

1 **Conceptual models of dissolved carbon fluxes considering**
2 **interannual typhoon responses under extreme climates in a**
3 **two-layer stratified lake**

4 Hao-Chi Lin¹, Keisuke Nakayama², Jeng-Wei Tsai³, and Chih-Yu Chiu⁴
5

6 ¹ Department of Geography, National Taiwan University, Taipei City, Taiwan

7 ² Graduate School of Engineering, Kobe University, Kobe City, Japan

8 ³ Graduate Institute of Bioresources, National Pingtung University of Science and
9 Technology, Pingtung, Taiwan

10 ⁴ Biodiversity Research Center, Academia Sinica, Taipei City, Taiwan

11 * Corresponding author: Keisuke Nakayama (nakayama@phoenix.kobe-u.ac.jp)

14 **Abstract**

15 Extreme climates affect the seasonal and interannual patterns of carbon (C) distribution
16 due to the regimes of river inflow and thermal stratification within lentic ecosystems. Typhoons
17 rapidly load substantial amounts of terrestrial C into small subtropical lakes (i.e., Yuan-Yang Lake,
18 YYL), renewing and mixing the water column. We developed conceptual dissolved C model and
19 hypothesized that allochthonous C loading and river inflow intrusion may affect the dissolved
20 inorganic C (DIC) and dissolved organic C (DOC) distributions in a small subtropical lake under
21 these extreme climates. A two-layer conceptual C models was developed to explore how the DIC
22 and DOC fluxes respond to typhoon disturbances on seasonal and interannual time scales in YYL
23 while simultaneously considering autochthonous processes such as algal photosynthesis,
24 remineralization, and vertical transportation. Monthly field samplings were conducted to measure
25 the DIC, DOC, and chlorophyll *a* concentrations to compare the temporal patterns of fluxes
26 between typhoon years (2015–2016) and non-typhoon years (2017–2018). The results
27 demonstrated that net ecosystem production was 3.14 times higher in the typhoon years than in
28 the non-typhoon years in YYL. The results suggested that a load of allochthonous C was the most
29 crucial factor affecting the temporal variation of C fluxes in the typhoon years because of changes
30 in the physical and biochemical processes, such as photosynthesis, mineralization, and vertical
31 transportation. However, the lowered vertical transportation rate shaped the seasonal C in the non-
32 typhoon years due to thermal stratification within this small subtropical lake.

33

34 1. Introduction

35 The Intergovernmental Panel for Environmental Changes Sixth Assessment Report
36 (IPCC AR6) (2021) suggested that, by 2050, not only is air temperature going to increase by at
37 least about 1.5°C but high-intensity storms and drought events will become more frequent as a
38 result of global warming and climate change. In freshwater ecosystems, extreme climates may
39 change the mixing regimes of water columns (Kraemer et al., 2021; Maberly et al., 2020;
40 Woolway et al., 2020), heat wave events (Woolway et al., 2021a; Woolway et al., 2021b),
41 droughts (Marcé et al., 2019), and floods (Woolway et al., 2018). Freshwater ecosystems store
42 around 0.32 to 1.8 Pg C yr⁻¹, which is approximately equivalent to shallow coastal areas; these
43 ecosystems provide important services for human sustainability, such as acting as processing
44 hotspots in regional carbon (C) cycling (Aufdenkampe et al., 2011; Cole et al., 2007; Engel et
45 al., 2018; Lauerwald et al., 2015; Raymond et al., 2013). Extreme weather events might induce
46 stronger seasonal thermal stratification from spring to summer and longer overturns from
47 autumn to winter, thereby changing C distribution and transportation within water bodies
48 (Kraemer et al., 2021; Olsson et al., 2022a; Woolway et al., 2020). The responses of C fluxes in
49 small lakes (lake area < 1 km²) are sensitive to climate change due to the ease with which C
50 mixes with water columns (Doubek et al., 2021; MacIntyre et al., 2021; Winslow et al., 2015).
51 Moreover, storms induce dramatic changes in thermal stratification and water inflows (Lin et
52 al., 2022; Olsson et al., 2022b; Vachon and Del Giorgio, 2014; Woolway et al., 2018). River
53 inflows and wind turbulence mix allochthonous C from sediments into the water column after
54 storm events in small stratified lakes (Bartosiewicz et al., 2015; Czikowsky et al., 2018; Vachon
55 and Del Giorgio, 2014). However, small lakes account for 25% to 35% of the total area of the
56 earth's surface lakes (Cole et al., 2007; Downing et al., 2006; Raymond et al., 2013). Compared
57 to the case in larger lakes, C fluxes in small lakes remain uncertain because small lakes have
58 usually been ignored in calculations of C flux on a global scale (Cole et al., 2007; Raymond et
59 al., 2013). Thus, elucidation of the C fluxes in small lakes in extreme climates is key to
60 optimizing estimations of global C fluxes in extreme climates.

61 Understanding the influences of physical, hydrological, and biogeochemical processes
62 on the fate of C fluxes in smaller lake ecosystems is challenging work (Aufdenkampe et al.,
63 2011; Cole et al., 2007; Raymond et al., 2013; Tranvik et al., 2009; Vachon et al., 2021;
64 Woolway et al., 2018). This is not only because of difficulties in measurement but also because
65 of the dynamics and interactions between factors and processes associated with C fluxes.
66 Dissolved inorganic carbon (DIC) concentration is an important factor in estimating CO₂ fluxes
67 within lake ecosystems (Smith, 1985). Among C fluxes in a freshwater body, the partial pressure
68 of CO₂ ($p\text{CO}_2$), defined as CO₂ emission across the air–water interface, is affected by dissolved
69 inorganic C (DIC), water temperature, wind speed, and pH (Jähne et al., 1987; Smith, 1985).

70 River inflows, sediment, and respiration contribute to DIC loading into lakes (Hope et al., 2004;
71 Vachon et al., 2021); simultaneously, autotrophic organisms, such as planktons and submerged
72 vegetation, capture DIC via photosynthesis (Amaral et al., 2022; Nakayama et al., 2020;
73 Nakayama et al., 2022). Moreover, calcification and mineralization may consume dissolved
74 oxygen within water, inducing uncertainty in $p\text{CO}_2$ estimation (Hanson et al., 2015; Lin et al.,
75 2022; Nakayama et al., 2022). Dissolved organic carbon (DOC) might contribute to CO_2
76 emission from lake water to the atmosphere through mineralization and remineralization within
77 lake ecosystems (Hanson et al., 2015; Sobek et al., 2005). In subtropical freshwater ecosystems,
78 DOC concentration is a vital factor in describing variances in mineralization and
79 remineralization rates for dissolved C (Lin et al., 2022; Shih et al., 2019). Kossin et al. (2013)
80 investigated global storm events with an accumulated rainfall of about 50 mm, which is
81 approximately 10 %–40% of precipitation in a subtropical typhoon event. Other studies have
82 found that typhoon disturbances quickly mix, renew, or dilute the water in small subtropical
83 lakes (Kimura et al., 2012; Kimura et al., 2017; Lin et al., 2022). Therefore, investigating the
84 magnitudes of DIC and DOC during typhoon disturbances is understanding the seasonal
85 regimes and to estimating C fluxes in small subtropical lakes.

86 Typhoons' effects on C fluxes were previously studied in a small, two-layer stratified,
87 subtropical lake, Yuan–Yang Lake (YYL) (Chiu et al., 2020; Jones et al., 2009; Lin et al., 2021;
88 Lin et al., 2022). Jones et al. (2009) used the conceptual hydrology model and sensor data to
89 estimate CO_2 emission in YYL during typhoon disturbances that occurred in October 2004: 2.2
90 to 2.7 $\text{g C m}^{-2} \text{ d}^{-1}$ of CO_2 was released into the atmosphere. CO_2 emissions into the atmosphere
91 were recorded at around 3.0 to 3.7 $\text{g C m}^{-2} \text{ d}^{-1}$ because of substantial loads of terrestrial C via
92 river inflows after strong typhoons in YYL (Chiu et al., 2020). In particular, vertical mixing,
93 thermal stratification, and river retention regimes were found to be essential physical processes
94 in the C fluxes in YYL (Lin et al., 2021; Lin et al., 2022). These studies suggest that river
95 intrusion and thermal stratification are key factors shaping the seasonal and interannual patterns
96 of C fluxes during typhoon disturbances. River intrusion not only controls the C fluxes, algal
97 biomass, and nutrient loading, but also influences the length of stratification and hydraulic
98 retention times (Lin et al., 2021; Lin et al., 2022; Maranger et al., 2018; Nakayama et al., 2020;
99 Olsson et al., 2022a; Olsson et al., 2022b; Zwart et al., 2017; Vachon and Del Giorgio, 2014).
100 We hypothesized that allochthonous C loading and river inflow intrusion may affect DIC and
101 DOC distributions (Fig. 1). Further, autochthonous processes in small subtropical lakes, such as
102 algal photosynthesis, remineralization, and vertical transportation, must also be considered (Fig.
103 1). Here, we tested our hypothesis developing two-layer conceptual C models to assess C flux
104 responses to typhoon disturbances in small subtropical lakes.

105

106 **2. Materials and methods**

107 **2.1 Study site**

108 YYL is a shallow (mean water depth: 4.3 m) and oligotrophic (total phosphorous: 10-
109 20 $\mu\text{g-P L}^{-1}$; total nitrogen: 20-60 $\mu\text{g-N L}^{-1}$) subtropical mountain lake (Chou et al., 2000; Tsai
110 et al., 2008; Wu et al., 2001) on Chi-Lan Mountain at around 1,640 asl in north-central Taiwan
111 (24.58° N, 121.40° E) (**Figure 2**). Its water is brown because of its humic acid content (colored
112 dissolved organic matter: 20–50 ppb QSE; with specific ultraviolet absorbance at 254 nm
113 assessed by a portable fluorometer (model C3; Turner Designs, Sunnyvale, CA, USA); mean
114 pH: 5.4). YYL is surrounded by old-growth trees such as *Chamaecyparis formosensis*,
115 *Chamaecyparis obtusa* var. *formosana*, and *Rhododendron formosanum* Heiml (Chou et al.,
116 2000). Annual precipitation is over 3,000 mm yr^{-1} , and typhoon precipitation contributes up to
117 half of the total precipitation in YYL (Chang et al., 2007; Lai et al., 2006). Due to the rapid
118 renewal of the water body, the water retention time (or residence time) was around 4.4 days in
119 typhoon Megi from 27 September to 1 October 2016 (Lin et al., 2022). The water surface
120 temperature ranges from 15 to 25 °C during March to August, and the water column overturns
121 in September (Kimura et al., 2012; Kimura et al., 2017; Lin et al., 2021). The concentrations of
122 dissolved C (Lin et al., 2021), nutrients (Chiu et al., 2020; Tsai et al., 2008) and organisms
123 (Shade et al., 2011) increase within YYL from autumn to winter. YYL has been registered as a
124 long-term ecological study site by the Ministry of Science and Technology (MOST) of Taiwan
125 since 1992 and became part of the Global Lake Ecological Observatory Network (GLEON) in
126 2004.

127
128 **2.2 Water sampling and chemical analysis**

129 We collected water quality samples (DOC, DIC, and Chl. *a*) at water depths of 0.04,
130 0.50, 1.00, 2.00, and 3.50 m at the buoy site (Fig. 2). We also measured the water surfaces of six
131 river inflows and an outflow monthly using a horizontal van Dorn bottle (2.20 L, acrylic) from
132 January 2015 to December 2018 (Fig. 2). These samples were collected using a portable hand
133 pump and glass microfiber filter papers (47 mm GF/F, nominal pore size 0.70 μm ; Whatman,
134 Maidstone, Kent, UK) to obtain filtrate samples. Water samples were stored at around 4°C in a
135 refrigerator until analysis. Samples were analyzed using an infrared gas detector to detect DIC
136 and DOC concentrations with persulfate digestion (model 1088 Rotary TOC autosampler; OI
137 Analytical, College Station, TX, USA). The filter papers were kept in opaque bottles at around -
138 25 °C in a refrigerator until the samples were analyzed using a portable fluorometer (model 10-
139 AU-005-CE; Turner Designs, Sunnyvale, CA, USA). The specific wavelengths were 430 nm
140 (blue) and 662 nm (red). In the laboratory, the filter papers were extracted with methanol to

141 obtain Chl. *a* concentration. These samples were analyzed for less than 72 h to prevent light and
142 chemical degradation.

144 **2.3 Data analysis and numerical modeling**

145 Three water quality variables (DIC, DOC, and Chl *a*) were compared between different
146 layers (upper and lower layers), years (typhoon years and non-typhoon years), and seasons (spring,
147 summer, autumn, and winter). First, we separated our investigation data into typhoon years and
148 non-typhoon years as described in Sect. 2.3.1. Next, we developed a conceptual equations model
149 to generate continuous DIC and DOC data at the upper and lower layers as shown in **Figure 1**.
150 This helped us understand the transportation, photosynthesis, and remineralization rates between
151 seasons and between typhoon and non-typhoon years (see Sect. 2.3.2).

153 **2.3.1 Typhoon and non-typhoon years**

154 We collected meteorological data from a meteorological tower located about 1.0 km
155 from YYL (Lin et al., 2021; Lin et al., 2022). Rainfall (model N-68; Nippon Electric Instrument,
156 Tokyo, Japan) and wind speed (model 03001, R.M. Young, Traverse City, MI, USA) data were
157 stored in a datalogger (model CR1000; Campbell Scientific, Logan, UT, USA) for every 10 min.
158 River discharge (Q_{in} , $m^3 d^{-1}$) was estimated every 10 min using the rainfall data and a water depth
159 meter (model HOBO U20; Onset Computer, Bourne, MA, USA) at the end of a river inflow
160 (**Figure 2**) using the Manning formula. Transparency was estimated using Secchi disc data
161 measured at local times (GMT+08:00) from 10:00 to 14:00.

162 As **Table 1** shows, four strong typhoons were recorded, contributing a total of 2,254
163 mm of precipitation in all 24 months of 2015 and 2016, accounting for 35.6% of the annual
164 precipitation. However, no typhoon rainfall was recorded at YYL in 2017 and 2018; the total
165 precipitation in that 2-year period was around 2,537 mm. There was no significant difference in
166 average water depth between 2017 and 2018 (**Table 1**). The average discharge was less than 774
167 $m^3 d^{-1}$ in 2017 and 2018. Thus, we considered 2015 and 2016 as typhoon years, and 2017 and
168 2018 as non-typhoon years.

170 **2.3.2 Conceptual two-layer DIC and DOC model**

171 Nakayama et al. (2010) successfully developed a conceptual two-layer dissolved oxygen
172 model based on strong wind turbulence at Tokyo Bay. Lin et al. (2021) pointed out that thermal
173 stratification that inhibits vertical C flux between the upper and lower layers in shallow stratified
174 lakes makes it possible to develop conceptual two-layer C models (Lin et al., 2022; Nakayama et
175 al., 2022), and the phytoplankton and remineralization effects on DIC and DOC fluxes ($dDIC/dt$
176 and $dDOC/dt$, $mg\text{-C L}^{-1} d^{-1}$) were considered in a conceptual two-layer equation model as shown

177 in Equation 1– Equation 4. The fluxes in the upper layer (from the water surface to 2.5 m water
 178 depth) were calculated as follows:

$$V_U \frac{d\text{DIC}_U}{dt} = Q_U \text{DIC}_R - Q_{out} \text{DIC}_U - V_U \alpha_{PU} \text{Chl}_U + V_U \alpha_{MU} \text{DOC}_U + A_I w_I (\text{DIC}_L - \text{DIC}_U) + Q_L \text{DIC}_L - \frac{A_s F_{CO2}}{C_U} + P a_U \quad (1)$$

$$+ Q_L \text{DIC}_L - \frac{A_s F_{CO2}}{C_U} + P a_U$$

$$V_U \frac{d\text{DOC}_U}{dt} = Q_U \text{DOC}_R - Q_{out} \text{DOC}_U - V_U \alpha_{MU} \text{DOC}_U + A_I w_I (\text{DOC}_L - \text{DOC}_U) + Q_L \text{DOC}_L + P b_U \quad (2)$$

$$+ Q_L \text{DOC}_L + P b_U$$

179 Those in the lower layer (from 2.5 to 4.0 m water depth) were calculated as follows:

$$V_L \frac{d\text{DIC}_L}{dt} = Q_L \text{DIC}_R - V_L \alpha_{PL} \text{Chl}_L + V_L \alpha_{ML} \text{DOC}_L + A_I w_I (\text{DIC}_U - \text{DIC}_L) - Q_L \text{DIC}_L + \frac{A_B B F_{DIC}}{C_U} + P a_L \quad (3)$$

$$+ \frac{A_B B F_{DIC}}{C_U} + P a_L$$

$$V_L \frac{d\text{DOC}_L}{dt} = Q_L \text{DOC}_R - V_L \alpha_{ML} \text{DOC}_L + A_I w_I (\text{DOC}_U - \text{DOC}_L) - Q_L \text{DOC}_L + P b_L \quad (4)$$

$$V_{total} = V_U + V_L \quad (5)$$

$$Q_{in} = Q_U + Q_L \quad (6)$$

180 where, as shown in Table 2, total lake volume (V_{total} , 53,544 m³) departs to the upper layer (V_U ,
 181 45,456 m³) and to the lower layer (V_L , 8,808 m³) (Equation 5), and where lake surface area (A_s)
 182 is 36,000 m² and the bottom of lake area (A_B) is 3,520 m². The interface is 2.5 m vertically, and
 183 the interface area (A_I) is 7,264 m² in YYL. The water depth is not only steady but also changes.
 184

185 However, the change in water depth ranged from 4.56 to 4.66 m during the typhoon period.
 186 Therefore, we can assume that the changes in lake volumes and areas were negligible. The C_U is a
 187 coefficient value (= 1,000) to establishing a standard unit for F_{CO2} (mg-C m⁻² d⁻¹), considering
 the air–water CO₂ exchange by Fick’s law as follows:

$$F_{CO2} = k_{CO2} \cdot K_H (pCO2_{water} - pCO2_{air}) \quad (7)$$

188 where k_{CO2} is the gas transfer velocity from empirical wind speed equations (Cole and Caraco,
 189 1998; Jähne et al., 1987; Smith, 1985; Wanninkhof, 1992). K_H is Henry’s coefficient calculated
 190 by water temperature empirical equations (Plummer and Busenberg, 1982). $pCO2_{air}$ (μatm) is
 191 the CO₂ partial pressure in the atmosphere using air pressure data (Lin et al., 2021; Lin et al.,
 192 2022), and the atmospheric CO₂ concentration is assumed to be 400 ppm. $pCO2_{water}$ (μatm) is
 193 the CO₂ partial pressure at the water surface around 0.04 m water depth from water quality data

(temperature, pH, DIC concentration at the water surface. The empirical equation (Cai and Wang, 1998) was also followed by Lin et al. (2021). F_{CO_2} contributed approximately half of the net ecosystem production (NEP) across the water surface to the atmosphere in YYL (Lin et al., 2021). Further, because sediment carbon may be an important flux into shallow subtropical lakes, the sediment C flux (BF_{DIC} , BF_{DOC} , mg-C L⁻¹) in the lower layer was considered (Lin et al., 2022).

We assumed that the river discharge and outflow discharge (Q_{out} , m³ d⁻¹) are in a quasi-steady state ($Q_{in} = Q_{out}$), dividing into upper discharge (Q_U , m³ d⁻¹) and lower discharge (Q_L , m³ d⁻¹) (Equation 6). Lin et al. (2021) showed that the buoyancy frequencies in YYL were 0.011 ± 0.004 s⁻¹, 0.013 ± 0.004 s⁻¹, 0.006 ± 0.003 s⁻¹, and 0.007 ± 0.004 s⁻¹ from spring (March–May), summer (June–August), autumn (September–November), and winter (December–February), respectively, inhibiting the vertical profile of DIC mixed due to stratification. We estimated the percentages of Q_U and Q_L based on the buoyancy frequency following Lin et al. (2020 and 2022). Q_U values were 75%, 80%, 45%, and 50% of Q_{in} for spring to winter, and Q_L values were 25%, 20%, 55%, and 50% of Q_{in} . The physical and biogeochemical regimes under climate change remain uncertain, such as biological compositions, mixing regimes, morphometric characteristics, and air–water energy fluxes (evaporation and transpiration) (Woolway et al., 2020). To simulate extreme climate scenarios, we shifted the ratio of Q_{in} for each season and tested the river intrusion hypothesis (Fig. 1). We established two extreme conditions: *Level 1* and *Level 2*. *Level 2* is the more extreme condition: Q_U is 80% (spring), 85% (summer), 50% (autumn), and 50% (winter) of Q_{in} ; Q_L is 20% (spring), 15% (summer), 50% (autumn), and 50% (winter) of Q_{in} . *Level 1* is the condition between the present and the *Level 2* condition: Q_U is 77% (spring), 82% (summer), 47% (autumn), and 50% (winter) of Q_{in} ; Q_L is 23% (spring), 18% (summer), 53% (autumn), 50% (winter) of Q_{in} .

The contributions of photosynthesis production depended on the chlorophyll *a* concentration (Chl_U , Chl_L , mg L⁻¹) and on the absorption coefficients in the upper layer (α_{PU} , d⁻¹) and lower layer (α_{PL} , d⁻¹). The coefficients of DOC remineralization rates in the upper layer (α_{MU} , d⁻¹) and lower layer (α_{ML} , d⁻¹) were also considered in the conceptual models. The Pa_U , Pa_L , Pb_U , and Pb_L are constants in the conceptual models. To obtain unknown values (α_{PU} , α_{MU} , α_{PL} , α_{ML} , w_I , BF_{DIC} , BF_{DOC} , Pa_U , Pa_L , Pb_U , and Pb_L), we applied multiple linear regression analysis. Further, these unknown values were tested by trial and error to obtain the parameters of the *best-fit* condition (Nakayama et al., 2022), dividing the seasonal and nonseasonal serranoids to learn the seasonal differences. The same parameters of the *best-fit* condition were used to obtain the extreme conditions for *Level 1* and *Level 2*. We used the coefficient of determination (R^2) and the Nash–Sutcliffe model efficiency coefficient (NSE)

230 (Nash and Sutcliffe, 1970) to quantify the performance of the equation model with DIC and DOC
 231 sampling data (observation data) for each simulation.

232

233 **2.3.3 DIC and DOC fluxes**

234 VNt ecosystem production was defined as the difference between primary production
 235 and ecological respiration (NEP = GPP - ER) due to photosynthesis and respiration via biota
 236 (Dodds and Whiles, 2020). Given that we assumed that the C fluxes were dependent on the river
 237 inflows in YYL (Fig. 2), we estimated the NEP by end-member analysis using the C
 238 concentration of the river inflow and outflow (Lin et al., 2021; Nakayama et al., 2020) by
 239 following Equation 8–Equation 11. The upper layer NEP of DIC flux (mg C d⁻¹) was obtained
 240 from Equation 1 as follows:

$$\begin{aligned}
 \text{Upper flux}_{\text{DIC}} &= C_U \alpha_{PU} Chl_U - C_U \alpha_{MU} DOC_U - C_U \frac{A_I w_I (DIC_L - DIC_U)}{V_U} - C_U \frac{P a_U}{V_U} \\
 &= C_U \frac{Q_U DIC_R + Q_L DIC_L - Q_{out} DIC_U}{V_U} - \frac{A_S}{V_U} F_{CO2} \\
 &= C_U \frac{1}{t_{rU}} \left(\frac{Q_U}{Q_{in}} DIC_R + \frac{Q_L}{Q_{in}} DIC_L - DIC_U \right) - F_C \\
 t_{rU} &= \frac{V_U}{Q_{in}}
 \end{aligned} \tag{8}$$

241
 242 The upper layer flux of DOC flux (mg C m⁻³ d⁻¹) was estimated from Equation 2:

$$\begin{aligned}
 \text{Upper flux}_{\text{DOC}} &= C_U \alpha_{MU} DOC_U - C_U \frac{A_I w_I (DOC_L - DOC_U)}{V_U} - C_U \frac{P b_U}{V_U} \\
 &= C_U \frac{Q_U DOC_R + Q_L DOC_L - Q_{out} DOC_U}{V_U} \\
 &= C_U \frac{1}{t_{rU}} \left(\frac{Q_U}{Q_{in}} DOC_R + \frac{Q_L}{Q_{in}} DOC_L - DOC_U \right)
 \end{aligned} \tag{9}$$

244 The lowerlayer flux of DIC flux (mg C m⁻³ d⁻¹) was estimated from Equation 3:

$$\begin{aligned} \text{Lower flux}_{\text{DIC}} &= C_U \alpha_{PL} Chl_L - C_U \alpha_{ML} DOC_L - C_U \frac{A_I w_I (DIC_U - DIC_L)}{V_L} - \frac{A_B B F_{DIC}}{V_L} \\ &\quad - C_U \frac{P a_L}{V_L} = C_U \frac{Q_L (DIC_R - DIC_L)}{V_L} = C_U \frac{1}{t_{rL}} \frac{Q_L}{Q_{in}} (DIC_R - DIC_L) \\ t_{rL} &= \frac{V_L}{Q_{in}} \end{aligned} \quad (10)$$

245

246 The lowerlayer flux of DOC flux (mg C m⁻³ d⁻¹) was estimated from Equation 4:

$$\begin{aligned} \text{Lower NEP}_{\text{DOC}} &= C_U \alpha_{ML} DOC_L - C_U \frac{A_I w_I (DOC_U - DOC_L)}{V_L} - \frac{A_B B F_{DOC}}{V_L} - C_U \frac{P b_L}{V_L} \\ &= C_U \frac{Q_L (DOC_R - DOC_L)}{V_L} = C_U \frac{1}{t_{rL}} \frac{Q_L}{Q_{in}} (DOC_R - DOC_L) \end{aligned} \quad (11)$$

247

248 Thus, the total flux of DIC and DOC are:

$$\text{Flux}_{\text{DIC}} = \frac{V_U \text{Upper flux}_{\text{DIC}} + V_L \text{Lower flux}_{\text{DIC}}}{V_{total}} \quad (12)$$

$$\text{Flux}_{\text{DOC}} = \frac{V_U \text{Upper flux}_{\text{DOC}} + V_L \text{Lower flux}_{\text{DOC}}}{V_{total}} \quad (13)$$

249

250 where, F_C is $\frac{A_S}{V_U} F_{CO_2}$ and t_{rU} , t_{rL} are residence times (d) in the upper and lower layers,

251 respectively. These parameters were used for the *best-fit* condition as shown in Table 2.

252

253 **3. Results**

254 **3.1 DIC, DOC, and Chl. a concentrations in the typhoon and non-typhoon years**

255 *The results of the comparisons between the two periods of typhoon years demonstrated*
256 *that there were no significant differences in DIC, DOC, and Chl a concentration between the*
257 *layers in the typhoon years 2015 and 2016; however, all these parameters differed significantly*
258 *between the layers in the typhoon years 2017 and 2018 (Fig. 3). The average DIC_U was 1.23 mg-*
259 *$C\ L^{-1}$, and DIC_L was 3.66 mg-C L^{-1} ; the average DOC_U was 5.87 mg-C L^{-1} , and DOC_L was 8.02*
260 *mg-C L^{-1} ; and the Chl_U and Chl_L were 18.5 $\mu g\text{-}C\ L^{-1}$ 2.13 $\mu g\text{-}C\ L^{-1}$, respectively (Fig. 3).*
261 *However, the t-test results showed no significant differences in DIC, DOC, and Chl. a*
262 *concentrations (p -values ≥ 0.05 that show no significant differences in DIC data among seasons*
263 *in the typhoon years) (Fig. 4 a). However, the DOC concentration showed significant differences*
264 *between seasons in the typhoon years (Fig. 4 c-d). No significant differences between Chl_U and*
265 *Chl_L were observed among the seasons (Fig. 4e-f), whereas the standard deviations (SD) of DIC*
266 *and DOC were higher in summer and autumn (Fig. 4) due to terrestrial C loading (Chiu et al.,*
267 *2020). In summer, the SD values of DIC_U and DOC_U were 3.51 mg-C L^{-1} and 3.69 mg-C L^{-1} ,*
268 *respectively (Fig. 4a, c, e). In autumn, DIC_L and DOC_L had the highest SD (4.06 and 4.17 mg-*
269 *$C\ L^{-1}$, respectively) (Fig. 4b, d). Notably, the maximums of DIC_U and DOC_U were 7.06 and 15.6*
270 *mg-C L^{-1} and those of DIC_L and DOC_L were 10.9 and 19.8 mg-C L^{-1} , respectively, in the*
271 *typhoon years (Fig. 4 a-d).*

272 Positive Pearson correlations of 0.45 to 0.80 were observed between the DOC and DIC
273 in the typhoon years (Fig. 5a). In the non-typhoon years, the upper layer DIC_L was the only
274 variable negatively correlated with DOC in the upper and lower layers (Fig. 5b). The DIC of the
275 lower layer was positively correlated with the Chl_L due to the abundant respiration in the lower
276 layer (Fig. 5).

278 **3.2 Performance of conceptual two-layer DIC and DOC models**

279 The results for the typhoon years demonstrated that most of the seasonal scenarios were
280 better fitting than the nonseasonal scenarios (Fig. 6). Under the seasonal scenarios, the DIC_U was
281 around 1.5 to 5.0 mg-C L⁻¹ (Fig. 6a-b) and DIC_L was around 5.0 mg-C L⁻¹ stably (Fig. 6d).
282 However, the NSE of DIC_L was 0.73 under the nonseasonal scenarios, which was higher than
283 seasonal scenarios (NSE = 0.71) (Table 2), because DIC_L was elevated dramatically, by 40 mg-
284 C L⁻¹, under the nonseasonal scenarios during the 2016 typhoon period (Fig. 6c). In the non-
285 typhoon years (2017–2018), the *best-fit* values of DIC_U and DIC_L did not differ significantly
286 between the seasonal and nonseasonal scenarios (R^2 and NSE were around 0.40 and 0.70,
287 respectively). These results demonstrated that DIC_U and DIC_L in the typhoon years must use
288 the seasonal scenarios, whereas in the non-typhoon years they should use the nonseasonal
289 scenarios. On the other hand, the DOC under the seasonal scenarios fit our observation data (R^2
290 = 0.91, 0.46 and NSE = 0.95, 0.73 for DOC_U , DOC_L , respectively) (Fig. 6e-h, Table 3). Thus, the
291 results suggested that the DOC_U and DOC_L must use the seasonal scenarios in both the typhoon
292 and non-typhoon years.

293 As shown in Table 3, the parameters for the conceptual two-layer DIC and DOC models
294 showed different regimes between the typhoon and non-typhoon years. In the typhoon years, the
295 photosynthesis absorption rates coefficients (α_{PU} , α_{PL}) were negative (photosynthesis <
296 respiration) for each season. YYL was a C source due to a large allochthonous C loading during
297 typhoons; the respiration was elevated by around 30- to 150-fold from summer to autumn.
298 However, the transportation coefficients (w_I) were higher in autumn than in the other seasons
299 (Table 3) due to weak stratification and large C loading during typhoons. Further, the higher
300 remineralization rates during typhoon disturbances from summer to autumn resulted in positive
301 α_{MU} and α_{ML} . In the non-typhoon years, the remineralization rates were negative (Table 3). Thus,
302 the results suggest that the conceptual two-layer C models may reasonably fit the observation data.

304 3.3 *Interannual and seasonal NEP in YYL*

305 The typhoon disturbances in summer and autumn played an important role in
306 promoting the C released by YYL (Table 4). Overall, YYL released $245 \text{ mg C m}^{-3} \text{ d}^{-1}$ of DIC
307 and $415 \text{ mg C m}^{-3} \text{ d}^{-1}$ of DOC during the typhoon years; during the non-typhoon years, it
308 released $51.7 \text{ mg C m}^{-3} \text{ d}^{-1}$ of DIC and $22.8 \text{ mg C m}^{-3} \text{ d}^{-1}$ of DOC (Table 4). The average F_C
309 was one to two times larger than Flux_{DIC} , and 219 and $133 \text{ mg C m}^{-3} \text{ d}^{-1}$ were released from
310 YYL into the atmosphere in the typhoon and non-typhoon years, respectively (Table 4). In
311 summer, the upper layer DIC and DOC consumed approximately 3.7 times more DIC in the
312 typhoon years than in the non-typhoon years (Table 4). In autumn, 216 mg C d^{-1} of upper layer
313 DIC was released; however, $46.1 \text{ mg C m}^{-3} \text{ d}^{-1}$ of upper layer DOC was produced in the typhoon
314 years. The upper layer Flux_{DIC} was negative in the autumn of the typhoon years, when 268 mg
315 $\text{C m}^{-3} \text{ d}^{-1}$ more F_C was released compared to the non-typhoon years. In addition, the lower layer
316 was most released of C into the outflow; however, the fluxes in the lower layer was more than
317 twice as high in the summer as in the autumn of the typhoon years (Table 4). The average of
318 total Flux_{DIC} was 3.14 times more released C in the typhoon than in the non-typhoon years;
319 The average of total NEP_{DOC} was increased $62.3 \text{ mg C m}^{-3} \text{ d}^{-1}$ of DOC between the typhoon
320 years and non-typhoon years due to the over ten-times higher flux in the upper layer (Table 4).

321 The ratios of DIC and DOC concentrations reveal the magnitudes of allochthonous
322 DOC loading into YYL (Shih et al., 2019; Walvoord and Striegl, 2007), and the upper and lower
323 layers show different patterns. In the typhoon years, the upper layer ratios decreased (higher
324 DOC loading) from summer to autumn, whereas in the lower layer, the DIC:DOC decreased
325 from autumn to winter. In the non-typhoon years, the autumn DIC:DOC ratio was the lowest,
326 around 0.216 to 0.351 (Table 4).

328 **3.4 *Interannual responses of DIC and DOC to typhoons***

329 We simulated the responses of DIC and DOC flux to typhoons using conceptual two-
330 layer C models. The results showed that the DIC was more sensitive to typhoon disturbances
331 than DOC under the scenarios of *Level 1* and *Level 2* (Fig. 7-9). Overall, the C level declined in
332 the upper layers but increased in the lower layers (Fig. 7). DIC and DOC in the upper layer
333 tended to decline from 1.0 (*Level 1*) to 2.0 mg-C L⁻¹ (*Level 2*) (Fig. 7a, c); however, they
334 increased to 10.0 and 20.0 mg-C L⁻¹ in the lower layer under *Level 1* and *Level 2*, respectively
335 (Fig. 7b, d).

336 The DIC concentration in the upper layer was significantly lower in typhoon than in
337 the non-typhoon years during spring and autumn under *Level 2* (Fig. 8a-c). Under the *best-fit*
338 and *Level 1* conditions, the DIC concentrations decreased significantly from winter to spring
339 (Fig. 8c-d). The lower layer DIC values under the *best-fit* and *Level 1* conditions differed
340 significantly between the typhoon and non-typhoon years (Fig. 8e-h). The DIC of the lower
341 layer under *Level 2* differed significantly from winter to spring only (Fig. 8e, h). However, the
342 upper layer DOC showed significant typhoon responses for each condition from winter to spring
343 (Fig. 9a, d). The DOC of the upper layer tended to differ more significantly under the extreme
344 climates from summer to autumn (Fig. 9b-c). The DOC of the lower layer showed different
345 typhoon responses between the spring and the other seasons (Fig. 9 e-h).

346

347 **4. Discussion**

348 Annual total precipitation was 40% higher in typhoon years than in non-typhoon years
349 (Table 1). Water retention and typhoon-induced upwelling control the dynamics of DIC and
350 DOC during the summer and autumn (Chiu et al., 2020; Jones et al., 2009; Tsai et al., 2008; Tsai
351 et al., 2011). Typhoon-induced upwelling affected water quality data differently between the
352 upper and lower layers (Fig. 3). DIC, DOC, and Chl. *a* concentrations differ significantly
353 between upper and lower layers in the typhoon years (Fig. 3) due to thermal stratification (Chiu
354 et al., 2020; Lin et al., 2022; Tsai et al., 2008; Tsai et al., 2011). Further, the abundance of
355 organisms leads to intensive respirations in the lower layers during the non-typhoon period; for
356 example, an anoxic condition at the hypolimnion may affect C mineralization and
357 remineralization rates in non-typhoon years (Carey et al., 2022; Chiu et al., 2020; Lin et al.,
358 2022; Shade et al., 2010; Shade et al., 2011). Therefore, these physical and biogeochemical
359 processes might describe different patterns between the upper and lower layers, as revealed by
360 the Pearson correlations (Fig. 5).

361 Thermal stratification and allochthonous C loading may drive the responses of fluxes
362 to typhoons in YYL. In the typhoon years, the absolute values of fluxes were higher than in the
363 non-typhoon years (Table 4). We found that precipitation from typhoons loaded large amounts
364 of allochthonous C into YYL during summer and autumn, which might describe the higher
365 fluxes in autumn compared to other seasons (Table 4). Typhoons dramatically changed the
366 seasonal and interannual patterns of DIC fluxes due to river intrusion (Fig. 7a–b; Fig. 8), which
367 corresponds to our hypothesis (Fig. 1) and to the results of previous studies (Chiu et al., 2020;
368 Lin et al., 2021; Lin et al., 2022). In summer, the spatial differences in DIC and DOC between
369 layers were inhibited due to strong thermal stratification, describing the positive upper net
370 primary production and lower negative net primary production (Lin et al., 2021). The thermal
371 stratification and anoxic condition may have been controlled by the seasonal and interannual
372 patterns of DIC and DOC fluxes in the non-typhoon years (Tables 3–4; Fig. 6). Additionally,
373 because of the absence of typhoon-induced mixing and allochthonous C loading, the absolute
374 values of total fluxes in the non-typhoon years were less than those the non-typhoon years
375 (Table 4). These results suggested that the allochthonous C loading was the most crucial factor
376 for DIC and DOC fluxes in the typhoon years; on the other hand, the transportation rate shaped
377 the seasonal C due to thermal stratification in the non-typhoon years.

378 Water temperature might be a crucial driver in controlling C fluxes in YYL (Chiu et
379 al., 2020; Lin et al., 2021; Lin et al., 2022). We found that the fluxes and F_{CO_2} in summer were
380 usually higher than in winter (Tables 3–4) due to the higher levels of photosynthesis,
381 remineralization, and strength of thermal stratification (Lin et al., 2021; Lin et al., 2022). With
382 the conceptual two-layer C models (Table 3), photosynthesis absorption (α_{PU} , α_{PL}),

383 remineralization (α_{MU} , α_{ML}), and transportation (w_I) well represented the seasonal variations
384 of DIC and DOC data. These parameters of the conceptual two-layer C models appeared in
385 reasonable patterns (Table 3). The higher remineralization and photosynthesis rates resulted in
386 higher absolute values of fluxes in the autumn of the typhoon years (Tables 3-4). In the non-
387 typhoon years, the photosynthesis rates contributed to the total fluxes (Tables 3-4). Moreover,
388 without the typhoon-induced mixing and refreshing of the water column, anoxic conditions may
389 occur (Carey et al., 2022; Vachon et al., 2021), which could result in negative remineralization
390 rates in non-typhoon years. Thus, the conceptual two-layer C models well characterizes the
391 seasonal and interannual responses of DIC and DOC fluxes to typhoons in YYL.

392 Under extreme weather conditions, *Level 2* usually shifted to different typhoon
393 responses for each season (Fig. 8-9) due to extreme river intrusions. DIC changes more
394 significantly than DOC under *Level 1* and *Level 2* (Fig. 7-9), because the photosynthesis,
395 transportation, and remineralization rates may crucially affect the seasonal and interannual
396 patterns of DOC as well (Fig. 1). Moreover, we compared the fluxes with different model
397 conditions as shown in Fig. 10, demonstrating that the responses of $Flux_{DIC}$ to typhoons differed
398 dramatically between *Level 1* and *Level 2* (Fig. 10a-c); especially, the Upper $Flux_{DIC}$ released
399 more C in the typhoon years and absorbed more C in the non-typhoon years than *Obs* (Fig. 10a).
400 Not only were the absolute values of $Flux_{DIC}$ over 3 times higher in the typhoon than the non-
401 typhoon years (Table 4), but SD was higher in the typhoon years as well (Fig. 10). Additionally,
402 the F_C was 43 % higher ($\sim 83 \text{ mg C m}^{-3} \text{ d}^{-1}$) in typhoon years than in non-typhoon years (**Table**
403 **4**). Therefore, the typhoon disturbances control DIC loading and C emissions in YYL, which is
404 consistent with our previous studies (Chiu et al., 2020; Lin et al., 2021; Lin et al., 2022).

405 However, DOC fluxes changed less under *Level 1* and *Level 2* (Fig. 10d-f), a finding
406 that is consistent with our continuous DOC data (Fig. 7c-d). Processes such as respiration,
407 mineralization, and sediment burial may impact DOC fluxes (Bartosiewicz et al., 2015; Hanson
408 et al., 2015; Maranger et al., 2018). To our knowledge, bio-photochemical mineralization and
409 degradation may play a key role in shaping C fluxes because colored DOC reduces ultraviolet
410 radiation (UVR) and active photosynthetic radiation (PAR) (Allesson et al., 2021; Chiu et al.,
411 2020; Schindler et al., 1996; Scully et al., 1996; Williamson et al., 1999). Ejarque et al. (2021)
412 also successfully developed a conceptual one-layer model of DOC and DIC, considering
413 bacterial respiration, photo-mineralization and degradation in a temperate mountain lake. In
414 addition, Nagatomo et al. (2023) suggested that the DIC might be underestimated if submerged
415 vegetation is ignored. Thus, we suggest that photo-biochemical processes (such as photo-
416 mineralization) and submerged vegetation should be considered in the upper layer to clarify and
417 validate the responses of the total C fluxes under extreme climates in a two-layer stratified lake.

418 **5. Conclusions**

419 Our conceptual two-layer C model revealed that allochthonous and autochthonous
420 processes both accounted for C flux responses to typhoon disturbances on seasonal and
421 interannual scales by applying our proposed two-layer conceptual C model. Without typhoons,
422 the strength of thermal stratification was the primary determinants the seasonal and interannual
423 patterns of DIC and DOC concentrations data and typhoon-induced fluxes upwelling and
424 loading facilitated $102.2 \text{ mg-DIC m}^{-3} \text{ d}^{-1}$ and $62.3 \text{ mg-DOC m}^{-3} \text{ d}^{-1}$ in YYL, respectively (Table
425 4). We successfully developed two-layer conceptual C models to obtain continuous DIC and
426 DOC data in YYL and to simulate extreme conditions. The changes in seasonal river intrusion
427 regimes in YYL resulted in a 3-fold higher total Flux_{DIC} in the typhoon years than in the non-
428 typhoon years. However, our model should be improved under extreme climate scenarios by
429 considering other autochthonous processes, such as sediment burial, photo-biochemical
430 processes, and anoxic conditions. The present results suggest that physical processes (river
431 intrusion and vertical transportation) and biogeochemical processes (mineralization,
432 photosynthesis, and respiration) in a subtropical small lake account for the C flux responses to
433 typhoons on seasonal and interannual time scales.

434

435 **Competing interests**

436 The authors have no conflicts of interest to report.

437

438 **Acknowledgements**

439 The authors thank YS Hsueh, LC Jiang, and TY Chen for their help with the water
440 sample collection and chemistry analysis. This work was supported by the Japan Society for the
441 Promotion of Science (JSPS) under grant nos. 22H05726, 22H01601, and 18KK0119 for K
442 Nakayama; and by the Academia Sinica, Taiwan (AS-103-TP-B15), Ministry of Science and
443 Technology, Taiwan (MOST 106-2621-M-239-001, MOST 107-2621-M-239-001, MOST 108-
444 2621-M-239-001) for CY Chiu and JW Tsai. This study benefited from participation in the
445 Global Lakes Ecological Observatory Network (GLEON).

446 Hao-Chi Lin: Conceptualization, Methodology, Investigation, Formal analysis,
447 Writing – original draft. Keisuke Nakayama: Methodology, Supervision, Writing – review &
448 editing, Conceptualization. Jeng-Wei Tsai: Investigation, Funding acquisition, Writing –review
449 & editing. Chih-Yu Chiu: Funding acquisition, Writing – review & editing.

450

451 **Data availability**

452 The data that support the findings of this study are adopted from our previous works,
453 including Chiu et al. (2020), Lin et al. (2021), and Lin et al. (2022).

454

455

456 **References**

457 Allesson, L., Koehler, B., Thrane, J.-E., Andersen, T., and Hessen, D. O.: The role of
458 photomineralization for CO₂ emissions in boreal lakes along a gradient of dissolved organic
459 matter, *Limnol. Oceanogr.*, 66, 158–170, <https://doi.org/10.1002/lno.11594>, 2021.

460 Amaral, J. H. F., Melack, J. M., Barbosa, P. M., Borges, A. V., Kasper, D., Cortés, A. C., Zhou,
461 W., MacIntyre, S., and Forsberg, B. R.: Inundation, Hydrodynamics and Vegetation
462 Influence Carbon Dioxide Concentrations in Amazon Floodplain Lakes, *Ecosystems*, 25,
463 911–930, <https://doi.org/10.1007/s10021-021-00692-y>, 2022.

464 Aufdenkampe, A. K., Mayorga, E., Raymond, P. A., Melack, J. M., Doney, S. C., Alin, S. R.,
465 Aalto, R. E., and Yoo, K.: Riverine coupling of biogeochemical cycles between land,
466 oceans, and atmosphere, *Front. Ecol. Environ.*, 9, 53–60, <https://doi.org/10.1890/100014>,
467 2011.

468 Bartosiewicz, M., Laurion, I., and MacIntyre, S.: Greenhouse gas emission and storage in a
469 small shallow lake, *Hydrobiologia*, 757, 101–115, <https://doi.org/10.1007/s10750-015-2240-2>, 2015.

470 Cai, W.-J. and Wang, Y.: The chemistry, fluxes, and sources of carbon dioxide in the estuarine
471 waters of the Satilla and Altamaha Rivers, Georgia, *Limnol. Oceanogr.*, 43, 657–668,
472 <https://doi.org/10.4319/lo.1998.43.4.0657>, 1998.

473 Carey, C. C., Hanson, P. C., Thomas, R. Q., Gerling, A. B., Hounshell, A. G., Lewis, A. S. L.,
474 Lofton, M. E., McClure, R. P., Wander, H. L., Woelmer, W. M., Niederlehner, B. R., and
475 Schreiber, M. E.: Anoxia decreases the magnitude of the carbon, nitrogen, and phosphorus
476 sink in freshwaters, *Glob. Change Biol.*, <https://doi.org/10.1111/gcb.16228>, 2022.

477 Chang, S.-C., Wang, C.-P., Feng, C.-M., Rees, R., Hell, U., and Matzner, E.: Soil fluxes of
478 mineral elements and dissolved organic matter following manipulation of leaf litter input in
479 a Taiwan Chamaecyparis forest, *For. Ecol. Manag.*, 242, 133–141,
480 <https://doi.org/10.1016/j.foreco.2007.01.025>, 2007.

481 Chiu, C.-Y., Jones, J. R., Rusak, J. A., Lin, H.-C., Nakayama, K., Kratz, T. K., Liu, W.-C., Tang,
482 S.-L., and Tsai, J.-W.: Terrestrial loads of dissolved organic matter drive inter-annual carbon
483 flux in subtropical lakes during times of drought, *Sci. Total Environ.*, 717, 137052,
484 <https://doi.org/10.1016/j.scitotenv.2020.137052>, 2020.

485 Chou, C.-H., Chen, T.-Y., Liao, C.-C., and Peng, C.-I.: Long-term ecological research in the
486 Yuanyang Lake forest ecosystem I. Vegetation composition and analysis, *Bot. Bull. Acad.
487 Sin.*, 41, 61–72, 2000.

488 Cole, J. J. and Caraco, N. F.: Atmospheric exchange of carbon dioxide in a low-wind

490 oligotrophic lake measured by the addition of SF₆, Limnol. Oceanogr., 43, 647–656,
491 <https://doi.org/10.4319/lo.1998.43.4.0647>, 1998.

492 Cole, J. J., Prairie, Y. T., Caraco, N. F., McDowell, W. H., Tranvik, L. J., Striegl, R. G., Duarte,
493 C. M., Kortelainen, P., Downing, J. A., Middelburg, J. J., and Melack, J.: Plumbing the
494 Global Carbon Cycle: Integrating Inland Waters into the Terrestrial Carbon Budget,
495 Ecosystems, 10, 172–185, <https://doi.org/10.1007/s10021-006-9013-8>, 2007.

496 Czikowsky, M. J., MacIntyre, S., Tedford, E. W., Vidal, J., and Miller, S. D.: Effects of Wind
497 and Buoyancy on Carbon Dioxide Distribution and Air-Water Flux of a Stratified Temperate
498 Lake, J. Geophys. Res. Biogeosci., 123, 2305–2322, <https://doi.org/10.1029/2017JG004209>,
499 2018.

500 Dodds, W. K. and Whiles, M. R.: Freshwater Ecology: Concepts and Environmental
501 Applications of Limnology, Third Edition, Elsevier, United Kingdom, 748-762, 2020.

502 Doubek, J. P., Anneville, O., Dur, G., Lewandowska, A. M., Patil, V. P., Rusak, J. A., Salmaso,
503 N., Seltmann, C. T., Straile, D., Urrutia-Cordero, P., Venail, P., Adrian, R., Alfonso, M. B.,
504 DeGasperi, C. L., Eyto, E., Feuchtmayr, H., Gaiser, E. E., Girdner, S. F., Graham, J. L.,
505 Grossart, H.-P., Hejzlar, J., Jacquet, S., Kirillin, G., Llames, M. E., Matsuzaki, S.-I. S.,
506 Nodine, E. R., Piccolo, M. C., Pierson, D. C., Rimmer, A., Rudstam, L. G., Sadro, S., Swain,
507 H. M., Thackeray, S. J., Thiery, W., Verburg, P., Zohary, T., and Stockwell, J. D.: The extent
508 and variability of storm-induced temperature changes in lakes measured with long-term and
509 high-frequency data, Limnol. Oceanogr., 66, 1979–1992, <https://doi.org/10.1002/lno.11739>,
510 2021.

511 Douville, H., Raghavan, K., Renwick, J., Allan, R. P., Arias, P. A., Barlow, M., Cerezo-Mota, R.,
512 Cherchi, A., Gan, T. Y., Gergis, J., Jiang, D., Khan, A., Mba, W. P., Rosenfeld, D., Tierney,
513 J., and Zolina, O.: Water cycle changes, Cambridge University Press, Climate Change 2021:
514 The Physical Science Basis. Contribution of Working Group I to 45 the Sixth Assessment
515 Report of the Intergovernmental Panel on Climate Change, 2021.

516 Downing, J. A., Prairie, Y. T., Cole, J. J., Duarte, C. M., Tranvik, L. J., Striegl, R. G.,
517 McDowell, W. H., Kortelainen, P., Caraco, N. F., Melack, J. M., and Middelburg, J. J.: The
518 global abundance and size distribution of lakes, ponds, and impoundments, Limnol.
519 Oceanogr., 51, 2388–2397, <https://doi.org/10.4319/lo.2006.51.5.2388>, 2006.

520 Ejarque, E., Scholz, K., Wohlfahrt, G., Battin, T. J., Kainz, M. J., and Schelker, J.: Hydrology
521 controls the carbon mass balance of a mountain lake in the eastern European Alps, Limnol.
522 Oceanogr., 66, 2110–2125, <https://doi.org/10.1002/lno.11712>, 2021.

523 Engel, F., Farrell, K. J., McCullough, I. M., Scordo, F., Denfeld, B. A., Dugan, H. A., Eyto, E.
524 de, Hanson, P. C., McClure, R. P., Nõges, P., Nõges, T., Ryder, E., Weathers, K. C., and
525 Weyhenmeyer, G. A.: A lake classification concept for a more accurate global estimate of

526 the dissolved inorganic carbon export from terrestrial ecosystems to inland waters, *Sci. Nat.*,
527 105, 25, <https://doi.org/10.1007/s00114-018-1547-z>, 2018.

528 Hanson, P. C., Pace, M. L., Carpenter, S. R., Cole, J. J., and Stanley, E. H.: Integrating
529 Landscape Carbon Cycling: Research Needs for Resolving Organic Carbon Budgets of
530 Lakes, *Ecosystems*, 18, 363–375, <https://doi.org/10.1007/s10021-014-9826-9>, 2015.

531 Hope, D., Palmer, S. M., Billett, M. F., and Dawson, J. J. C.: Variations in dissolved CO₂ and
532 CH₄ in a first-order stream and catchment: an investigation of soil-stream linkages, *Hydrol.*
533 *Process.*, 18, 3255–3275, <https://doi.org/10.1002/hyp.5657>, 2004.

534 Jähne, B., Münnich, K. O., Bösinger, R., Dutzi, A., Huber, W., and Libner, P.: On the parameters
535 influencing air-water gas exchange, *J. Geophys. Res. Oceans*, 92, 1937,
536 <https://doi.org/10.1029/JC092iC02p01937>, 1987.

537 Jones, S. E., Kratz, T. K., Chiu, C.-Y., and McMahon, K. D.: Influence of typhoons on annual
538 CO₂ flux from a subtropical, humic lake, *Glob. Change Biol.*, 15, 243–254,
539 <https://doi.org/10.1111/j.1365-2486.2008.01723.x>, 2009.

540 Kimura, N., Liu, W.-C., Chiu, C.-Y., and Kratz, T.: The influences of typhoon-induced mixing in
541 a shallow lake, *Lakes Reserv.: Res. Manag.*, 17, 171–183, <https://doi.org/10.1111/j.1440-1770.2012.00509.x>, 2012.

542 Kimura, N., Liu, W.-C., Tsai, J.-W., Chiu, C.-Y., Kratz, T. K., and Tai, A.: Contribution of
543 extreme meteorological forcing to vertical mixing in a small, shallow subtropical lake, *J.*
544 *Limnol.*, 76, 116–128, <https://doi.org/10.4081/jlimnol.2016.1477>, 2017.

545 Kossin, J. P., Olander, T. L., and Knapp, K. R.: Trend Analysis with a New Global Record of
546 Tropical Cyclone Intensity, *J. Clim.*, 26, 9960–9976, <https://doi.org/10.1175/JCLI-D-13-00262.1>, 2013.

547 Kraemer, B. M., Pilla, R. M., Woolway, R. I., Anneville, O., Ban, S., Colom-Montero, W.,
548 Devlin, S. P., Dokulil, M. T., Gaiser, E. E., Hambright, K. D., Hessen, D. O., Higgins, S. N.,
549 Jöhnk, K. D., Keller, W., Knoll, L. B., Leavitt, P. R., Lepori, F., Luger, M. S., Maberly, S. C.,
550 Müller-Navarra, D. C., Paterson, A. M., Pierson, D. C., Richardson, D. C., Rogora, M.,
551 Rusak, J. A., Sadro, S., Salmaso, N., Schmid, M., Silow, E. A., Sommaruga, R., Stelzer, J. A.
552 A., Straile, D., Thiery, W., Timofeyev, M. A., Verburg, P., Weyhenmeyer, G. A., and Adrian,
553 R.: Climate change drives widespread shifts in lake thermal habitat, *Nat. Clim. Chang.*, 11,
554 521–529, <https://doi.org/10.1038/s41558-021-01060-3>, 2021.

555 Lai, I.-L., Chang, S.-C., Lin, P.-H., Chou, C.-H., and Wu, J.-T.: Climatic Characteristics of the
556 Subtropical Mountainous Cloud Forest at the Yuanyang Lake Long-Term Ecological
557 Research Site, Taiwan, *Taiwania*, 51, 317–329, 2006.

558 Lauerwald, R., Laruelle, G. G., Hartmann, J., Ciais, P., and Regnier, P. A.: Spatial patterns in
559 CO₂ evasion from the global river network, *Global Biogeochem. Cycles*, 29, 534–554,

562 <https://doi.org/10.1002/2014GB004941>, 2015.

563 Lin, H.-C., Chiu, C.-Y., Tsai, J.-W., Liu, W.-C., Tada, K., and Nakayama, K.: Influence of
564 Thermal Stratification on Seasonal Net Ecosystem Production and Dissolved Inorganic
565 Carbon in a Shallow Subtropical Lake, *J. Geophys. Res. Biogeosci.*, 126,
566 <https://doi.org/10.1029/2020JG005907>, 2021.

567 Lin, H.-C., Tsai, J.-W., Tada, K., Matsumoto, H., Chiu, C.-Y., and Nakayama, K.: The impacts
568 of the hydraulic retention effect and typhoon disturbance on the carbon flux in shallow
569 subtropical mountain lakes, *Sci. Total Environ.*, 803, 150044,
570 <https://doi.org/10.1016/j.scitotenv.2021.150044>, 2022.

571 Maberly, S. C., O'Donnell, R. A., Woolway, R. I., Cutler, M. E. J., Gong, M., Jones, I. D.,
572 Merchant, C. J., Miller, C. A., Politi, E., Scott, E. M., Thackeray, S. J., and Tyler, A. N.:
573 Global lake thermal regions shift under climate change, *Nat Commun.*, 11, 1232,
574 <https://doi.org/10.1038/s41467-020-15108-z>, 2020.

575 MacIntyre, S., Bastviken, D., Arneborg, L., Crowe, A. T., Karlsson, J., Andersson, A., Gålfalk,
576 M., Rutgersson, A., Podgrajsek, E., and Melack, J. M.: Turbulence in a small boreal lake:
577 Consequences for air-water gas exchange, *Limnol. Oceanogr.*, 66, 827–854,
578 <https://doi.org/10.1002/lno.11645>, 2021.

579 Maranger, R., Jones, S. E., and Cotner, J. B.: Stoichiometry of carbon, nitrogen, and phosphorus
580 through the freshwater pipe, *Limnol Oceanogr Lett*, 3, 89–101,
581 <https://doi.org/10.1002/lol2.10080>, 2018.

582 Marcé, R., Obrador, B., Gómez-Gener, L., Catalán, N., Koschorreck, M., Arce, M. I., Singer, G.,
583 and Schiller, D. von: Emissions from dry inland waters are a blind spot in the global carbon
584 cycle, *Earth-Sci. Rev.*, 188, 240–248, <https://doi.org/10.1016/j.earscirev.2018.11.012>, 2019.

585 Nagatomo, K., Nakayama, K., Komai, K., Matsumoto, H., Watanabe, K., Kubo, A., Tada, K.,
586 Maruya, Y., Yano, S., Tsai, J. W., Lin, H. C., Vilas, M., and Hipsey, M. R.: A Spatially
587 Integrated Dissolved Inorganic Carbon (SiDIC) Model for Aquatic Ecosystems Considering
588 Submerged Vegetation, *J Geophys Res Biogeosci*, 128,
589 <https://doi.org/10.1029/2022JG007032>, 2023.

590 Nakayama, K., Kawahara, Y., Kurimoto, Y., Tada, K., Lin, H.-C., Hung, M.-C., Hsueh, M.-L.,
591 and Tsai, J.-W.: Effects of oyster aquaculture on carbon capture and removal in a tropical
592 mangrove lagoon in southwestern Taiwan, *Sci. Total Environ.*, 156460,
593 <https://doi.org/10.1016/j.scitotenv.2022.156460>, 2022.

594 Nakayama, K., Komai, K., Tada, K., Lin, H. C., Yajima, H., Yano, S., Hipsey, M. R., and Tsai, J.
595 W.: Modeling dissolved inorganic carbon considering submerged aquatic vegetation, *Ecol.
596 Model.*, 431, 109188, <https://doi.org/10.1016/j.ecolmodel.2020.109188>, 2020.

597 Nakayama, K., Sivapalan, M., Sato, C., and Furukawa, K.: Stochastic characterization of the

598 onset of and recovery from hypoxia in Tokyo Bay, Japan: Derived distribution analysis
599 based on “strong wind” events, *Water Resour. Res.*, 46,
600 <https://doi.org/10.1029/2009WR008900>, 2010.

601 Nash, J. E. and Sutcliffe, J. V.: River flow forecasting through conceptual models, I A discussion
602 of principles, *J. Hydrol.*, 10, 398–409, 1970.

603 Olsson, F., Mackay, E. B., Barker, P., Davies, S., Hall, R., Spears, B., Exley, G., Thackeray, S.
604 J., and Jones, I. D.: Can reductions in water residence time be used to disrupt seasonal
605 stratification and control internal loading in a eutrophic monomictic lake?, *J. Environ.
606 Manage.*, 304, 114169, <https://doi.org/10.1016/j.jenvman.2021.114169>, 2022a.

607 Olsson, F., Mackay, E. B., Moore, T., Barker, P., Davies, S., Hall, R., Spears, B., Wilkinson, J.,
608 and Jones, I. D.: Annual water residence time effects on thermal structure: A potential lake
609 restoration measure?, *J. Environ. Manage.*, 314, 115082,
610 <https://doi.org/10.1016/j.jenvman.2022.115082>, 2022b.

611 Plummer, L. and Busenberg, E.: The solubilities of calcite, aragonite and vaterite in $\text{CO}_2\text{-H}_2\text{O}$
612 solutions between 0 and 90°C, and an evaluation of the aqueous model for the system
613 $\text{CaCO}_3\text{-CO}_2\text{-H}_2\text{O}$, *Geochim. Cosmochim. Acta*, 46, 1011–1040,
614 [https://doi.org/10.1016/0016-7037\(82\)90056-4](https://doi.org/10.1016/0016-7037(82)90056-4), 1982.

615 Raymond, P. A., Hartmann, J., Lauerwald, R., Sobek, S., McDonald, C., Hoover, M., Butman,
616 D., Striegl, R., Mayorga, E., Humborg, C., Kortelainen, P., Dürr, H., Meybeck, M., Ciais, P.,
617 and Guth, P.: Global carbon dioxide emissions from inland waters, *Nature*, 503, 355–359,
618 <https://doi.org/10.1038/nature12760>, 2013.

619 Schindler, D. W., Curtis, P. J., Parker, B. R., and Stainton, M. P.: Consequences of climate
620 warming and lake acidification for UV-B penetration in North American boreal lakes,
621 *Nature*, 379, 705–708, <https://doi.org/10.1038/379705a0>, 1996.

622 Scully, N. M., McQueen, D. J., and Lean, D. R. S.: Hydrogen peroxide formation: The
623 interaction of ultraviolet radiation and dissolved organic carbon in lake waters along a 43–
624 75°N gradient, *Limnol. Oceanogr.*, 41, 540–548, <https://doi.org/10.4319/lo.1996.41.3.0540>,
625 1996.

626 Shade, A., Chiu, C.-Y., and McMahon, K. D.: Seasonal and episodic lake mixing stimulate
627 differential planktonic bacterial dynamics, *Microb. Ecol.*, 59, 546–554,
628 <https://doi.org/10.1007/s00248-009-9589-6>, 2010.

629 Shade, A., Read, J. S., Welkie, D. G., Kratz, T. K., Wu, C. H., and McMahon, K. D.: Resistance,
630 resilience and recovery: aquatic bacterial dynamics after water column disturbance, *Environ.
631 Microbiol.*, 13, 2752–2767, <https://doi.org/10.1111/j.1462-2920.2011.02546.x>, 2011.

632 Shih, Y.-T., Chen, P.-H., Lee, L.-C., Liao, C.-S., Jien, S.-H., Shiah, F.-K., Lee, T.-Y., Hein, T.,
633 Zehetner, F., Chang, C.-T., and Huang, J.-C.: Dynamic responses of DOC and DIC transport

634 to different flow regimes in a subtropical small mountainous river, *Hydrol. Earth Syst. Sci.*,
635 22, 6579–6590, <https://doi.org/10.5194/hess-22-6579-2018>, 2019.

636 Smith, S. V.: Physical, chemical and biological characteristics* of CO₂ gas flux across the air-
637 water interface, *Plant Cell Environ.*, 8, 387–398, <https://doi.org/10.1111/j.1365->
638 3040.1985.tb01674.x, 1985.

639 Sobek, S., Tranvik, L. J., and Cole, J. J.: Temperature independence of carbon dioxide
640 supersaturation in global lakes, *Global Biogeochem. Cycles*, 19, GB2003,
641 <https://doi.org/10.1029/2004GB002264>, 2005.

642 Tranvik, L. J., Downing, J. A., Cotner, J. B., Loiselle, S. A., Striegl, R. G., Ballatore, T. J.,
643 Dillon, P., Finlay, K., Fortino, K., Knoll, L. B., Kortelainen, P. L., Kutser, T., Larsen, S.,
644 Laurion, I., Leech, D. M., McCallister, S. L., McKnight, D. M., Melack, J. M., Overholt, E.,
645 Porter, J. A., Prairie, Y., Renwick, W. H., Roland, F., Sherman, B. S., Schindler, D. W.,
646 Sobek, S., Tremblay, A., Vanni, M. J., Verschoor, A. M., Wachenfeldt, E. von, and
647 Weyhenmeyer, G. A.: Lakes and reservoirs as regulators of carbon cycling and climate,
648 *Limnol. Oceanogr.*, 54, 2298–2314, https://doi.org/10.4319/lo.2009.54.6_part_2.2298, 2009.

649 Tsai, J.-W., Kratz, T. K., Hanson, P. C., Kimura, N., Liu, W.-C., Lin, F.-P., Chou, H.-M., Wu, J.-
650 T., and Chiu, C.-Y.: Metabolic changes and the resistance and resilience of a subtropical
651 heterotrophic lake to typhoon disturbance, *Can. J. Fish. Aquat. Sci.*, 68, 768–780,
652 <https://doi.org/10.1139/F2011-024>, 2011.

653 Tsai, J.-W., Kratz, T. K., Hanson, P. C., Wu, J.-T., Chang, W. Y. B., Arzberger, P. W., Lin, B.-S.,
654 Lin, F.-P., Chou, H.-M., and Chiu, C.-Y.: Seasonal dynamics, typhoons and the regulation of
655 lake metabolism in a subtropical humic lake, *Freshw. Biol.*, 53, 1929–1941,
656 <https://doi.org/10.1111/j.1365-2427.2008.02017.x>, 2008.

657 Vachon, D. and Del Giorgio, P. A.: Whole-Lake CO₂ Dynamics in Response to Storm Events in
658 Two Morphologically Different Lakes, *Ecosystems*, 17, 1338–1353,
659 <https://doi.org/10.1007/s10021-014-9799-8>, 2014.

660 Vachon, D., Sponseller, R. A., and Karlsson, J.: Integrating carbon emission, accumulation and
661 transport in inland waters to understand their role in the global carbon cycle, *Glob. Change
662 Biol.*, 27, 719–727, <https://doi.org/10.1111/gcb.15448>, 2021.

663 Walvoord, M. A. and Striegl, R. G.: Increased groundwater to stream discharge from permafrost
664 thawing in the Yukon River basin: Potential impacts on lateral export of carbon and
665 nitrogen, *Geophys. Res. Lett.*, 34, <https://doi.org/10.1029/2007GL030216>, 2007.

666 Wanninkhof, R.: Relationship between wind speed and gas exchange over the ocean, *J.
667 Geophys. Res. Oceans*, 97, 7373, <https://doi.org/10.1029/92JC00188>, 1992.

668 Williamson, C. E., Morris, D. P., Pace, M. L., and Olson, O. G.: Dissolved organic carbon and
669 nutrients as regulators of lake ecosystems: Resurrection of a more integrated paradigm,

670 Limnol. Oceanogr., 44, 795–803, https://doi.org/10.4319/lo.1999.44.3_part_2.0795, 1999.

671 Winslow, L. A., Read, J. S., Hansen, G. J. A., and Hanson, P. C.: Small lakes show muted

672 climate change signal in deepwater temperatures, Geophys. Res. Lett., 42, 355–361,

673 <https://doi.org/10.1002/2014GL062325>, 2015.

674 Woolway, R. I., Anderson, E. J., and Albergel, C.: Rapidly expanding lake heatwaves under

675 climate change, Environ. Res. Lett., 16, 94013, <https://doi.org/10.1088/1748-9326/ac1a3a>,

676 2021a.

677 Woolway, R. I., Jennings, E., Shatwell, T., Golub, M., Pierson, D. C., and Maberly, S. C.: Lake

678 heatwaves under climate change, Nature, 589, 402–407, <https://doi.org/10.1038/s41586-020-03119-1>, 2021b.

680 Woolway, R. I., Kraemer, B. M., Lenters, J. D., Merchant, C. J., O'Reilly, C. M., and Sharma,

681 S.: Global lake responses to climate change, Nat. Rev. Earth Environ., 1, 388–403,

682 <https://doi.org/10.1038/s43017-020-0067-5>, 2020.

683 Woolway, R. I., Simpson, J. H., Spiby, D., Feuchtmayr, H., Powell, B., and Maberly, S. C.:

684 Physical and chemical impacts of a major storm on a temperate lake: a taste of things to

685 come?, Climatic Change, 151, 333–347, <https://doi.org/10.1007/s10584-018-2302-3>, 2018.

686 Wu, J.-T., Chang, S.-C., Wang, Y.-S., and Hsu, M.-K.: Characteristics of the acidic environment

687 of the Yuanyang Lake (Taiwan), Bot. Bull. Acad. Sin., 42, 17–22, 2001.

688 Zwart, J. A., Sebestyen, S. D., Solomon, C. T., and Jones, S. E.: The Influence of Hydrologic

689 Residence Time on Lake Carbon Cycling Dynamics Following Extreme Precipitation

690 Events, Ecosystems, 20, 1000–1014, <https://doi.org/10.1007/s10021-016-0088-6>, 2017.

691

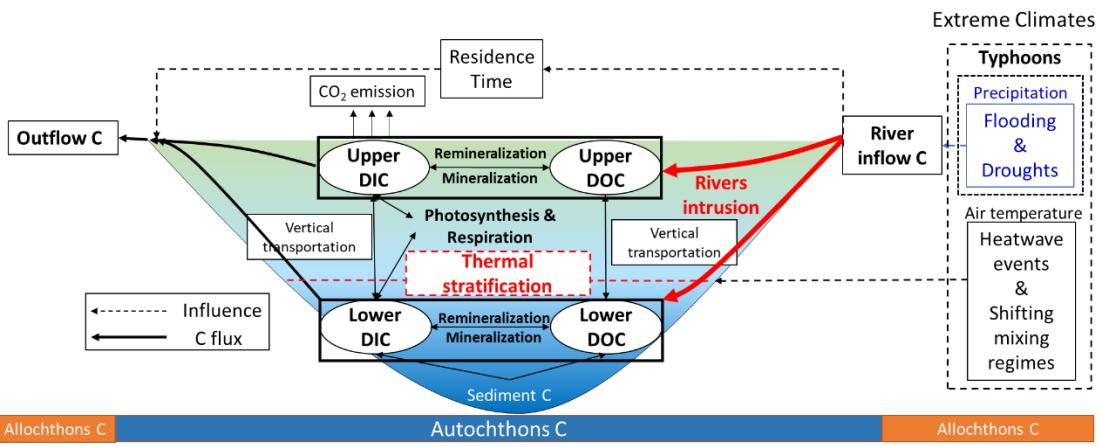
692 **Table 1.** Comparison of Yuan-Yang Lake's rainfall and hydrological records in typhoon and non-
693 typhoon years.

Records	Typhoon years	Non-typhoon years
Time period (year)	2015-2016	2017-2018
Total precipitation (mm)	6,332	3,795
Total typhoon rainfall (mm)	2,254	0
Average water depth (m \pm SD)	4.54 ± 1.7	4.51 ± 1.5
Average river discharge ($m^3 d^{-1}$)	3,717	2,943
Transparency (Secchi disc depth, m \pm SD)	1.58 ± 0.45	1.38 ± 0.28

694

Table 2. Parameters of the two-layer conceptual model in Yuan-Yang Lake

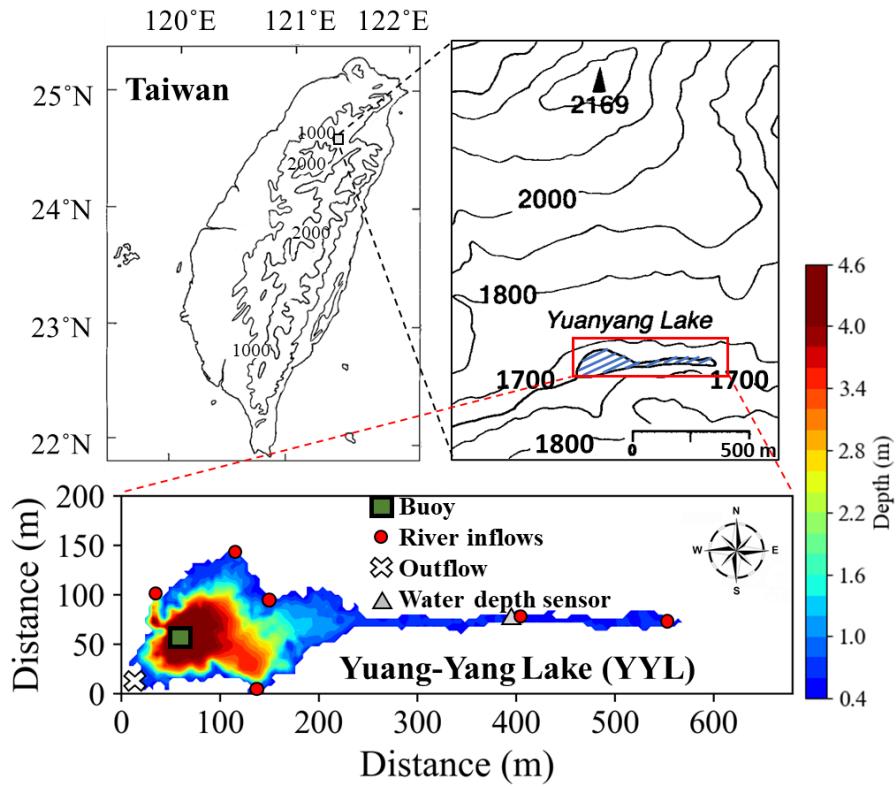
Parameters	Value	Unit
<i>Measurements</i>		
Q_{out}	Outflow discharge	Daily data $\text{m}^3 \text{ d}^{-1}$
Q_{in}	Inflow discharge	Daily data $\text{m}^3 \text{ d}^{-1}$
Q_U	Upper layer Discharge	Daily data $\text{m}^3 \text{ d}^{-1}$
Q_L	Lower layer discharge	Daily data $\text{m}^3 \text{ d}^{-1}$
DIC_R	River inflow DIC	Monthly data mg-C L^{-1}
DIC_U	Upper layer DIC	Monthly data mg-C L^{-1}
DIC_L	Lower layer DIC	Monthly data mg-C L^{-1}
Chl_U	Upper layer Chl <i>a</i>	Monthly data mg L^{-1}
Chl_L	Lower layer Chl <i>a</i>	Monthly data mg L^{-1}
DOC_U	Upper layer DOC	Monthly data mg-C L^{-1}
DOC_L	Lower layer DOC	Monthly data mg-C L^{-1}
F_{CO_2}	Carbon emission (equation 7)	Monthly data $\text{mg-C m}^2 \text{ d}^{-1}$
<i>Constants</i>		
V_{total}	Total lake volume	53,544 m^3
V_U	Upper layer volume	45,456 m^3
V_L	Lower layer volume	8,808 m^3
A_s	Lake surface area	36,000 m^2
A_I	The interface area	7,264 m^2
A_B	The bottom of lake area	3,520 m^2
C_U	Coefficient of the unit uniform	1,000 L m^{-3}
<i>Unknown Constants</i>		
α_{PU}, α_{PL}	Coefficients of photosynthesis	Constant d^{-1}
α_{MU}, α_{ML}	Coefficients of mineralization	Constant d^{-1}
w_I	Coefficient of vertical transportation	Constant d^{-1}
BF_{DIC}, BF_{DOC}	Sediment DIC and DOC emission	Constant mg-C L^{-1}
Pa_U, Pb_L	Equations constant at lower layer	Constant $\text{mg m}^{-3} \text{ d}^{-1}$


697 **Table 3.** Best-fit parameters of a two-layer conceptual model of DIC and DOC in Yuan-Yang
698 Lake from 2015 to 2018.

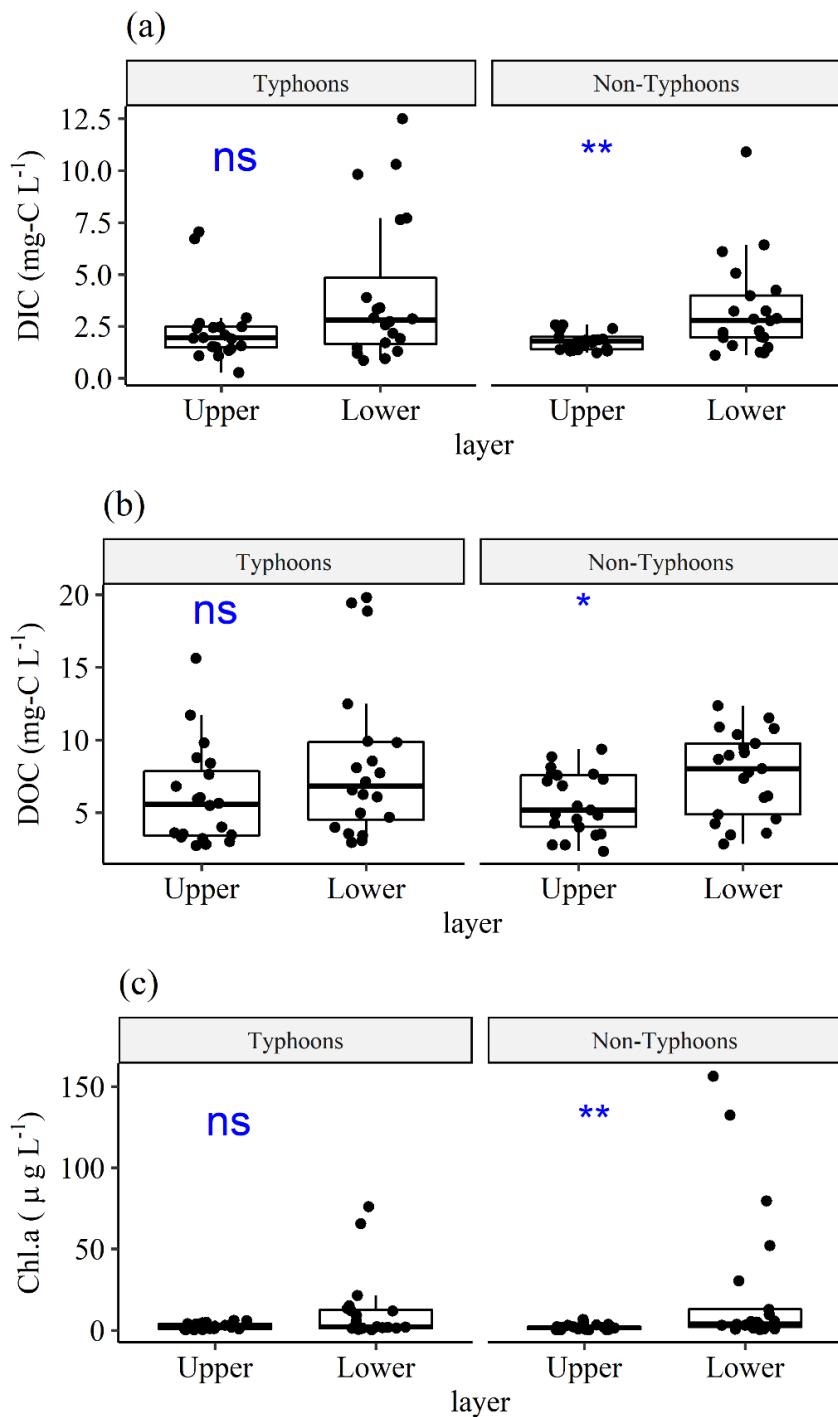
2015–2016				2017–2018				2015– 2016	2017– 2018	
Typhoon years				Non-typhoon years				Typhoon years	Non- typhoon years	
Spring	Summer	Autumn	Winter	Spring	Summer	Autumn	Winter	Inter- annual	Inter- annual	
<u>Upper layer</u>										
F_{CO2} (mg-C m ² d ⁻¹)	291	245	422	127	231	143	104	175	276	163
α_{PU} (d ⁻¹)	-1.20	-33.1	-183.5	-29.1	8.0	6.0	30.0	7.77	-22.0	8.0
α_{MU} (d ⁻¹)	-0.0227	0.0203	0.08	-0.031	-0.01	-0.039	-0.033	-0.195	-0.035	-0.0238
w_I (d ⁻¹)	0.230	0.172	1.38	0.30	0.10	0.0478	0.120	0.180	0.159	0.107
Pa_U (d ⁻¹)	12560	-1317	-23750	9597	9880	14000	17600	10100	4457	12420
Pb_U (d ⁻¹)	-21930	9461	-42130	-17070	-3630	-1251	-20820	-9289	-12760	-9119
$dDIC_U$ (R ² , NSE)	0.305, 0.614								0.072,	0.403,
$dDOC_U$ (R ² , NSE)	0.909, 0.953								0.299	0.650
$dDIC_L$ (R ² , NSE)	0.452, 0.707								0.242,	0.320,
$dDOC_L$ (R ² , NSE)	0.460, 0.728								0.569	0.918
<u>Lower layer</u>										
α_{PL} (d ⁻¹)	-0.627	-22.1	15.0	-0.878	1.49	-6.87	6.0	-16.6	-21.11	2.0
α_{ML} (d ⁻¹)	-0.025	0.123	0.0755	0.00973	-0.010	-	-0.04	-0.048	0.123	-0.019
Pa_L (d ⁻¹)	100	-5662	-10500	-1013	151.6	2032	1216	909	-5662	-40.5
Pb_L (d ⁻¹)	-6012	-7395	-53940	-9639	-1338	-6296	-19470	-8748	-12240	-9919
BF_{DIC} (mg-C L ⁻¹)	0.04,								0.192,	0.440,
BF_{DOC} (mg-C L ⁻¹)	0.00								0.306	0.731
$dDIC_L$ (R ² , NSE)	0.452, 0.707								0.234,	0.128,
$dDOC_L$ (R ² , NSE)	0.460, 0.728								0.338	0.525

700 **Table 4.** Seasonal averages of carbon fluxes ($\text{mg C m}^{-3} \text{ d}^{-1}$) for each season in Yuan-Yang Lake.
 701 Positive values are shown in the carbon sink (*black*), and negative ones show the values after
 702 carbon was released (*red*).

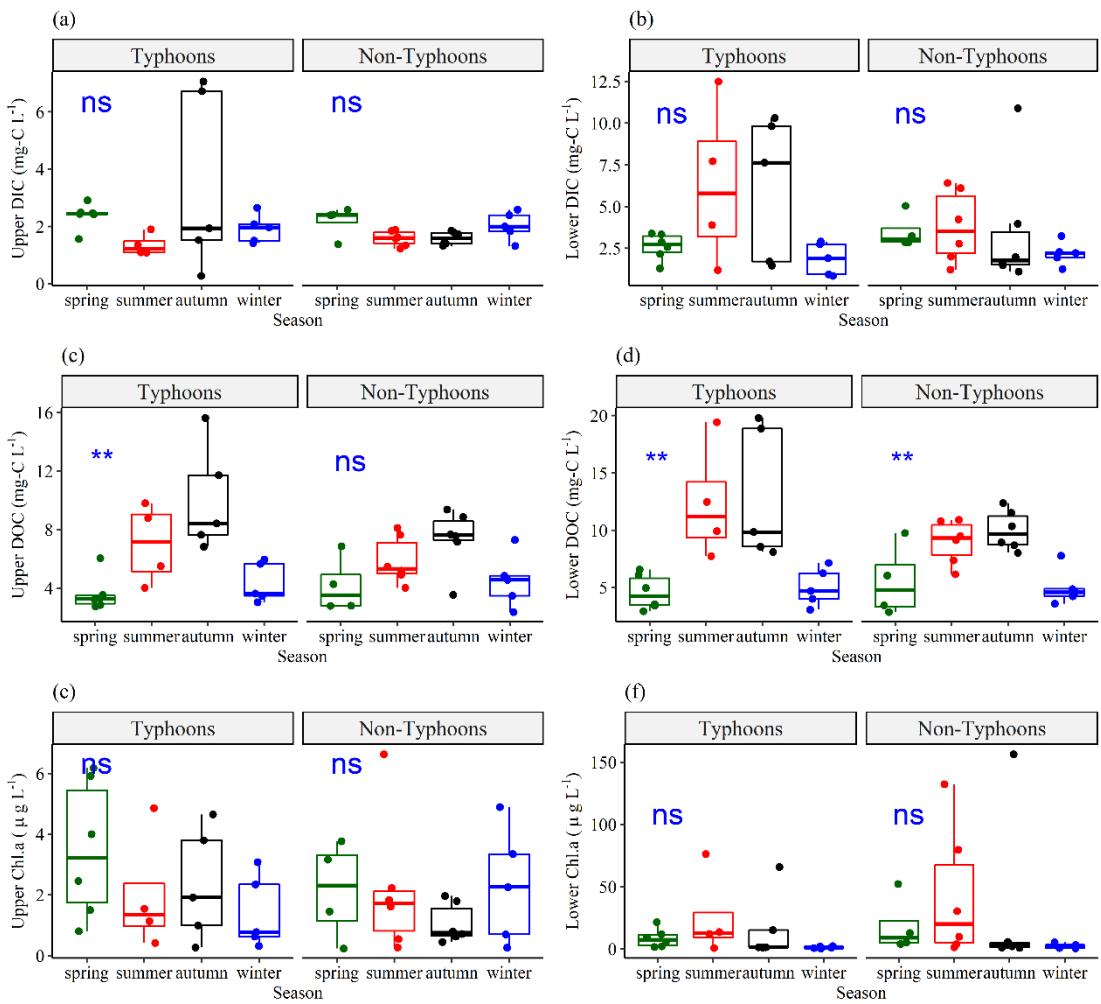
		Flux			$\frac{\text{DIC}_U}{\text{DOC}_U}$	$\frac{\text{DIC}_L}{\text{DOC}_L}$	Total	
		F_C	Upper	Lower			Flux_{DIC}	Flux_{DOC}
<i>Typhoon years</i>	<u>Average</u>	-219	-	-	-	-	-150	-9.69
Spring	DIC	-231	-243	-45.2	0.658	0.568	-210	62.1
	DOC	-	70.8	17.2				
Summer	DIC	-194	29.1	-313	0.193	0.511	-26.4	18.8
	DOC	-	118	-495				
Autumn	DIC	-351	-216	-659	0.349	0.475	-288	-151
	DOC	-	46.1	-1167				
Winter	DIC	-100	-96.4	36.5	0.442	0.372	-74.8	31.2
	DOC	-	40.5	-16.9				
<i>Non-typhoon years</i>	<u>Average</u>	-133	-	-	-	-	-47.8	52.6
Spring	DIC	-129	-180	-94.9	0.524	0.634	-166	-7.06
	DOC	-	21.4	-67.1				
Summer	DIC	-183	5.80	-58.1	0.260	0.423	-4.57	73.8
	DOC	-	115	-140				
Autumn	DIC	-82.6	95.0	35.9	0.216	0.351	85.5	95.9
	DOC	-	168	-272				
Winter	DIC	-138	-128	6.04	0.449	0.436	-106	33.7
	DOC	-	34.0	32.1				


703
 704

705

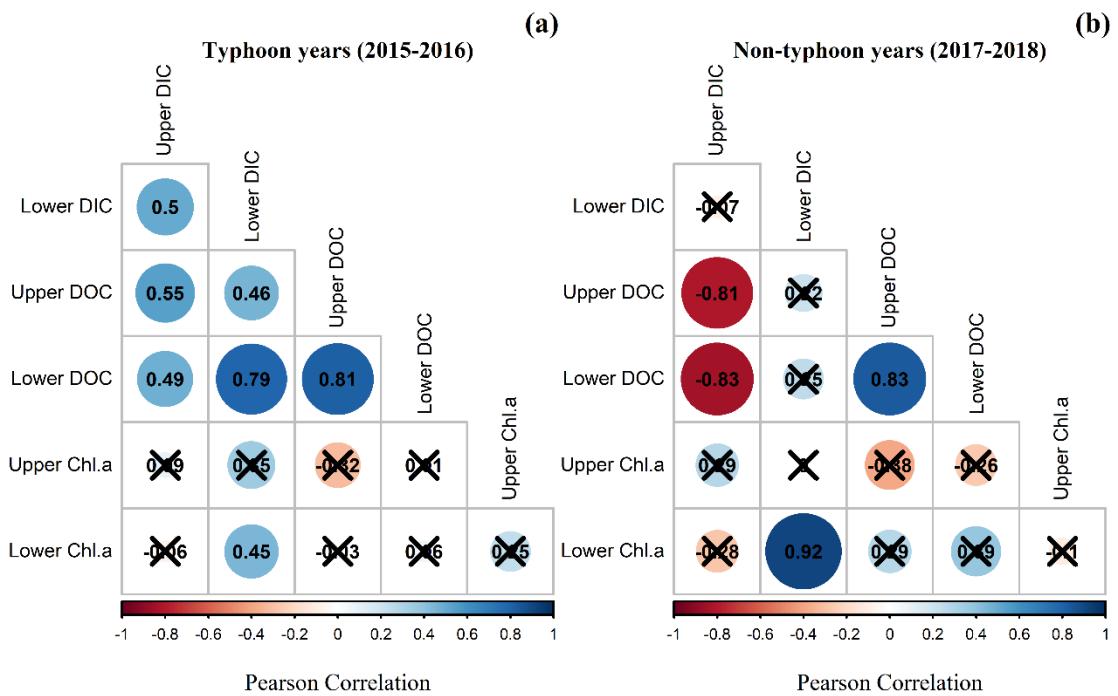

706 **Fig. 1.** Conceptual diagram of river intrusion (red arrows) and thermal stratification
 707 (red dashed line) dominant responses of DIC and DOC in a subtropical two-layer
 708 stratified lake under extreme climates.

709



710
711
712
713
714
715

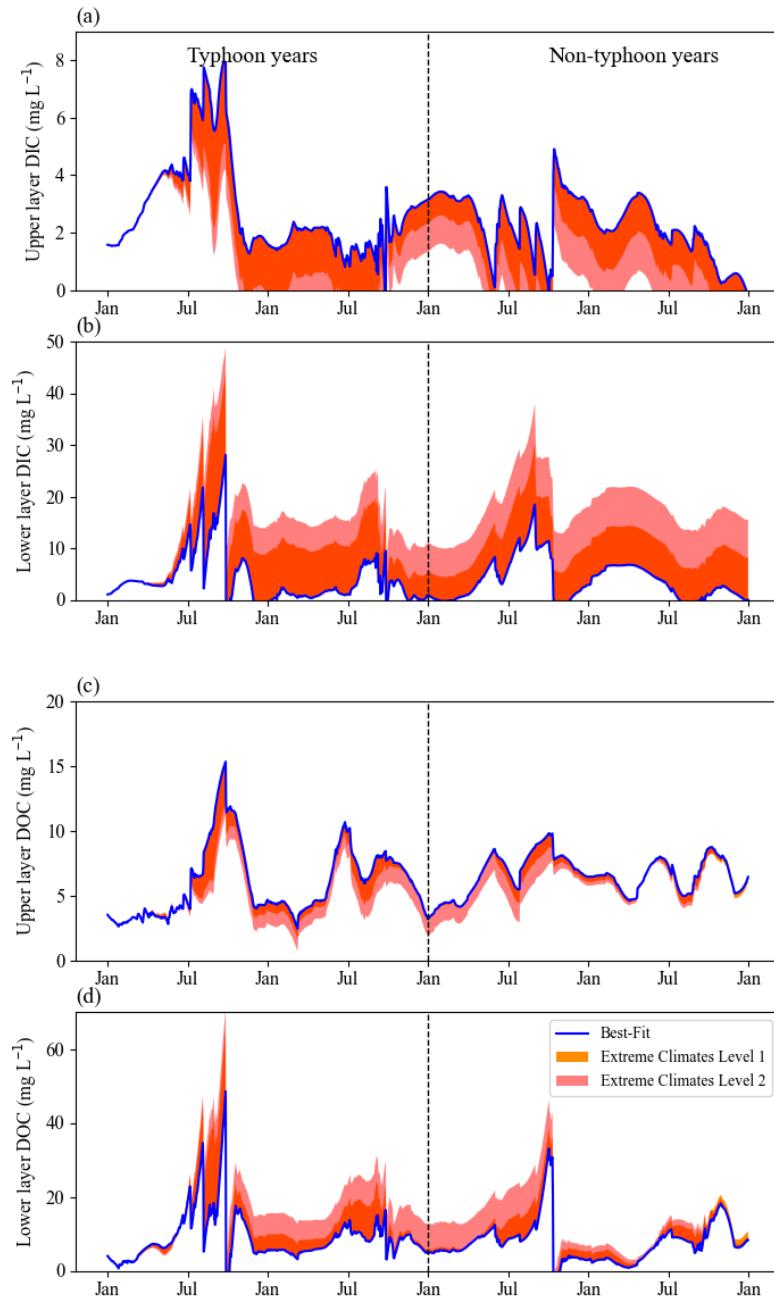
Fig. 2. Sampling locations and bathymetry maps of Yuan-Yang Lake (YYL). The dark green rectangle shows the buoy station, which is at the deepest site of the lake. The red points and white cross show the river mouths of the inflows and outflows, respectively. The gray triangle shows the location of the water depth sensor.


Fig. 3. Comparisons of (a) DIC, (b) DOC, and (c) Chl *a* between upper (DIC_U , DOC_U , Chl_U) and lower (DIC_L , DOC_L , Chl_L) layers, grouped by typhoon and non-typhoon years. The bullet points show the water sampling data. We used a t-test to obtain the *p*-values. The **ns** show the *p*-values ≥ 0.05 , * show *p*-values from 0.05 to 0.01, and ** show *p*-values from 0.01 to 0.001 by t-test.

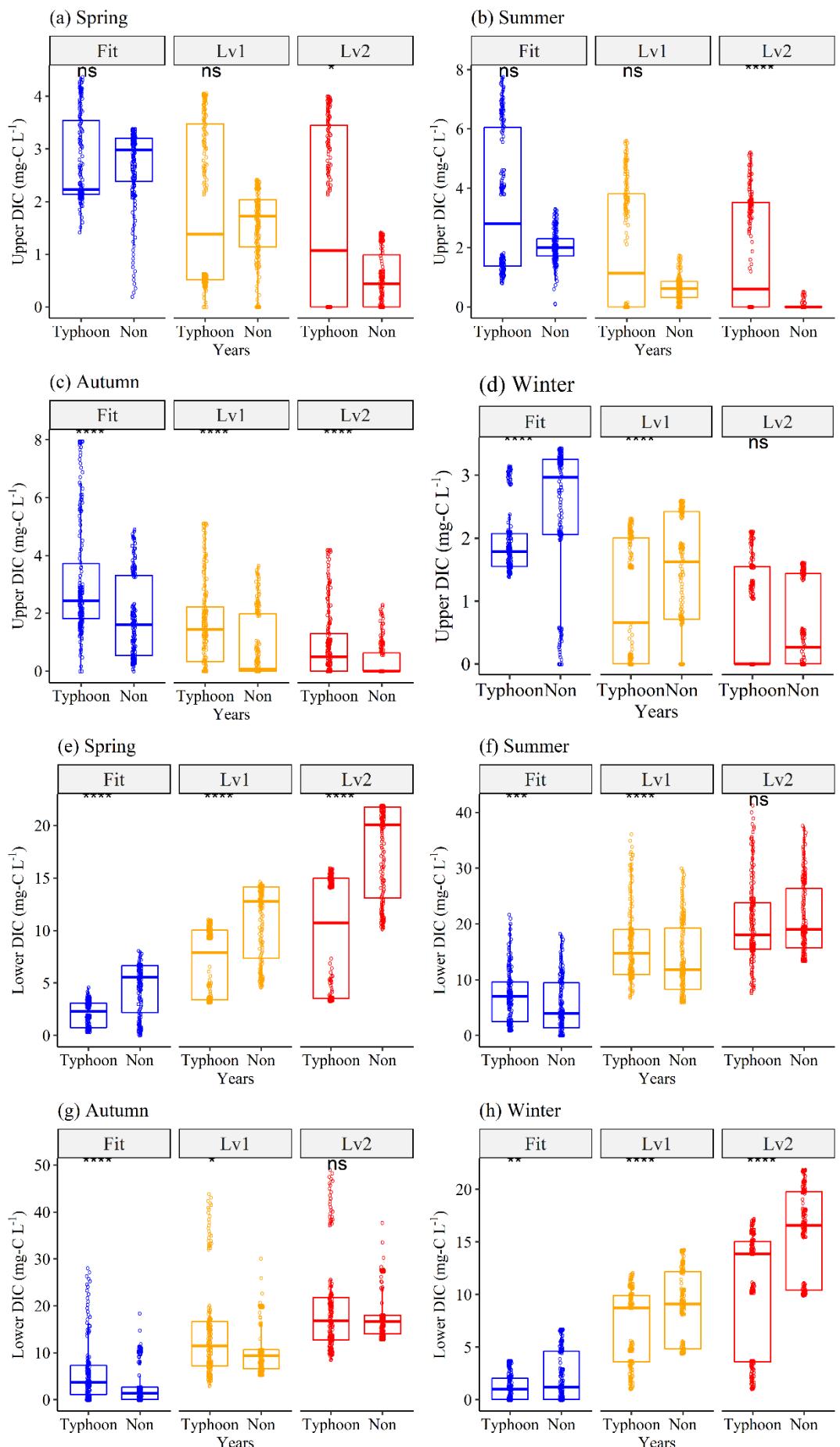
722


723 **Fig. 4.** Seasonal variations of (a) upper layer DIC (DIC_U), (b) lower layer DIC (DIC_L),
724 (c) upper layer DOC (DOC_U), (d) lower layer DOC (DOC_L), (e) upper layer Chl. a
725 (Chl_U), (f) lower layer Chl. a (Chl_L) grouped by typhoon and non-typhoon years. The
726 bullet points show the water sampling data. To determine the seasonality, we used one-
727 way ANOVA to obtain the p -values. The ns show p -values ≥ 0.05 , * show p -values from
728 0.05 to 0.01, and ** show p -values are from 0.01 to 0.001.

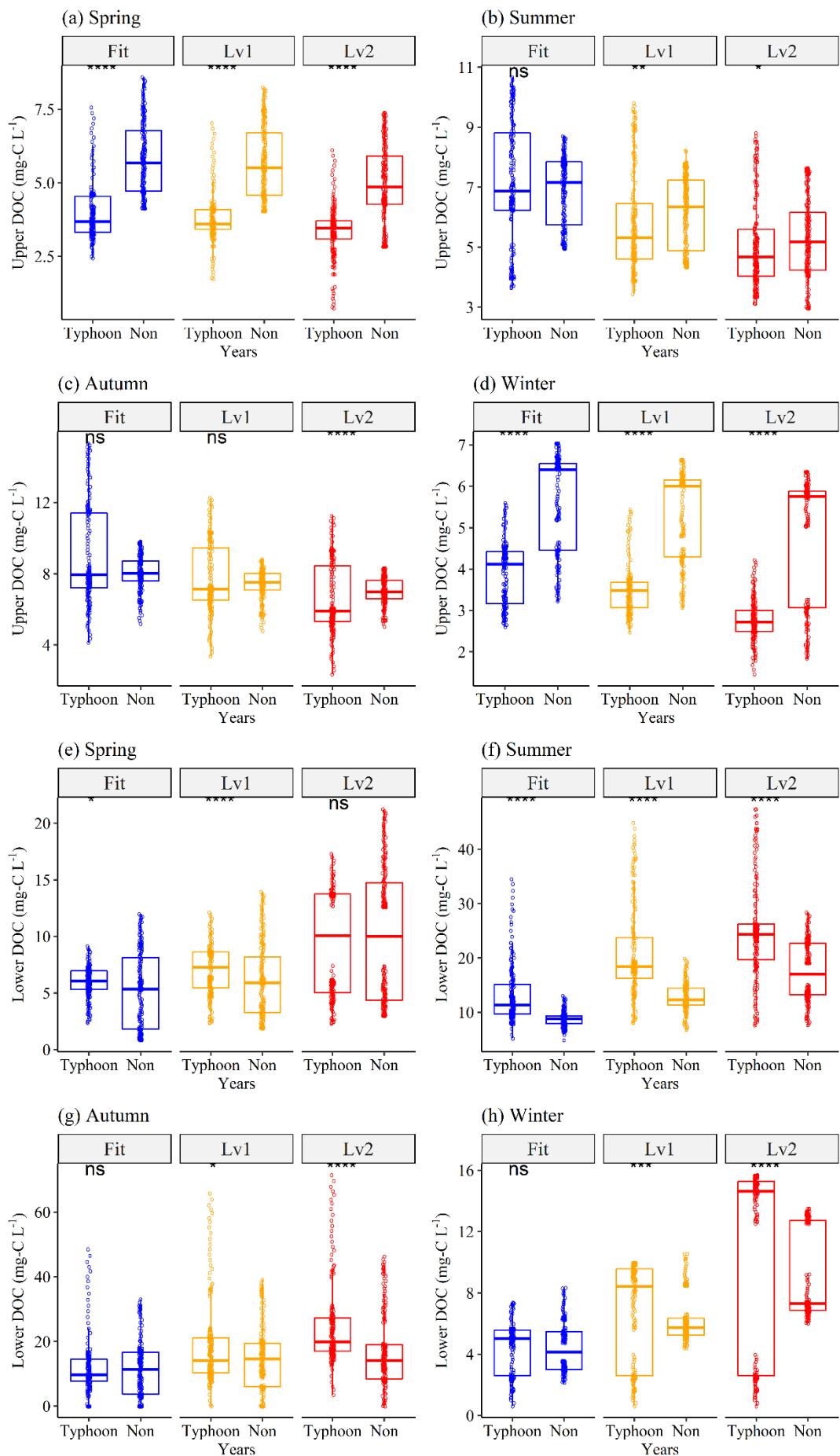
729


730

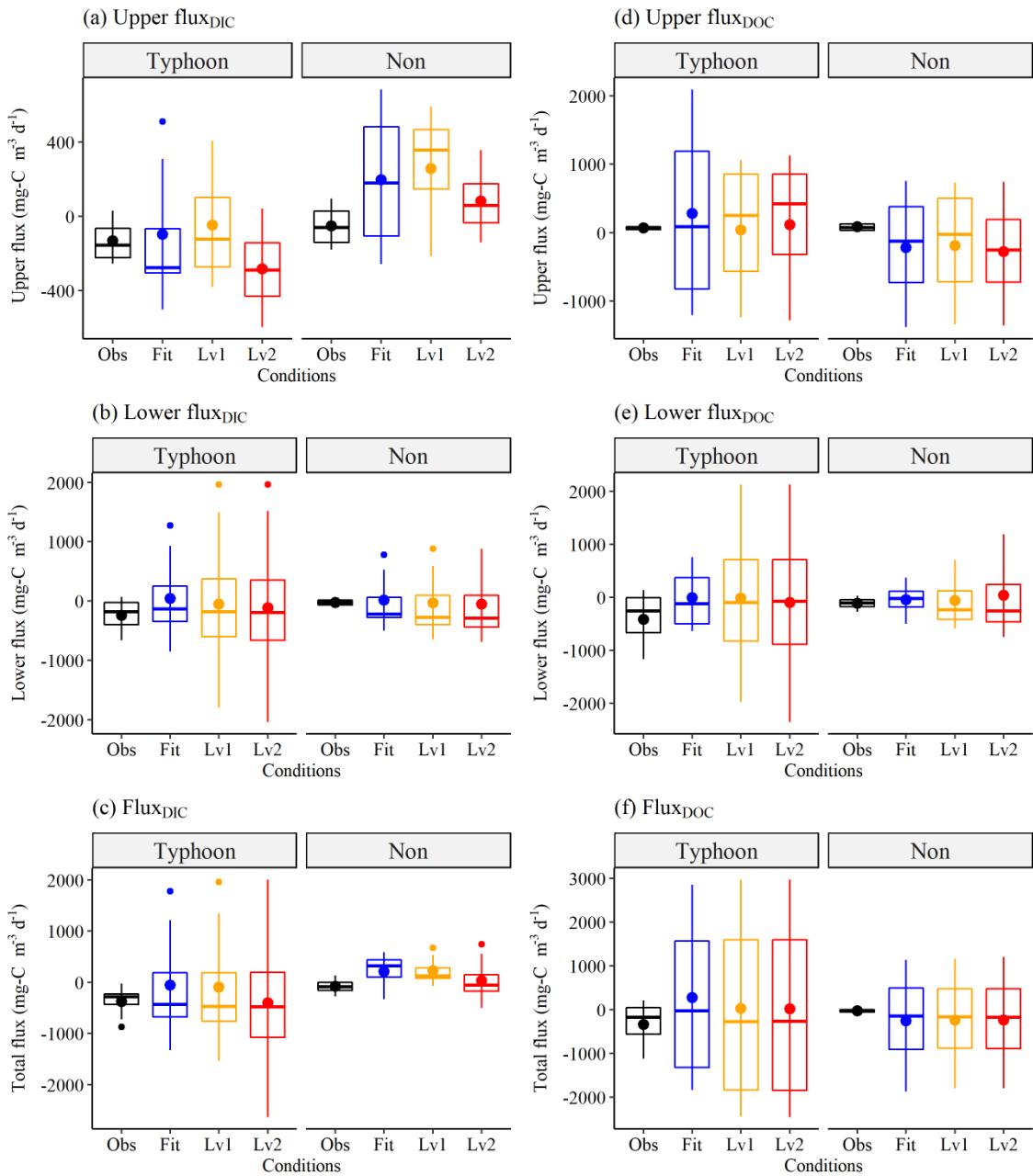
731 **Fig. 5.** Pearson correlation coefficients of DIC, DOC, and Chl. a concentration at upper
732 layer and lower layer DIC (DIC_U , DIC_L), DOC (DOC_U , DOC_L), Chl. a (Chl_U , Chl_L)
733 during **(a)** typhoon years and **(b)** non-typhoon years. The *black-crosses* show
734 insignificant values (p -values are > 0.05).
735


738 **Fig. 6.** Continuous daily DIC and DOC data at (a, b, e, f) the upper layer (DIC_U , DOC_U)
739 and (c, d, g, h) lower layer (DIC_L , DOC_L) by using conceptual equations models. The
740 gray lines show the interannual data, the black lines show the *best fit* for DIC, the red
741 lines show the *best-fit* for DOC (Table 3), and the empty dots show water sampling
742 (observation) data for each month.

743



744


745 **Fig. 7.** Continuous daily DIC and DOC data at **(a, c)** upper layer (DIC_U , DOC_U) and **(b,**
 746 **d)** lower layer (DIC_L , DOC_L) by using the conceptual equation model under extreme
 747 climates from 2015 to 2018. *Blue lines* are original best-fit data as in Fig. 6, in which
 748 the parameters of the DIC model in non-typhoon years are under the nonseasonal
 749 scenario and the others are under the seasonal scenario as in Table 3. *Orange regions*
 750 show Level 1; *pink regions* show Level 2.

752 **Figure 8.** Seasonal responses of continuous **(a-d)** upper layer DIC and **(e-h)** lower layer
753 DIC (mg-C L^{-1}) between typhoon (*Typhoon*) and non-typhoon (*Non*) years for each
754 season as in **Fig. 4**. *Fit* (blue boxes) condition shows the best-fit data by using the
755 conceptual two-layer C model; *Lv1* (yellow boxes) and *Lv2* (red boxes) show the extreme
756 climates. The empty dots show the continuous DIC and DOC data. The **ns** show p-values
757 ≥ 0.05 , * show p-values from 0.05 to 0.01, ** show p-values from 0.01 to 0.001; ***
758 show p-values less than 0.0001 based on a t-test.

760 **Fig. 9.** Seasonal responses of **(a-d)** upper layer DOC and **(e-h)** lower layer DOC (mg-C
761 L^{-1}) between typhoon (*Typhoon*) and non-typhoon (*Non*) years for each season as in Fig.
762 8. The *Fit* (*blue boxes*) condition shows the best-fit data by using the conceptual two-
763 layer carbon model; *Lv1* (*yellow boxes*) and *Lv2* (*red boxes*) show the extreme climates.
764 Empty dots show the continuous DIC and DOC data. The **ns** show p-values ≥ 0.05 , *
765 show p-values from 0.05 to 0.01, ** show p-values from 0.01 to 0.001; **** show p-
766 values less than 0.0001 based on a t-test.
767

768
769
770
771
772
773
774
775

Fig. 10. Interannual (a) Upper flux_{DIC}, (b) Lower flux_{DIC}, (c) Flux_{DIC}, (d) Upper flux_{DOC}, (e) Lower flux_{DOC}, and (f) Flux_{DOC} ($\text{mg C m}^{-3} \text{ d}^{-1}$) grouped by typhoon and non-typhoon years. The *Obs* condition (black boxes) show the observation data as in Fig. 6; The *Fit* condition (blue- boxes) shows the best-fit data by using the conceptual two-layer carbon model as in Fig.6; *Level 1* (yellow boxes) and *Level 2* (red boxes) show the extreme scenarios as in Fig. 7. The definitions of fluxes please see Sect. 2.3.3.