

Conceptual models of dissolved carbon fluxes in a two-layer stratified lake: interannual typhoon responses under extreme climates

Hao-Chi Lin¹, Keisuke Nakayama², Jeng-Wei Tsai³, and Chih-Yu Chiu⁴

¹ Department of Geography, National Taiwan University, Taipei City, Taiwan

² Graduate School of Engineering, Kobe University, Kobe City, Japan

³Graduate Institute of Bioresources, National Pingtung University of Science and Technology, Pingtung, Taiwan

⁴ Biodiversity Research Center, Academia Sinica, Taipei City, Taiwan

* Corresponding author: Keisuke Nakayama (nakayama@phoenix.kobe-u.ac.jp)

14 **Abstract**

15 Extreme climates affect the seasonal and interannual patterns of carbon (C) distribution
16 in lentic ecosystems due to the regimes of river inflow and thermal stratification. Typhoons
17 rapidly load substantial amounts of terrestrial C into smaller subtropical lakes (i.e., Yuan-Yang
18 Lake, YYL, Taiwan), renewing and mixing the water column. We developed a conceptual
19 dissolved C model and hypothesized that allochthonous C loading and river inflow intrusion may
20 affect the dissolved inorganic C (DIC) and dissolved organic C (DOC) distributions in a small
21 subtropical lake under these extreme climates. A two-layer conceptual C model was developed to
22 explore how the DIC and DOC fluxes respond to typhoon disturbances on seasonal and
23 interannual time scales in YYL while simultaneously considering autochthonous processes such
24 as algal photosynthesis, remineralization, and vertical transformation. To compare the temporal
25 patterns of fluxes between typhoon years (2015–2016) and non-typhoon years (2017–2018),
26 monthly field samples were obtained and their DIC, DOC, and chlorophyll *a* concentrations
27 measured. The results demonstrated that net ecosystem production was 3.14 times higher in the
28 typhoon years than in the non-typhoon years. This results suggested that a loading of
29 allochthonous C was the most crucial driver of the temporal variation of C fluxes in the typhoon
30 years because of changes in physical and biochemical processes, such as photosynthesis,
31 mineralization, and vertical transportation. However, the lowered vertical transportation rate
32 shaped the seasonal C in the non-typhoon years due to thermal stratification within this small
33 subtropical lake.

34

35 **1. Introduction**

36 The Intergovernmental Panel for Environmental Changes Sixth Assessment Report
37 (IPCC AR6) (2021) suggested that, by 2050, not only is air temperature going to increase by at
38 least about 1.5°C but high-intensity storms and drought events will become more frequent as a
39 result of global warming and climate change. In freshwater ecosystems, extreme climates may
40 change the mixing regimes of freshwater columns (Kraemer et al., 2021; Maberly et al., 2020;
41 Woolway et al., 2020), heat wave events (Woolway et al., 2021a; Woolway et al., 2021b),
42 droughts (Marcé et al., 2019), and floods (Woolway et al., 2018). Freshwater ecosystems store
43 around 0.32 to 1.8 Pg C yr⁻¹, which is approximately equivalent to shallow coastal areas.
44 Freshwater ecosystems provide important services for human sustainability, such as acting as
45 processing hotspots in regional carbon (C) cycling (Aufdenkampe et al., 2011; Cole et al., 2007;
46 Engel et al., 2018; Lauerwald et al., 2015; Raymond et al., 2013). Extreme weather events
47 might induce stronger seasonal thermal stratification from spring to summer and longer
48 overturns from autumn to winter, thereby changing C distribution and transportation within
49 water bodies (Kraemer et al., 2021; Olsson et al., 2022a; Woolway et al., 2020). The responses
50 of C fluxes in small lakes (lake area < 1 km²) are sensitive to climate change due to the ease
51 with which C mixes within water columns (Doubek et al., 2021; MacIntyre et al., 2021;
52 Winslow et al., 2015). Moreover, storms induce dramatic changes in thermal stratification and
53 water inflows (Lin et al., 2022; Olsson et al., 2022b; Vachon and Del Giorgio, 2014; Woolway
54 et al., 2018). River inflows and wind turbulence released allochthonous C from sediments into
55 the water column after storm events in small stratified lakes (Bartosiewicz et al., 2015;
56 Czikowsky et al., 2018; Vachon and Del Giorgio, 2014). However, small lakes account for 25%
57 to 35% of the total area of the earth's surface lakes (Cole et al., 2007; Downing et al., 2006;
58 Raymond et al., 2013). Compared to the case in larger lakes, our understanding of C fluxes in
59 small lakes remain uncertain because small lakes have usually been ignored in calculations of C
60 fluxes on a global scale (Cole et al., 2007; Raymond et al., 2013). Thus, elucidation of the C
61 fluxes in small lakes in extreme weathers conditions is key to optimizing estimations of global
62 C fluxes in extreme climates.

63 Understanding the influences of physical, hydrological, and biogeochemical processes
64 on the fate of C fluxes in smaller lake ecosystems is challenging work (Aufdenkampe et al.,
65 2011; Cole et al., 2007; Raymond et al., 2013; Tranvik et al., 2009; Vachon et al., 2021;
66 Woolway et al., 2018). Not only is measurement difficult, but so in the elucidation of the
67 dynamics and interactions between factors and processes associated with C fluxes. Dissolved
68 inorganic carbon (DIC) concentration is an important factor in estimating CO₂ fluxes within
69 lake ecosystems (Smith, 1985). Among C fluxes in a freshwater body, the partial pressure of
70 CO₂ ($p\text{CO}_2$), defined as CO₂ emission across the air–water interface, is affected by DIC, water

71 temperature, wind speed, and pH (Jähne et al., 1987; Smith, 1985). River inflows, sediment C
72 burial, and heterotrophic respiration in the water column contribute to DIC dynamics in lakes
73 (Hope et al., 2004; Vachon et al., 2021); simultaneously, autotrophic organisms, such as
74 plankton and submerged vegetation, capture DIC via photosynthesis (Amaral et al., 2022;
75 Nakayama et al., 2020; Nakayama et al., 2022). Moreover, calcification and mineralization may
76 consume dissolved oxygen within water, inducing uncertainty in $p\text{CO}_2$ estimation (Hanson et al.,
77 2015; Lin et al., 2022; Nakayama et al., 2022). Dissolved organic carbon (DOC) might
78 contribute to CO_2 emission from lake water to the atmosphere through mineralization and
79 remineralization within lake ecosystems (Hanson et al., 2015; Sobek et al., 2005). In subtropical
80 freshwater ecosystems, DOC concentration is a vital factor in describing variances in
81 mineralization and remineralization rates for dissolved C (Lin et al., 2022; Shih et al., 2019).

82 Typhoons might significantly impact C distributions within the water columns in
83 subtropical regions (Chiu et al., 2020; Lin et al., 2022). Kossin et al. (2013) investigated global
84 storm events with an accumulated rainfall of about 50 mm, which accounts for approximately
85 10 %–40% of precipitation in a subtropical typhoon event. Some studies found not only that
86 extreme rainstorms would impact the dissolved carbon in large lakes and catchments due to
87 weathering (Sun et al., 2021; Zhou et al., 2023) but also that typhoon disturbances quickly mix,
88 renew, or dilute the water in small subtropical lakes (Kimura et al., 2012; Kimura et al., 2017;
89 Lin et al., 2022). However, the complex interactions between biogeochemical and physical
90 regimes for autochthonous and allochthonous C introduce uncertainty in elucidating the
91 complete patterns between typhoons and dissolved C concentrations in small subtropical lakes.
92 This uncertainty hinders our understanding of the seasonal and interannual variations in DIC
93 and DOC concentrations (Lin et al., 2022). Thus, to understand the seasonal regimes and to
94 estimate C fluxes in subtropical lakes, we investigated the variations inof DIC and DOC due to
95 typhoon disturbances.

96 Typhoons' effects on C fluxes were previously studied in a small, two-layer stratified,
97 subtropical lake, Yuan–Yang Lake (YYL) in Taiwan (Chiu et al., 2020; Jones et al., 2009; Lin et
98 al., 2021; Lin et al., 2022). Jones et al. (2009) used the conceptual hydrology model and sensor
99 data to estimate CO_2 emission in YYL during typhoon disturbances that occurred in October
100 2004: 2.2 to 2.7 $\text{g C m}^{-2} \text{ d}^{-1}$ of CO_2 was released into the atmosphere. CO_2 emissions into the
101 atmosphere were recorded at around 3.0 to 3.7 $\text{g C m}^{-2} \text{ d}^{-1}$ because of substantial loads of
102 terrestrial C via river inflows after strong typhoons in YYL (Chiu et al., 2020).In particular,
103 vertical mixing, thermal stratification, and river retention regimes were found to be essential
104 physical processes in the C fluxes in YYL (Lin et al., 2021; Lin et al., 2022). The results of
105 these studies suggest that river intrusion and thermal stratification are key factors shaping the
106 seasonal and interannual patterns of C fluxes during typhoon disturbances. River intrusion

107 controls not only the C fluxes, algal biomass, and nutrient loading, but also influences the length
108 of stratification and hydraulic retention times (Lin et al., 2021; Lin et al., 2022; Maranger et al.,
109 2018; Nakayama et al., 2020; Olsson et al., 2022a; Olsson et al., 2022b; Zwart et al., 2017;
110 Vachon and Del Giorgio, 2014). Therefore, we hypothesized that allochthonous C loading and
111 river inflow intrusion might affect DIC and DOC distributions. Further, autochthonous
112 processes in small subtropical lakes, such as algal photosynthesis, remineralization, and vertical
113 transportation, must also be considered. Here, we tested our hypothesis developing two-layer
114 conceptual C models to assess C flux responses to typhoon disturbances in small subtropical
115 lakes.

116

117 2. Materials and methods

118 2.1 Study site

119 YYL is a shallow (mean water depth: 4.3 m) and oligotrophic (total phosphorous: 10-
120 20 $\mu\text{g-P L}^{-1}$; total nitrogen: 20-60 $\mu\text{g-N L}^{-1}$) subtropical mountain lake (Chou et al., 2000; Tsai
121 et al., 2008; Wu et al., 2001) on Chi-Lan Mountain at around 1,640 asl in north-central Taiwan
122 (24.58° N, 121.40° E) (Fig. 1). Its water is brown because of its humic acid content (colored
123 dissolved organic matter: 20–50 ppb QSE; with specific ultraviolet absorbance at 254 nm
124 assessed by a portable fluorometer (model C3; Turner Designs, Sunnyvale, CA, USA); mean
125 pH: 5.4). YYL is surrounded by old-growth trees such as *Chamaecyparis formosensis*,
126 *Chamaecyparis obtusa* var. *formosana*, and *Rhododendron formosanum* Heiml (Chou et al.,
127 2000). Precipitation is over 3,000 mm yr^{-1} , and typhoon precipitation contributes up to half of
128 the total precipitation in YYL (Chang et al., 2007; Lai et al., 2006). Due to the rapid renewal of
129 the water body, the water retention time (or residence time) was around 4.4 days in typhoon
130 Megi from 27 September to 1 October 2016 (Lin et al., 2022). The water surface temperature
131 ranges from 15 to 25 °C during March to August, and the water column overturns in September
132 (Kimura et al., 2012; Kimura et al., 2017; Lin et al., 2021). The concentrations of DIC, DOC
133 (Lin et al., 2021), total nitrogen, total phosphate (Chiu et al., 2020; Tsai et al., 2008) and
134 bacteria compositions (Shade et al., 2011) increase within YYL from autumn to winter. YYL has
135 been registered as a long-term ecological study site by the Ministry of Science and Technology
136 (MOST) of Taiwan since 1992 and it became part of the Global Lake Ecological Observatory
137 Network (GLEON) in 2004.

138

139 2.2 Water sampling and chemical analysis

140 We collected water quality samples (DOC, DIC, and Chl. *a*) at water depths of 0.04,
141 0.50, 1.00, 2.00, and 3.50 m at the buoy site (Fig. 1). From January 2015 to December 2018, we

142 measured the water surfaces for six river inflows and one outflow each month using a horizontal
143 van Dorn bottle (2.20 L, acrylic) (Fig. 1). These samples were collected using a portable hand
144 pump and glass microfiber filter papers (47 mm GF/F, nominal pore size 0.70 μm ; Whatman,
145 Maidstone, Kent, UK) to obtain filtrate samples. Water samples were stored at around 4°C in a
146 refrigerator until analysis. Samples were analyzed using an infrared gas detector to detect DIC
147 and DOC concentrations with persulfate digestion (model 1088 Rotary TOC autosampler; OI
148 Analytical, College Station, TX, USA). The filter papers were kept refrigerated in opaque
149 bottles at around -25 °C in a refrigerator until the samples were analyzed using a portable
150 fluorometer (model 10-AU-005-CE; Turner Designs, Sunnyvale, CA, USA), with specific
151 wavelengths were 430 nm (blue) and 662 nm (red). In the laboratory, the filter papers were
152 extracted with methanol to obtain Chl. *a* concentration. These samples were analyzed for less
153 than 72 h to prevent light and chemical degradation.

155 **2.3 Data analysis and numerical modeling**

156 Three water quality variables (DIC, DOC, and Chl *a*) were compared between different
157 layers (upper and lower layers), years (typhoon and non-typhoon years), and seasons (spring,
158 summer, autumn, and winter). First, we separated our investigation data into typhoon years and
159 non-typhoon years as described in Sect. 2.3.1. Next, we developed a conceptual equations model
160 to generate continuous DIC and DOC data at the upper and lower layers as shown in Sect. 2.3.2
161 -. This helped us understand the transportation, photosynthesis, and remineralization rates
162 between seasons and between typhoon and non-typhoon years.

164 **2.3.1 Typhoon and non-typhoon years**

165 We collected meteorological data from a meteorological tower located about 1.0 km
166 from YYL (Lin et al., 2021; Lin et al., 2022). Data on rainfall (model N-68; Nippon Electric
167 Instrument, Tokyo, Japan) and wind speed (model 03001, R.M. Young, Traverse City, MI, USA)
168 were stored in a datalogger (model CR1000; Campbell Scientific, Logan, UT, USA) every 10 min.
169 River discharge (Q_{in} , $\text{m}^3 \text{ d}^{-1}$) was estimated every 10 min using the rainfall data and a water depth
170 meter (model HOBO U20; Onset Computer, Bourne, MA, USA) at the end of a river inflow (Fig.
171 1) using the Manning formula. Transparency was estimated using Secchi disc data measured at
172 local times (GMT+08:00) from 10:00 to 14:00.

173 As Table 1 shows, four strong typhoons were recorded, contributing a total of 2,254 mm
174 of precipitation in all 24 months of 2015 and 2016, This accounted for 35.6% of the annual
175 precipitation. However, no typhoon rainfall was recorded at YYL in 2017 and 2018; the total
176 precipitation in that 2-year period was around 2,537 mm. There was no significant difference in
177 average water depth between 2017 and 2018 (Table 1). The average discharge was less than 774

178 $\text{m}^3 \text{ d}^{-1}$ in 2017 and 2018. Thus, we considered 2015 and 2016 as typhoon years, and 2017 and
 179 2018 as non-typhoon years.

180

181 **2.3.2 Conceptual two-layer DIC and DOC model**

182 Nakayama et al. (2010) successfully developed a conceptual two-layer dissolved oxygen
 183 model based on strong wind turbulence at Tokyo Bay. Lin et al. (2021) pointed out that thermal
 184 stratification that inhibits vertical C flux between the upper and lower layers in shallow stratified
 185 lakes makes it possible to develop conceptual two-layer C models (Lin et al., 2022; Nakayama et
 186 al., 2022). The phytoplankton and remineralization effects on DIC and DOC fluxes ($d\text{DIC}/dt$ and
 187 $d\text{DOC}/dt$, $\text{mg-C L}^{-1} \text{ d}^{-1}$) were considered in a conceptual two-layer equation model as shown in
 188 Equations 1–4. The fluxes in the upper layer (from the water surface to 2.5 m water depth) were
 189 calculated as follows:

$$V_U \frac{d\text{DIC}_U}{dt} = Q_U \text{DIC}_R - Q_{out} \text{DIC}_U - V_U \alpha_{PU} \text{Chl}_U + V_U \alpha_{MU} \text{DOC}_U + A_I w_I (\text{DIC}_L - \text{DIC}_U) \quad (1)$$

$$+ Q_L \text{DIC}_L - \frac{A_s F_{CO2}}{C_U} + Pa_U$$

$$V_U \frac{d\text{DOC}_U}{dt} = Q_U \text{DOC}_R - Q_{out} \text{DOC}_U - V_U \alpha_{MU} \text{DOC}_U + A_I w_I (\text{DOC}_L - \text{DOC}_U) \quad (2)$$

$$+ Q_L \text{DOC}_L + Pb_U$$

190 Those in the lower layer (from 2.5 to 4.0 m water depth) were calculated as follows:

$$V_L \frac{d\text{DIC}_L}{dt} = Q_L \text{DIC}_R - V_L \alpha_{PL} \text{Chl}_L + V_L \alpha_{ML} \text{DOC}_L + A_I w_I (\text{DIC}_U - \text{DIC}_L) - Q_L \text{DIC}_L \quad (3)$$

$$+ \frac{A_B B F_{DIC}}{C_U} + Pa_L$$

$$V_L \frac{d\text{DOC}_L}{dt} = Q_L \text{DOC}_R - V_L \alpha_{ML} \text{DOC}_L + A_I w_I (\text{DOC}_U - \text{DOC}_L) - Q_L \text{DOC}_L + Pb_L \quad (4)$$

$$V_{total} = V_U + V_L \quad (5)$$

$$Q_{in} = Q_U + Q_L \quad (6)$$

191 where, as shown in Table 2, total lake volume (V_{total} , 53,544 m^3) comprises to the upper layer
 192 (V_U , 45,456 m^3) and to the lower layer (V_L , 8,808 m^3) (Equation 5), and where the lake surface
 193 area (A_s) is 36,000 m^2 and the bottom of the lake area (A_B) is 3,520 m^2 . The interface is 2.5 m
 194 vertically, and the interface area (A_I) is 7,264 m^2 in YYL. The water depth varied from 4.56 to
 195 4.66 m during the typhoon period (Chiu et al., 2020; Lin et al., 2022). Therefore, we can assume

196 that the changes in lake volumes and areas were negligible. The coefficient C_U , with a value of
197 1000, used to establish a standard unit for F_{CO_2} (mg-C m⁻² d⁻¹), considering the air–water CO₂
198 exchange by Fick’s law as follows:

$$F_{CO_2} = k_{CO_2} \cdot K_H (pCO_2_{water} - pCO_2_{air}) \quad (7)$$

199 where k_{CO_2} is the gas transfer velocity from empirical wind speed equations (Cole and Caraco,
200 1998; Jähne et al., 1987; Smith, 1985; Wanninkhof, 1992). K_H is Henry’s coefficient calculated
201 by water temperature empirical equations (Plummer and Busenberg, 1982). pCO_2_{air} (μatm) is
202 the CO₂ partial pressure in the atmosphere using air pressure data (Lin et al., 2021; Lin et al.,
203 2022), and the atmospheric CO₂ concentration is assumed to be 400 ppm. pCO_2_{water} (μatm) is
204 the CO₂ partial pressure at the water surface around 0.04 m water depth from water quality data
205 (temperature, pH, DIC concentration at the water surface. The empirical equation (Cai and
206 Wang, 1998) was also followed by Lin et al. (2021). F_{CO_2} contributed approximately half of
207 the net ecosystem production (NEP) across the water surface to the atmosphere in YYL (Lin et
208 al., 2021). Further, because sediment carbon may be an important flux into shallow subtropical
209 lakes, the sediment C flux (BF_{DIC} , BF_{DOC} , mg-C L⁻¹) in the lower layer was considered (Lin et
210 al., 2022).

211 We assumed that the river discharge and outflow discharge (Q_{out} , m³ d⁻¹) are in a
212 quasi–steady state ($Q_{in} = Q_{out}$), divided into upper discharge (Q_U , m³ d⁻¹) and lower discharge
213 (Q_L , m³ d⁻¹) (Equation 6). Lin et al. (2021) showed that the buoyancy frequencies in YYL were
214 0.011 ± 0.004 s⁻¹, 0.013 ± 0.004 s⁻¹, 0.006 ± 0.003 s⁻¹, and 0.007 ± 0.004 s⁻¹ from spring
215 (March–May), summer (June–August), autumn (September–November), and winter
216 (December–February), respectively, inhibiting the vertical profile of DIC mixed due to
217 stratification. We estimated the percentages of Q_U and Q_L based on the buoyancy frequency
218 following Lin et al. (2020 and 2022). Q_U values were 75%, 80%, 45%, and 50% of Q_{in} for
219 spring to winter, and Q_L values were 25%, 20%, 55%, and 50% of Q_{in} . The physical and
220 biogeochemical regimes under climate change remain uncertain, such as biological
221 compositions, mixing regimes, morphometric characteristics, and air–water energy fluxes
222 (evaporation and transpiration) (Woolway et al., 2020). To simulate extreme climate scenarios,
223 we shifted the ratio of Q_{in} for each season and tested the river intrusion hypothesis. We
224 established two extreme conditions: *Level 1* and *Level 2*. *Level 2* is the more extreme condition:
225 Q_U is 80% (spring), 85% (summer), 50% (autumn), and 50% (winter) of Q_{in} ; Q_L is 20%
226 (spring), 15% (summer), 50% (autumn), and 50% (winter) of Q_{in} . *Level 1* is the condition
227 between the present and the *Level 2* condition: Q_U is 77% (spring), 82% (summer), 47%
228 (autumn), and 50% (winter) of Q_{in} ; Q_L is 23% (spring), 18% (summer), 53% (autumn), and
229 50% (winter) of Q_{in} (Table 2).

230 The contributions of photosynthesis production depended on the chlorophyll *a*

231 concentration (Chl_U , Chl_L , mg L⁻¹) and on the absorption coefficients in the upper layer (α_{PU} , d⁻¹)
 232 and lower layer (α_{PL} , d⁻¹). The coefficients of DOC remineralization rates in the upper layer
 233 (α_{MU} , d⁻¹) and lower layer (α_{ML} , d⁻¹) were also considered in the conceptual models. The Pa_U ,
 234 Pa_L , Pb_U , and Pb_L are constants in the conceptual models. To obtain unknown values (α_{PU} ,
 235 α_{MU} , α_{PL} , α_{ML} , w_I , BF_{DIC} , BF_{DOC} , Pa_U , Pa_L , Pb_U , and Pb_L), we applied multiple
 236 linear regression analysis. Further, these unknown values were tested by trial and error to obtain
 237 the parameters of the *best-fit* condition (Nakayama et al., 2022). The same parameters of the *best-*
 238 *fit* condition were used to obtain the extreme conditions for *Level 1* and *Level 2*. We used the
 239 coefficient of determination (R^2) and the Nash–Sutcliffe model efficiency coefficient (NSE)
 240 (Nash and Sutcliffe, 1970) to quantify the performance of the equation model with DIC and DOC
 241 sampling data (observation data) for each simulation as follows.

$$NSE = 1 - \frac{\sum_{i=1}^n (Obs_i - Sim_i)^2}{\sum_{i=1}^n (Obs_i - \bar{Obs})^2} \quad (8)$$

242 where Obs is observation data of DIC and DOC concentrations, and Sim is best-fit data for
 243 conceptual model.

244

245 2.3.3 **DIC and DOC fluxes**

246 Net ecosystem production was defined as the difference between primary production
 247 and ecological respiration (NEP = GPP - ER) due to photosynthesis and respiration via biota
 248 (Dodds and Whiles, 2020). Given that we assumed that the C fluxes were dependent on the river
 249 inflows in YYL (Fig. 1), we estimated the NEP by end-member analysis using the C
 250 concentration of the river inflow and outflow (Lin et al., 2021; Nakayama et al., 2020) by
 251 following Equations 9–12. The upper layer NEP of DIC flux (mg C d⁻¹) was obtained from
 252 Equation 1 as follows:

$$\begin{aligned} \text{Upper flux}_{DIC} &= C_U \alpha_{PU} Chl_U - C_U \alpha_{MU} DOC_U - C_U \frac{A_I w_I (DIC_L - DIC_U)}{V_U} - C_U \frac{Pa_U}{V_U} \\ &= C_U \frac{Q_U DIC_R + Q_L DIC_L - Q_{out} DIC_U}{V_U} - \frac{A_S}{V_U} F_{CO2} \\ &= C_U \frac{1}{t_{rU}} \left(\frac{Q_U}{Q_{in}} DIC_R + \frac{Q_L}{Q_{in}} DIC_L - DIC_U \right) - F_C \\ &\quad t_{rU} = \frac{V_U}{Q_{in}} \end{aligned} \quad (9)$$

253

254 The upper layer flux of DOC flux (mg C m⁻³ d⁻¹) was estimated from Equation 2:

$$\begin{aligned}
\text{Upper flux}_{\text{DOC}} &= C_U \alpha_{MU} \text{DOC}_U - C_U \frac{A_I w_I (\text{DOC}_L - \text{DOC}_U)}{V_U} - C_U \frac{Pb_U}{V_U} \\
&= C_U \frac{Q_U \text{DOC}_R + Q_L \text{DOC}_L - Q_{out} \text{DOC}_U}{V_U} \\
&= C_U \frac{1}{t_{rU}} \left(\frac{Q_U}{Q_{in}} \text{DOC}_R + \frac{Q_L}{Q_{in}} \text{DOC}_L - \text{DOC}_U \right)
\end{aligned} \tag{10}$$

255

256 The lower layer flux of DIC flux ($\text{mg C m}^{-3} \text{ d}^{-1}$) was estimated from Equation 3:

$$\begin{aligned}
\text{Lower flux}_{\text{DIC}} &= C_U \alpha_{PL} \text{Chl}_L - C_U \alpha_{ML} \text{DOC}_L - C_U \frac{A_I w_I (\text{DIC}_U - \text{DIC}_L)}{V_L} - \frac{A_B B F_{\text{DIC}}}{V_L} \\
&\quad - C_U \frac{P a_L}{V_L} = C_U \frac{Q_L (\text{DIC}_R - \text{DIC}_L)}{V_L} = C_U \frac{1}{t_{rL}} \frac{Q_L}{Q_{in}} (\text{DIC}_R - \text{DIC}_L) \\
t_{rL} &= \frac{V_L}{Q_{in}}
\end{aligned} \tag{11}$$

257

258 The lower layer flux of DOC flux ($\text{mg C m}^{-3} \text{ d}^{-1}$) was estimated from Equation 4:

$$\begin{aligned}
\text{Lower flux}_{\text{DOC}} &= C_U \alpha_{ML} \text{DOC}_L - C_U \frac{A_I w_I (\text{DOC}_U - \text{DOC}_L)}{V_L} - \frac{A_B B F_{\text{DOC}}}{V_L} - C_U \frac{Pb_L}{V_L} \\
&= C_U \frac{Q_L (\text{DOC}_R - \text{DOC}_L)}{V_L} = C_U \frac{1}{t_{rL}} \frac{Q_L}{Q_{in}} (\text{DOC}_R - \text{DOC}_L)
\end{aligned} \tag{12}$$

259

260 Thus, the total flux of DIC and that of DOC are:

$$\text{Flux}_{\text{DIC}} = \frac{V_U \text{Upper flux}_{\text{DIC}} + V_L \text{Lower flux}_{\text{DIC}}}{V_{total}} \tag{13}$$

$$\text{Flux}_{\text{DOC}} = \frac{V_U \text{Upper flux}_{\text{DOC}} + V_L \text{Lower flux}_{\text{DOC}}}{V_{total}} \tag{14}$$

261

262 where, F_C is $\frac{A_S}{V_U} F_{CO_2}$ and t_{rU} , t_{rL} are residence times (d) in the upper and lower layers,

263 respectively. These parameters were used for the best-fit condition as shown in Table 2.

264

265 **3. Results**

266 **3.1 DIC, DOC, and Chl *a* concentrations in typhoon and non-typhoon years**

267 The comparisons between the two typhoon years (2015 and 2016) revealed no significant
268 differences in DIC, DOC, and Chl *a* concentrations between the upper and lower layers; however,
269 all these parameters differed significantly between the layers in the non-typhoon years 2017 and
270 2018 (Fig. 2). This is because of typhoon-induced mixing and lower thermal stratification
271 between upper and lower layer(Lin et al., 2021; Lin et al., 2022). Overall, the average DIC_U was
272 2.06 mg-C L^{-1} , and DIC_L was 3.66 mg-C L^{-1} ; the average DOC_U was 5.87 mg-C L^{-1} , and DOC_L
273 was 8.02 mg-C L^{-1} ; and Chl_U and Chl_L were $2.13 \mu\text{g-C L}^{-1}$ and $18.5 \mu\text{g-C L}^{-1}$, respectively. In
274 typhoon years, the average DIC_U was 2.34 mg-C L^{-1} , and DIC_L was 4.07 mg-C L^{-1} ; the
275 average DOC_U was 6.10 mg-C L^{-1} , and DOC_L was 8.38 mg-C L^{-1} ; and the Chl_U and Chl_L were
276 $2.38 \mu\text{g-C L}^{-1}$ $12.2 \mu\text{g-C L}^{-1}$, respectively (Fig. 2); In non-typhoon years, the average DIC_U was
277 1.81 mg-C L^{-1} , and DIC_L was 3.28 mg-C L^{-1} ; the average DOC_U was 5.66 mg-C L^{-1} , and DOC_L
278 was 7.67 mg-C L^{-1} ; and Chl_U and Chl_L were $1.89 \mu\text{g-C L}^{-1}$ and $24.4 \mu\text{g-C L}^{-1}$, respectively (Fig.
279 2).

280 ANOVA results indicated no significant differences in DIC concentrations among
281 seasons during the typhoon years (p -values ≥ 0.05), suggesting a lack of statistically significant
282 variation in DIC data across seasons (Fig. 3a–b). However, the DOC concentration showed
283 significant differences between seasons in the typhoon years (Fig. 3c–d). No significant
284 differences between Chl_U and Chl_L were observed among the seasons (Fig. 3e–f), whereas the
285 standard deviations (SD) of DIC and DOC were higher in summer and autumn (Fig. 3) due to
286 terrestrial C loading (Chiu et al., 2020). In summer, the SD values of DIC_U and DOC_U were
287 3.51 mg-C L^{-1} and 3.69 mg-C L^{-1} , respectively (Fig. 3a, c, e). In autumn, DIC_L and DOC_L had
288 the highest SD (4.06 and 4.17 mg-C L^{-1} , respectively) (Fig. 3b, d). Notably, the maximums of
289 DIC_U and DOC_U were 7.06 and 15.6 mg-C L^{-1} and those of DIC_L and DOC_L were 10.9 and
290 19.8 mg-C L^{-1} , respectively, in the typhoon years (Fig. 3a–d).

291 Positive Pearson correlations of 0.45 to 0.80 were observed between the DOC and DIC
292 in the typhoon years (Fig. 4a). In the non-typhoon years, the upper layer DIC_L was the only
293 variable correlated negatively with DOC in the upper and lower layers (Fig. 4b).DIC in the lower
294 layer was positively correlated with the Chl_L (Fig. 4) due to the abundant respiration in the lower
295 layer (Lin et al., 2021; Tsai et al., 2008).

297 **3.2 *Performance of conceptual two-layer DIC and DOC models***

298 The results for the typhoon years demonstrated that that DIC_U was around 1.5 to 5.0
299 mg-C L⁻¹ (Fig. 5a–b) and DIC_L was around 5.0 mg-C L⁻¹ (Fig. 5d). In the non-typhoon years
300 (2017–2018), the best-fit values of DIC_U and DIC_L were 0.40 and 0.70, respectively. On the
301 other hand, the DOC fit our observation data (R^2 values are 0.91, and 0.46; the NSE coefficients
302 from in equation (8) are 0.95 and 0.73) (Fig. 5e-h, Table 3). The parameters for the conceptual
303 two-layer DIC and DOC models showed different regimes between the typhoon and non-typhoon
304 years (Table 3). In the typhoon years, the photosynthesis absorption rate coefficients (α_{PU} , α_{PL})
305 were negative (photosynthesis < respiration) for each season. YYL was a C source due to a large
306 allochthonous C loading during typhoons; the respiration was elevated by around 30- to 150-fold
307 from summer to autumn. However, the values of the transportation coefficients (w_I) were higher
308 in autumn than in the other seasons (Table 3). Further, the higher remineralization rates during
309 typhoon disturbances from summer to autumn resulted in positive α_{MU} and α_{ML} . In the non-
310 typhoon years, the remineralization rates were negative (Table 3). Thus, the results suggest that
311 the conceptual two-layer C models may reasonably fit the observation data.

312

313 **3.3 *Interannual and seasonal NEP in YYL***

314 The typhoon disturbances in summer and autumn played an important role in
315 promoting the C released by YYL (Table 4). Overall, YYL released $245 \text{ mg C m}^{-3} \text{ d}^{-1}$ of DIC
316 and $415 \text{ mg C m}^{-3} \text{ d}^{-1}$ of DOC during the typhoon years; during the non-typhoon years, it
317 released $51.7 \text{ mg C m}^{-3} \text{ d}^{-1}$ of DIC and $22.8 \text{ mg C m}^{-3} \text{ d}^{-1}$ of DOC (Table 4). The average F_C
318 was one to two times larger than Flux_{DIC} , and 219 and $133 \text{ mg C m}^{-3} \text{ d}^{-1}$ were released from
319 YYL into the atmosphere in the typhoon and non-typhoon years, respectively (Table 4). In
320 summer, the upper layer exhibited declines in both DIC and DOC concentrations, with the
321 decline in DIC being declined approximately 3.7 times higher more DIC in the typhoon years
322 than in the non-typhoon years (Table 4). "In autumn in the typhoon years, 216 mg C d^{-1} of upper
323 layer DIC was released, but $46.1 \text{ mg C m}^{-3} \text{ d}^{-1}$ of upper layer DOC was produced. The upper layer
324 Flux_{DIC} was negative in autumn in the typhoon years, when $268 \text{ mg C m}^{-3} \text{ d}^{-1}$ more F_C was
325 released compared to autumn in the non-typhoon years. In addition, the lower layer exhibited
326 the largest release of C into the outflow in the typhoon years; however, the flux in the lower
327 layer was more than twice as high in the summer as in the autumn of those years (Table 4). The
328 average total Flux_{DIC} exhibited a release of approximately 3.14 times more C in the typhoon years
329 than in the non-typhoon years. The average total NEP_{DOC} showed an increased of 62.3 mg C m^{-3}
330 d^{-1} of DOC between the typhoon years and non-typhoon years due to the over 10-fold higher
331 flux in the upper layer (Table 4).

332

333 **3.4 *Interannual responses of DIC and DOC to typhoons***

334 We simulated the responses of DIC and DOC flux to typhoons using conceptual two-
335 layer C models. The results showed that the DIC was more sensitive to typhoon disturbances
336 than DOC under the scenarios of *Level 1* and *Level 2* (Fig. 6–8). Overall, the C level declined in
337 the upper layers but increased in the lower layers (Fig. 6). DIC and DOC in the upper layer
338 tended to decline from 1.0 (*Level 1*) to 2.0 mg-C L⁻¹ (*Level 2*) (Fig. 7a, c); however, they
339 increased to 10.0 and 20.0 mg-C L⁻¹ in the lower layer under *Level 1* and *Level 2*, respectively
340 (Fig. 6b, d).

341 The DIC concentration in the upper layer was significantly lower in the typhoon years
342 than in the non-typhoon years during spring and autumn under *Level 2* (Fig. 7a–c). Under the
343 *best-fit* and *Level 1* conditions, the DIC concentrations decreased significantly from winter to
344 spring (Fig. 7c–d). The lower layer DIC values under the *best-fit* and *Level 1* conditions differed
345 significantly between the typhoon and non-typhoon years (Fig. 7e–h). The DIC of the lower
346 layer under *Level 2* differed significantly from winter to spring only (Fig. 7e, h). The highest
347 averaged DIC in the lower layer was 10 mg-C L⁻¹ under the *Level 2* in spring in non-typhoon
348 years (Fig 7e).

349 The upper layer DOC showed significant typhoon responses for each condition from
350 winter to spring (Fig. 8a, d). The DOC of the upper layer tended to differ more significantly
351 under the extreme climates from summer to autumn (Fig. 8b–c). The DOC of the lower layer
352 showed different typhoon responses between spring and the other seasons (Fig. 8e–h), and the
353 DOC values in the lower layer under *Level 2* conditions in spring showed no significant
354 difference between the typhoon and non-typhoon years (Fig 8e).

356 **4. Discussion**

357 **4.1 Biochemical and physical differences of DIC and DOC fluxes between**
358 **typhoon and non-typhoon-years in YYL**

359 Annual total precipitation was 40% higher in the typhoon years than in the non-
360 typhoon years (Table 1). Water retention and typhoon-induced upwelling control the dynamics of
361 DIC and DOC during the summer and autumn (Chiu et al., 2020; Jones et al., 2009; Tsai et al.,
362 2008; Tsai et al., 2011). The absence of typhoon-induced upwelling affected water quality data
363 differences between the upper and lower layers (Chiu et al., 2020; Lin et al., 2022; Tsai et al.,
364 2008; Tsai et al., 2011). DIC, DOC, and Chl. *a* concentrations differed significantly between
365 upper and lower layers in the non-typhoon years (Fig. 2). Further, the abundance of
366 microorganisms leads to intensive respirations in the lower layers during the non-typhoon
367 period in YYL; for example, an anoxic condition at the hypolimnion may decrease the
368 efficiency of C mineralization and remineralization rates in non-typhoon years (Carey et al.,
369 2022; Chiu et al., 2020; Lin et al., 2022; Shade et al., 2010; Shade et al., 2011). Therefore, these
370 physical and biogeochemical processes might describe different patterns between the upper and
371 lower layers (Fig. 4).

372 Thermal stratification and allochthonous C loading may drive the responses of fluxes
373 to typhoons in YYL. The absolute values of fluxes were higher in the typhoon years than in the
374 non-typhoon years (Table 4). We found that precipitation from typhoons loaded large amounts
375 of allochthonous C into YYL during summer and autumn, which might explain the higher fluxes
376 in autumn compared to the other seasons (Table 4). Typhoons dramatically changed the seasonal
377 and interannual patterns of DIC fluxes due to river intrusion (Fig. 6a–b; Fig. 7), which proves to
378 our hypothesis and corresponds to the results of previous studies (Chiu et al., 2020; Lin et al.,
379 2021; Lin et al., 2022). In summer, the spatial differences between layers in DIC and DOC were
380 inhibited due to strong thermal stratification, describing the positive upper net primary
381 production and lower negative net primary production (Lin et al., 2021). The thermal
382 stratification and anoxic condition may have been controlled by the seasonal and interannual
383 patterns of DIC and DOC fluxes in the non-typhoon years (Tables 3–4; Fig. 5).

384 Because of the absence of typhoon-induced mixing and allochthonous C loading, the
385 total fluxes were lower in the non-typhoon years than those in the typhoon years (Table 4). In
386 the typhoon years, our results showed that typhoon-induced upwelling and loading increased by
387 102.2 mg-DIC m⁻³ d⁻¹ and 62.3 mg-DOC m⁻³ d⁻¹ in YYL (Table 4). Additionally, the CO₂
388 emission (F_C) was 43 % higher (~83 mg C m⁻³ d⁻¹) in the typhoon years than in the non-typhoon
389 years (Table 4). Therefore, typhoon disturbances control DIC loading and C emissions in YYL,
390 consistent with our previous studies (Chiu et al., 2020; Lin et al., 2021; Lin et al., 2022).
391 Simultaneously, bio-photochemical mineralization and degradation may play a key role in

shaping C fluxes because colored DOC reduces ultraviolet radiation (UVR) and active photosynthetic radiation (PAR) (Allesson et al., 2021; Chiu et al., 2020; Schindler et al., 1996; Scully et al., 1996; Williamson et al., 1999), resulting in the higher light intensity and water temperature in summer consuming 3.7 times more DIC and DOC than in the other seasons (Table 4) These results suggested that the allochthonous C loading and light duration might be the most crucial factor for DIC and DOC fluxes in the typhoon years. Conversely, the transportation rate shaped the seasonal C concentrations due to thermal stratification in the non-typhoon years.

4.2 ***Model limitation under the extreme weather scenarios***

Water temperature might be a crucial driver in controlling C fluxes in YYL (Chiu et al., 2020; Lin et al., 2021; Lin et al., 2022). We found that the fluxes and F_{CO_2} in summer were usually higher than in winter (Tables 3–4) due to the higher levels of photosynthesis, remineralization, and thermal stratification strength (Lin et al., 2021; Lin et al., 2022). With the conceptual two-layer C models (Table 3), photosynthesis absorption (α_{PU} , α_{PL}), remineralization (α_{MU} , α_{ML}), and transportation (w_I) well represented the seasonal variations in DIC and DOC data. These parameters of the conceptual two-layer C models appeared in reasonable patterns (Table 3). The higher remineralization and photosynthesis rates resulted in higher absolute values of fluxes in the autumn of the typhoon years (Tables 3–4). In the non-typhoon years, the photosynthesis rates contributed to the total fluxes (Tables 3–4). Moreover, without the typhoon-induced mixing and refreshing of the water column, anoxic conditions may occur (Carey et al., 2022; Vachon et al., 2021), which could result in negative remineralization rates in non-typhoon years. Thus, the conceptual two-layer C models well characterizes the seasonal and interannual responses of DIC and DOC fluxes to typhoons in YYL.

Under extreme weather conditions, *Level 2* usually shifted to different typhoon responses for each season (Fig. 7–8) due to extreme river intrusions. DIC changes more significantly than DOC under *Level 1* and *Level 2* (Fig. 6–8), because the photosynthesis, transportation, and remineralization rates may crucially affect the seasonal and interannual patterns of DOC as well. Moreover, we compared the fluxes with different model conditions as shown in Fig. 9, demonstrating that the responses of $Flux_{DIC}$ to typhoons differed dramatically between *Level 1* and *Level 2* (Fig. 9a–c); especially, the Upper $Flux_{DIC}$ released more C in the typhoon years and absorbed more C in the non-typhoon years than *Obs* (Fig. 9a). Not only were the absolute values of $Flux_{DIC}$ over 3 times higher in the typhoon years than in the non-typhoon years (Table 4), but SD was higher in the typhoon years as well (Fig. 9). However, DOC fluxes changed less under *Level 1* and *Level 2* (Fig. 9d–f), a finding that is consistent with our continuous DOC data (Fig. 7c–d). Processes such as respiration, mineralization, and sediment

428 burial may impact DOC fluxes (Bartosiewicz et al., 2015; Hanson et al., 2015; Maranger et al.,
429 Ejarque et al. (2021) also successfully developed a conceptual one-layer model of DOC
430 and DIC, considering bacterial respiration, photo-mineralization and degradation in a temperate
431 mountain lake. In addition, Nagatomo et al. (2023) suggested that DIC might be underestimated
432 if submerged vegetation is ignored. Thus, we suggest that photo-biochemical processes (such as
433 photo-mineralization) and submerged vegetation should be considered in the upper layer to
434 clarify and validate the responses of the total C fluxes under extreme climates in a two-layer
435 stratified lake.

436 **5. Conclusions**

437 We successfully developed two-layer conceptual C models to obtain continuous DIC
438 and DOC data in YYL and to simulate extreme conditions. Our conceptual two-layer C model
439 revealed that allochthonous and autochthonous processes both accounted for C flux responses to
440 typhoon disturbances . Without typhoons, thermal stratification was the primary driver of
441 seasonal and interannual patterns of DIC and DOC. In the typhoon years, the changes in
442 seasonal river intrusion regimes in YYL resulted in a 3-fold higher total $Flux_{DIC}$ than in the non-
443 typhoon years. However, our model should be improved for application to extreme climate
444 scenarios by considering other autochthonous processes, such as sediment burial, photo-
445 biochemical processes, and anoxic conditions. The present results suggest that physical
446 processes (river intrusion and vertical transportation) and biogeochemical processes
447 (mineralization, photosynthesis, and respiration) in a subtropical small lake account for the C
448 flux responses to typhoons on seasonal and interannual time scales.

449

450 **Competing interests**

451 The authors have no conflicts of interest to report.

452

453 **Acknowledgements**

454 The authors thank YS Hsueh, LC Jiang, and TY Chen for their help with the water
455 sample collection and chemistry analysis. This work was supported by the Japan Society for the
456 Promotion of Science (JSPS) under grant nos. 22H05726, 22H01601, and 18KK0119 to K
457 Nakayama; and by the Academia Sinica, Taiwan (AS-103-TP-B15), Ministry of Science and
458 Technology, Taiwan (MOST 106-2621-M-239-001, MOST 107-2621-M-239-001, MOST 108-
459 2621-M-239-001) to CY Chiu and JW Tsai. This study benefited from participation in the
460 Global Lakes Ecological Observatory Network (GLEON).

461 Hao-Chi Lin: Conceptualization, Methodology, Investigation, Formal analysis,
462 Writing – original draft. Keisuke Nakayama: Methodology, Supervision, Writing – review &
463 editing, Conceptualization. Jeng-Wei Tsai: Investigation, Funding acquisition, Writing –review
464 & editing. Chih-Yu Chiu: Funding acquisition, Writing – review & editing.

465

466 **Data availability**

467 The data that support the findings of this study are adopted from our previous works,
468 including Chiu et al. (2020), Lin et al. (2021), and Lin et al. (2022).

469

470

471 **References**

472 Allesson, L., Koehler, B., Thrane, J.-E., Andersen, T., and Hessen, D. O.: The role of
473 photomineralization for CO₂ emissions in boreal lakes along a gradient of dissolved organic
474 matter, *Limnol. Oceanogr.*, 66, 158–170, <https://doi.org/10.1002/lno.11594>, 2021.

475 Amaral, J. H. F., Melack, J. M., Barbosa, P. M., Borges, A. V., Kasper, D., Cortés, A. C., Zhou,
476 W., MacIntyre, S., and Forsberg, B. R.: Inundation, Hydrodynamics and Vegetation
477 Influence Carbon Dioxide Concentrations in Amazon Floodplain Lakes, *Ecosystems*, 25,
478 911–930, <https://doi.org/10.1007/s10021-021-00692-y>, 2022.

479 Aufdenkampe, A. K., Mayorga, E., Raymond, P. A., Melack, J. M., Doney, S. C., Alin, S. R.,
480 Aalto, R. E., and Yoo, K.: Riverine coupling of biogeochemical cycles between land,
481 oceans, and atmosphere, *Front. Ecol. Environ.*, 9, 53–60, <https://doi.org/10.1890/100014>,
482 2011.

483 Bartosiewicz, M., Laurion, I., and MacIntyre, S.: Greenhouse gas emission and storage in a
484 small shallow lake, *Hydrobiologia*, 757, 101–115, <https://doi.org/10.1007/s10750-015-2240-2>, 2015.

485 Cai, W.-J. and Wang, Y.: The chemistry, fluxes, and sources of carbon dioxide in the estuarine
486 waters of the Satilla and Altamaha Rivers, Georgia, *Limnol. Oceanogr.*, 43, 657–668,
487 <https://doi.org/10.4319/lo.1998.43.4.0657>, 1998.

488 Carey, C. C., Hanson, P. C., Thomas, R. Q., Gerling, A. B., Hounshell, A. G., Lewis, A. S. L.,
489 Lofton, M. E., McClure, R. P., Wander, H. L., Woelmer, W. M., Niederlehner, B. R., and
490 Schreiber, M. E.: Anoxia decreases the magnitude of the carbon, nitrogen, and phosphorus
491 sink in freshwaters, *Glob. Change Biol.*, <https://doi.org/10.1111/gcb.16228>, 2022.

492 Chang, S.-C., Wang, C.-P., Feng, C.-M., Rees, R., Hell, U., and Matzner, E.: Soil fluxes of
493 mineral elements and dissolved organic matter following manipulation of leaf litter input in
494 a Taiwan Chamaecyparis forest, *For. Ecol. Manag.*, 242, 133–141,
495 <https://doi.org/10.1016/j.foreco.2007.01.025>, 2007.

496 Chiu, C.-Y., Jones, J. R., Rusak, J. A., Lin, H.-C., Nakayama, K., Kratz, T. K., Liu, W.-C., Tang,
497 S.-L., and Tsai, J.-W.: Terrestrial loads of dissolved organic matter drive inter-annual carbon
498 flux in subtropical lakes during times of drought, *Sci. Total Environ.*, 717, 137052,
499 <https://doi.org/10.1016/j.scitotenv.2020.137052>, 2020.

500 Chou, C.-H., Chen, T.-Y., Liao, C.-C., and Peng, C.-I.: Long-term ecological research in the
501 Yuanyang Lake forest ecosystem I. Vegetation composition and analysis, *Bot. Bull. Acad.
502 Sin.*, 41, 61–72, 2000.

503 Cole, J. J. and Caraco, N. F.: Atmospheric exchange of carbon dioxide in a low-wind

505 oligotrophic lake measured by the addition of SF₆, Limnol. Oceanogr., 43, 647–656,
506 <https://doi.org/10.4319/lo.1998.43.4.0647>, 1998.

507 Cole, J. J., Prairie, Y. T., Caraco, N. F., McDowell, W. H., Tranvik, L. J., Striegl, R. G., Duarte,
508 C. M., Kortelainen, P., Downing, J. A., Middelburg, J. J., and Melack, J.: Plumbing the
509 Global Carbon Cycle: Integrating Inland Waters into the Terrestrial Carbon Budget,
510 Ecosystems, 10, 172–185, <https://doi.org/10.1007/s10021-006-9013-8>, 2007.

511 Czikowsky, M. J., MacIntyre, S., Tedford, E. W., Vidal, J., and Miller, S. D.: Effects of Wind
512 and Buoyancy on Carbon Dioxide Distribution and Air-Water Flux of a Stratified Temperate
513 Lake, J. Geophys. Res. Biogeosci., 123, 2305–2322, <https://doi.org/10.1029/2017JG004209>,
514 2018.

515 Dodds, W. K. and Whiles, M. R.: Freshwater Ecology: Concepts and Environmental
516 Applications of Limnology, Third Edition, Elsevier, United Kingdom, 748-762, 2020.

517 Doubek, J. P., Anneville, O., Dur, G., Lewandowska, A. M., Patil, V. P., Rusak, J. A., Salmaso,
518 N., Seltmann, C. T., Straile, D., Urrutia-Cordero, P., Venail, P., Adrian, R., Alfonso, M. B.,
519 DeGasperi, C. L., Eyto, E., Feuchtmayr, H., Gaiser, E. E., Girdner, S. F., Graham, J. L.,
520 Grossart, H.-P., Hejzlar, J., Jacquet, S., Kirillin, G., Llames, M. E., Matsuzaki, S.-I. S.,
521 Nodine, E. R., Piccolo, M. C., Pierson, D. C., Rimmer, A., Rudstam, L. G., Sadro, S., Swain,
522 H. M., Thackeray, S. J., Thiery, W., Verburg, P., Zohary, T., and Stockwell, J. D.: The extent
523 and variability of storm-induced temperature changes in lakes measured with long-term and
524 high-frequency data, Limnol. Oceanogr., 66, 1979–1992, <https://doi.org/10.1002/lno.11739>,
525 2021.

526 Douville, H., Raghavan, K., Renwick, J., Allan, R. P., Arias, P. A., Barlow, M., Cerezo-Mota, R.,
527 Cherchi, A., Gan, T. Y., Gergis, J., Jiang, D., Khan, A., Mba, W. P., Rosenfeld, D., Tierney,
528 J., and Zolina, O.: Water cycle changes, Cambridge University Press, Climate Change 2021:
529 The Physical Science Basis. Contribution of Working Group I to 45 the Sixth Assessment
530 Report of the Intergovernmental Panel on Climate Change, 2021.

531 Downing, J. A., Prairie, Y. T., Cole, J. J., Duarte, C. M., Tranvik, L. J., Striegl, R. G.,
532 McDowell, W. H., Kortelainen, P., Caraco, N. F., Melack, J. M., and Middelburg, J. J.: The
533 global abundance and size distribution of lakes, ponds, and impoundments, Limnol.
534 Oceanogr., 51, 2388–2397, <https://doi.org/10.4319/lo.2006.51.5.2388>, 2006.

535 Ejarque, E., Scholz, K., Wohlfahrt, G., Battin, T. J., Kainz, M. J., and Schelker, J.: Hydrology
536 controls the carbon mass balance of a mountain lake in the eastern European Alps, Limnol.
537 Oceanogr., 66, 2110–2125, <https://doi.org/10.1002/lno.11712>, 2021.

538 Engel, F., Farrell, K. J., McCullough, I. M., Scordo, F., Denfeld, B. A., Dugan, H. A., Eyto, E.
539 de, Hanson, P. C., McClure, R. P., Nõges, P., Nõges, T., Ryder, E., Weathers, K. C., and
540 Weyhenmeyer, G. A.: A lake classification concept for a more accurate global estimate of

541 the dissolved inorganic carbon export from terrestrial ecosystems to inland waters, *Sci. Nat.*,
542 105, 25, <https://doi.org/10.1007/s00114-018-1547-z>, 2018.

543 Hanson, P. C., Pace, M. L., Carpenter, S. R., Cole, J. J., and Stanley, E. H.: Integrating
544 Landscape Carbon Cycling: Research Needs for Resolving Organic Carbon Budgets of
545 Lakes, *Ecosystems*, 18, 363–375, <https://doi.org/10.1007/s10021-014-9826-9>, 2015.

546 Hope, D., Palmer, S. M., Billett, M. F., and Dawson, J. J. C.: Variations in dissolved CO₂ and
547 CH₄ in a first-order stream and catchment: an investigation of soil-stream linkages, *Hydrol.*
548 *Process.*, 18, 3255–3275, <https://doi.org/10.1002/hyp.5657>, 2004.

549 Jähne, B., Münnich, K. O., Bösinger, R., Dutzi, A., Huber, W., and Libner, P.: On the parameters
550 influencing air-water gas exchange, *J. Geophys. Res. Oceans*, 92, 1937,
551 <https://doi.org/10.1029/JC092iC02p01937>, 1987.

552 Jones, S. E., Kratz, T. K., Chiu, C.-Y., and McMahon, K. D.: Influence of typhoons on annual
553 CO₂ flux from a subtropical, humic lake, *Glob. Change Biol.*, 15, 243–254,
554 <https://doi.org/10.1111/j.1365-2486.2008.01723.x>, 2009.

555 Kimura, N., Liu, W.-C., Chiu, C.-Y., and Kratz, T.: The influences of typhoon-induced mixing in
556 a shallow lake, *Lakes Reserv.: Res. Manag.*, 17, 171–183, <https://doi.org/10.1111/j.1440-1770.2012.00509.x>, 2012.

557 Kimura, N., Liu, W.-C., Tsai, J.-W., Chiu, C.-Y., Kratz, T. K., and Tai, A.: Contribution of
558 extreme meteorological forcing to vertical mixing in a small, shallow subtropical lake, *J.*
559 *Limnol.*, 76, 116–128, <https://doi.org/10.4081/jlimnol.2016.1477>, 2017.

560 Kossin, J. P., Olander, T. L., and Knapp, K. R.: Trend Analysis with a New Global Record of
561 Tropical Cyclone Intensity, *J. Clim.*, 26, 9960–9976, <https://doi.org/10.1175/JCLI-D-13-00262.1>, 2013.

562 Kraemer, B. M., Pilla, R. M., Woolway, R. I., Anneville, O., Ban, S., Colom-Montero, W.,
563 Devlin, S. P., Dokulil, M. T., Gaiser, E. E., Hambright, K. D., Hessen, D. O., Higgins, S. N.,
564 Jöhnk, K. D., Keller, W., Knoll, L. B., Leavitt, P. R., Lepori, F., Luger, M. S., Maberly, S. C.,
565 Müller-Navarra, D. C., Paterson, A. M., Pierson, D. C., Richardson, D. C., Rogora, M.,
566 Rusak, J. A., Sadro, S., Salmaso, N., Schmid, M., Silow, E. A., Sommaruga, R., Stelzer, J. A.
567 A., Straile, D., Thiery, W., Timofeyev, M. A., Verburg, P., Weyhenmeyer, G. A., and Adrian,
568 R.: Climate change drives widespread shifts in lake thermal habitat, *Nat. Clim. Chang.*, 11,
569 521–529, <https://doi.org/10.1038/s41558-021-01060-3>, 2021.

570 Lai, I.-L., Chang, S.-C., Lin, P.-H., Chou, C.-H., and Wu, J.-T.: Climatic Characteristics of the
571 Subtropical Mountainous Cloud Forest at the Yuanyang Lake Long-Term Ecological
572 Research Site, Taiwan, *Taiwania*, 51, 317–329, 2006.

573 Lauerwald, R., Laruelle, G. G., Hartmann, J., Ciais, P., and Regnier, P. A.: Spatial patterns in
574 CO₂ evasion from the global river network, *Global Biogeochem. Cycles*, 29, 534–554,

577 <https://doi.org/10.1002/2014GB004941>, 2015.

578 Lin, H.-C., Chiu, C.-Y., Tsai, J.-W., Liu, W.-C., Tada, K., and Nakayama, K.: Influence of
579 Thermal Stratification on Seasonal Net Ecosystem Production and Dissolved Inorganic
580 Carbon in a Shallow Subtropical Lake, *J. Geophys. Res. Biogeosci.*, 126,
581 <https://doi.org/10.1029/2020JG005907>, 2021.

582 Lin, H.-C., Tsai, J.-W., Tada, K., Matsumoto, H., Chiu, C.-Y., and Nakayama, K.: The impacts
583 of the hydraulic retention effect and typhoon disturbance on the carbon flux in shallow
584 subtropical mountain lakes, *Sci. Total Environ.*, 803, 150044,
585 <https://doi.org/10.1016/j.scitotenv.2021.150044>, 2022.

586 Maberly, S. C., O'Donnell, R. A., Woolway, R. I., Cutler, M. E. J., Gong, M., Jones, I. D.,
587 Merchant, C. J., Miller, C. A., Politi, E., Scott, E. M., Thackeray, S. J., and Tyler, A. N.:
588 Global lake thermal regions shift under climate change, *Nat Commun.*, 11, 1232,
589 <https://doi.org/10.1038/s41467-020-15108-z>, 2020.

590 MacIntyre, S., Bastviken, D., Arneborg, L., Crowe, A. T., Karlsson, J., Andersson, A., Gålfalk,
591 M., Rutgersson, A., Podgrajsek, E., and Melack, J. M.: Turbulence in a small boreal lake:
592 Consequences for air-water gas exchange, *Limnol. Oceanogr.*, 66, 827–854,
593 <https://doi.org/10.1002/lno.11645>, 2021.

594 Maranger, R., Jones, S. E., and Cotner, J. B.: Stoichiometry of carbon, nitrogen, and phosphorus
595 through the freshwater pipe, *Limnol Oceanogr Lett*, 3, 89–101,
596 <https://doi.org/10.1002/lol2.10080>, 2018.

597 Marcé, R., Obrador, B., Gómez-Gener, L., Catalán, N., Koschorreck, M., Arce, M. I., Singer, G.,
598 and Schiller, D. von: Emissions from dry inland waters are a blind spot in the global carbon
599 cycle, *Earth-Sci. Rev.*, 188, 240–248, <https://doi.org/10.1016/j.earscirev.2018.11.012>, 2019.

600 Nagatomo, K., Nakayama, K., Komai, K., Matsumoto, H., Watanabe, K., Kubo, A., Tada, K.,
601 Maruya, Y., Yano, S., Tsai, J. W., Lin, H. C., Vilas, M., and Hipsey, M. R.: A Spatially
602 Integrated Dissolved Inorganic Carbon (SiDIC) Model for Aquatic Ecosystems Considering
603 Submerged Vegetation, *J Geophys Res Biogeosci*, 128,
604 <https://doi.org/10.1029/2022JG007032>, 2023.

605 Nakayama, K., Kawahara, Y., Kurimoto, Y., Tada, K., Lin, H.-C., Hung, M.-C., Hsueh, M.-L.,
606 and Tsai, J.-W.: Effects of oyster aquaculture on carbon capture and removal in a tropical
607 mangrove lagoon in southwestern Taiwan, *Sci. Total Environ.*, 156460,
608 <https://doi.org/10.1016/j.scitotenv.2022.156460>, 2022.

609 Nakayama, K., Komai, K., Tada, K., Lin, H. C., Yajima, H., Yano, S., Hipsey, M. R., and Tsai, J.
610 W.: Modeling dissolved inorganic carbon considering submerged aquatic vegetation, *Ecol.
611 Model.*, 431, 109188, <https://doi.org/10.1016/j.ecolmodel.2020.109188>, 2020.

612 Nakayama, K., Sivapalan, M., Sato, C., and Furukawa, K.: Stochastic characterization of the

613 onset of and recovery from hypoxia in Tokyo Bay, Japan: Derived distribution analysis
614 based on “strong wind” events, *Water Resour. Res.*, 46,
615 <https://doi.org/10.1029/2009WR008900>, 2010.

616 Nash, J. E. and Sutcliffe, J. V.: River flow forecasting through conceptual models, I A discussion
617 of principles, *J. Hydrol.*, 10, 398–409, 1970.

618 Olsson, F., Mackay, E. B., Barker, P., Davies, S., Hall, R., Spears, B., Exley, G., Thackeray, S.
619 J., and Jones, I. D.: Can reductions in water residence time be used to disrupt seasonal
620 stratification and control internal loading in a eutrophic monomictic lake?, *J. Environ.*
621 *Manage.*, 304, 114169, <https://doi.org/10.1016/j.jenvman.2021.114169>, 2022a.

622 Olsson, F., Mackay, E. B., Moore, T., Barker, P., Davies, S., Hall, R., Spears, B., Wilkinson, J.,
623 and Jones, I. D.: Annual water residence time effects on thermal structure: A potential lake
624 restoration measure?, *J. Environ. Manage.*, 314, 115082,
625 <https://doi.org/10.1016/j.jenvman.2022.115082>, 2022b.

626 Plummer, L. and Busenberg, E.: The solubilities of calcite, aragonite and vaterite in $\text{CO}_2\text{-H}_2\text{O}$
627 solutions between 0 and 90°C, and an evaluation of the aqueous model for the system
628 $\text{CaCO}_3\text{-CO}_2\text{-H}_2\text{O}$, *Geochim. Cosmochim. Acta*, 46, 1011–1040,
629 [https://doi.org/10.1016/0016-7037\(82\)90056-4](https://doi.org/10.1016/0016-7037(82)90056-4), 1982.

630 Raymond, P. A., Hartmann, J., Lauerwald, R., Sobek, S., McDonald, C., Hoover, M., Butman,
631 D., Striegl, R., Mayorga, E., Humborg, C., Kortelainen, P., Dürr, H., Meybeck, M., Ciais, P.,
632 and Guth, P.: Global carbon dioxide emissions from inland waters, *Nature*, 503, 355–359,
633 <https://doi.org/10.1038/nature12760>, 2013.

634 Schindler, D. W., Curtis, P. J., Parker, B. R., and Stainton, M. P.: Consequences of climate
635 warming and lake acidification for UV-B penetration in North American boreal lakes,
636 *Nature*, 379, 705–708, <https://doi.org/10.1038/379705a0>, 1996.

637 Scully, N. M., McQueen, D. J., and Lean, D. R. S.: Hydrogen peroxide formation: The
638 interaction of ultraviolet radiation and dissolved organic carbon in lake waters along a 43–
639 75°N gradient, *Limnol. Oceanogr.*, 41, 540–548, <https://doi.org/10.4319/lo.1996.41.3.0540>,
640 1996.

641 Shade, A., Chiu, C.-Y., and McMahon, K. D.: Seasonal and episodic lake mixing stimulate
642 differential planktonic bacterial dynamics, *Microb. Ecol.*, 59, 546–554,
643 <https://doi.org/10.1007/s00248-009-9589-6>, 2010.

644 Shade, A., Read, J. S., Welkie, D. G., Kratz, T. K., Wu, C. H., and McMahon, K. D.: Resistance,
645 resilience and recovery: aquatic bacterial dynamics after water column disturbance, *Environ.*
646 *Microbiol.*, 13, 2752–2767, <https://doi.org/10.1111/j.1462-2920.2011.02546.x>, 2011.

647 Shih, Y.-T., Chen, P.-H., Lee, L.-C., Liao, C.-S., Jien, S.-H., Shiah, F.-K., Lee, T.-Y., Hein, T.,
648 Zehetner, F., Chang, C.-T., and Huang, J.-C.: Dynamic responses of DOC and DIC transport

649 to different flow regimes in a subtropical small mountainous river, *Hydrol. Earth Syst. Sci.*,
650 22, 6579–6590, <https://doi.org/10.5194/hess-22-6579-2018>, 2019.

651 Smith, S. V.: Physical, chemical and biological characteristics* of CO₂ gas flux across the air-
652 water interface, *Plant Cell Environ.*, 8, 387–398, <https://doi.org/10.1111/j.1365->
653 3040.1985.tb01674.x, 1985.

654 Sobek, S., Tranvik, L. J., and Cole, J. J.: Temperature independence of carbon dioxide
655 supersaturation in global lakes, *Global Biogeochem. Cycles*, 19, GB2003,
656 <https://doi.org/10.1029/2004GB002264>, 2005.

657 Sun, P., He, S., Yu, S., Pu, J., Yuan, Y., and Zhang, C.: Dynamics in riverine inorganic and
658 organic carbon based on carbonate weathering coupled with aquatic photosynthesis in a
659 karst catchment, *Southwest China, Water Research*, 189, 116658,
660 <https://doi.org/10.1016/j.watres.2020.116658>, 2021.

661 Tranvik, L. J., Downing, J. A., Cotner, J. B., Loiselle, S. A., Striegl, R. G., Ballatore, T. J.,
662 Dillon, P., Finlay, K., Fortino, K., Knoll, L. B., Kortelainen, P. L., Kutser, T., Larsen, S.,
663 Laurion, I., Leech, D. M., McCallister, S. L., McKnight, D. M., Melack, J. M., Overholt, E.,
664 Porter, J. A., Prairie, Y., Renwick, W. H., Roland, F., Sherman, B. S., Schindler, D. W.,
665 Sobek, S., Tremblay, A., Vanni, M. J., Verschoor, A. M., Wachenfeldt, E. von, and
666 Weyhenmeyer, G. A.: Lakes and reservoirs as regulators of carbon cycling and climate,
667 *Limnol. Oceanogr.*, 54, 2298–2314, https://doi.org/10.4319/lo.2009.54.6_part_2.2298, 2009.

668 Tsai, J.-W., Kratz, T. K., Hanson, P. C., Kimura, N., Liu, W.-C., Lin, F.-P., Chou, H.-M., Wu, J.-
669 T., and Chiu, C.-Y.: Metabolic changes and the resistance and resilience of a subtropical
670 heterotrophic lake to typhoon disturbance, *Can. J. Fish. Aquat. Sci.*, 68, 768–780,
671 <https://doi.org/10.1139/F2011-024>, 2011.

672 Tsai, J.-W., Kratz, T. K., Hanson, P. C., Wu, J.-T., Chang, W. Y. B., Arzberger, P. W., Lin, B.-S.,
673 Lin, F.-P., Chou, H.-M., and Chiu, C.-Y.: Seasonal dynamics, typhoons and the regulation of
674 lake metabolism in a subtropical humic lake, *Freshw. Biol.*, 53, 1929–1941,
675 <https://doi.org/10.1111/j.1365-2427.2008.02017.x>, 2008.

676 Vachon, D. and Del Giorgio, P. A.: Whole-Lake CO₂ Dynamics in Response to Storm Events in
677 Two Morphologically Different Lakes, *Ecosystems*, 17, 1338–1353,
678 <https://doi.org/10.1007/s10021-014-9799-8>, 2014.

679 Vachon, D., Sponseller, R. A., and Karlsson, J.: Integrating carbon emission, accumulation and
680 transport in inland waters to understand their role in the global carbon cycle, *Glob. Change
681 Biol.*, 27, 719–727, <https://doi.org/10.1111/gcb.15448>, 2021.

682 Wanninkhof, R.: Relationship between wind speed and gas exchange over the ocean, *J.
683 Geophys. Res. Oceans*, 97, 7373, <https://doi.org/10.1029/92JC00188>, 1992.

684 Williamson, C. E., Morris, D. P., Pace, M. L., and Olson, O. G.: Dissolved organic carbon and

685 nutrients as regulators of lake ecosystems: Resurrection of a more integrated paradigm,
686 Limnol. Oceanogr., 44, 795–803, https://doi.org/10.4319/lo.1999.44.3_part_2.0795, 1999.

687 Winslow, L. A., Read, J. S., Hansen, G. J. A., and Hanson, P. C.: Small lakes show muted
688 climate change signal in deepwater temperatures, Geophys. Res. Lett., 42, 355–361,
689 <https://doi.org/10.1002/2014GL062325>, 2015.

690 Woolway, R. I., Anderson, E. J., and Albergel, C.: Rapidly expanding lake heatwaves under
691 climate change, Environ. Res. Lett., 16, 94013, <https://doi.org/10.1088/1748-9326/ac1a3a>,
692 2021a.

693 Woolway, R. I., Jennings, E., Shatwell, T., Golub, M., Pierson, D. C., and Maberly, S. C.: Lake
694 heatwaves under climate change, Nature, 589, 402–407, <https://doi.org/10.1038/s41586-020-03119-1>, 2021b.

695 Woolway, R. I., Kraemer, B. M., Lenters, J. D., Merchant, C. J., O'Reilly, C. M., and Sharma,
696 S.: Global lake responses to climate change, Nat. Rev. Earth Environ., 1, 388–403,
697 <https://doi.org/10.1038/s43017-020-0067-5>, 2020.

698 Woolway, R. I., Simpson, J. H., Spiby, D., Feuchtmayr, H., Powell, B., and Maberly, S. C.:
699 Physical and chemical impacts of a major storm on a temperate lake: a taste of things to
700 come?, Climatic Change, 151, 333–347, <https://doi.org/10.1007/s10584-018-2302-3>, 2018.

701 Wu, J.-T., Chang, S.-C., Wang, Y.-S., and Hsu, M.-K.: Characteristics of the acidic environment
702 of the Yuanyang Lake (Taiwan), Bot. Bull. Acad. Sin., 42, 17–22, 2001.

703 Zhou, Y., Yu, X., Zhou, L., Zhang, Y., Xu, H., Zhu, M., Zhu, G., Jang, K.-S., Spencer, R. G. M.,
704 Jeppesen, E., Brookes, J. D., Kothawala, D. N., and Wu, F.: Rainstorms drive export of
705 aromatic and concurrent bio-labile organic matter to a large eutrophic lake and its major
706 tributaries, Water Research, 229, 119448, <https://doi.org/10.1016/j.watres.2022.119448>,
707 2023.

708 Zwart, J. A., Sebestyen, S. D., Solomon, C. T., and Jones, S. E.: The Influence of Hydrologic
709 Residence Time on Lake Carbon Cycling Dynamics Following Extreme Precipitation
710 Events, Ecosystems, 20, 1000–1014, <https://doi.org/10.1007/s10021-016-0088-6>, 2017.

712

713 **Table 1.** Comparison of Yuan-Yang Lake's rainfall and hydrological records in typhoon and non-
714 typhoon years.

Records	Typhoon years	Non-typhoon years
Time period (year)	2015-2016	2017-2018
Total precipitation (mm)	6,332	3,795
Total typhoon rainfall (mm)	2,254	0
Average water depth (m \pm SD)	4.54 ± 1.7	4.51 ± 1.5
Average river discharge ($m^3 d^{-1}$)	3,717	2,943
Transparency (Secchi disc depth, m \pm SD)	1.58 ± 0.45	1.38 ± 0.28

715

Table 2. Parameters of the two-layer conceptual model in Yuan-Yang Lake

Parameters	Value	Unit
<u>Measurements</u>		
Q_{out}	Outflow discharge	Daily data
Q_{in}	Inflow discharge	Daily data
Q_U	Upper layer discharge	Daily data
Q_L	Lower layer discharge	Daily data
DIC_R	River inflow DIC	Monthly data
DIC_U	Upper layer DIC	Monthly data
DIC_L	Lower layer DIC	Monthly data
Chl_U	Upper layer Chl a	Monthly data
Chl_L	Lower layer Chl a	Monthly data
DOC_U	Upper layer DOC	Monthly data
DOC_L	Lower layer DOC	Monthly data
F_{CO_2}	Carbon emission (equation 7)	Monthly data
<u>Constants</u>		
V_{total}	Total lake volume	$53,544 \text{ m}^3$
V_U	Upper layer volume	$45,456 \text{ m}^3$
V_L	Lower layer volume	$8,808 \text{ m}^3$
A_s	Lake surface area	$36,000 \text{ m}^2$
A_I	Interface area	$7,264 \text{ m}^2$
A_B	Bottom of lake area	$3,520 \text{ m}^2$
C_U	Coefficient of the standard unit	$1,000 \text{ L m}^{-3}$
<u>Unknown Constants</u>		
α_{PU}, α_{PL}	Coefficients of photosynthesis	Constant
α_{MU}, α_{ML}	Coefficients of mineralization	Constant
w_I	Coefficient of vertical transportation	Constant
BF_{DIC}, BF_{DOC}	Sediment DIC and DOC emission	Constant
Pa_U, Pb_L	Equations constant at lower layer	Constant
<u>Extreme scenarios</u>		
<i>Level 1</i>	Q_U	Q_L
	77% (spring),	23% (spring),
	82% (summer),	18% (summer),
	47% (autumn),	53% (autumn),
	50% (winter)	50% (winter)
of Q_{in}		of Q_{in} .

<i>Level 2</i>	Best-fit scenario but change upper and lower layers discharges (Q_U, Q_L)	80% (spring), 85% (summer), 50% (autumn), 50% (winter)	20% (spring), 15% (summer), 50% (autumn), 50% (winter)
		of Q_{in}	of Q_{in} .

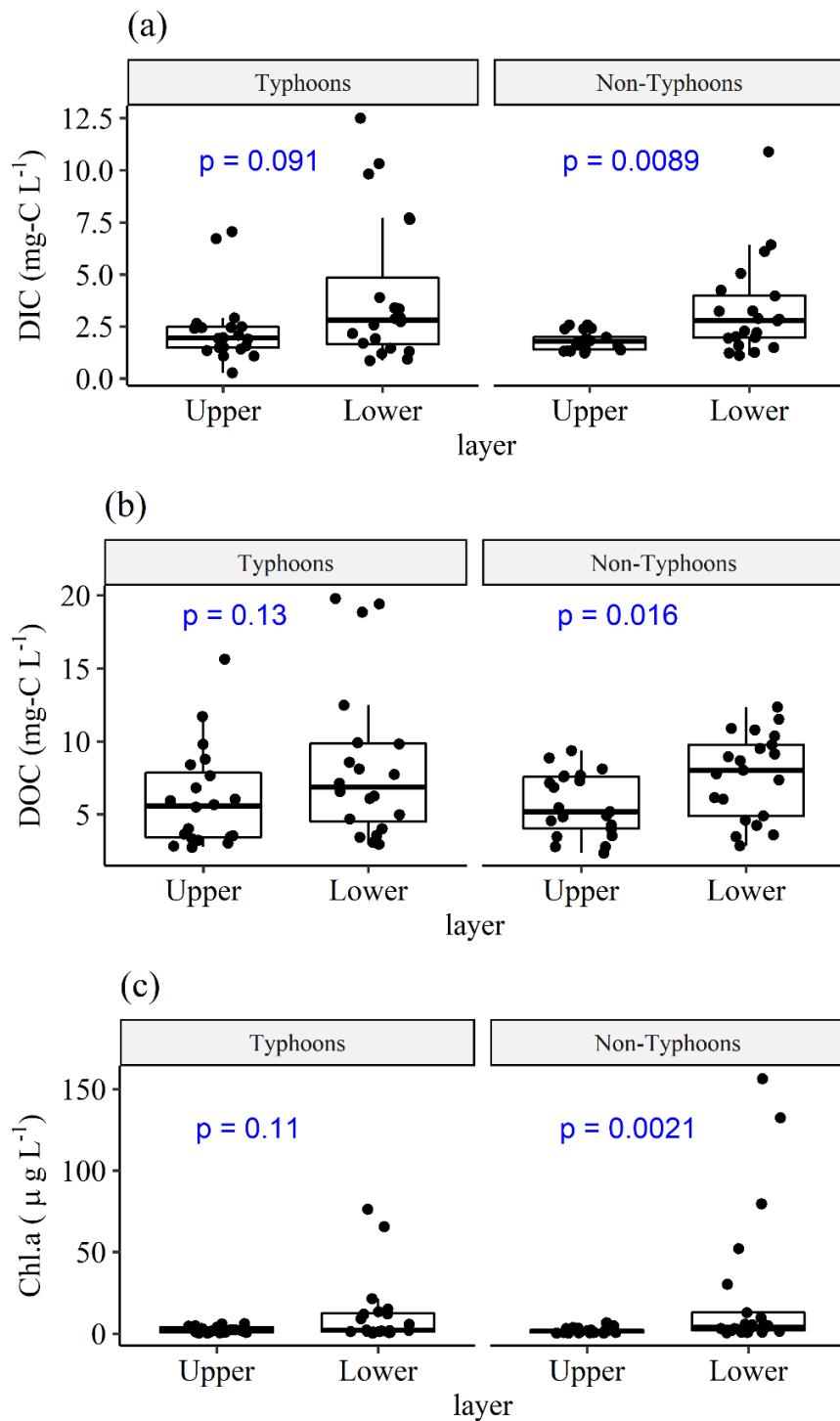
718 **Table 3.** Best-fit parameters of a two-layer conceptual model of DIC and DOC in Yuan-Yang
 719 Lake from 2015 to 2018.

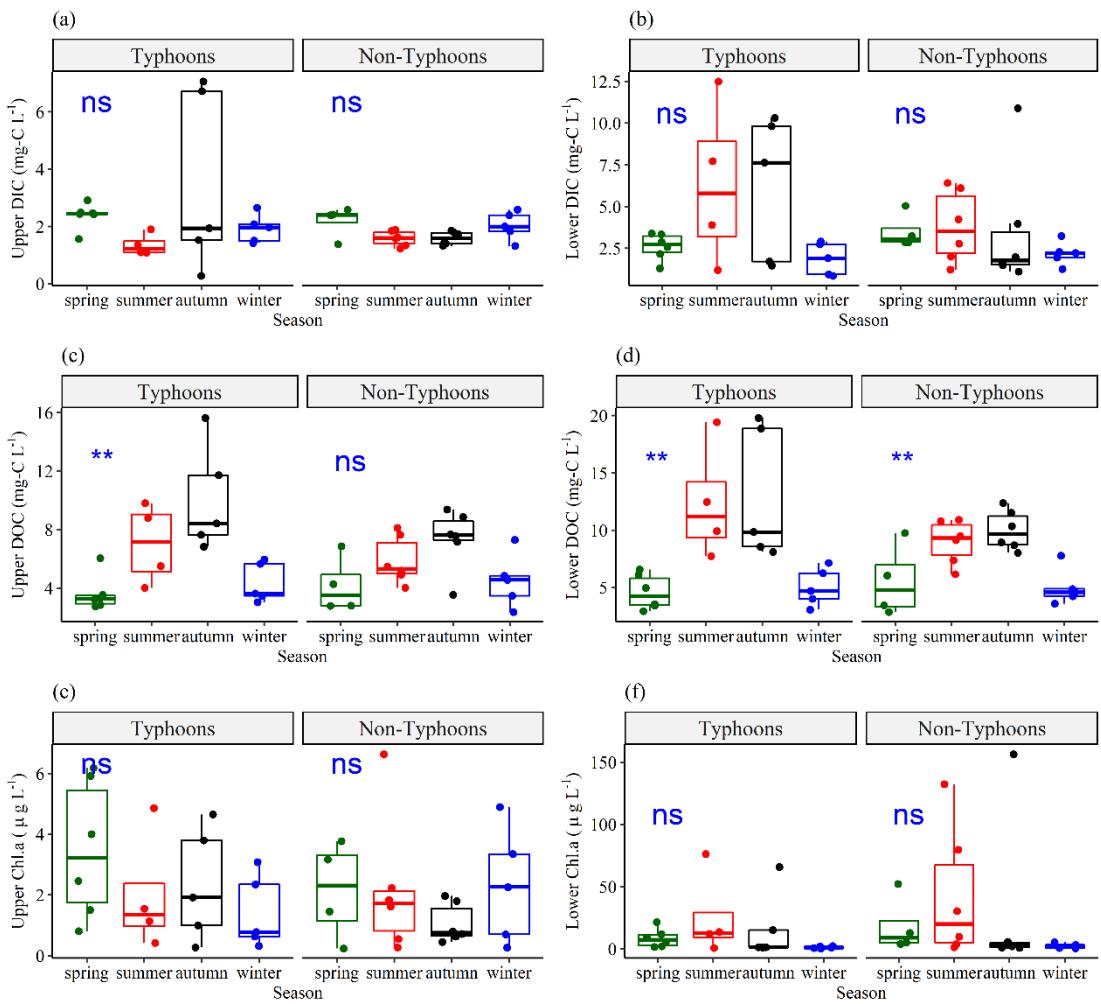
	2015–2016				2017–2018			
	Typhoon years				Non-typhoon years			
	Spring	Summer	Autumn	Winter	Spring	Summer	Autumn	Winter
<u>Upper layer</u>								
F_{CO_2} (mg-C m ² d ⁻¹)	291	245	422	127	231	143	104	175
α_{PU} (d ⁻¹)	-1.20	-33.1	-183.5	-29.1	8.0	6.0	30.0	7.77
α_{MU} (d ⁻¹)	-0.0227	0.0203	0.08	-0.031	-0.01	-0.039	-0.033	-0.195
w_I (d ⁻¹)	0.230	0.172	1.38	0.30	0.10	0.0478	0.120	0.180
Pa_U (d ⁻¹)	12560	-1317	-23750	9597	9880	14000	17600	10100
Pb_U (d ⁻¹)	-21930	9461	-42130	-17070	-3630	-1251	-20820	-9289
$dDIC_U$ (R ² , NSE)					0.305, 0.614			
$dDOC_U$ (R ² , NSE)					0.909, 0.953			
<u>Lower layer</u>								
α_{PL} (d ⁻¹)	-0.627	-22.1	15.0	-0.878	1.49	-6.87	6.0	-16.6
α_{ML} (d ⁻¹)	-0.025	0.123	0.0755	0.00973	-0.010	-0.0376	-0.04	-0.048
Pa_L (d ⁻¹)	100	-5662	-10500	-1013	151.6	2032	1216	909
Pb_L (d ⁻¹)	-6012	-7395	-53940	-9639	-1338	-6296	-19470	-8748
BF_{DIC} , BF_{DOC} (mg-C L ⁻¹)					0.04,			
					0.00			
$dDIC_L$ (R ² , NSE)					0.452, 0.707			
$dDOC_L$ (R ² , NSE)					0.460, 0.728			


720

721 **Table 4.** Seasonal averages of carbon fluxes ($\text{mg C m}^{-3} \text{ d}^{-1}$) for each season in Yuan-Yang Lake.
 722 Positive values are shown in the carbon sink, and negative ones show the values after carbon was
 723 released.

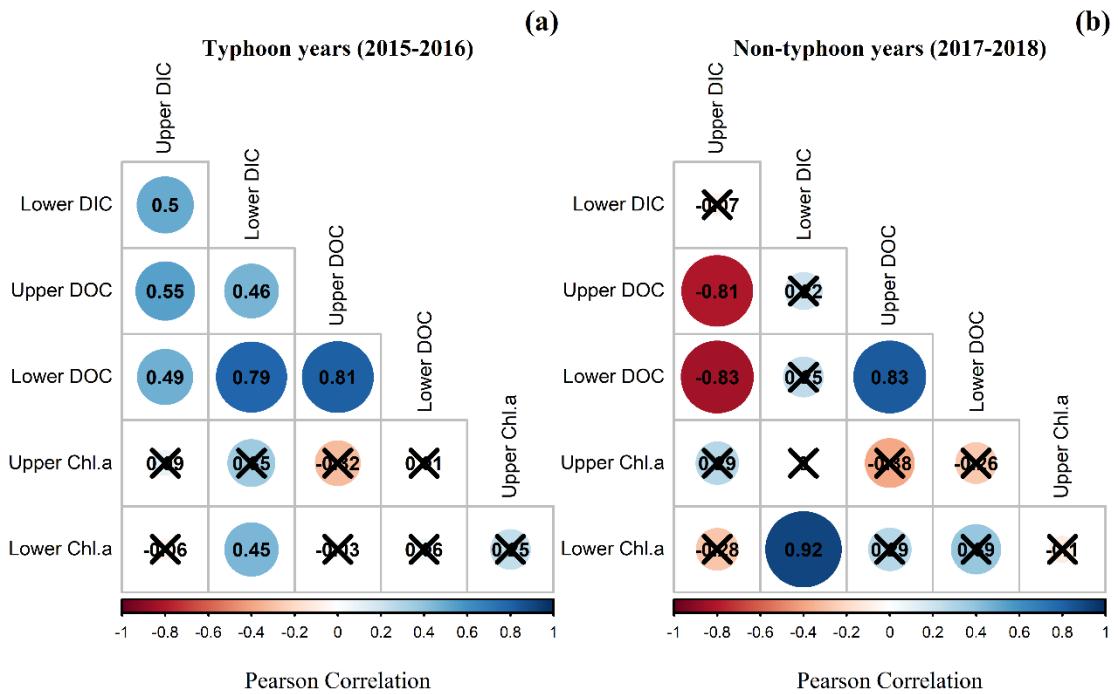
		Flux			Total	
		$(\text{mg C m}^{-3} \text{ d}^{-1})$			Flux_{DIC}	Flux_{DOC}
		F_C	Upper	Lower		
<i>Typhoon years</i>	<u>Average</u>	-219	-	-	-150	-9.69
Spring	DIC	-231	-243	-45.2	-210	62.1
	DOC	-	70.8	17.2		
Summer	DIC	-194	29.1	-313	-26.4	18.8
	DOC	-	118	-495		
Autumn	DIC	-351	-216	-659	-288	-151
	DOC	-	46.1	-1167		
Winter	DIC	-100	-96.4	36.5	-74.8	31.2
	DOC	-	40.5	-16.9		
<i>Non-typhoon years</i>	<u>Average</u>	-133	-	-	-47.8	52.6
Spring	DIC	-129	-180	-94.9	-166	-7.06
	DOC	-	21.4	-67.1		
Summer	DIC	-183	5.80	-58.1	-4.57	73.8
	DOC	-	115	-140		
Autumn	DIC	-82.6	95.0	35.9	85.5	95.9
	DOC	-	168	-272		
Winter	DIC	-138	-128	6.04	-106	33.7
	DOC	-	34.0	32.1		


724


725

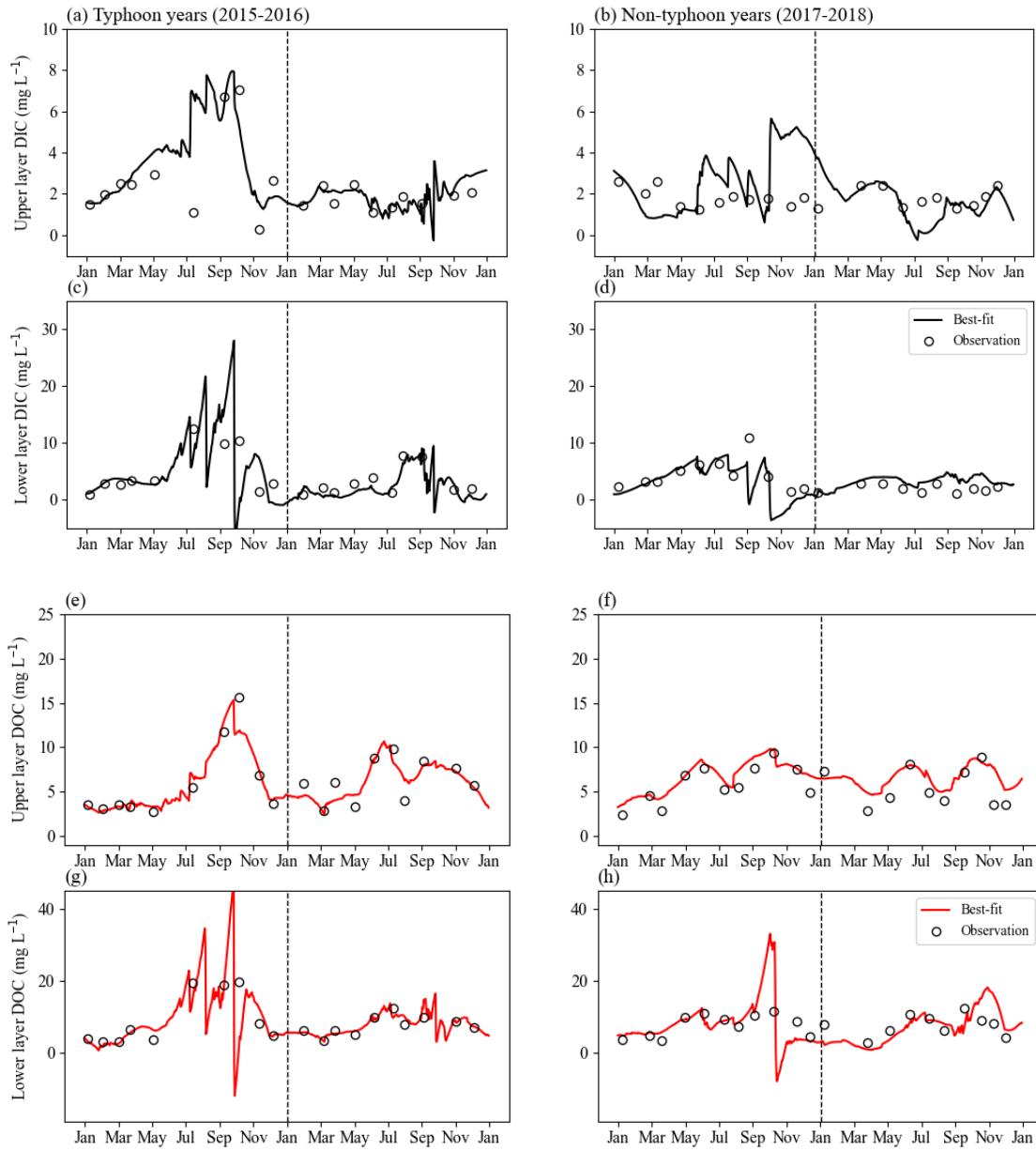
726

727 **Fig. 1.** Sampling locations and bathymetry maps of Yuan-Yang Lake (YYL). The dark
 728 rectangle shows the buoy station, which is located at the deepest site of the lake.
 729 The *red points* and *white cross* show the river mouths of the inflows and outflows,
 730 respectively. The *gray triangle* shows the location of the water depth sensor.
 731



737

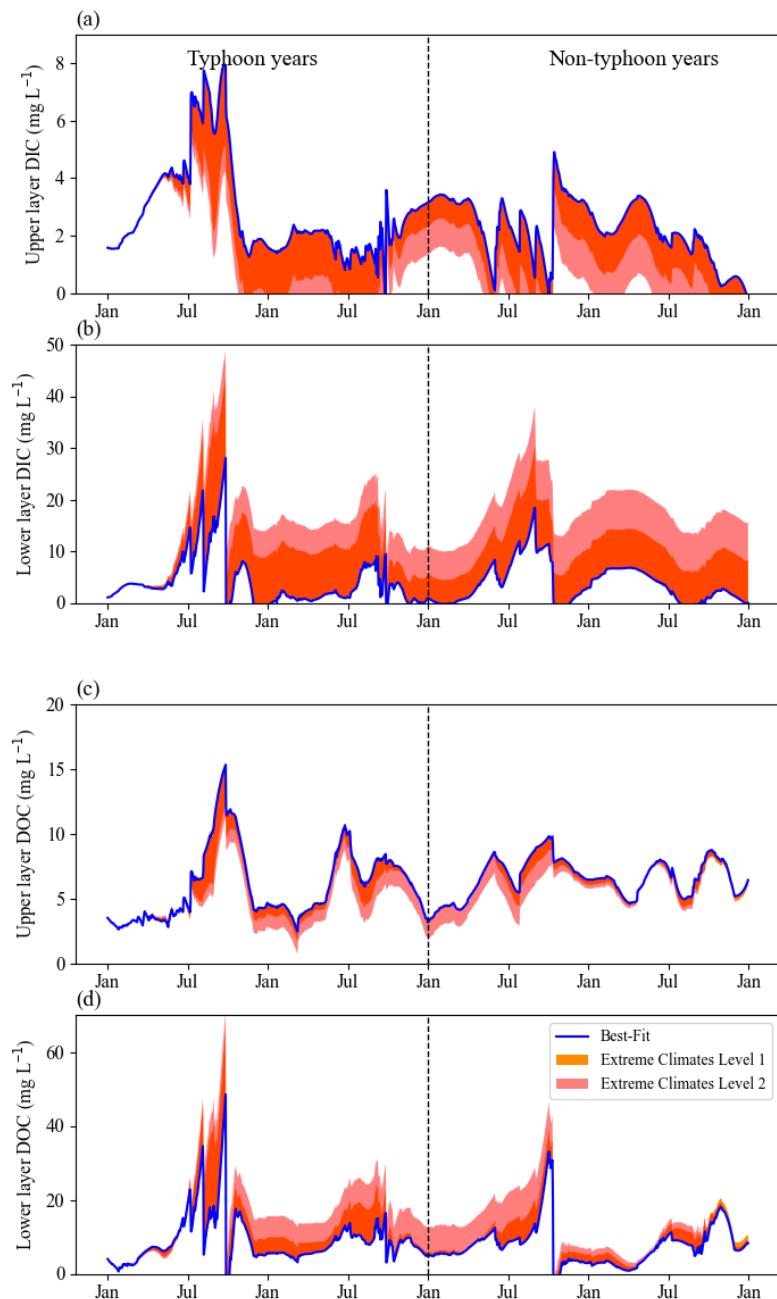
738 **Fig. 3.** Seasonal variations of (a) upper layer DIC (DIC_U), (b) lower layer DIC (DIC_L),
739 (c) upper layer DOC (DOC_U), (d) lower layer DOC (DOC_L), (e) upper layer Chl. a
740 (Chl_U), (f) lower layer Chl. a (Chl_L) grouped by typhoon and non-typhoon years. The
741 bullet points show the water sampling data. To determine seasonality, we used one-way
742 ANOVA to obtain the p -values. “ns”: p -values ≥ 0.05 ; * show p -values from 0.05 to
743 0.01; **: p -values from 0.01 to 0.001.


744

745

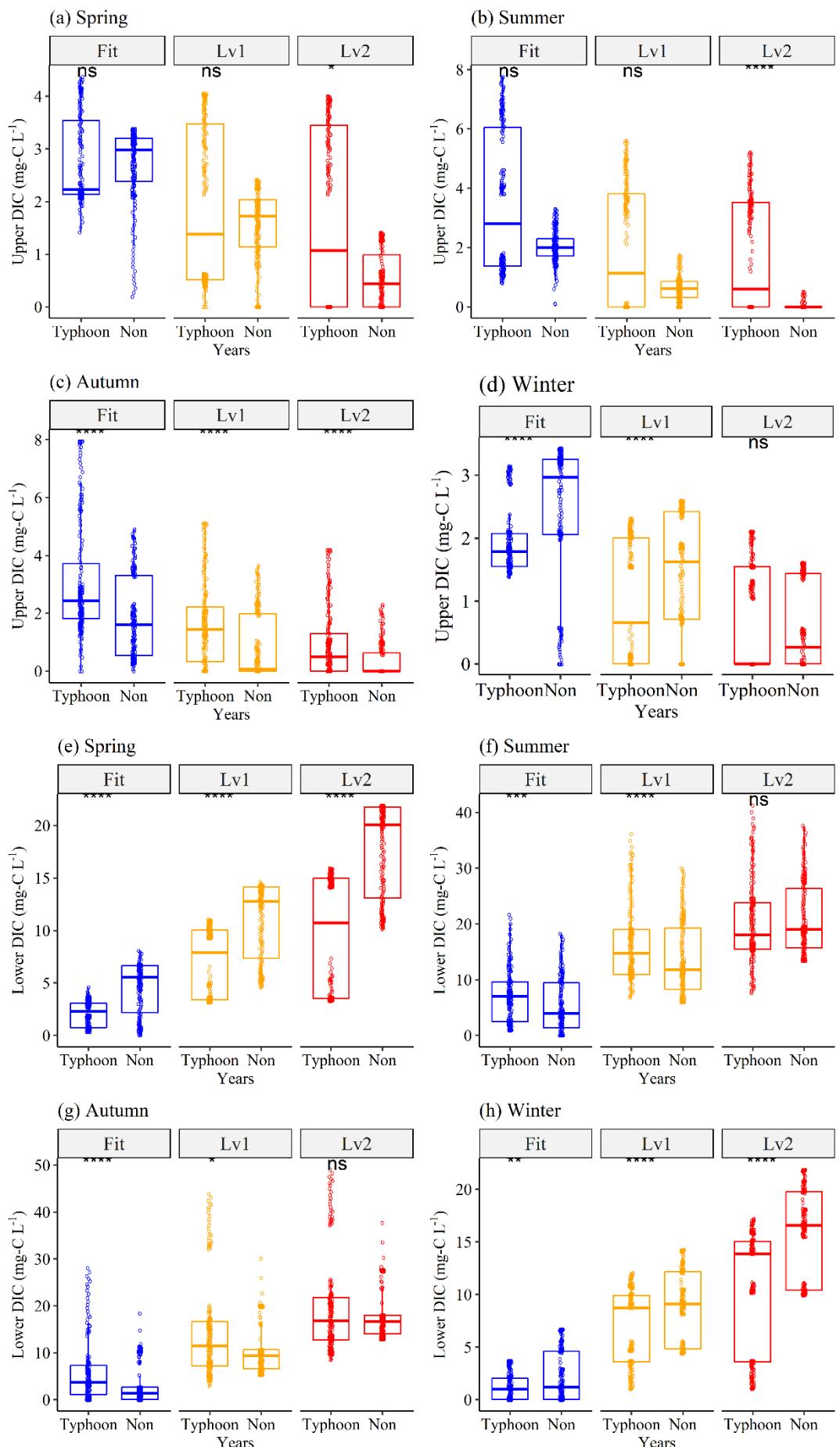
746 **Fig. 4.** Pearson correlation coefficients of DIC, DOC, and Chl. a concentration at upper
747 layer and lower layer DIC (DIC_U , DIC_L), DOC (DOC_U , DOC_L), Chl. a (Chl_U , Chl_L)
748 during **(a)** typhoon years and **(b)** non-typhoon years. *Black-crosses* show insignificant
749 values (p -values are > 0.05).

750

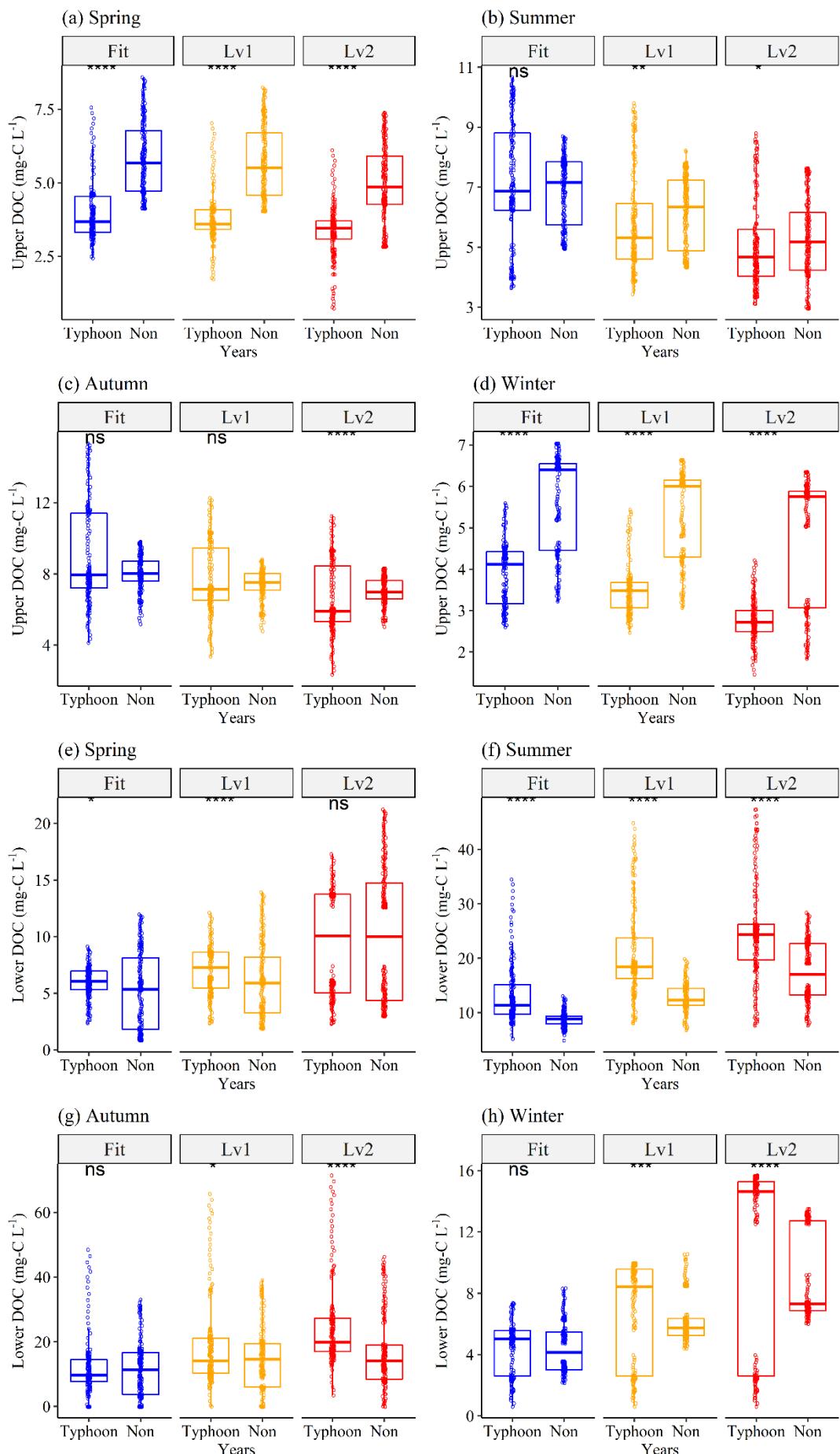


751

752

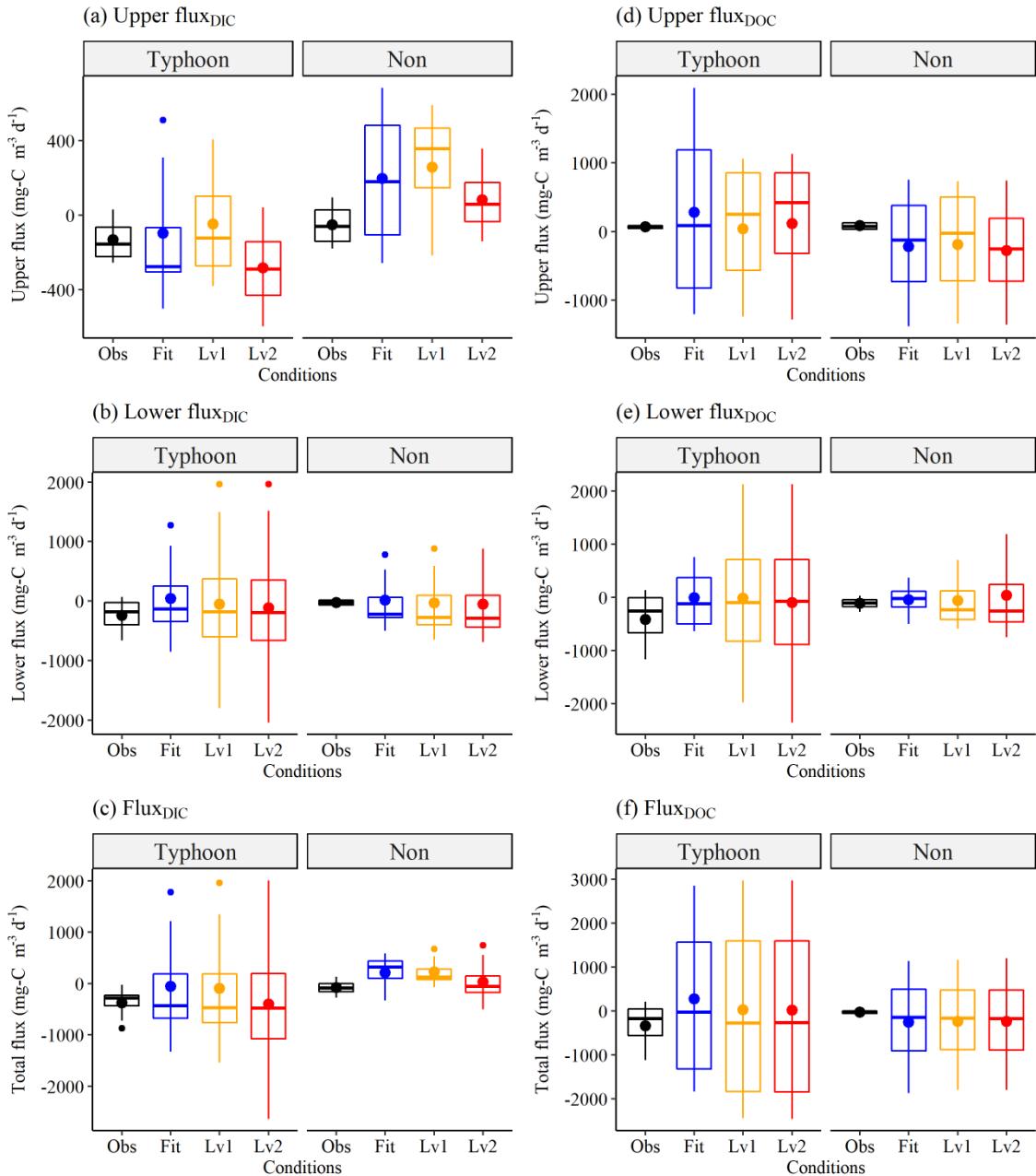

753 **Fig. 5.** Continuous daily DIC and DOC data at **(a, b, e, f)** upper layer (DIC_U , DOC_U) and
 754 **(c, d, g, h)** lower layer (DIC_L , DOC_L) by using conceptual equations models. The *black*
 755 *lines* show the *best-fit* for DIC, *red lines* show the *best-fit* for DOC (Table 3), and *empty*
 756 *dots* show water sampling (observation) data for each month.

757



758

759 **Fig. 6.** Continuous daily DIC and DOC data at **(a, c)** upper layer (DIC_U , DOC_U) and **(b,**
 760 **d)** lower layer (DIC_L , DOC_L) by using the conceptual equation model under extreme
 761 climates from 2015 to 2018. *Blue lines* are original best-fit data as in Fig. 6, in which
 762 the parameters of the DIC model in non-typhoon years are as shown in Table 3. *Orange*
 763 *regions* show *Level 1*; *pink regions* show *Level 2*.



765 **Fig. 7.** Seasonal responses of continuous **(a-d)** upper layer DIC and **(e-h)** lower layer DIC
766 (mg-C L^{-1}) between typhoon (*Typhoon*) and non-typhoon (*Non*) years for each season as
767 in **Fig. 3**. *Fit* (blue boxes) condition shows the best-fit data by using the conceptual two-
768 layer C model; *Lv1* (yellow boxes) and *Lv2* (red boxes) show the extreme climates. Empty
769 dots show the continuous DIC and DOC data. “ns”: p -values ≥ 0.05 ; *: p -values from
770 0.05 to 0.01; **: p -values from 0.01 to 0.001; ****: p -values less than 0.0001 based on a
771 t-test.

773 **Fig. 8.** Seasonal responses of **(a-d)** upper layer DOC and **(e-h)** lower layer DOC (mg-C
774 L^{-1}) between typhoon (*Typhoon*) and non-typhoon (*Non*) years for each season as in Fig.
775 7. The *Fit* (*blue boxes*) condition shows the best-fit data by using the conceptual two-
776 layer carbon model; *Lv1* (*yellow boxes*) and *Lv2* (*red boxes*) show the extreme climates.
777 Empty dots show the continuous DIC and DOC data. “ns”: p -values ≥ 0.05 ; *: p -values
778 from 0.05 to 0.01; **: p -values from 0.01 to 0.001; ***: p -values less than 0.0001 based
779 on a t-test.

780

781
782 **Fig. 9.** Interannual (a) Upper flux_{DIC}, (b) Lower flux_{DIC}, (c) Flux_{DIC}, (d) Upper flux_{DOC},
783 (e) Lower flux_{DOC}, and (f) Flux_{DOC} ($\text{mg C m}^{-3} \text{d}^{-1}$) grouped by typhoon and non-typhoon
784 years. The *Obs* condition (*black boxes*) show the observation data as in Fig. 5. The *Fit*
785 condition (*blue- boxes*) shows the best-fit data by using the conceptual two-layer carbon
786 model as in Fig.5. *Level 1* (*yellow boxes*) and *Level 2* (*red boxes*) show the extreme
787 scenarios as in Fig. 6. For the definitions of fluxes please see Sect. 2.3.3.
788