Abstract

The hydroxyl radical (OH) is the main oxidant responsible for the removal of many reduced trace gases and the formation of secondary air pollutants. However, due to technical difficulties in measuring OH, the existing measurements of atmospheric OH concentrations are limited, and its sources and sinks are not well understood under low NOx conditions. In this study, we observed the OH concentrations using chemical ionization mass spectrometry at a coastal site in Hong Kong from October to November 2020. The average noontime OH concentration over the study period was measured at $4.9 \pm 2.1 \times 10^6 \text{ cm}^{-3}$.

We found that a box model with comprehensive observational constraints reproduced the observed daytime OH concentrations when air parcels originated from the continental regions. However, this model overpredicted the observed daytime OH concentrations for coastal air parcels by 73% on average. Missing OH reactivity is proposed to be the cause of this overprediction. High missing OH reactivity was found in the case of low concentrations of nitrogen oxides (NOx) and volatile organic compounds, as well as in aged air, suggesting that there could be unmeasured chemical species that cause the model to overestimate OH in aged coastal air parcels. Further studies are needed to identify these unmeasured chemical species and their contributions to the OH budget, in order to better quantify the formation of OH.
secondary air pollutants.

1. Introduction

The hydroxyl radical (OH) dominate atmospheric oxidative capacity and participates in nearly all sunlit tropospheric chemistry. The primary sources of the ambient OH radical include the photolysis of ozone (O$_3$) and nitrous acid (HONO) and the ozonolysis of alkenes. OH sinks are mainly the reactions of OH with trace gases, including carbon monoxide (CO), sulfur dioxide (SO$_2$), nitric oxide (NO), nitrogen dioxide (NO$_2$), methane, and other volatile organic compounds (VOCs; Fuchs et al., 2018). Heterogeneous uptake of OH represents very minor OH sinks (Ivanov et al., 1996). In reactions with CO and VOCs, peroxy radicals (HO$_2$ and RO$_2$) are produced and then recycled back into OH in the presence of NO as a secondary OH source. This interconversion is closely related to photochemical smog production (Stone et al., 2012). The reaction of OH with SO$_2$ and NO$_2$ produces H$_2$SO$_4$ and HNO$_3$, contributing to new particle formation and the acidity of rain, fog, and aerosols. OH also plays an important role in the climate system through reactions with the greenhouse gas CH$_4$ and the sulfate aerosol precursor dimethyl sulfide (DMS)(Berresheim, 2002).

Measuring ambient OH is challenging due to its high reactivity, short lifetime (< 1 s), and low environmental concentration (Stone et al., 2012). After decades of efforts, tropospheric OH radicals can now be detected following the development of laser-induced fluorescence (LIF)–fluorescence assay with gas expansion (Hard et al., 1984), chemical ionization mass spectrometry (CIMS; Eisele et al., 1991), and open-path differential optical absorption spectrometry (Hausmann et al., 1997). The theory, advantages, and disadvantages of various measuring techniques have been discussed previously (Hard et al., 1979; Mao et al., 2012). Using these techniques, multiple campaigns have been conducted to measure the atmospheric OH concentrations in different regions around the globe. Figure 1 summarises the previous field observations of OH radicals in various environments.

OH observations are often compared with model simulations to evaluate whether a model has included the major OH sources and sinks. A summary of the results of the most recent studies is shown in Table 1 with the simulation to observation ratios (R_{SO}). As concluded in previous reviews (Stone et al., 2012;
Rohrer et al., 2014; Lu et al., 2019a), observed OH concentrations can generally be reproduced by box models under high NO conditions (NO > 1 ppb), such as at urban sites or within polluted air masses (Shirley et al., 2006; Griffith et al., 2016; Slater et al., 2020). However, discrepancies between model predictions and observations have often been found under low NO conditions (NO < 1 ppb). The model typically overpredicts OH concentrations in a low VOC environment and underpredicts them in a high biogenic VOC (BVOC) environment, as discussed below.

The model overestimation of OH has been found in various environments, including remote marine boundary layers and coastal, urban, and Arctic regions (Table 1). Previous studies have attributed the discrepancy to the overestimation of OH sources, missing OH sinks, and the uncertainties inherent in model simulation and observation. For example, model overestimation of OH has been found when dominant sources, such as HCHO and NO (Zhang et al., 2006), HONO (Kukui et al., 2014), and HO2 (Kanaya et al., 2007a), are overestimated. In these cases, the overestimation of OH was resolved when these sources were better constrained in the model. Unmeasured VOCs have been proposed as the missing OH sinks, especially in aged air (McKeen et al., 1997; Carslaw et al., 1999; Berresheim, 2002; Creasey et al., 2003; Mauldin et al., 2010; Griffith et al., 2016). Previous studies have shown evidence of missing OH sinks in the forest (Hansen et al., 2014) and marine (Thames et al., 2020) regions, likely resulting from unmeasured organic compounds in biogenic ((Kaiser et al., 2016)) or oceanic (Thames et al., 2020) emissions and their oxidation products. In relation to potential overestimations caused by simulation and measurement uncertainties, some studies have shown that the overestimations fall within measurement uncertainties (McKeen et al., 1997, Carslaw et al., 1999), while others have suggested a possible sampling loss of OH (Mauldin et al., 2010) or a possible calibration bias due to low relative humidity (Mauldin et al., 2001).

Underestimations of OH by models have mostly been found in forest areas with high BVOC emissions (mostly isoprene) and low NO conditions. These underestimations have usually been attributed to missing OH sources (Tan et al., 2001; Lelieveld et al., 2008; Hofzumahaus et al., 2009; Whalley et al., 2011). To explain the missing sources, a series of new OH regeneration reactions under low NO conditions were proposed based on chamber experiments that investigated the oxidation of isoprene by...
OH. This mechanism, known as the Leuven isoprene mechanism (LIM1; Peeters et al., 2014), includes unimolecular reactions (Peeters et al., 2009; Da Silva, 2010; Fuchs et al., 2013; Novelli et al., 2020) and isomerisation of isoprene and/or its products (Peeters and Müller, 2010; Fuchs et al., 2014). With the adoption of this mechanism, the simulated OH concentration increased by 20–30% in the forest region (Lew et al., 2020). Another breakthrough was the development of a new chemical scavenging technique in LIF instruments that was able to determine the interference to the instrument’s background. Some studies have shown that the interference in LIF instruments can partly explain the previously observed high OH concentrations (Mao et al., 2012; Hens et al., 2014; Novelli et al., 2014a; Feiner et al., 2016; Woodward-Massey et al., 2020). With the adoption of interference scavenging and the LIM1 improved mechanism, measurements using LIF in an Alabama forest (Feiner et al., 2016) and CIMS in Amazon forests (Jeong et al., 2022) agreed with the OH concentration predicted by the model. However, the models in other studies continued to underestimate OH with the improved mechanism (Tan et al., 2019; Lew et al., 2020).

The industrialisation of the Pearl River Delta (PRD) region of south China over the past three decades has been accompanied by high anthropogenic emissions of air pollutants (Lu et al., 2013b), causing elevated concentrations of surface ozone (Wang et al., 2019b) and particulate matter (Yao et al., 2014). Measurements of OH in the PRD region that were taken using LIF at a forested site (Backgarden) indicated missing OH sources at this BVOC-rich site (Hofzumahaus et al., 2009; Lu et al., 2012). More recently, OH concentrations were measured at a suburban site in Shenzhen during autumn 2018 (Wang et al., 2019a; Wang et al., 2021) using a newly developed LIF instrument. The OH concentrations, which had an average value of 5.3×10^6 cm$^{-3}$ around noon, were briefly presented with no comparison to modeled OH.

In the present study, we measured OH concentrations using quadrupole CIMS from October to November 2020 at a background site in Hong Kong. The study aimed to determine the OH concentrations in coastal south China and to investigate whether they could be simulated by a state-of-the-art chemical model under different airflow conditions. We first give a brief description of the site and OH measurement procedure, including the working theory of CIMS, calibration, uncertainties, and
modelling setup. We then present the overall measurement results for different air masses and compare them with those found in previous studies. After this, we simulate OH concentrations using a box model constrained by comprehensive observations and discuss possible reasons for the model–observation discrepancy. Our measurements add to the limited database of ambient OH radical concentrations, while our analysis sheds light on possible missing OH sinks under low NOx conditions.

2. Methodology

2.1 The Hok Tsui Supersite

Our field campaign was conducted at the Cape D’Aguilar (also known as Hok Tsui, HT) Air Quality Supersite, which is operated by the Hong Kong Environmental Protection Department, between October and 24 November 2020. The HT Supersite (22°12’32” N, 114°15’12” E) is a coastal site located at the south-eastern tip of Hong Kong Island. The site is surrounded by ocean, vegetation, and scattered country roads (Figure 2) and is around 15 km away from the nearest urban centre. There is no strong anthropogenic emission source in the surrounding area apart from the ocean-going vessels travelling in nearby waters (Peng et al., 2022). Nonetheless, the site does occasionally receive polluted air masses from mainland China, including masses from the highly urbanised PRD region (Li et al., 2018; Peng et al., 2022).

We measured OH radicals, O3, NOx, CO, HONO, VOCs, oxygenated VOCs (OVOCs), relative humidity, temperature, NO2 photolysis frequency (J_{NO2}), and aerosol size distribution. Table 2 summarises the measurement technique, resolution, and detection limits. The OH-CIMS was housed in an air-conditioned shelter in yard B together with the time-of-flight (ToF)-CIMS and ozone and NOx analysers (Figure 2). J_{NO2} was measured on top of the shelter. The other species and the aerosol size distribution were measured inside the main station building in yard A, which was located around 10 m away from yard B (Figure 2). The backward trajectory was calculated at 1-hour intervals on sampling days at an elevation of 60 m above ground level using the MeteoInfoMap software package (meteothink.org, Wang, 2014; Wang, 2019).
2.2 OH radical measurements
OH radical concentrations were indirectly measured using a custom-built quadrupole CIMS instrument. CIMS was originally developed by Eisele and Tanner (1991) and improved upon in subsequent works (Eisele and Tanner, 1993; Tanner and Eisele, 1995; Tanner et al., 1997). Detailed descriptions of CIMS measurement principles, configuration, optimisation, and calibration have been provided by Pu et al. (2020); here we only give a summary. The details of the technique, such as flow rates, reaction time, and concentrations, are shown in Table 3.

A schematic diagram of our OH-CIMS instrument is shown in Figure 3. The procedure was as follows. First, ambient air was drawn into the stainless steel inlet with a turbulence-reducing scoop by the inlet pump. The central part of the air in the stainless steel inlet was then drawn into the sample inlet, where OH was converted into H$_2$SO$_4$ by adding SO$_2$ to the sample flow. In the sheath flow, the NO$_3^-$ reagent ion cluster was produced by passing an HNO$_3^-$-containing flow through a 210Po ion source. The converted H$_2$SO$_4$ in the sample flow was then reacted with the excess NO$_3^-$ cluster in the sheath flow and converted into an HSO$_4^-$ ion cluster in the ionization chamber. The NO$_3^-$ and HSO$_4^-$ ion clusters further dissociated in the collisional dissociation chamber (CDC), refocused in the ion guide chamber (IGC), and were then detected by the detector in the ion detection chamber (IDC). In this case, HSO$_4^-$ and NO$_3^-$ were detected by the peak intensities at m/z = 97 (S$_{97}$) and m/z = 62 (S$_{62}$). The HSO$_4^-$ ion concentration was determined based on relative signal strength (the S$_{97}$/S$_{62}$ ratio) rather than absolute signal (S$_{97}$; Berresheim et al., 2000).

It should be noted that interference gases, such as ambient H$_2$SO$_4$, Criegee intermediates (Berresheim, 2002; Mauldin et al., 2012; Novelli et al., 2014b), and artificial OH produced by the ion source, also be converted into HSO$_4^-$ and contribute to the signal S$_{97}$. To mitigate such interference, the scavenger gas (C$_3$F$_8$) and N$_2$ were added to the sample flow through electrically operated valves (see the pulsed flow in Figure 3) that automatically switched injection positions every 1 min. When a scavenger gas is added to the front injectors, ambient OH radicals are eliminated by the scavenger instead of reacting with SO$_2$ due to the higher concentration (~100 times) and faster reaction (Dubey et al., 1996) of C$_3$F$_8$ than of SO$_2$ in the sample flow. This allows the background signal (BS$_{97}$) contributed by the interference gases...
to be determined. When a scavenger gas is added to the rear injector, the ambient OH radicals and interference gases react with SO₂ to give the total signal (TS₉⁷). Then, the ambient OH signal can be obtained by subtracting the signal contributed by interference (BS₉⁷) from the total signal (TS₉⁷). The measured OH concentration ([OH]) can be calculated using the following equation (E1):

\[[OH] = \frac{1}{c} \times \frac{TS_{97} - BS_{97}}{S_{64}} \] (E1)

where \(c \) is the calibration factor obtained from calibration that was performed using the calibrator shown in Figure 3. The calibration is based on the production of OH radicals through the photolysis of water vapor by 184.9 nm light in the airflow through the calibrator (E2).

\[H₂O + hν(184.9 \text{ nm}) \rightarrow H + OH \] (E2)

\[H + O₂ + M \rightarrow M + HO₂ \] (E3)

\[[OH] = [H₂O] \times σ_{H₂O} \times Φ \times It \] (E4)

The OH concentration produced by the calibrator is calculated by E4. \(σ_{H₂O} (= 7.22 \times 10^{-20} \text{ cm}^2; \text{Cantrrell et al., 1997}) \) is the photolysis cross-section of water vapor, while \(Φ \) represents the photolysis quantum yield, which is assumed to be 1 (Kürten et al., 2012). The H₂O concentration was calculated using the measured temperature and dew point temperatures of the calibrating air using the ideal gas law. The photon flux (It) was determined using the chemical actinometry method (Kürten et al., 2012). In this study, the It values were measured before and after the field campaign and no significant difference was found. Calibration was carried out at least every two days during the campaign, as well as before and after any changes in settings. The difference in calibration factors was included by the calibration accuracy.

The overall calibration accuracy was estimated at 38%, by calculation that took into account the uncertainty of all of the parameters measured in E4 during the calibration process and the variation in calibration factors during the campaign. The detection limit is approximately \(1.5 \times 10^9 \text{ cm}^{-3} \) (signal-to-noise ratio of 2) in the laboratory. However, due to variation in the concentrations of H₂SO₄ and other interference gases in the ambient air, the detection limit for \textit{in situ} measurement may change along with the ambient conditions and higher than the detection limit in the laboratory. The daytime and nighttime average detection limits in this campaign were 1.0 and \(0.7 \times 10^6 \text{ cm}^{-3} \), respectively.
2.3 Box modelling

The Framework for 0-D Atmospheric Modelling (F0AM) using the Master Chemical Mechanism (MCM) v3.3.1 (Wolfe et al., 2016) was used to simulate OH concentrations. MCM v3.3.1 (http://mcm.leeds.ac.uk/MCM) is a near-explicit chemical mechanism that includes over 17,000 elementary reactions of 6700 primary, secondary, and radical species (Jenkin et al., 2015). The isoprene degradation mechanisms, and in particular the HOx recycling mechanisms, are included in MCM v3.3.1. The MCM mechanism has been used in previous studies to investigate OH chemistry in different environments, including forests (Stone et al., 2011), urban areas (Slater et al., 2020), suburban areas (Tan et al., 2018), and coastal regions (Sommariva et al., 2004). Observational data (shown in Table S1) were used to constrain the model. These data included VOCs, OVOCs, SO2, NOx, CO, O3, HONO, and meteorological parameters (temperature, relative humidity, pressure, and JNO2). The photolysis frequencies for other species were calculated as a function of the solar zenith angle (φ) using E5 and then scaled using observed versus modelled JNO2.

\[f = l \times (\cos \varphi)^m \times e^{-n \times \sec \varphi} \] (E5)

The values of the l, m, and n parameters for photolysis frequency with respect to different species were drawn from Saunders et al. (2003).

In this study, the first-order physical loss process, with a 24-hour lifetime for all species, was included in the model to represent physical processes such as advection, deposition, and dilution (Wolfe et al., 2016; Chen et al., 2022). The physical loss process has a negligible influence on OH simulation because the OH concentrations are controlled by fast in situ chemistry.

The heterogeneous uptake of HO2 by aerosols was included in the model by assuming a pseudo-first-order loss of HO2 (E6–E8; Jacob, 2000):

\[\frac{d[HO_2]}{dt} = -k_{HO_2}[HO_2] \] (E6)

\[k_{HO_2} = \frac{V_{HO_2} \times S_a \times y_{HO_2}}{4} \] (E7)

\[V_{HO_2} = \frac{8RT}{\pi \times MW_{HO_2}} \] (E8)
where \(k_{\text{HO}_2} \) is the first-order loss rate coefficient of \(\text{HO}_2 \) by aerosol uptake, \(\gamma_{\text{HO}_2} \) is the effective \(\text{HO}_2 \) uptake coefficient (= 0.1 for the base model run; Guo et al., 2019), \(V_{\text{HO}_2} \) is the mean molecular velocity of \(\text{HO}_2 \), \(S_a \) is the aerosol surface area concentration measured by scanning mobility particle sizing (SMPS), and \(MW_{\text{HO}_2} \) (= 17 g/mol) is the molecular weight of \(\text{HO}_2 \). We assumed in the model that the products of heterogeneous \(\text{HO}_2 \) loss would not participate in further reactions (Guo et al., 2019).

The observation data were averaged every 10 mins for the model input. Any missing values were calculated assuming linear interpolation. The measured concentrations of NO and \(\text{NO}_2 \) were used to constrain the model, with the NO/\(\text{NO}_2 \) ratio calculated based on the family conversion, as recommended in a previous study (Wolfe et al., 2016; Figure S1). Due to the clean condition of the coastal air, some of the reactive alkenes and long-chain alkanes were below detection limits. For the simulation of those compounds, we used concentrations that were half of the detection limits. The measured VOCs were further divided into those of anthropogenic origin (AVOCs) and biogenic origin (BVOCs). The AVOCs included alkanes (C\textsubscript{2}–C\textsubscript{8}), benzene, and TEXs (toluene, ethylbenzene, and xylenes), which covered the dominant species originating from petroleum gas and industrial solvent evaporation (Tang et al., 2008), while the BVOCs included isoprene, terpene, pinene, and limonene. The majority (> 95%) of the measured OVOCs in this study were C\textsubscript{1}–C\textsubscript{3} aldehydes, ketones, and acids. For each run, a three-day spin-up was performed to create a stable model environment and to avoid the uncertainty of unconstrained species (Carslaw et al., 1999).

3. Results and Discussion

3.1 Overview of observations

Figure 4 shows the time series of observed OH concentrations, along with the concentrations of other trace gases and the meteorological parameters, during the campaign. The weather conditions during the study featured relatively high temperatures, high relative humidity (RH), and strong solar radiation, consistent with previously reported autumn observations at the same site (Li et al., 2018; Peng et al., 2022). The air temperature ranged from 20\(^\circ\)C to 30\(^\circ\)C and RH ranged from 40\% to 96\%. The photolysis frequency of \(\text{NO}_2 (J_{\text{NO}_2}) \) peaked at \(8 \times 10^{-3} \text{ s}^{-1} \) around noon on sunny days but decreased to \(2 \times 10^{-3} \text{ s}^{-1} \) on cloudy days. The observed OH concentrations were mostly above the detection limit during the
daytime but fell closer to the detection limit at night. The OH concentrations showed a distinct diurnal pattern and a positive correlation with J_{NO_2} ($R^2 = 0.67$, Figure S2). The daily maximum OH concentration varied from 2.1×10^6 cm$^{-3}$ on 21 November, accompanying the lowest level of solar radiation, to 15.4×10^6 cm$^{-3}$ on 7 November which was measured during a pollution episode. The pollution episode began on the evening of 6 November and featured a maximum concentration of 174.0 ppb O$_3$, 8.7 ppb NO, 22.7 ppb NO$_2$, 36.5 ppb total VOCs, and 48.1 ppb total OVOCs. The OH concentration peaked the next day (7 Nov). This suggests abundant OH sources and fast radical propagation under high-NO, and high-VOC conditions.

Figure 5 shows the average diurnal profiles of OH and other representative species. On average, the maximum OH concentration was $4.9 \pm 2.1 \times 10^6$ (1σ) cm$^{-3}$. As shown in Table 1, the OH concentrations at our site were comparable to those reported in previous field studies conducted at tropical coastal sites. For example, the reported OH maximum concentration was 4.5×10^6 cm$^{-3}$ in the low-altitude remote tropical troposphere (Brune et al., 2020). In a study conducted in autumn at a suburban site in Shenzhen, approximately 50 km away from our site, an OH diurnal maximum concentration of 5.3×10^6 cm$^{-3}$ was observed (Wang et al., 2021). Figure 5 also shows the average diurnal patterns of the other trace gases measured. The primary precursor of OH, HONO, peaked in the morning at 0.21 ± 0.09 ppb around 7:00 local time (LT), while O$_3$ peaked in the afternoon (70 ± 20 ppb at around 16:00 LT). The average NO and NO$_2$ concentrations reached a maximum of 1.2 ± 1.6 ppb at around 10:00 LT and 4.9 ± 3.2 ppb at around 18:00 LT, respectively. Isoprene showed a diurnal pattern similar to that of J_{NO_2} and OH, peaking at 0.5 ± 0.4 ppb at noon. The average concentrations of all of the measured species during the campaign are shown in Table S1.

Figure 6 shows the hourly backward trajectories over the whole campaign. Consistent with previous studies conducted at HT in the same season (Li et al., 2018; Peng et al., 2022), the air masses were dominated by continental air masses containing high concentrations of pollutants (Figure 6a) and less polluted coastal air masses (Figure 6c). In this campaign, we did not encounter oceanic air masses from the south. The average noontime OH concentration was $5.0 \pm 2.2 \times 10^6$ cm$^{-3}$ in the continental air mass cluster (Figure 6b) and $3.3 \pm 1.6 \times 10^6$ cm$^{-3}$ in the coastal air (Figure 6d).
3.2 Model–observation comparison

To investigate the performance of the MCM box model in simulating OH chemistry at our site, we selected 4 days featuring the continental air mass (8, 21, 22, and 23 October) and 4 days featuring the coastal air mass (25–27 October, 5 November). We also selected 1 October as a specific case due to the shifting continental and coastal air masses within the same day during the daytime. These days were selected for model analysis because they comprised relatively complete chemical data that could be used to constrain the model.

3.2.1 Selected continental air mass cases

Figure 7 shows the comparison between the simulated and observed OH concentrations for the selected cases in the continental and coastal air masses (4 days each). The simulated OH concentrations of the four continental cases (8 October and 21–23 October) were mostly within the OH measurement uncertainty (2σ), with a daytime average R_{SO} of 0.97 (Figure 8) and a range from 0.87 to 1.02 (Figure 7). High NOx (~ 5 ppb) and VOCs (~17 ppb) concentrations were measured on these days (Figure 8, Table S1). Therefore, in the continental polluted air mass, the existing MCM mechanism reproduced the observed OH concentrations well. On these days, the reaction between HO2 and NO was the dominant OH formation pathway (78%), followed by HONO photolysis (10%), O3 photolysis (5%), the reaction between ozone and HO2 (2%), and alkene ozonolysis (1%; Table 4 and Figure S3). This is similar to the findings of previous studies in the PRD conducted during autumn under polluted conditions (Tan et al., 2019). The removal of OH occurs mainly through its reaction with non-methane hydrocarbons (NMHCs; ~63%), CO (20%), NO2 (10%), and CH4 (4%; Table 4). Note that the reactions with NMHCs, CO, and CH4 produce peroxo (HO2 and RO2) radicals (Stone et al., 2012). The simulated OH reactivity was 8.7 ± 0.7 s$^{-1}$ on average for continental air masses (Figure S4a), which is comparable to the OH reactivity measured at suburban sites (which ranged from 5 to 30 s$^{-1}$) but lower than that measured at the urban sites (which ranged from 10 to 100 s$^{-1}$; Yang et al., 2016 and references therein).

3.2.2 Selected coastal air mass cases

The diurnal OH patterns in the coastal air mass category (25–27 October and 5 November) were not
well reproduced by the model (Figure 7), in contrast to the continental air mass cases. The simulated results overestimated the observed OH concentration, with the daytime average R_{SO} of 1.73 (Figure 8) for these 4 case days (range 1.48 to 2.53; Figure 7). The coastal air masses showed significantly ($p < 0.05$) lower NO, (-63%), AVOCs (-47%), BVOCs (-50%), OVOCs (-23%), and CO (-31%) concentrations compared with the continental cases (Figure 8, Table S1). The HO$_2$ and NO reaction was still the dominant source (64%) of OH in the coastal air masses, like in the continental air mass cases, but in a lower proportion than on continental days due to the lower NO concentration (Table 4 and Figure S3). The other major OH sources were HONO photolysis (15%), O$_3$ photolysis (10%), and the reaction between ozone and HO$_2$ (4%). The simulated OH reactivity was 5.4 ± 0.33 s$^{-1}$ on average for the coastal case (Figure S4b), which was lower than that of the continental polluted air mass (8.7 ± 0.7 s$^{-1}$). As discussed below in Section 3.3, low OH reactivity could have been the cause of the model’s overestimation of OH concentrations on the coastal case days. The model’s overestimation of OH in coastal air masses indicates gaps in our knowledge about OH sources or sinks in relatively clean conditions with low NO, and VOCs.

3.2.3 The 10 October case day

During the day on 10 October, our site received continental air masses between sunrise and noon and coastal air masses between noon and sunset. This served as another case that could be used to check the model’s performance on continental versus coastal air masses within the same day. On 10 October, the R_{SO} changed from 1.08 in the morning to 1.70 in the afternoon, driven by the air mass drift during continuous measurement without interruption (Figure 9). As with the continental and coastal air mass results shown above, the afternoon of 10 October showed significantly ($p < 0.05$) lower concentrations of NO (-50%), NO$_2$ (-68%), AVOCs (-42%), BVOCs (-27%), and OVOCs (-12%) compared with the morning (Table 4). With lower NO, the fraction of OH produced from HO$_2$ and NO reaction was also lower in the afternoon (54%) than in the morning (71%; Table 4 and Figure S3). Similarly, the simulated OH reactivity was lower in the afternoon (8.1 ± 2.0 s$^{-1}$ on average) than in the morning (11.3 ± 1.1 s$^{-1}$ on average; Figure S4c).

3.3 Discussion on the model–observation discrepancy
As discussed in the introduction, the model’s overestimation of OH could have been caused by multiple factors, including uncertainties in OH measurements (McKeen et al., 1997; Carslaw et al., 1999; Mauldin et al., 2001; Mauldin et al., 2010), overestimation of OH sources (HO₂ and HONO; Kanaya, et al., 2007; Zhang et al., 2006), and underestimation of OH sinks (Berresheim, 2002; Creasey et al., 2003; Mauldin et al., 2010; Griffith et al., 2016). The possible reasons for the model’s overestimation of OH in coastal air are discussed below.

The OH measurement uncertainties in our study were described in Section 2.2. The model’s overestimation of OH in coastal air masses exceeded the measurement uncertainties (Figure 7). The main sources of OH in the coastal air masses were the HO₂ + NO reaction (64%), HONO photolysis (15%), O₃ photolysis (10%), and the reaction between ozone and HO₂ (4%). In the model, NO, HONO, and O₃ were constrained by observations. To check whether the overestimation could be explained by a larger uptake of HO₂ onto aerosol, we conducted a sensitivity run by increasing the aerosol uptake of HO₂ (RUNγ₁, Figure S5). In RUNγ₁, the HO₂ uptake coefficient was set to unity. The simulated HO₂ concentration in RUNγ₁ decreased by 34% compared with the base case (RUNBase). Correspondingly, the simulated OH Rₘ decreased to 1.42 in RUNγ₁, as compared with 1.70 in RUNBase. This indicates that the heterogeneous uptake of HO₂ is not sufficient to explain the OH discrepancy. A likely explanation is the low conversion efficiency from HO₂ to OH at low NO concentrations, as was found in a previous study (Sommariva et al., 2004).

We propose that the model’s overestimation of OH could have been caused by unmeasured species that were not included in the model as OH sinks. To account for these OH sinks and to investigate which factors were important in relation to these sinks, we added a “fake” reaction into the model with the reactivity of kmiss (s⁻¹) and assumed that the reaction product would not participate in further reactions. Assuming a pseudo-steady state of OH during the daytime (P = k[OH]), kmiss was calculated as follows:

\[
k_{miss} = \frac{P_{constrain}}{[OH_{obs}]} - \frac{P_{constrain}}{[OH_{sim}]} \tag{E9}
\]

where \(P_{constrain}\) is the model’s calculated OH production rates, with OH constrained by observations; \([OH_{obs}]\) is the observed OH concentration; and \([OH_{sim}]\) is the OH concentration simulated in RUNBase. After introducing the OH removal reaction with \(k_{miss}\) into the model (RUNKmiss, Figure S6),
the model better reproduced the observed OH concentrations on the coastal case days, with daytime R_{SO} close to unity (Figure S6). This supported our estimate of k_{miss}. The average daytime k_{miss} for the coastal cases was $4.2 \pm 2.2 \text{ s}^{-1}$, which corresponds to 43% of the total calculated reactivity.

We also further explored the dependence of k_{miss} on different trace gases. Figure 10a shows the correlation between k_{miss} and NO concentration for the nine case days (including 10 October) between 09:00 and 15:00. At NO > 0.5 ppb, k_{miss} is close to zero. At NO < 0.5 ppb, k_{miss} tended to increase with decreasing NO. Similarly, k_{miss} approached zero at high concentrations of NO$_2$ (> 2.5 ppb), TEXs (> 0.25 ppb), and AVOCs (> 5 ppb; Figure 10) and increased with decreasing concentrations of NO$_2$, TEXs, and AVOCs. High k_{miss} also typically occurred at low toluene/benzene ratios and low C$_2$H$_4$/CO ratios, which are indicators of an aged air mass (Figure 10; Xiao et al., 2007; Kuyper et al., 2020). Therefore, our results suggested that the aged coastal air masses could have contained unmeasured species such as oxygenated organic molecules (OOMs; Nie et al., 2022) and ocean-emitted gases (Thames et al., 2020) that contributed to the missing OH reactivity, causing the model to overestimate OH concentrations on the coastal case days.

Summary and conclusion

In this study, we measured OH concentrations using CIMS at a coastal site in Hong Kong in autumn 2020 to gain insights into the atmospheric oxidative capacity and to evaluate the performance of a box model in the coastal atmosphere. The daily maximum OH concentration ranged from 2.1 to 15.4×10^6 cm$^{-3}$ over the whole campaign, with an average of $4.9\pm 2.1 \times 10^6$ cm$^{-3}$. The air masses were categorised into two groups based on their backward air trajectories: (1) continental masses, which contained high concentrations of NO$_x$ and VOCs, and (2) coastal masses, which contained low concentrations of NO$_x$ and VOCs. The observed OH concentration in the continental air parcels was on average 52% higher than in the coastal air parcels. The F0AM box model with comprehensive observational constraints generally reproduced the observed OH in the continental cases during the daytime, with a simulated/observed OH ratio (R_{SO}) of 0.97 on average. However, the model significantly overestimated OH concentrations in the coastal cases, with an R_{SO} of 1.70 on average during the daytime. We attributed this overestimation to a missing OH reactivity in the aged coastal air parcels that was not
accounted for in the model. The missing OH reactivity was estimated at $4.2 \pm 2.2 \text{ s}^{-1}$ on average between 09:00 and 15:00 and was especially larger under low NOx, low AVOCs, and aged air conditions. This result suggests that unknown products from AVOC oxidation or unknown OH-reacting gases emitted from oceans could contribute to the missing OH reactivity in aged coastal air masses. The missing OH reactivity in the model could cause an overestimation of the formation of secondary aerosols, such as sulfate and nitrate, while the impacts would be even more complicated if the missing chemical species participated in ozone formation. Further studies are necessary to pin down the exact cause(s) of the OH overestimation, for example, through measurements of other VOC oxidation products and ocean-emitted trace gases.

Data availability. All of the data used to produce this paper can be obtained by contacting Tao Wang (two.wang@polyu.edu.hk).

Supplement. The online supplement for this article is available at:

Author contributions. TW initially conceived of the project. TW and ZW planned and organised the overall field campaign at Hok Tsui. ZZ conducted the OH measurements using CIMS, with contributions from TW and ZW. YC performed the aerosol size distribution measurements. YQ performed the OVOC measurements using PTR-MS. MX and YC performed the HONO measurements using ToF-CIMS. YW assisted with HONO calibration. ZZ performed the box model analysis and sensitivity test with contributions from EX and QC. ZZ, TW, and QC analysed the data and interpreted the results, with contributions from MX. ZZ, TW and QC wrote the paper. All of the authors reviewed and commented on the paper.

Competing interests. One author (Tao Wang) is a member of the editorial board of Atmospheric Chemistry and Physics. The peer-review process was guided by an independent editor, and the authors have no other competing interests to declare.

Acknowledgments

We thank David Tanner, Dr Wei Pu, and Dr Weihao Wang for developing the OH CIMS. We are also grateful to the Environmental Protection Department of Hong Kong, for loaning the CIMS instrument and providing access to its station and data on trace gases, and to the Hong Kong Observatory, for supplying meteorology data.
Financial support. This research was financially supported by the Hong Kong Research Grants Council (T24-504/17-N and 15223221).
Reference:

Griffith, S. M., Hansen, R. F., Dusanter, S., Stevens, P. S., Alaghmand, M., Bertman, S. B., Carroll,

Kanaya, Y., Cao, R., Kato, S., Miyakawa, Y., Kajii, Y., Tanimoto, H., Yokouchi, Y., Mochida, M.,...

Lawrence, M. G., Martinez, M., Taraborrelli, D., and Williams, J.: Atmospheric oxidation capacity

Mauldin, R. L., Eisele, F. L., Kosciuch, E., Shetter, R., Lefer, B., Buhr, M., Chen, G., Wang, P., and
Ren, X., van Duin, D., Cazorla, M., Chen, S., Mao, J., Zhang, L., Brune, W. H., Flynn, J. H.,
Grossberg, N., Lefer, B. L., Rappenglück, B., Wong, K. W., Tsai, C., Stutz, J., Dibb, J. E., Thomas
Results from SHARP 2009 in Houston, Texas, J. Geophys. Res. Atmos., 118, 5770–5780,
Rohrer, F. and Berresheim, H.: Strong correlation between levels of tropospheric hydroxyl radicals
Rohrer, F., Lu, K., Hofzumahaus, A., Bohn, B., Brauers, T., Chang, C. C., Fuchs, H., Häseler, R.,
Holland, F., Hu, M., Kita, K., Kondo, Y., Li, X., Lou, S., Oebel, A., Shao, M., Zeng, L., Zhu, T.,
Holland, F., Hu, M., Kita, K., Kondo, Y., Li, X., Lou, S., Oebel, A., Shao, M., Zeng, L., Zhu, T.,
Zhang, Y., and Wahner, A.: Maximum efficiency in the hydroxyl-radical-based self-cleansing of the
Master Chemical Mechanism, MCM v3 (Part A): tropospheric degradation of non-aromatic volatile
Mexico City Metropolitan Area (MCMA) during April 2003, Atmos. Chem. Phys., 6, 2753–2765,
https://doi.org/10.5194/acp-6-2753-2006, 2006.
Da Silva, G.: Hydroxyl radical regeneration in the photochemical oxidation of glyoxal: Kinetics and
mechanism of the HOC(OC)O + O2 reaction, Phys. Chem. Chem. Phys., 12, 6698–6705,
Hutterli, M. A. A., Beyersdorf, A. J. J., Blake, N. J. J., Blake, D. R. R., Sueper, D., Ryerson, T.,
Burkhart, J., and Stohl, A.: Observations of hydroxyl and the sum of peroxy radicals at Summit,
Greenland during summer 2003, Atmos. Environ., 41, 5122–5137,

field system for measurement of tropospheric OH radical using laser-induced fluorescence technique, Opt. Express, 27, A419, https://doi.org/10.1364/oe.27.00a419, 2019a.

Wolfe, G. M., Cantrell, C., Kim, S., Mauldin, R. L., Karl, T., Harley, P., Turnipseed, A., Zheng, W.,

Figure 1. OH measurements gathered around the world to date.

Table 1. Summary of studies reporting OH and HO$_2$ measurements and comparing them with model predictions (refer to Figure 1 for site locations)
Comparison results (OH only)

<table>
<thead>
<tr>
<th>Overprediction</th>
<th>Reference</th>
<th>Time</th>
<th>Location in Figure 1</th>
<th>Site type</th>
<th>Measurement notes</th>
<th>OH conc. 10^3 cm$^{-3}$</th>
<th>HO$_2$ conc. 10^3 cm$^{-3}$</th>
<th>Ratio notes</th>
<th>Other references targeting the same site</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>(Berroclieux et al., 2002)</td>
<td>June-July 1999</td>
<td>Macquarie</td>
<td>Coast</td>
<td>Main (All) \ Paids (Mean/Clean) \ Paids (Pollution)</td>
<td>0.12</td>
<td>N/A</td>
<td>Mean (17 June, Coastal)</td>
<td>Mean (10 July, Continental)</td>
</tr>
<tr>
<td>Overprediction</td>
<td>(Sommariva et al., 2001b)</td>
<td>Jan-Feb 1999</td>
<td>Tasmania</td>
<td>Coast</td>
<td>Main (Paids) \ Paids (Range)</td>
<td>3.5</td>
<td>2</td>
<td>Mean (7-8 Feb)</td>
<td>-1.11</td>
</tr>
<tr>
<td>Overprediction</td>
<td>(Kanaya et al., 2003a)</td>
<td>September 2003</td>
<td>Ishin</td>
<td>Island</td>
<td>Paids (Mean)</td>
<td>2.7</td>
<td>1.45</td>
<td>Off rectified by constrained HO$_2$</td>
<td>1.35</td>
</tr>
<tr>
<td>Overprediction</td>
<td>Mauldin et al., 2010</td>
<td>Nov-Jan 2010-11</td>
<td>AmundsenScott</td>
<td>Antarctica</td>
<td>Mean (Range)</td>
<td>1.5 to 2.5</td>
<td>N/A</td>
<td>Mean</td>
<td>-2</td>
</tr>
<tr>
<td>Overprediction</td>
<td>(Kulat et al., 2014)</td>
<td>Dec-Jan 2011-12</td>
<td>Concordia</td>
<td>Antarctica</td>
<td>Mean (All) \ Paids (Mean) \ Paids (Range)</td>
<td>3.1</td>
<td>0.99*</td>
<td>Mean (w/PSS-HONO)</td>
<td>0.72</td>
</tr>
<tr>
<td>Overprediction</td>
<td>(Dufton et al., 2016a)</td>
<td>July-Aug 2008</td>
<td>McMurdo</td>
<td>Urban</td>
<td>Paids (Range) \ Paids (Mean)</td>
<td>2 to 15</td>
<td>0.56 to 4.5</td>
<td>Mean (Morning, polluted)</td>
<td>-0.5 to -1</td>
</tr>
<tr>
<td>Overprediction</td>
<td>(Bown et al., 2017)</td>
<td>Jan-Feb 2009</td>
<td>Halley</td>
<td>Polar</td>
<td>Main (All) \ Paids (Mean)</td>
<td>0.90</td>
<td>0.04 to 4.03</td>
<td>Mean (11:00-17:00)</td>
<td>1.7</td>
</tr>
<tr>
<td>Overprediction</td>
<td>(Holland et al., 2013)</td>
<td>Jul-Aug 1998</td>
<td>Palamutbuku</td>
<td>Rural</td>
<td>Paids (Range)</td>
<td>6 to 8</td>
<td>0.6 to 7.4</td>
<td>Mean (Low NO$_x$)</td>
<td>2</td>
</tr>
<tr>
<td>Overprediction</td>
<td>(Whalley et al., 2016)</td>
<td>Jul-Aug 2012</td>
<td>Keser</td>
<td>Urban</td>
<td>Main (Mean, S/W air) \ Main (Mean, E, polluted air)</td>
<td>-2.2</td>
<td>-0.2</td>
<td>Mean (Air mass: Southwesterly)</td>
<td>1.25</td>
</tr>
<tr>
<td>Overprediction</td>
<td>(Griffiths et al., 2016)</td>
<td>May-June 2010</td>
<td>CalNexLA</td>
<td>Urban</td>
<td>Paids (Range) \ Paids (Weekdays)</td>
<td>1.5 to 9</td>
<td>10^3</td>
<td>Mean (Weekends)</td>
<td>1.43</td>
</tr>
</tbody>
</table>

Author(s) 2022. CC BY 4.0 License.
<table>
<thead>
<tr>
<th>Reference</th>
<th>Time</th>
<th>Location in Figure 1</th>
<th>Site types</th>
<th>Measurement notes</th>
<th>OH conc. 10^16 cm^-3</th>
<th>HO-2 conc. 10^16 cm^-3</th>
<th>Ratio notes</th>
<th>OH Rv</th>
<th>HO-2 Rv</th>
<th>Other references targeting the same site</th>
</tr>
</thead>
<tbody>
<tr>
<td>Underprediction</td>
<td>July 2006</td>
<td>BackGarden Rural</td>
<td>Peaks (Mean)</td>
<td>15 15</td>
<td>Mean (Range, NO < 1 ppb) Mean (Lu et al., 2012)</td>
<td>0.2 to 0.35</td>
<td>0.5</td>
<td>NA</td>
<td>NA</td>
<td></td>
</tr>
<tr>
<td>Underprediction</td>
<td>Apr-May 2008</td>
<td>DonnaValley Rainforest</td>
<td>Peaks (Mean)</td>
<td>25 3</td>
<td>w/CH4 recycling mechanism (Peeters et al., 2009)</td>
<td>-0.63</td>
<td>-0.5</td>
<td>(M. High et al., 2010)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Underprediction</td>
<td>May-June 2007-Jun-Jul 2008</td>
<td>Summit Polar</td>
<td>Mean (2007 spring)</td>
<td>30 2.7*</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Underprediction</td>
<td>Aug 2010</td>
<td>Mantou Forest</td>
<td>Peaks (Range)</td>
<td>3 to 10 2.46 to 4.8</td>
<td>Peak</td>
<td>-0.625</td>
<td>0.33</td>
<td>(Kim et al., 2013)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Underprediction</td>
<td>Oct-Nov 2014-Jul-Aug 2009</td>
<td>Huzhen Suburban</td>
<td>Peaks (Mean)</td>
<td>4.5 3</td>
<td>Budget analysis only</td>
<td>NA</td>
<td>1</td>
<td>NA</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Underprediction</td>
<td>Jul-Aug 2009</td>
<td>UMBS Forest</td>
<td>Peak (Mean, 2009)</td>
<td>-3.3 7</td>
<td>Mean (2009 w/ISOP mechanisms) Mean (2009)</td>
<td>-0.4</td>
<td>-0.5</td>
<td>NA</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Underprediction</td>
<td>Sept 2006</td>
<td>Yufa Urban</td>
<td>Peaks (Range)</td>
<td>4 to 17 2 to 24</td>
<td>Peak (Mean, 2009) Mean (2009 w/ISOP mechanisms)</td>
<td>0.38</td>
<td>-1</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Underprediction</td>
<td>Jun-Jul 2009</td>
<td>BRKS Forest</td>
<td>Peaks (Mean w/ interference)</td>
<td>4.5 1.8</td>
<td>Peaks (Mean w/o interference)</td>
<td>0.32</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Underprediction</td>
<td>Summer 2014</td>
<td>Wangshi Rural</td>
<td>Peaks (Range eventime)</td>
<td>5 to 15 3 to 14</td>
<td>Mean (NO > 0.3 ppb) Mean (NO < 0.3 ppb, afternoon)</td>
<td>-1</td>
<td>10 (NO > 4 ppb)</td>
<td>NA</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Underprediction</td>
<td>Jul 2015</td>
<td>JURTP Forest</td>
<td>Peaks (Mean)</td>
<td>4 10</td>
<td>Mean (Daytime) Mean (Evning and morning)</td>
<td>0.83</td>
<td>0.90</td>
<td>1.1 to 1.32</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Underprediction</td>
<td>Oct 2009</td>
<td>AmazonForest (Right)</td>
<td>Mean (Forest boundary)</td>
<td>5.6 10.5</td>
<td>Mean (Forest free troposphere) Mean (Atlantic boundary) Mean (Atlantic free troposphere)</td>
<td>0.1 to 0.2</td>
<td>-1</td>
<td>NA</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Underprediction</td>
<td></td>
</tr>
</tbody>
</table>
Table 1. Continued

<table>
<thead>
<tr>
<th>Reference</th>
<th>Time</th>
<th>Location in Figure 1</th>
<th>Site types</th>
<th>Measurement notes</th>
<th>OH conc. 10^7 cm$^{-3}$</th>
<th>NO$_2$ conc. 10^6 cm$^{-3}$</th>
<th>Ratio notes</th>
<th>OIR$_{R}$</th>
<th>HO2 R${S/O}$</th>
<th>Other reference targeting the same site</th>
</tr>
</thead>
<tbody>
<tr>
<td>Good match</td>
<td>(Ren et al., 2006)</td>
<td>Jul-Aug 2002</td>
<td>New York</td>
<td>Urban</td>
<td>Peaks (Mean)</td>
<td>2.6</td>
<td>4.9</td>
<td>Mean</td>
<td>1.22</td>
<td>0.83</td>
</tr>
<tr>
<td>Good match</td>
<td>(Kanaya et al., 2007b)</td>
<td>Jul-Aug 2004</td>
<td>Tokyo</td>
<td>Urban</td>
<td>Peaks (Mean, winter)</td>
<td>1.5</td>
<td>0.27</td>
<td>Peaks (Mean, winter)</td>
<td>0.99</td>
<td>0.71</td>
</tr>
<tr>
<td>Good match</td>
<td>(Feiner et al., 2016)</td>
<td>Jun-Jul 2013</td>
<td>Alabama</td>
<td>Forest</td>
<td>Peaks (Mean)</td>
<td>1</td>
<td>6.64</td>
<td>Peaks (Mean)</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>Good match</td>
<td>(Jeong et al., 2022)</td>
<td>Feb-Mar 2014</td>
<td>Amazon</td>
<td>Forest</td>
<td>Peaks (Mean 10:00-15:00)</td>
<td>1</td>
<td>-1 to 2.8</td>
<td>N/A</td>
<td>Mean</td>
<td>1</td>
</tr>
<tr>
<td>Good match</td>
<td>(Kanaya et al., 2007b)</td>
<td>Jul-Aug 2005</td>
<td>Whiteface</td>
<td>Forest</td>
<td>Mean (Above-Canopy)</td>
<td>3.5</td>
<td>1.8 to 4.2</td>
<td>N/A</td>
<td>Mean</td>
<td>1</td>
</tr>
<tr>
<td>Good match</td>
<td>(Emmerson et al., 2007)</td>
<td>Jul-Aug 2003</td>
<td>Writtle College</td>
<td>Urban</td>
<td>Peaks (Range)</td>
<td>1.2 to 7.5</td>
<td>0.16 to 3.3</td>
<td>Mean</td>
<td>1.24</td>
<td>1.07</td>
</tr>
<tr>
<td>Good match</td>
<td>(Ma et al., 2019)</td>
<td>Nov-Dec 2017</td>
<td>PKU</td>
<td>Urban</td>
<td>Peaks (Mean)</td>
<td>2</td>
<td>0.4</td>
<td>Mean (polluted)</td>
<td>~1</td>
<td>~0.66</td>
</tr>
<tr>
<td>Good match with missing source</td>
<td>(Whalley et al., 2017)</td>
<td>Summer 2017</td>
<td>IAP</td>
<td>Urban</td>
<td>Peaks (All)</td>
<td>26</td>
<td>10</td>
<td>Mean (NO < 1 ppb)</td>
<td>~1</td>
<td>1.83</td>
</tr>
<tr>
<td>Good match with underpredicted HO$_2$</td>
<td>(Zhao et al., 2022a)</td>
<td>Nov-Dec 2019</td>
<td>Shanghai</td>
<td>Urban</td>
<td>Peaks (Mean)</td>
<td>27</td>
<td>0.8</td>
<td>N/A</td>
<td>N/A</td>
<td>N/A</td>
</tr>
<tr>
<td>No comparison</td>
<td>(Kukui et al., 2008)</td>
<td>June-July 2007</td>
<td>Ogijima</td>
<td>Suburban</td>
<td>Peaks (July)</td>
<td>~23</td>
<td>~2</td>
<td>N/A</td>
<td>N/A</td>
<td>N/A</td>
</tr>
<tr>
<td>No comparison</td>
<td>(Wang et al., 2021)</td>
<td>Oct-Nov 2018</td>
<td>PKU</td>
<td>Rural</td>
<td>Peak (Mean)</td>
<td>5.3</td>
<td>4.2</td>
<td>N/A</td>
<td>N/A</td>
<td>N/A</td>
</tr>
<tr>
<td>No comparison</td>
<td>(Robert and Burtschi, 2006)</td>
<td>1999-2003</td>
<td>M3HP</td>
<td>Rural</td>
<td>Mean (All)</td>
<td>1.97</td>
<td>N/A</td>
<td>N/A</td>
<td>N/A</td>
<td>N/A</td>
</tr>
</tbody>
</table>

Reference: Table 1. Continued
<table>
<thead>
<tr>
<th>Comparison</th>
<th>Zhang et al. (2022a)</th>
<th>Aug–Sept 2019</th>
<th>Chengdu Urban Peaks (Range, PKU-LIF)</th>
<th>Peaks (Range, PKU-LIF)</th>
<th>Peaks (Range, AIOFM-LIF)</th>
<th>N/A</th>
<th>N/A</th>
<th>N/A</th>
</tr>
</thead>
<tbody>
<tr>
<td>Aug–Sept 2019</td>
<td>Chengdu Urban Peaks (Range, PKU-LIF)</td>
<td>Peaks (Range, PKU-LIF)</td>
<td>16 to 15</td>
<td>16 to 15</td>
<td>21 to 15.9</td>
<td>N/A</td>
<td>N/A</td>
<td>N/A</td>
</tr>
</tbody>
</table>

Notes

ISOP: Isoprene
AIOFM: Laser-induced fluorescence instrument by the Anhui Institute of Optics Fine Mechanics, Chinese Academy of Sciences
Mean: Campaign average concentration or ratio
Peak: Campaign maximum concentration or ratio
Peaks (Mean): Maximum concentration or ratio for the averaged diurnal or averaged cases
Mean (Range): Daily average concentration or ratio range for the campaign or cases
Peaks (Range): Maximum concentration or ratio range for the campaign or cases
W/ and w/o: Considered or did not consider the specific mechanism, species, or interference
~: The result is based on the figure or description, and the exact number is not mentioned in the article
N/A: Not available in the article
*: The HO$_2$ result includes some RO$_2$ species.
Figure 2. The location of the Hok Tsui Air Monitoring Supersite in Hong Kong, South China. The map is from © Google Earth.
Table 2. Measuring instruments and measured species in the field campaign

<table>
<thead>
<tr>
<th>Species</th>
<th>Instruments</th>
<th>Time resolution</th>
<th>Detection limit</th>
</tr>
</thead>
<tbody>
<tr>
<td>OH</td>
<td>Nitrate-quadrupole chemical ionization mass spectrometer (CIMS)</td>
<td>10 s</td>
<td>Lab: 1.5×10^5 cm$^{-3}$</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Daytime: 1×10^6 cm$^{-3}$</td>
</tr>
<tr>
<td>NO, NO$_2$</td>
<td>Chemiluminescence/photolytic converter (Thermo, Model 42i)</td>
<td>1 min</td>
<td>0.06 ppb</td>
</tr>
<tr>
<td>Ozone</td>
<td>Ozone analyser, model 49i, Thermo Scientific</td>
<td>1 min</td>
<td>0.5 ppb</td>
</tr>
<tr>
<td>J_{NO_2}</td>
<td>Filter radiometer, Metcon</td>
<td>1 min</td>
<td>4×10^{-5} s$^{-1}$</td>
</tr>
<tr>
<td>HONO</td>
<td>Iodide-ToF-CIMS, Aerodyne Inc</td>
<td>1 s</td>
<td>0.2 ppt</td>
</tr>
<tr>
<td>Particle number size distribution</td>
<td>Scanning mobility particle sizer (SMPS), TSI</td>
<td>5 mins</td>
<td>1 particle cm$^{-3}$</td>
</tr>
<tr>
<td></td>
<td>Gas chromatograph system (GC-MS/FID; GC955 Series 611/811, Syntech Spectras)</td>
<td></td>
<td>~10 ppt</td>
</tr>
<tr>
<td>VOCs</td>
<td>Proton-transfer-reaction mass spectrometry (PTR-MS; PTR-QMS 500, IONICON Analytik, Austria)</td>
<td>5 mins</td>
<td>20 ppt</td>
</tr>
<tr>
<td>OVOCs</td>
<td>High-performance liquid chromatography (HPLC); PTR-ToF-MS, IONICON Analytic;</td>
<td>1 s</td>
<td>~10 ppt</td>
</tr>
</tbody>
</table>
Figure 3. Schematics of the CIMS system which consists of a stainless-steel inlet, a sample inlet, an ionization chamber, a mass spectrometer system, and a calibration unit. The CIMS measures the ambient OH concentration when connecting to the stainless-steel inlet whereas, during calibration, the calibration unit is connected to the CIMS instead. Details of the CIMS setup and calibration can be found in Section 2.2.
Table 3. Technical specifications of the OH-CIMS

<table>
<thead>
<tr>
<th>Flow position</th>
<th>Gas</th>
<th>Flow rates (sccm)</th>
<th>Specification for measurement</th>
</tr>
</thead>
<tbody>
<tr>
<td>Front injectors</td>
<td>SO₂ (0.9%)</td>
<td>5</td>
<td>Sample flow [SO₂] (ppm)</td>
</tr>
<tr>
<td></td>
<td>NO (0.9%)</td>
<td>0</td>
<td>Sample flow [NO] (ppm)</td>
</tr>
<tr>
<td>Pulse valve</td>
<td>C₃F₆ (99.9%)</td>
<td>2</td>
<td>Elimination rate</td>
</tr>
<tr>
<td></td>
<td>N₂</td>
<td>2</td>
<td>Switching time (min)</td>
</tr>
<tr>
<td>Rear injectors</td>
<td>C₃F₆ (99.9%)</td>
<td>2</td>
<td>Reaction time (ms)</td>
</tr>
<tr>
<td></td>
<td>HNO₃</td>
<td>10</td>
<td>Sample flow [C₃F₆] (ppm)</td>
</tr>
<tr>
<td>Sheath flow</td>
<td>C₃F₆ (99.9%)</td>
<td>2</td>
<td>Sheath flow [C₃F₆] (ppm)</td>
</tr>
<tr>
<td></td>
<td>HNO₃</td>
<td>10</td>
<td>Detection Limit in lab (×10⁵ cm⁻³)</td>
</tr>
<tr>
<td></td>
<td>Zero air</td>
<td>126,000</td>
<td>Sheath flow speed (cm/s)</td>
</tr>
<tr>
<td>Buffer</td>
<td>N₂</td>
<td>440</td>
<td>Reynolds number in ionization chamber</td>
</tr>
<tr>
<td>Total flow</td>
<td></td>
<td>168,000</td>
<td>Sample flow speed (cm/s)</td>
</tr>
<tr>
<td>Sample flow</td>
<td></td>
<td>3727</td>
<td>Stainless-steel inlet flow speed (m/s)</td>
</tr>
<tr>
<td>Calibration flow</td>
<td></td>
<td>10,000</td>
<td>Calibration flow speed (cm/s)</td>
</tr>
<tr>
<td>Calibration factors for OH with N¹⁸O₃ as the reagent ion x10⁻⁸ ((OH· cm⁻³)/Hz)</td>
<td></td>
<td></td>
<td>1.21</td>
</tr>
<tr>
<td>Detection limit for OH measurement over the whole campaign (×10⁵ cm⁻³) (2σ)</td>
<td>Daytime</td>
<td>10</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Nighttime</td>
<td>7.7</td>
<td></td>
</tr>
<tr>
<td>Uncertainties for OH measurement</td>
<td></td>
<td>44%</td>
<td></td>
</tr>
</tbody>
</table>
Figure 4. Time series of OH between 7 October and 23 November with measured weather conditions (temperature and RH), OH primary sources (ozone and HONO), NOx (NO and NO2), organic compounds (total VOCs and OVOCs), and photolysis frequency (J_{NO2}). All measurement data shown are 10 min averages. The black lines separate the non-continuous days during measurement. The grey shaded area denotes nighttime.
Figure 5. Diurnal profiles of the average (±σ) concentrations of OH, other chemical species, and meteorological parameters (T, RH, J_{NO2}) during the field campaign. The grey shaded area denotes nighttime.

Figure 6. 24 h back trajectories of the continental (a) and coastal (c) cases over the whole measurement period. The selected days for coastal, continental, and mixed cases are labelled in different colours. (b)
and (d) show the average concentration of OH with standard deviation in continental and coastal air masses, respectively.

Figure 7. Comparison between observed (dots) and simulated (lines) OH in the four continental cases (top panel) and the four coastal cases (lower panel), also showing measurement uncertainty (error bars) and \(J_{NO2} \) measurement (yellow shades).

Figure 8. Diurnal profiles of average (± 1σ) concentrations of measured (dots) and simulated (RUNBase, line) OH concentration and important trace gases for selected cases in continental (green) and coastal (blue) air masses. The grey shaded area denotes nighttime.
Figure 9. Diurnal profiles of measured (dots) and simulated (RUNBase, line) OH on 10 October 2020, with other chemical species. The air mass drifted from continental (red) in the morning to coastal (orange) in the afternoon. The grey shaded area denotes nighttime.
Table 4. OH budgets for the selected continental and coastal cases, morning and afternoon of 10 October.

<table>
<thead>
<tr>
<th>Production</th>
<th>Continental cases</th>
<th>Coastal cases</th>
<th>10 October (morning)</th>
<th>10 October (afternoon)</th>
</tr>
</thead>
<tbody>
<tr>
<td>HO₂ + NO</td>
<td>77.57%</td>
<td>63.87%</td>
<td>70.88%</td>
<td>53.73%</td>
</tr>
<tr>
<td>HONO + hv</td>
<td>10.09%</td>
<td>15.01%</td>
<td>12.19%</td>
<td>14.14%</td>
</tr>
<tr>
<td>O'D</td>
<td>4.82%</td>
<td>10.14%</td>
<td>8.39%</td>
<td>13.68%</td>
</tr>
<tr>
<td>HO₂ + O₃</td>
<td>1.79%</td>
<td>4.32%</td>
<td>1.94%</td>
<td>5.65%</td>
</tr>
<tr>
<td>CH₃CCH₂OOC</td>
<td>1.25%</td>
<td>1.22%</td>
<td>0.68%</td>
<td>2.56%</td>
</tr>
<tr>
<td>Other</td>
<td>4.49%</td>
<td>5.43%</td>
<td>5.93%</td>
<td>10.23%</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Loss</th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>CO</td>
<td>20.04%</td>
<td>22.75%</td>
<td>15.98%</td>
<td>15.40%</td>
</tr>
<tr>
<td>NO₂</td>
<td>9.81%</td>
<td>7.64%</td>
<td>13.82%</td>
<td>12.92%</td>
</tr>
<tr>
<td>C₃H₈</td>
<td>8.77%</td>
<td>7.29%</td>
<td>8.56%</td>
<td>10.96%</td>
</tr>
<tr>
<td>C₂H₅CHO</td>
<td>7.91%</td>
<td>7.20%</td>
<td>8.51%</td>
<td>7.31%</td>
</tr>
<tr>
<td>CH₃CHO</td>
<td>7.73%</td>
<td>6.79%</td>
<td>6.00%</td>
<td>3.50%</td>
</tr>
<tr>
<td>CH₄</td>
<td>3.68%</td>
<td>5.77%</td>
<td>3.08%</td>
<td>3.49%</td>
</tr>
<tr>
<td>HCHO</td>
<td>2.76%</td>
<td>2.45%</td>
<td>2.73%</td>
<td>2.75%</td>
</tr>
<tr>
<td>O₃</td>
<td>1.38%</td>
<td>1.99%</td>
<td>1.63%</td>
<td>1.69%</td>
</tr>
<tr>
<td>H₂</td>
<td>1.26%</td>
<td>1.67%</td>
<td>1.42%</td>
<td>1.51%</td>
</tr>
<tr>
<td>Other</td>
<td>36.67%</td>
<td>36.45%</td>
<td>38.28%</td>
<td>40.47%</td>
</tr>
</tbody>
</table>

Notes: ACR - acrolein
Figure 10. The dependence of calculated missing reactivity on a) NO, b) NO$_2$, c) TEXs (toluene, ethylbenzene, and xylene), d) alkanes (C$_2$ to C$_8$), e) the ratio of toluene to benzene, and f) the ratio of C$_2$H$_2$ to CO.