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Answers to Editor

The authors thank the editor for reminding us of the rules and restrictions about colored text in
the manuscript, as well as about checking our Figures 5 and 7 using the Coblis — Color
Blindness Simulator.

N

We removed the syntax highlighting (i.e.colors) from all listings.

2. We checked both figures using the color blindness simulator (and visually, as the first
author is himself color blind). We made revisions to Figure 5, both panels, to aid
readability, but concluded that no changes were needed for Figure 7. The colors in
Figure 7 have no actual meaning, they only separate the building blocks of an earth
system model into categories. Even when selecting the most extreme monochromatic
filters, the building blocks are still distinguishable.



Answers to Reviewer 1

The authors thank the reviewer for their careful and detailed review of our manuscript. We have
provided answers to their eight comments or questions below and partially also in the revised
manuscript (see below for details).

1.

About the motivations for developing the CCPP Framework.

Many state-of-the-art NWP models, such as the NOAA operational Global Forecast
System (GFS), the NCAR Weather Research and Forecast (WRF), and the NCAR
Model for Prediction Across Scales (MPAS) rely on a physics driver to call the
parameterizations. These drivers use conditional statements to make decisions about
which primary parameterizations should be invoked at runtime based on user-specified
options. The problem with these drivers is that they comprise hundreds, if not thousands,
lines of code because of all the variables that need to be pre- and post-processed
around the parameterizations. This approach compromises computational extensibility
(because adding new parameterizations means making the driver even longer),
computational efficiency (because compiler optimization is hindered by all the possible
runtime permutations) and ease-of-use (because code inspection is hindered by the
many paths and branches on the code). Since the host models that use CCPP do not
need a physics driver, they avoid these shortcomings.

Another problem with models having their own physics driver and parameterizations is
that it is not straightforward for users and developers to unambiguously identify the
quantities that are passed in and/or out of the parameterizations. Through the use of
metadata to describe these quantities, along with the requirement that variables be
passed via the argument list, CCPP-compliant host models and parameterizations
expose these quantities, leading to transparency and ease-of-use. Additionally, the use
of metadata for the variables communicated between host model and parameterizations,
along with adherence to the modified Kalnay rules (Doyle et al., 2020), foster
interoperability. This opens the door to the previously-absent ability to streamline
parameterization development for use in multiple host models, reducing the need for
developers to maintain separate code bases for different host models.

To provide additional motivation for the development of the CCPP Framework, the
following text was added to Section 1 (Introduction):

“Many current NWP models, such as the GFS and the NCAR Model for Prediction
Across Scales (MPAS), rely on physics drivers to to call parameterizations embedded in
the host model code base. This lack of separation of concerns between host and physics
compromises computational extensibility (because adding new parameterizations makes
long drivers even longer), computational performance (because compiler optimization is
hindered by all the possible runtime permutations), and ease-of-use (because code
inspection is made difficult by the many paths and branches on the code). Additionally,



this approach does not empower parameterization developers to simplify the
development workflow by using the same code base in various host models.”

. About the motivations for the design and implementation of the CCPP Framework.

The reviewer is correct with the assessment stated in the first paragraph of their
Comment 2, including the section about the shared memory space between the host
model and the CCPP physics. The present manuscript is a presentation of the CCPP
Framework, which falls into the category of “Model description papers” in GMD
(https://www.geoscientific-model-development.net/about/manuscript_types.html#item),
and not a discussion or evaluation of different possible methods. We will therefore keep
our answers to this question mostly limited to this document.

It is true that alternatives exist to the approach chosen, each with its pros and cons. The
design of the CCPP Framework has undergone several changes and optimizations
throughout its development phase until it reached the current state as presented in the
paper. The current CCPP Framework consists of a Python code generator that relies on
metadata supplied in addition to the (host model or CCPP physics) code. The code
generator produces static Fortran interfaces that connect the host model to the physics
in a preprocessing step before the code gets compiled, for one or more CCPP suites
(combinations of CCPP-compliant physical parameterizations) at a time. The
auto-generated code gets compiled together with the host model code to produce a
static executable (at least w.r.t. CCPP Framework and Physics).

The initial version of the CCPP Framework used a different approach, as the reviewer
also referred to in his Comment 5: Compliant physics schemes were compiled into a
dynamic library that was linked to the executable at compile time. This solution offered
complete runtime control over which physics schemes to call. This is in contrast to the
final approach taken that requires specifying one or more suites at compile time, making
them available to choose at runtime. The main disadvantages of the dynamic/dll
approach were that the host model (usually in Fortran) was calling C functions with
arguments (names of schemes to run), which the C functions would convert into d11oad
commands from the dynamic library. As a result, arguments were passed by reference
(location in memory) from Fortran to C space to Fortran space. Besides the poor
computational performance of this approach, it led to the inability to infer from reading
the code what actually happens at runtime (something that model developers, especially
Fortran developers are highly used to and require), and valuable tools like debuggers or
compiler checks (especially debug flags) couldn’t be used. Further, operational
requirements from NOAA did (and still do) require static executables for portability and
debugging of crashes in operations. Many operational centers also use Cray machines
as their production or research high performance computing systems, and Cray
traditionally prefers static linking over dynamic linking. The current design of the CCPP
Framework enables better compiler optimizations, compiler checks, debugging, “reading’
the final code that gets compiled into the executable, and static linking. It also delivers
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the necessary performance for operations and presents a compromise between flexibility
and performance by making multiple suites available at runtime.

The reviewer also mentions alternative approaches such as native Fortran code files,
and describes the need to create consistent metadata as a drawback of the current
solution. It is correct that writing metadata and keeping it consistent with the Fortran
code is an additional step, as is the need to parse it with Python and generate static
interfaces prior to compiling the model. However, the benefits of this approach are
ample: The CCPP developers have full control over the metadata standard and format
and can adjust or extend it as required. Python is also incredibly powerful in parsing
these metadata files and generating code or other useful information from it. It is much
more difficult to encode and parse arbitrary metadata in Fortran (or C, C++). The Python
code generator, as well as the static compilation, are able to catch nearly all possible
inconsistencies between the metadata and the Fortran code. It further gives us the
opportunity to perform automatic unit conversions (implemented), array transformations
(planned), dimension/out-of-bounds/allocation checks (implemented), and it allows us to
generate diagnostic tools such as visualizations of how a given variable traverses
through a suite (recently developed), to name a few. Last but not least, one of the most
powerful yet not utilized features of the current CCPP Framework is that it is
language-agnostic and can, after adding the necessary templates to the Python code
generator, produce interfaces between host model and physics code in another
language (e.g. C), or interfaces between mixed languages (e.g. C host model calling
Fortran physics), and it can be augmented to add preprocessor directives (e.g.
OpenMP/OpenACC pragmas) to the auto-generated code.

We added the following information to the manuscript at the end of Section 2 (Design) to
provide a bit more background to the reader:

“... However, this was considered as an advantage of the current CCPP Framework over
alternative approaches that rely on native Fortran code files for declaring variables and

types.

It should be noted that an early version of the CCPP Framework used a different
approach. All available compliant physics schemes were compiled into a dynamic library
that was linked to the executable at build time, without specifying an SDF. The SDF was
parsed at runtime, and the schemes were called in the order specified in the SDF using
a Fortran-C-Fortran interface, in which the C layer dynamically loaded (d11oad) the
scheme from the Fortran physics library. This dynamic approach had many
disadvantages, for example that arguments were passed by reference from Fortran to C
to Fortran space. Besides the poor computational performance, this approach made it
much more difficult to debug the code, since developers were not able to “read” the code
that gets executed at runtime, and since important tools like debuggers were not able to
detect errors. Further, NOAA operations as of today still require static executables for
portability and debugging of crashes in production. The current design of the CCPP



Framework enables compiler optimizations, compiler checks, debugging, “reading” the
final code that gets compiled into the executable, static linking, delivers the necessary
performance for operations, and presents a compromise between flexibility and
performance by generating multiple suites at the same time.”

. About Fortran common blocks and sharing of data between schemes.

We added the following text to the manuscript in Subsection 3.3 (CCPP-compliant
schemes):

“The restriction on Fortran common blocks has several reasons. First, a scheme must not
share its data (variables, constants, types) with other schemes, and common blocks not
only allow this, but also make it difficult to detect violations of this requirement. Not
sharing data with other schemes is to ensure that each scheme is self-contained, and at
the same time guarantee that all schemes use a consistent set of physical constants
defined by the host model. Second, the requirement for CCPP schemes to be Fortran
modules following modern programming standards essentially forbids using old Fortran
77 constructs such as common blocks. Third, Fortran common blocks are inherently
dangerous, because they permit the declaration of the same block differently in different
procedures and evade proper type checking.”

. About Figure 2 and Listing 1.

The motivation for the capability to combine blocked data structures into contiguous
arrays is given in the original manuscript in Section 3.2 (CCPP Phases), first paragraph:

“With exception of the time integration (run) phase, blocked data structures must be
combined into contiguous data such that a physics scheme has access to all data that
an MPI task owns. The need to have access to all data and the limitations on OpenMP
threading described in the previous section are a result of potential file Input/Output (1/0)
operations, computations of statistics such as minimum values of a variable,
interpolation of lookup table data (e.g., ozone concentration from climatology), and
global communication during those phases.”

We added the following text to the beginning of the next paragraph to provide a short
motivation as to why host models may make use of blocked/chunked data structures in
the time integration (run) phase.:

“For better computational performance, NWP models often make use of parallel
execution of the physics using multiple threads, in which each thread operates on a
subset of the data owned by an MPI task. The exact implementation is model-dependent
and can range from passing different start and end indices of a contiguous array to
splitting up contiguous arrays into separate blocks. To support the latter case, ...”



CCPP does not impose any restriction on the parallel decomposition of the model or on
the distribution of data into separate blocks. Since the physics in CCPP are by definition
one-dimensional, i.e. treat each vertical column independently of its neighbors, it is
irrelevant if the contiguous (or chunked) data matches the horizontal grid. CCPP Physics
that operate on independent vertical columns are therefore compatible with irregular
meshes, as it is the case in the NCAR Model for Prediction Across Scales (MPAS), for
example.

. About the dynamically linked library (DLL).

This comment is addressed in this document (and in the manuscript) as part of
Comment 2 above.

Recursive CCPP

We have so far not encountered the need for recursion in CCPP schemes, and we
cannot think of any use case for it. However, there are no restrictions in the CCPP rules
that would forbid such a usage. One could, with the appropriate set up of the build
system, create a CCPP scheme that is called by a host model and that in turn calls other
CCPP schemes (using its own suite definition file). Under the current rules for variable
metadata attributes, this would require creating two metadata tables for the scheme, one
for its role as a scheme, and one for its role as a “host model”. If the need for such
recursion ever arises, one could consider modifying/extending the metadata rules such
that separate those tables could be combined into one.

Incremental use of CCPP in a model.

Absolutely, yes. We made extensive use of this method when we implemented CCPP in
the Unified Forecast System (UFS), which is mentioned in Section 4.2 of the manuscript.
Termed “hybrid CCPP” at that time, we added calls to CCPP physics inside the existing
physics driver files for schemes that had been ported to CCPP. With more and more
schemes becoming available, the Suite Definition File grew longer and the number of
schemes called in a traditional way became shorter. What is more, with the appropriate
preprocessor (CPP) macros we used this “hybrid CCPP” approach to toggle between the
CCPP and non-CCPP versions of one or more schemes to ensure that our CCPP
implementation was bit-for-bit identical with the original, physics-driver based model.

. About sharing the same schemes among different models.

Today there are three host models sharing CCPP-compliant parameterizations (UFS,
CCPP SCM, and NEPTUNE) and work is in progress to adopt CCPP as a component of
various NCAR models. Therefore, it is demonstrated that CCPP allows sharing
parameterizations among various hosts.



When a host model uses the CCPP, it is straightforward to connect it to primary
parameterizations used by other CCPP-compliant hosts. The first step is to examine
which quantities are passed in and/or out of the parameterization (this information can
be found in the metadata associated with that scheme). The next step is to identify which
of those quantities are already present in the host model and, if not yet present, create
metadata for them. Quantities that are not present in the host model need to be derived
from existing variables either in the host model itself or in interstitial schemes called
before the primary parameterization. The process to connect a CCPP-compliant host
model to new parameterizations is described in Chapter 9 of the CCPP Technical
Documentation. This how-to information will not be included in the manuscript to avoid
excessive detail.

Sometimes the desired quantity exists in the host model but its array has a different
dimension than the parameterization expects. In the future, it is expected that the CCPP
Framework will be able to identify these discrepancies and automatically transform
existing arrays to the expected dimensions, much like how it currently converts units
between what a host provides and what a parameterization expects. Until this capability
is implemented, it is necessary to manually write a host model cap or interstitial scheme
to transform the necessary arrays before entering and after returning from the physical
parameterization. This information is now included in the second paragraph of Section
3.5.4: Currently, a manually written host model cap or interstitial scheme is required to
transform all arrays before entering and after returning from the physical
parameterization. Work is underway to implement automatic array transformations in a
future version of the CCPP Framework.



Answers to Reviewer 2

The authors thank the reviewer for their careful and detailed review of our manuscript. We have
provided answers to their general remarks and three specific comments or questions below and
partially also in the revised manuscript (see below for details).

1.

General comment on purpose and scope of the paper.

The present manuscript is a presentation of the CCPP Framework and falls into the
category of “Model description papers” in GMD

(https://www.geoscientific-model-development.net/about/manuscript_types.html#item).
GMD characterizes “Model description papers” as follows:

“Model description papers are comprehensive descriptions of numerical models which
fall within the scope of GMD. The papers should be detailed, complete, rigorous, and
accessible to a wide community of geoscientists. In addition to complete models, this
type of paper may also describe model components and modules, as well as frameworks
and utility tools used to build practical modelling systems, such as coupling frameworks
or other software toolboxes with a geoscientific application. The GMD definition of a
numerical model is generous, including statistical models, models derived from data
(whether model output or observational data), spreadsheet-based models, box models,
1-dimensional models, through to multi-dimension mechanistic models.”

GMD further explains that “The publication should consist of three parts: the main
paper, a user manual, and the source code, ideally supported by some summary
outputs from test case simulations.” The present manuscript is the main paper, and a
comprehensive user manual and source code have been published beforehand and
are referenced in the manuscript. We also provide examples for the application of
the CCPP in two different host models in Section 4. We therefore believe that the
manuscript fits the requirements for a “Model description paper” in GMD. In addition,
the answers to the comments of reviewer 1 above, as well as the answers to this
reviewer’'s comments below and in the revised manuscript do provide more
background to the reader.

Scientific aspects.

The reviewer combines many interesting questions into one paragraph regarding the
flexibility of the CCPP Framework, which we try to group and answer in the following.

- Sequential/parallel attitude. The current CCPP Framework has no explicit support for
time-step (sequential) versus process-split (parallel) execution of physical
parameterizations. However, the physics in use by both host models presented in the
manuscript in Section 4 (Unified Forecast System UFS and CCPP SCM) contain both
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time-split and process-split physics. The way this is realized in the current CCPP
Framework is that time-split schemes ingest a model state in the form of several state
variables, which they update in place. Process-split schemes ingest an input state and
tendencies, and return updated tendencies. Work is underway to provide full support for
time-split and process-split schemes, which requires extending the syntax of Suite
Definition Files, updating the metadata standard, and augmenting the code generator to
intercept state updates or translate tendencies into state updates as required.

- Order of schemes. Changing the order of schemes in CCPP is possible, as long as the
physical parameterizations and in particular the interstitial schemes are written in a way
that does not make assumptions of what is being called when. One real-world example
from the UFS is that some of its suites call longwave radiation before shortwave
radiation, whereas others call shortwave radiation first. Another, related example is the
ability to remove the deep convection scheme from a Suite Definition File when running
the model at a sufficiently high resolution.

- Inter-timestep history/implicit use/... The following set of questions all refer to the
capability of calling CCPP schemes multiple times using subcycling and to call groups of
schemes from different places in the model, as described in the manuscript. These two
features allow the host model to perform the operations described by the reviewer. A
real-world example is the implementation of the “fast physics” in the UFS, i.e. the call to
the saturation adjustment for the NOAA-GFDL microphysics directly from the FV3
dynamical core within the acoustic loop. Likewise, implicit methods in the host model can
be realized by calling the same CCPP group (which can be a group of one scheme) with
the appropriate input state and timestep arguments. Within a particular scheme, it is the
decision of the scheme developer which time integration to use for the scheme.
Regarding inter-timestep history, it is possible to average physical processes over
certain time ranges, but it would not follow the Lagrangian path to maintain the best
spatial and temporal consistency.

- Super-parameterizations. In the current CCPP framework there is no explicit,
formalized support for super-parameterizations. A host model that uses
super-parameterization for a particular process/scheme needs to place this scheme into
a separate group in the Suite Definition File and call this group separately after making
the necessary modifications on the host model side (i.e. defining the higher resolution
grid, updating the high-res state from the input state). After returning from the scheme,
the host model must aggregate the updated state/apply the tendencies to the
lower-resolution grid. Another possibility is that a CCPP scheme itself takes care of
these steps, given a center coordinate and horizontal size of the grid column. The latter
approach has its limitations, since the scheme has no information on the layout of the
horizontal mesh and possibly no higher-resolution information (e.g. topography).

We added the following paragraph to Section 5 (Discussion and Outlook):
“Modern NWP systems have vastly different technical requirements and use different



ways to call physical parameterizations, such as time-split versus process-split steps,
where in the former a scheme updates a state before the next scheme is called, and in
the latter multiple schemes operate on the same state before the combined tendencies
are applied to update the state. The CCPP Framework currently has no explicit support
for time-step (sequential) versus process-split (parallel) execution. However, both host
models presented in Section 4 make use of time-split and process-split physics. This is
realized such that time-split schemes ingest a model state (in the form of several state
variables), which they update in place. Process-split schemes ingest an input state and
tendencies, and return updated tendencies. Work is underway to provide full support for
time-split and process-split schemes.

The ability of the CCPP Framework to call schemes multiple times using subcycling and
to call groups of schemes from different places in the model allows host models to use
implicit solvers or other higher-accuracy methods, with one example being to call the
saturation adjustment for the GFDL microphysics scheme directly from the FV3
dynamical core within the fast, acoustic loop. The grouping of schemes also allows host
models to implement super-parameterizations (Randall et al., 2013), i.e. the ability to call
selected schemes with a higher-resolution grid than others, and piggybacking methods,
i.e. “to run a single simulation applying two microphysical schemes, the first scheme
driving the simulation and the second piggybacking this simulated flow” (Sarkadi et al.,
2022).”

Technical questions, data storage/transfer between host model and CCPP

It is a misunderstanding that CCPP always copies data before calling physics. The
mechanism shown in Listing 1 is applied only if absolutely necessary, as in this example
when combining blocked, non-contiguous data into contiguous arrays. We added the
following text to the caption of Listing 1, which answers the latter half of Comment 2.

“Note that data copy operations are only applied if absolutely necessary, as it is the case
for converting blocked data into contiguous arrays, otherwise the host model variables
are passed to the CCPP schemes directly.”

Regarding the first half of Comment 2, it is correct that the current preferred storage
model for CCPP schemes is targeted towards applications on CPUs rather than GPUs.
However, the CCPP developers are fully aware of the move to GPUs in the NWP world
and have therefore designed a mechanism to automatically transform arrays if the order
of the dimensions doesn’t match. This method has not been implemented yet, but will
become available in a future version of the CCPP Framework. Note that Section 3.5.4 in
the original manuscript already mentioned that the current implementation does not
support automatic array transformations.



