. The intent information is also used by the

variable tracker described in Section 3.7.

The host model metadata has the additional, optional attribute active, which contains a Fortran logical condition expressed

in CCPP standard names that describes whether a variable is allocated or not. The default value is .true., which means that

the variable is always allocated. If a variable is inactive, the auto-generated code will skip any operation on the variable in the330

auto-generated caps (e. g., unit conversions). Listing 4 contains examples for a variable defined in a host model and in a physics

scheme.
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3.5.4 Variable dimensions

Variable dimensions can be coordinate dimensions or indices. An example for an index dimension is a particular tracer in an

array of tracers. For performance reasons, the index dimensions for tracer arrays are typically the outermost (i. e., rightmost)335

dimension in Fortran. Individual tracers can then be passed efficiently to physics schemes as a contiguous slice of the tracer

array in memory. Coordinate dimensions for CCPP Physics schemes consist of one horizontal dimension and one vertical

dimension, with the convention that the horizontal dimension is the innermost (i. e., leftmost) dimension in Fortran.

The choice of only one horizontal dimension was made because many modern host models use unstructured or irregular

meshes, and because any two horizontal dimensions can be passed to physics schemes using one horizontal dimension only,340

as long as the horizontal dimensions are the innermost (i. e., leftmost) dimensions for both the host model and the physics

schemes. Further, the choice of the horizontal dimension being the innermost dimension was made because the majority

of numerical weather prediction models and physical parameterizations are designed for execution on traditional CPUs. In

recent years, graphical processing units (GPUs) have become increasingly popular, but typically require reordering of arrays

(i. e. making the vertical dimension the first dimension) for better computational performance. It should be noted that the345

CCPP Framework does not yet support automatic array transformations to accommodate host models that use the vertical

dimension as the innermost dimension. For such a host model, a manually written host model cap or interstitial scheme is

required to transform all arrays before entering and after returning from the physical parameterization. Work is underway

to implement automatic array transformations in a future version of the CCPP Framework. The CCPP standard names for

vertical dimensions distinguish between layers (full levels), where vertical_layer_dimension is used, and interfaces350

(half levels), where vertical_interface_dimension is used. Additional qualifiers can be appended, for example as

in vertical_interface_dimension_for_radiation.

The host model must define two variables to represent the horizontal dimension in the metadata. The variable with standard

name horizontal_dimension corresponds to all columns that an MPI task owns (or simply all horizontal columns when

no MPI parallelism is used). The variable with standard name horizontal_loop_extent corresponds to the size of the355

chunk of data that is sent to the physics in the run phase (see Section 3.2). In the simplest example, the host model passes all hor-

izontal columns of an MPI task at once, and the variables horizontal_dimension and horizontal_loop_extent

are identical. The more complicated scenario is illustrated in Listing 3, where the host model defines a vector foo of type

foo_type that contains blocks of a two-dimensional array bar. In the run phase, the physical parameterizations are called

for one block at a time (although possibly in parallel using OpenMP threading). Here, horizontal_loop_extent cor-360

responds to the block size, and the sum of all block sizes equals horizontal_dimension. In either of these cases, the

convention is to use horizontal_loop_extent as the correct horizontal dimension for host model variables.

The CCPP physics schemes have no knowledge about the storage scheme of the host model or about how many hori-

zontal columns are passed. The correct standard name in the scheme metadata depends on the CCPP phase. As discussed

in Section 3.2, all phases except the run phase expect the entire data that an MPI task owns. The correct standard name365

for the horizontal dimension in the init, timestep_init, timestep_finalize and finalize phases is thus
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Listing 5: A simple Suite Definition File suite_ModelX_v1.xml containing two groups.

<?xml version="1.0" encoding="UTF-8"?>

<suite name="ModelX_v1" version="1">

<group name="groupA">

<subcycle loop="1">

<scheme>interstitial_scheme_1</scheme>

<scheme>primary_scheme_1</scheme>

<scheme>interstitial_scheme_2</scheme>

</subcycle>

</group>

<group name="groupB">

<subcycle loop="1">

<scheme>interstitial_scheme_3</scheme>

<scheme>primary_scheme_2</scheme>

</subcycle>

<subcycle loop="3">

<scheme>interstitial_scheme_4</scheme>

<scheme>primary_scheme_3</scheme>

<scheme>another_interstitial_scheme</scheme>

</subcycle>

</group>

</suite>

horizontal_dimension. For the run phase, the correct standard name is horizontal_loop_extent. Thus, the

same variable must use a different standard name in its horizontal dimension attribute depending on the CCPP phase.

These rules may sound confusing at first, but they allow the CCPP Framework to handle different strategies for memory

allocation and thread parallelism while securing interoperability and being able to reliably catch errors in the metadata.370

3.6 Suite Definition File

The purpose of a CCPP SDF is to describe which physical parameterizations are called in which order for a given model run.

SDFs are written in XML format and contain one or more groups of schemes. Within each group, subsets of schemes can be

called more than once using subcycles, described earlier in Section 2. Listing 5 shows an example of a simple SDF that contains

two groups, groupA and groupB. In groupB, the first set of schemes is called once per timestep, whereas the second set is375

called three times in a loop. While in reality the names of the schemes are more descriptive (e. g., gfdl_microphysics or

mynn_pbl), the notation in Listing 5 hints at a fundamental difference between traditional physics packages and the CCPP.

In the former, the physics driver plays a central role in connecting the various physical parameterizations and presenting them
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to the host model as one entity. These physics drivers are written by hand and are often many thousand lines long. They

contain a large amount of glue code, which we refer to as interstitial code, that prepares, converts or transforms variables,380

computes diagnostics, etc. In the case of CCPP, the driver is a simple host model cap that contains a handful of calls to a

standardized, auto-generated CCPP API, which in turn calls the auto-generated physics caps. While the CCPP Framework

is capable of performing certain automatic conversions, such as unit conversions, the majority of the code that in traditional

physics packages resides in the physics drivers must be placed in CCPP schemes. These schemes are referred to as interstitial

schemes, as opposed to primary schemes (microphysics, planetary boundary layer, . . . ). Both types of schemes are written385

and used in the same way. Future functionality added to the CCPP framework may remove the need for interstitial schemes

as the framework matures. Minimization of such schemes is desirable for simplicity and true interoperability of physical

parameterizations, since they are often tied to a specific host (i. e., “leftover” glue code from a host’s previous hand-coded

physics driver).

3.7 Code generator390

The heart of the CCPP Framework is the code generator, which, at build time, auto-generates the CCPP API and the physics

caps from the metadata. The code generator consists of Python scripts, with ccpp_prebuild.py being the main program

that gets called by the host model before or as part of the build process. The code generator expects one mandatory argument, a

configuration file ccpp_prebuild_config.py. This file is host-model dependent, resides with the host model code, and

contains information on where to find physics schemes (i. e., depending on where the CCPP physics repo is located within a395

host’s directory structure), kind, type, and variable definitions, etc. The code generator can produce caps for one or more CCPP

physics suites simultaneously if a list of suites (which is translated internally into a list of suite definition filenames) is passed

as a command-line argument to ccpp_prebuild.py (if omitted, all available suites are used).

In addition to the API and the caps, the code generator also produces information for the build system in the form of CMake

and GNU Make include files or shell scripts. These contain lists of files that the host model build system must compile to400

execute the physical parameterizations in the specified suites: kind, type, and variable definitions, physics schemes, and all

auto-generated files. The code generator further produces two files to aid development efforts: an HTML document containing

a list of all variables defined by the host model, and a LATEX document containing a list of variables used by any of the physics

schemes in any of the selected suites. Figure 4 contains a flowchart of the ccpp_prebuild.py code generator with its

inputs and outputs.405

The auto-generated caps contain the minimum code necessary to execute the physics schemes in each specified SDF. It

includes calling the physical parameterizations as well as the various variable manipulations mentioned earlier, namely au-

tomatic unit conversions and deblocking of blocked data structures. These transformations may be skipped, depending on

whether a variable is active or on the variable intent (see Section 3.5.3). In addition, to aid development and debugging efforts,

the framework can insert tests for variable allocations, size and dimensionality into the auto-generated caps. This feature is410

activated by passing -debug to ccpp_prebuild.py. Depending on the host model build system and the configuration in

ccpp_prebuild_config.py, the main program ccpp_prebuild.py is called from a specific directory, in-source or
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Figure 4. Flowchart of the CCPP Framework code generator ccpp_prebuild.py with its inputs and outputs.

out-of-source, in the build tree. The command-line argument -verbose can be used to increase the logging output from the

code generator.

Two additional utilities are included in the CCPP Framework: The script metadata2html.py converts scheme metadata,415

inline documentation in Doxygen format, and additional documentation into a complete scientific documentation for CCPP

Physics. This script is generally called from the same location as ccpp_prebuild.py and can either be run in batch mode

to process all schemes, or individually for each scheme. For an example, see the scientific documentation for CCPP v6 (Zhang

et al., 2022).

Lastly, the script ccpp_track_variables.py tracks the flow of a variable through a CCPP suite. This utility is useful420

for understanding a variable’s use within a suite and aims at reducing development and debugging efforts. The CCPP technical

documentation (Bernardet et al., 2022) provides more information on its use.

3.8 Host model integration

The basic integration of CCPP in a host model is shown in Figure 1. A host model cap is used to separate the entry points to

the CCPP Physics and the error handling from the other host model logic. The entry points to the CCPP Physics are defined in425

the auto-generated CCPP API and are Fortran subroutines with a simple, standardized interface:

ccpp_physics_PHASE(ccpp_data, suite_name=..., group_name=..., ierr=...)
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The first argument, ccpp_data, is of type ccpp_t, which is provided by the CCPP Framework in module ccpp_types.

This DDT is used to pass information on block number, thread number, and subcycling to the auto-generated caps. It also

contains the CCPP error handling variables in the form of an error code and an error message. The ccpp_data vari-430

able is typically a module variable in the host model cap. For more complicated models that use blocked data structures

and OpenMP threading to process blocks of data in parallel in the run phase, there can be multiple ccpp_data variables

(see Section 4.2). The host model is responsible for initializing ccpp_data before initializing the CCPP physics using

ccpp_physics_init, and for setting the block and thread number before any of the calls into the CCPP API. Upon re-

turning from the physics, the host model must handle any errors in the physics by inspecting the ierr variable. For example,435

a value other than zero indicates an error and the host model can print the error flag and error message from ccpp_data

before gracefully stopping the model. The suite_name argument to ccpp_physics_PHASE is mandatory and switches

between one or more suites that were compiled into the executable. The group_name argument is optional and can be used

to call the physics phase PHASE for a particular group only. If omitted, phase PHASE is executed for all groups in the order

specified in the SDF. As mentioned earlier, subcycling of schemes when so defined in the SDF (<subcycle loop="N">440

with N>1) only happens in the run phase, for all other phases N is set to 1. Examples for simple and more complex host model

caps are described in the following Section 4.

4 Examples of use

4.1 CCPP Single Column Model

The CCPP SCM simulates the time evolution of the state of the atmosphere over a one-dimensional vertical column extending445

from the Earth’s surface upwards. Lower boundary conditions, such as fluxes of heat and moisture, are obtained from pre-

generated datasets or from the land surface, ocean, and sea ice parameterizations. Lateral boundary conditions are obtained

from forcing datasets originating from field campaigns, three-dimensional models, or a combination of both. The feature that

distinguishes the CCPP SCM from other SCMs is that it is CCPP-compliant, that is, it contains a CCPP host model cap that

allows it to be used with the CCPP Physics.450

The integration of CCPP in the SCM is simple and can serve as a template for implementations in other host models.

Listing 6 in the Appendix contains a simplified version of the CCPP implemented in the SCM. In this basic setup, all data is

stored contiguously and no threading is used. In each CCPP phase, the physics are called for all groups in the order listed in

the SDF.

The CCPP SCM v6 supports six physical suites (that is, six SDFs) that invoke a total of 23 physical schemes from the455

CCPP Physics. These suites were assembled to support hierarchical testing and development to support research and forecast

requirements in short- and medium-range weather.

Figure 5 shows an example for SCM runs using two different physics suites for the 2020 Low Summertime CAPE case from

the UFS Case Studies Catalog (Sun et al., 2021). The figure also illustrates the CCPP capability to output diagnostic tendencies

for the contributing physical processes, a critical tool to develop and improve the physical parameterizations in the CCPP.460
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Figure 5. (a) Skew-T Log-P plot for SCM runs with physics suites GFS v16 (GFS_v16) and RRFS v1beta (RRFS_v1beta), initialized at

00 UTC on July 23, 2020, at the Atmospheric Radiation Measurement Southern Great Plain central facility site (36.61degN, 97.49degW)

and valid at forecast hour 15. (b) Tendencies from the GFS v16 physics suite valid at the same time for the different contributing processes

(Pbl: planetary boundary layer, Deepcnv/Shalcnv: deep/shallow convection, MP: microphysics, Lw/Sw: longwave/shortwave radiation, Phys:

all physics tendencies, NonPhys: non-physics tendencies, e. g., dycore/advection).

4.2 Unified Forecast System

The UFS is an example of a complex Earth system model that calls CCPP from the atmospheric model through the host

model cap and optionally from within the Finite-Volume Cubed-Sphere (FV3) dynamical core. Since in the UFS the dynamics

timestep is shorter than the general physics timestep, we refer to the physics called from the dynamical core as tightly coupled

or fast physics, as opposed to the traditional or slow physics that are called through the atmospheric host model. The fast465

physics currently consist of a single scheme, the saturation adjustment step for the GFDL cloud microphysics (Zhou et al.,

2019). The UFS uses the capability to call individual groups of physics from the SDF to implement the slow and fast physics

and perform other operations between the calls to radiation, stochastic physics and the remaining slow physics. The schematic

diagram of the UFS in Figure 6 illustrates this complexity. The UFS also uses blocked data structures to execute the time

integration (run) phase in parallel using multiple OpenMP threads. Listing 7 in the Appendix contains an abstraction of the470

host model cap in the UFS, called CCPP_driver.F90, which is notably more complicated than the simple host model cap

for the CCPP SCM (Listing 6).

Recently, the capability to call aerosol chemistry parameterizations as part of the physics was added to the UFS (Barnes et al.,

2022). The CCPP Framework has also been connected to the Community Mediator for Earth Prediction System (CMEPS; Earth
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Figure 6. Schematic representation of the integration of CCPP in the UFS.

System Community Modeling Portal, 2022b) to enable the computation of thermodynamic fluxes between the atmosphere and475

the underlying ocean and sea ice using a predefined grid to exchange information among the various component models (U.

Turuncoglu, NCAR, priv. comm.). Both developments were recently merged into the official code repository and are omitted

in Figure 6.

The CCPP has been included as a subcomponent of all UFS public releases thus far, with the most recent one being the

UFS SRW App v2 (UFS Community, 2022). The SRW App is a UFS configuration intended for research and operational480

applications on temporal scales of hours to a few days. The SRW App v2 supports simulations with four physics suites, which

invoke a total of 21 CCPP schemes. One of the suites is a baseline configuration representing the physics used in the currently

operational GFS v16, while the other three suites represent physics permutations with potential for inclusion in the upcoming

operational implementation of the RRFS v1beta, a multi-physics convection-allowing ensemble, at NOAA. To illustrate the

use of CCPP in the UFS SRW App over the contiguous United States, Figure 7 shows precipitation forecasts produced with the485

GFS v16 suite (which invokes a microphysics parameterization with saturation adjustment called from the dynamical core) and

the RRFS v1beta suite, which involves a different microphysics scheme that does not have a tightly coupled component in the

dynamical core. The two forecasts have notable similarities, as both indicate severe thunderstorms with associated damaging
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Figure 7. UFS SRW App v2 3-km forecasts of 24-h accumulated precipitation (kgm−2 =mm) initialized at 00 UTC on June 15, 2019, and

valid at 00 UTC on June 16, 2019, created with the a) GFS v16 suite and b) RRFS v1beta suite. The difference between the two forecasts is

shown in panel c).

winds, large hail, and heavy rainfall developing across portions of Iowa, Missouri, and Illinois in the evening of June 15.

However, the location of heavy rainfall differs between the forecasts. The ability of the CCPP-enabled UFS to readily use490

multiple suites to create diverse forecasts enables experimentation for investigative research and for ensemble forecasting.

5 Discussion and Outlook

The CCPP Framework and Physics are designed to increase the interoperability of physical parameterizations and host mod-

eling systems. The system relies on standardization, metadata information, clear documentation, and constraints on the format

of the Fortran source code to automatically generate the interfaces that connect the parameterizations and the host model.495

The simple yet clear metadata standard builds on established efforts such as the CF metadata conventions and the UDUNITS

package. The need to define metadata, follow coding standards and provide clear documentation are additional efforts that

developers of parameterizations and host models have to make compared to traditional, hard-coded physics drivers. However,

the ability to add new parameterizations, transfer them between models and connect them with other parameterizations without
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having to rewrite the code or make assumptions on units or dimensions outweighs the costs. The CCPP is also computationally500

performant: While traditional physics drivers contain a lot of code branching to switch between different parameterizations of

one type, the auto-generated physics suite caps benefit from knowing at compile time which parameterizations are called and

in which order, and therefore require no code branching.

Modern NWP systems have vastly different technical requirements and use different ways to call physical parameterizations,

such as time-split versus process-split steps, where in the former a scheme updates a state before the next scheme is called,505

and in the latter multiple schemes operate on the same state before the combined tendencies are applied to update the state.

The CCPP Framework currently has no explicit support for time-step (sequential) versus process-split (parallel) execution.

However, both host models presented in Section 4 make use of time-split and process-split physics. This is realized such

that time-split schemes ingest a model state (in the form of several state variables), which they update in place. Process-split

schemes ingest an input state and tendencies, and return updated tendencies. Work is underway to provide full support for510

time-split and process-split schemes.

The ability of the CCPP Framework to call schemes multiple times using subcycling and to call groups of schemes from

different places in the model allows host models to use implicit solvers other higher-accuracy methods, with one example

being to call the saturation adjustment for the GFDL microphysics scheme directly from the FV3 dynamical core within the

fast, acoustic loop. The grouping of schemes also allows host models to implement super-parameterizations (Randall et al.,515

2013), i. e. the ability to call selected schemes with a higher-resolution grid than others, or piggybacking methods, i. e. “to run

a single simulation applying two microphysical schemes, the first scheme driving the simulation and the second piggybacking

this simulated flow” (Sarkadi et al., 2022).

Since its inception in 2017, the CCPP has been integrated into several modeling systems: CCPP-SCM, UFS, the Navy’s

next-generation NEPTUNE model, NCAR’s MUSICA infrastructure for chemistry and aerosols, and recently also in exper-520

imental mode in NASA’s Goddard Earth Observing System (GEOS; B. Putman, NASA, priv. comm.). The CCPP Physics

has received contributions from the wider community and contains more than 30 parameterizations of physical processes. A

multi-institutional CCPP Physics code management committee has been established to provide governance and guidance on

developing, testing and integrating of new parameterizations. The CCPP Framework development, which until now has been

concentrated on a small group of developers from DTC with input from several NCAR and NOAA laboratories, is being broad-525

ened. To further enhance the capabilities of the CCPP Framework and enable its use in additional modeling systems, NOAA

and NCAR in 2019 agreed on a joint development effort as part of a wider Memorandum of Agreement on common infras-

tructure elements of Earth modeling systems (UCAR-NCAR et al., 2019). As part of this effort, work is underway to make

the NCAR flagship modeling systems Community Atmosphere Model (CAM; a component of the Community Earth System

Model) and MPAS CCPP-compliant and to extend the CCPP Framework code generator to satisfy the needs of the growing530

number of systems it will support.

While the CCPP has reached maturity and is on track to transition to operational implementations of the UFS at NOAA in

2023, it is crucial to look ahead and identify developments needed to meet future requirements. An important aspect of the

future development of the CCPP is leveraging emerging technologies, such as using hardware accelerators (GPU, FPGA, etc.)
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and modern processor vectorization capabilities (see Zhang et al., 2020, for an example). As physical parameterizations are535

augmented to run efficiently on such systems, the CCPP Framework must support these developments in the auto-generated

caps by reducing the data movement and transforming the data to benefit from the increased parallelism and vector processing.

Scientific innovations, such as machine learning and the move towards three-dimensional physical parameterizations, also need

to be considered in future development. Machine learning and artificial intelligence are promising candidates for improving

the accuracy of parameterizations and/or significantly reducing the computational costs (see Irrgang et al., 2021, for a review).540

These technologies make heavy use of Python libraries such as scikit-learn, which aligns well with the fact that the CCPP

Framework code generator is written entirely in Python and relies on clearly defined metadata and standardized interfaces. The

use of Python in the CCPP Framework is also compatible with efforts to provide simpler, domain-specific interfaces to the

complex codes used in Earth system models (McGibbon et al., 2021).

Unlike the CCPP Physics, the CCPP Framework to date has received few contributions from the community. This is expected545

to change as CCPP is implemented in more host modeling systems for research and operations, and has additional public

releases. Because the Framework automatically generates the interfaces between the physical parameterizations and the host

model, is written in Python, and builds on a clearly defined metadata standard, there are ample opportunities for improvements

and new capabilities. Examples are tools that depict the flow of a variable through a physics suite (recently developed at DTC),

improved diagnostic capabilities, automated saving of restart information, and many more. For both the Framework and the550

Physics, the CCPP developers welcome contributions from the community via the open source development repository hosted

on GitHub (https://github.com/NCAR/ccpp-framework and https://github.com/NCAR/ccpp-physics).

Code availability. The Common Community Physics Package (CCPP) Single Column Model v6.0.0 (with Physics and Framework) (DOI:

10.5281/zenodo.6896438) are available for download as a single .tar.gz file at https://zenodo.org/record/6896438#.Yus5MJPMITs.

The associated technical documentation (DOI: 10.5281/zenodo.6780447 ) is available for download at https://zenodo.org/record/6780447#555

.Yus6IpPMITs. The releases are also available for download from the the NCAR GitHub repositories ccpp-scm, ccpp-framework,

ccpp-physics, ccpp-doc as tags v6.0.0. A recursive clone of the CCPP SCM repository (git clone -b v6.0.0 -recursive

https://github.com/ncar/ccpp-scm) will download the SCM, the Framework and the Physics. The technical documentation

must be cloned separately (git clone -b v6.0.0 https://github.com/ncar/ccpp-doc). All downloads, documentation

and supporting information are also available at https://dtcenter.org/community-code/common-community-physics-package-ccpp.560

Copyright 2022, NOAA, UCAR/NCAR, CU/CIRES, CSU/CIRA. Licensed under the Apache License, Version 2.0 (the “License”). You

may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0. Unless required by applicable law or agreed to in writing,

software distributed under the License is distributed on an “AS IS” BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND,

either express or implied. See the License for the specific language governing permissions and limitations under the License.
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Appendix A: Examples of use – CCPP host model caps565

A1 CCPP Single Column Model

Listing 6: Simplified version of scm/src/scm.F90.

module scm_main

implicit none

contains

subroutine scm_main_sub()

use :: ccpp_types, only : ccpp_t

use :: ccpp_static_api, &

only: ccpp_physics_init, &

ccpp_physics_timestep_init, &

ccpp_physics_timestep_run, &

ccpp_physics_timestep_finalize, &

ccpp_physics_finalize

character(len=256) :: suite_name

type(ccpp_t) :: cdata

! Initialize the CCPP framework ccpp_data variable

cdata%blk_no = 1

cdata%thrd_no = 1

! Set suite name when reading namelist, then initialize physics

call ccpp_physics_init(cdata, suite_name=trim(suite_name), ierr=ierr)

do i = 1, n_timesteps

call ccpp_physics_timestep_init(cdata, suite_name=suite_name, ierr=ierr)

call ccpp_physics_run(cdata, suite_name=suite_name, ierr=ierr)

call ccpp_physics_timestep_finalize(cdata, suite_name=suite_name, ierr=ierr)

end do

call ccpp_physics_finalize(cdata, suite_name=trim(suite_name), ierr=ierr)

end subroutine scm_main_sub

end module scm_main
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A2 Unified Forecast System

Listing 7: Simplified version of FV3/ccpp/driver/CCPP_driver.F90.

module CCPP_driver

use ccpp_types, only: ccpp_t

use ccpp_static_api, only: ccpp_physics_init, &

ccpp_physics_timestep_init, &

ccpp_physics_run, &

ccpp_physics_timestep_finalize, &

ccpp_physics_finalize

use GFS_data, only: GFS_control

implicit none

type(ccpp_t), target :: cdata_d

type(ccpp_t), dimension(:,:), allocatable, target :: cdata_b

! ccpp_suite is set during the namelist read by the host model

character(len=256) :: ccpp_suite

integer :: nthreads

public CCPP_step

contains

subroutine CCPP_step(step, nblks, ierr)

character(len=*), intent(in) :: step

integer, intent(in) :: nblks

integer, intent(out) :: ierr

! Local variables

integer :: nb, nt

integer :: ierr2

ierr = 0

...
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Listing 7 (continued).

...

if (trim(step)=="init") then

! Get and set number of OpenMP threads (module

! variable) that are available to run physics

nthreads = omp_get_max_threads()

! For physics running over the entire domain,

! block and thread number are not used

cdata_d%blk_no = 1

cdata_d%thrd_no = 1

! Allocate cdata structures for blocks and threads

allocate(cdata_b(1:nblks,1:nthreads))

! Assign the correct block and thread numbers

do nt=1,nthreads

do nb=1,nblks

cdata_b(nb,nt)%blk_no = nb

cdata_b(nb,nt)%thrd_no = nt

end do

end do

else if (trim(step)=="physics_init") then

! Since the physics init step is independent

! of the blocking structure, use cdata_d.

! Since we don't use threading in the host,

! we can allow threading inside the physics.

GFS_control%nthreads = nthreads

call ccpp_physics_init(cdata_d, suite_name=trim(ccpp_suite), ierr=ierr)

else if (trim(step)=="timestep_init") then

GFS_control%nthreads = nthreads

call ccpp_physics_timestep_init(cdata_d, suite_name=trim(ccpp_suite), ierr=ierr)

...
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Listing 7 (continued).

...

else if (trim(step)=="radiation" .or. &

trim(step)=="physics" .or. &

trim(step)=="stochastics") then

! Set number of threads available to physics schemes

! to one, because threads are used for blocking

GFS_control%nthreads = 1

!$OMP parallel num_threads (nthreads) reduction (+:ierr)

nt = omp_get_thread_num()+1

!$OMP do schedule (dynamic,1)

do nb = 1,nblks

call ccpp_physics_run(cdata_b(nb,nt), suite_name=trim(ccpp_suite), &

group_name=trim(step), ierr=ierr2)

ierr = ierr + ierr2

end do

!$OMP end do

!$OMP end parallel

else if (trim(step)=="timestep_finalize") then

GFS_control%nthreads = nthreads

call ccpp_physics_timestep_finalize(cdata_d, suite_name=trim(ccpp_suite), ierr=ierr)

else if (trim(step)=="physics_finalize") then

GFS_control%nthreads = nthreads

call ccpp_physics_finalize(cdata_d, suite_name=trim(ccpp_suite), ierr=ierr)

else if (trim(step)=="finalize") then

deallocate(cdata_b)

end if

end subroutine CCPP_step

end module CCPP_driver
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