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Abstract. Global biogeochemical ocean models are invaluable tools to examine how physical, chemical, and biological processes

interact in the ocean. Satellite-derived ocean-color properties, on the other hand, provide observations of the surface ocean

with unprecedented coverage and resolution. Advances in our understanding of marine ecosystems and biogeochemistry are

strengthened by the combined use of these resources, together with sparse in situ data. Recent modeling advances allow sim-

ulation of the spectral properties of phytoplankton and remote-sensing reflectances, bringing model outputs closer to the kind5

of data that ocean-color satellites can provide. However, comparisons between model outputs and analogous satellite products

(e.g. chlorophyll-a) remain problematic: Most evaluations are based on point-by-point comparisons in space and time where

spuriously large errors can occur from small spatial and temporal mismatches, whereas global statistics provide no information

on how well a model resolves processes at regional scales. Here, we employ a unique suite of methodologies, Probability Den-

sity Functions to Evaluate Models (PDFEM), which generate a robust comparison of these resources. The probability density10

functions of physical and biological properties of Longhurst’s provinces are compared, to evaluate how well a model resolves

related processes. Differences in the distributions of chlorophyll-a concentration [mg m−3] provide information on matches

and mismatches between models and observations. In particular, mismatches help isolate regional sources of discrepancy,

which can lead to improving both simulations and satellite algorithms. Furthermore, the use of radiative transfer in the model

to mimic remotely-sensed products facilitate model-observation comparisons of optical properties of the ocean.15

1 Introduction

Ocean General Circulation Models (OGCMs) with the added ability to simulate biogeochemical and optical processes are

providing remarkable opportunities to assess relationships between physical, chemical, biological and optical oceanographic

processes, and to identify feedbacks between the Earth’s oceans and climate (Doney et al., 2001; Edwards, 2011; Séférian et al.,
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2020). These models describe pathways linking biological and chemical standing stocks (state variables) by either resolving20

physical, chemical, and biological processes explicitly or by parameterizing the fluxes. Current three-dimensional climate-class

coupled physical-biological OCGMs have a horizontal resolution that range from 2-3◦ down to ∼10 km for the global domain,

while regional models can resolve horizontal scales down to a few meters. The associated simulated virtual ecosystems have

varying complexity from one phytoplankton type to hundreds of different categories of organisms.

One major challenge in the field of ecosystem and biogeochemical modeling is to devise appropriate methods to compare25

model results with different kinds of observations, especially since it is often not clear whether the comparisons are necessarily

of like-for-like quantities (Dutkiewicz et al., 2020a). Mismatches are spread over different temporal and spatial scales, with

time lags and spatial shifts that can generate large errors that can be misleading (Doney et al., 2009). Current methods to

compare model output with gridded observations such as satellite derived data are normally implemented on point-by-point

match-ups in space and time, which can put an unreasonable penalty on the model due to small local temporal and spatial shifts.30

A simple but useful statistical metric is the root-mean-square difference (RMSD) summed over all match-ups. This approach

can be extended by re-scaling the match-up uncertainty to the data uncertainty and form a cost function (Forget and Wunsch,

2007; Forget and Ponte, 2015), or be explored in frequency space (Forget and Ponte, 2015). The method can be extended to

address temporal lags by calculating the deviations between specific time intervals (day, month, season, year) (Doney et al.,

2009).35

A common method to collate different categories of errors when comparing model-observation match-ups over space and

time is the Taylor diagram (Taylor, 2001). Data points in the Taylor space represent correlation coefficient and scaled RMSD

:::::::
Standard

:::::::::
Deviation

::::
(SD)

:
as a single point in the first quadrant of a radial plot. The skills of different models or in different

regions, time-spans, or variables can be compared and contrasted by presenting each comparison as individual data points on

the same diagram (Taylor, 2001). The concept of showing different statistical metrics as a normalized and unifying figure has40

been further expanded with more advanced visualizations such as, for example, target diagrams (Jolliff et al., 2009). These

methods are quite useful and their concepts can be extended for application in formal data assimilation (Stow et al., 2009).

However, all of these techniques can provide spuriously large errors due to potentially small mismatches in time and space

between the model and observations. Small process errors, for example, can be magnified by small spatial shifts in locations

where spatial gradients are large. Small shifts in time can equally lead to large errors in RMSD
::
SD.45

Here we present a complementary approach to evaluate OGCMs, where the statistical properties of probability density

estimates are used instead of model-observation match-ups. The model probability for finding, for example, chlorophyll-a

(Chl) concentration, within a particular interval (in this case 7 years) either globally or in a specific ecological regions is

compared with the corresponding probability in the observations, without considering the exact time and location where the

values were found.50

The study is formally based on probability density estimates and we use the commonly-used term Probability Density Func-

tion (PDF) without assuming that the distribution of values follow any particular statistical probability distribution. An example

of this approach is the study by Jönsson et al. (2015) where Net Community Production derived from in situ observations were

shown to compare well with two biogeochemical models, when zonal ranges of values were compared, while direct match-ups
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suggested no skill in the models to reproduce observations. Another example is the work of Mora et al. (2015) where distri-55

butions of emergent properties such as phytoplankton community structure and Carbon-to-chlorophyll ratios in the European

Regional Seas Ecosystem Model (ERSEM) were compared with the equivalent satellite-derived or in situ properties. Mecha-

nistic insight can be attained by comparing the moments of the probability distributions in different regions (Cael et al., 2018).

The suite of methods and accompanying code package is called Probability Density Functions to Evaluate Models (PDFEM)

version 1.060

The rationale for our approach is that the distribution of a certain property has the ability to provide insight into how well

a model resolves physical and biological processes, without being penalized for small and often unimportant offsets in space

or time. Comparing distributions of different properties simulated by models with corresponding distributions of observations

has the potential to illuminate why observations and models diverge. The difference in the shapes of two distributions could

provide clues into how well processes are represented in the models. An absence of long tails in the model-derived distribution65

when they are seen in observations can, for example, suggest that potentially important but rare events are missing (Jönsson and

Salisbury, 2016). Bi-modality in the model-derived distributions, when they are not seen in observations, may indicate that the

model solution has unrealistic local equilibria; and the opposite might suggest that processes or water masses that are important

in the real world are not resolved by the model. And two similar but shifted distributions might suggest parameterization

problems within the ecosystem model.70

To further counteract spurious mismatches from small spatial displacements in point-by-point comparisons, we aggregate

data within ecological provinces and compare the statistics of model and observational distributions within each province. This

feature-based comparison can be done at many different scales ranging from eddies and fronts to the global scale (Vichi et al.,

2011) and has been used in the past to look at, for example, phenology shifts in the North Atlantic Ocean (Henson et al.,

2009). The regions over which to aggregate data could in principle be determined separately for models and observations, but75

this is challenging in practice since such dynamically defined domains change in time (Reygondeau et al., 2013). Instead, we

use static regions that can readily help us to identify processes that are potentially misrepresented in the models by isolating

provinces that are expected to be controlled by similar processes and respond to similar sets of physical forcings.

Finally, we need to formulate metrics to compare models with observations. This is particularly challenging when comparing

satellite-derived and model-simulated Chl, since the former is defined as a depth-integrated property dependent on the light at-80

tenuation in the water column, which is exponentially weighted towards the surface values (Gordon, 1980; Sathyendranath and

Platt, 1989), and model Chl is depth-resolved. The physical-biogeochemical model we use here (Forget et al., 2015; Forget and Ferreira, 2019; Dutkiewicz et al., 2015, 2021; Follett et al., 2021)

:::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::
(Darwin-CBIOMES-0, Forget et al., 2015; Forget and Ferreira, 2019; Dutkiewicz et al., 2015, 2021; Follett et al., 2021) addresses

this challenge by explicitly resolving the light field vertically and simulating Remote Sensing Reflectances (Rrs, Bailey and

Werdell, 2006). The resulting 2D Rrs fields are converted to Chl using standard algorithms for satellite-derived Chl (see the85

methods section). These Chl estimates have analogous benefits and constraints to satellite-derived Chl when it comes to depth

integration, taking into account light attenuation in the ocean. The model, in effect, has a simulated satellite field which allows

us to readily compare Chl estimates from satellites and models.
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The paper is organized with a methods section describing all data and assumptions used in the study followed by an analysis

of 1) The global probability distributions of Chl from the Darwin-CBIOMES-0 configuration, the Ocean Colour – Climate90

Change Initiative (OC–CCI) satellite-derived Chl product, and in situ observations; 2) The PDFs in all non-coastal Longhurst

provinces; and 3) The monthly distributions of Chl in four representative Longhurst provinces in the North Atlantic Ocean.

Earth Mover’s Distance (EMD) is used to quantify the differences in distributions. We end with an overarching discussion

of the use of density distributions, Longhurst provinces, and model Chl derived from simulated Rrs to assess the skill of

biogeochemical global-ocean models.95

2 Methods

2.1 Biogeochemical Provinces

The analysis is performed after partitioning the global ocean according to the Longhurst (2007) geographical classification

system of biomes and provinces. This classification is based on physical and chemical conditions and processes that shape

marine ecosystems over large scales. The Longhurst province system uses a two-level approach with a higher level distin-100

guishing the Coastal biome from the open-ocean biomes, i.e. the Trades, Westerlies, and Polar biomes. The lower level divides

each of the coastal and oceanic biomes into provinces that are characterized by similar traits from oceanographic, ecological

and topographical perspectives (Longhurst, 2007). The resulting classification, as seen in Figure 1, has 57 distinct biogeo-

chemical provinces (BGCPs) with generally high internal homogeneity and high external heterogeneity in marine biodiversity

(Longhurst, 2007; Beaugrand et al., 2000; Reygondeau et al., 2013). The original Longhurst provinces are static in time and105

space and the definition of the province boundaries included qualitative criteria. It is, therefore, possible that the boundaries

between provinces could be located differently if objective, quantitative criteria were used. The dynamic nature of the bound-

aries is not explored in the current study, but is an important area for future research. Our study uses Longhurst provinces as the

basis of the comparisons, assuming that they provide a reasonable partitioning of regions with similar physical and ecological

characteristics.110

[Figure 1 about here.]

2.2 The Darwin-CBIOMES-0 physical-biogeochemical-optical model

We use output from a coupled physical-biogeochemical-optical model adapted and configured for the Simons Collaboration

on Computational Biogeochemical Modeling of Marine Ecosystems (CBIOMES) project. The model configuration, hereafter

denoted Darwin-CBIOMES-0 (Dutkiewicz, 2018), is global and simulates the period 1992-2006 (Forget and Ferreira, 2019).115

The physical component uses the MITgcm (Campin et al., 2020) in a 3-dimensional global configuration developed as part of

the Estimating the Circulation and Climate of the Ocean project (Forget et al., 2015; Forget and Ponte, 2015, ECCOv4). The

state estimate uses a “least-squares with Lagrangian multipliers" approach to adjust internal model parameters, as well as initial

and boundary conditions with global observational data streams, including satellite altimetry and Argo floats. The resolution

4



is nominally 1 degree in the horizontal, and ranges from 10 m in the vertical at the surface to 500 m at depth (see Forget et al.,120

2015, for details).

The biogeochemical component resolves the cycling of carbon, phosphorus, nitrogen, silica, iron, and oxygen through in-

organic, living, dissolved and particulate organic phases. The ecosystem incorporates 35 phytoplankton and 16 zooplankton

types as in Dutkiewicz et al. (2021). The phytoplankton include several biogeochemical functional groups: Diatoms (that utilize

silicic acid), coccolithophores (that calcify), mixotrophs (that photosynthesize and graze on other plankton), nitrogen fixing125

cyanobacteria (diazotrophs), and pico-phytoplankton. Each group has a range of size classes such that the phytoplankton span

from 0.6 to 228 µm equivalent spherical diameter (ESD). Several phytoplankton parameters, including maximum growth rate,

nutrient affinity, and sinking are expressed as functions of cell volume, though with distinct differences between functional

groups as suggested by observations (Dutkiewicz et al., 2020b; Sommer et al., 2017). The 16 size classes of zooplankton range

from 6.6 µm to 2425 µm ESD, and graze on (phyto- or zoo-)plankton 5 to 20 times smaller than themselves, but preferentially130

10 times smaller (Hansen et al., 1997; Kiørboe, 2019; Schartau et al., 2010) with a Holling III parameterization (Holling, 1959).

The simulation uses Monod kinetics, and C:N:P:Fe stoichiometries are constant over time (though differ between phytoplank-

ton groups). We refer the reader to Dutkiewicz et al. (2015, 2020b, 2021) for a further description of the model, as well as

evaluation of the modelled plankton size class and functional group distributions. Here we focus instead on the model Chl con-

centrations. Each of the 35 phytoplankton types have dynamic Chl that alters as a function of light, nutrients and temperature135

following Geider et al. (1998). Chlmod refers to the sum of modelled Chl-a across all the phytoplankton types.

The optical component of the model includes explicit radiative transfer of spectral irradiance in 25 nm bands between 400

and 700 nm. The three-stream (downward direct, Ed, downward diffuse, Es, and upwelling, Eu) model (following Aas, 1987;

Gregg, 2002; Gregg and Casey, 2009) is reduced to a tri-diagonal system that is solved explicitly (see Dutkiewicz et al. (2015)

for more details). In-water irradiance fields are altered by the spectral absorption and scattering by water molecules, the 35140

phytoplankton types, detritus and coloured dissolved organic matter (CDOM). Irradiance just below the surface of the ocean

(direct, Edo, and diffuse, Eso, downward) is provided by the Ocean-Atmosphere Spectral Irradiance Model (Gregg, 2002;

Gregg and Casey, 2009, OASIM).

Output from the optical model include spectral surface upwelling irradiance similar to that measured by ocean color satellites

(Dutkiewicz et al., 2018, 2019). As in these earlier studies, we calculate model reflectance for each waveband as the upwelling145

just below the surface (Eu) divided by the total downward (direct and diffuse) irradiance also just below the surface (as

provided by OASIM): R(λ,0−) = (Eu(λ))
(Ed0(λ)+Es0(λ))

. We first convert model subsurface irradiance reflectance to remotely-sensed

reflectance just below the surface using a bidirectional function Q: Rrs(λ,0
−) = R(λ,0−)

Q , where we assume that Q = 3 sr

(as in Dutkiewicz et al., 2019; Gregg, 2002). Secondly we convert Rrs(λ,0
−) to above-surface remotely-sensed reflectance

Rrs(λ,0
+) using the formula of Lee et al. (2002): Rrs(λ,0

+) = 0.53Rrs(λ,0
−))

((1−1.7Rrs(λ,0−))) . These spectral fields will be referred to as150

model Rrs (units of sr−1) and is comparable to the Rrs provided by ocean color satellite databases.

An advantage of having the model Rrs is that we can provide a model-derived satellite-like Chl similar to that described in

the previous section (see Dutkiewicz et al., 2018, 2019). In practice we interpolate the 13 wavebands of Rrs from the model to

the same bands as used in OC–CCI, and use the maximum ratio of the blue signal to the green and a 4th order polynomial to
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estimate the satellite-like derived Chl (following O’Reilly et al., 1998). Here, for simplicity, we use the OC version 2 algorithm155

and coefficients. This product is termed ChlRrs in this paper and is technically more comparable to the real-world satellite

product than the model “actual" Chl at the surface (Chlmod, see further discussion in Dutkiewicz et al., 2018). Any pixels with

invalid data in the satellite product after downscaling to the model grid is masked in the corresponding model output.

2.3 Satellite-derived Chlorophyll

The model is compared to satellite-derived Chl products originally at 4 km resolution from version 4.2 of the Ocean Colour160

Climate Change Initiative (Mélin et al., 2017; Sathyendranath et al., 2019, 2020, OC–CCI). This is a blended Chl product

where data from the Sea-viewing Wide-Field-of-view Sensor (SeaWiFS), the Aqua MOderate-resolution Imaging Spectro-

radiometer (MODIS-Aqua), the MEdium spectral Resolution Imaging Spectrometer (MERIS), and the Suomo-NPP Visible

Infrared Imaging Radiometer Suite (NPP-VIIRS) are merged into a unified product. SeaWiFS operated from September 1997

until December 2010 and MERIS from March 2002 to May 2012, MODIS-Aqua was launched in May 2002 and VIIRS in165

October 2011; the latter two sensors are still operational as of December 2021. Data from the different instruments are merged

after band-shifting normalized remote-sensing reflectance (Rrs) to the spectral bands of SeaWIFS and correcting for inter-

sensor biases. Atmospheric correction is performed using POLYMER v3.5 (Steinmetz et al., 2011) for MERIS and MODIS-A,

and NASA/L2Gen 7.3 for SeaWiFS and VIIRS. All individual grid cells are classified optically using a fuzzy-logic approach

(Moore et al., 2009, 2012; Jackson et al., 2017) and a combination of the best Chl algorithms for each class is used along170

with class membership at each pixel to generate Chl at each pixel. The spatial mapping follows NASA protocol for level 3

processing by considering a 4-km bin as valid if there is at least a single 1-km valid pixel in that bin from at least one sensor,

and taking the mean if more than one valid observation is available. The resulting time series for the period between 1997 and

2019 is designed to be internally consistent (all radiometric products band-shifted to a common set of bands corresponding to

SeaWiFS) and stable (corrected for inter-sensor bias Sathyendranath et al., 2019). The resulting daily 4-km OC-CCI product175

is downscaled to the Darwin-CBIOMES-0 grid using bucket resampling from the SatPy resampling package (Raspaud et al.,

2019) in Python. We denote the Chl product from OC-CCI Chlsat henceforth in the study.

2.4 In situ data

The satellite-derived and simulated Chl concentrations are matched with ∼80,000 in situ Chl observations for comparison.

The in situ Chl data set is based on a global compilation developed to evaluate the quality of ocean color satellite data records180

and to evaluate ocean color products from OC–CCI (Valente et al., 2019a). The observations were acquired from several

sources including MOBY, BOUSSOLE, AERONET-OC, SeaBASS, NOMAD, MERMAID, AMT, ICES, HOT, GeP&CO,

AWI, ARCSSPP, BARENTSSEA, BATS, BIOCHEM, BODC, CALCOFI, CCELTER, CIMT, COASTCOLOUR, ESTOC,

IMOS, MAREDAT, PALMER, SEADATANET, TPSS, and TARA. The data set spans the period from 1997 to 2018 and vari-

ables include spectral remote-sensing reflectances, concentrations of Chl, spectral inherent optical properties, spectral diffuse185

attenuation coefficient, and total suspended matter. Different methodologies have been implemented for homogenization, qual-

ity control and merging of all data. Observations close in time and space are averaged and some data were eliminated after
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failing quality control. To be consistent with satellite-derived Chl values, which are derived from the light emerging from the

upper layer of the ocean, all observations in the top 10 m (replicates at the same depth, or measurements at multiple depths)

were averaged. Data points are discarded if the coefficient of variation among observations is more than 50%. The compiled in190

situ data set is publicly available (Valente et al., 2019b). The resulting data product is referenced to here as Chlobs.

2.5 Statistical analysis

While the objective of this study is to assess different continuous probability distributions of Chl, we perform all statistical

analyses by converting the distributions to discrete histograms where the data are divided into equally sized bins on a log-scale.

The reason for using a log-scale is that Chl concentrations can be assumed to follow a log-normal distribution at a variety of195

spatial and temporal scales (Campbell, 1995) and this transformation allows for better characterizations at low concentrations.

We use the same set of 100 equally-sized bins from −6.9 (ln0.001) to 4.61 (ln100) for all data sources and in all calculations.

The histograms are generated by binning daily interpolated Chl from both satellite (derived Chl from OC–CCI) and the Darwin-

CBIOMES-0 output by month and Longhurst province for the period 1998 to 2007. The in situ data set has very few, if any

observations, in several provinces and is only used for comparisons on global or biome scales. Percentiles, medians, standard200

deviations (SDs), and other statistics are all calculated from the resulting histograms using specifically-developed code.

2.5.1 Earth Mover’s Distances

We leverage Earth Mover’s Distance (Rubner et al., 2000, EMD) to quantify the difference between different distributions.

EMD, also known as the Wasserstein metric in mathematics (Vaserstein, 1969) and Mallow’s distance in statistics (Levina

and Bickel, 2001), is a popular optimal transport method (Monge, 1781) for measuring the distance between two probability205

distributions, widely used in image processing (Frogner et al., 2015) and scientific applications (Orlova et al., 2016). The

distance is based on imagining a mound of dirt shaped like the first distribution and considering how much effort would be

required to transform it to the second distribution’s shape. Given a distance metric in this space (in this case the absolute

difference in log-Chl), it is possible to calculate the minimum redistribution of mass needed to transform one probability

distribution to the other. EMD measures the total sum of such an optimally-planned transfer of mass. Rather than focusing210

on the distance between any particular aspect of the distributions such as their means or variances, EMD provides a more

comprehensive measure of distance. For computation, the original log-Chl measurements in each province are transformed into

histograms using the earlier mentioned bin definitions. We use the Python package pyEMD (Pele and Werman, 2008, 2009;

Mayner et al., 2015) to calculate EMDs between the histograms. All reported EMDs have the natural log of Chl as unit.
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3 Results215

3.1 Taylor Diagrams

Taylor diagrams (Taylor, 2001) based on different spatial and temporal aggregations of satellite and model chlorophyll concen-

trations reveal different model bias patterns at different scales of averaging (Figure 2). These diagrams are polar representations

of pairwise statistics between Chlsat, Chlmod, and ChlRrs with the correlation coefficient as the angle and the standard devia-

tion (SD) of Chlmod or ChlRrs normalized to Chlsat as the radius. Each individual datapoint represents the SD and correlation220

for a specific Longhurst province, different colors denote different basins and different marker shapes denote different biomes.

Figure 2, panels A–B shows the resulting diagram based on daily match-ups for individual grid cells in the model versus satel-

lite data re-projected to the model grid. Each symbol shows the point-by-point statistics within a Longhurst province. We find

the correlation to generally be quite low (R=0–0.5) for all Longhurst provinces, and model SD to be 0.5 to 1.8 times Chlsat.

This skill metric could be highly affected by small mismatches and lags in time and space between the model and satellite data.225

We utilize the assumption that a given Longhurst province is controlled by a specific combination of physical, chemical, and

biological process by averaging ChlRrs, Chlsat, Chlsat over all grid cells in each province for each day and present the result-

ing dataset as Taylor diagram as seen in Figure 2, panels C–D. Some Longhurst provinces show a better correlation (R>0.8),

whereas others have a negative correlation between satellite derived Chl and model output. Model SD scaled to satellite data

also show more variability between provinces compared with individual grid cells. While aggregating the data over Longhurst230

provinces dampens random spatial errors, temporal fluctuations at the daily scale are still present. In Figure 2, panels E–F,

we show a Taylor diagram using monthly time series instead of the daily time series used for Figure 2, panels C–D and find

a much clearer separation between the Longhurst provinces. Some provinces are highly correlated, while others are showing

negative correlations. The latter patterns could be explained by the more aggregated data sets having less random noise, which

let systematic mismatches to be more visible and detected by the Taylor diagram. We find that Chlmod generally have a slightly235

more pronounced spread, and hence more variability in the misfit than ChlRrs.

[Figure 2 about here.]

3.2 Global Distributions

Global distributions of Chlobs, Chlsat, Chlmod, and ChlRrs show that distributions of satellite derived Chl and in situ observa-

tions are very similar, but Darwin-CBIOMES-0-based Chl show a systematic bias (Figure 3). Histograms of Chlobs and Chlsat240

are shown in Figure 3, panels A and B. Only data pairs where both Chlobs and Chlsat have valid values are used (35,174 match-

ups out of 80,524 observations). We find the in situ and satellite datasets to have similar distributions without any significant

biases in Chlsat. Note that some of the Chl algorithms contributing to the final Chlsat product would have been tuned using

a small subset of the in situ database, and corresponding in situ or satellite-derived Rrs (other than the OC-CCI products).

Similarly, the algorithm used to provide ChlRrs from the Darwin-CBIOMES-0 output (O’Reilly et al., 1998) would have used245
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a subset of the in situ dataset along with measured Rrs values to calibrate the algorithm. But none of the observations in the in

situ datasets have been used to tune either the OC-CCI products or the Darwin-CBIOMES-0 outputs.

Whereas Chlobs closely follows a log-normal distribution, Chlsat shows some divergence from the expected distribution. The

pronounced secondary peak at about 5 mg m−3 is related to coastal provinces and the broader peak at 0.5 mg m−3 represent

values from the subtropical gyres. In Figure 3B, Chlsat has thinner tails than Chlobs and the distribution is more centered250

around the median. This pattern is consistent with our expectations since Chlsat has a coarser resolution (4 km) than Chlobs

(the volume of each sample). One can expect a spatially-aggregated measurement to have less extreme values. Panels C and D

in Figure 3 are analogous to panels A and B, but with Chlmod and ChlRrs included. Here, collocation between all four sources

is required, which results in 20,935 match-ups. The differences in the distributions of Chlobs and Chlsat in Figure 3C and

D compared with panels A and B occurs from the shorter time span of the Darwin-CBIOMES-0 configuration (1998-2006)255

compared with the OC-CCI time domain (1998-2020) and from the masking out of near-coastal locations. The model grid also

has a coarser resolution (≈ 1◦) than the satellite product. The 4-way match-up (Figure 3C and D) allows us to compare the

different data sources in a reasonably objective way considering both seasonal variability and data density. We find the global

distributions of Chlmod and ChlRrs to be nearly identical to each other, but significantly different from both Chlobs and Chlsat.

It is clear that Darwin-CBIOMES-0 systematically generates lower Chl concentrations than either the satellite-derived product260

or in situ observations. It is somewhat non-intuitive that the model has similar or longer tails than Chlobs or Chlsat, considering

the model’s coarser spatial resolution and the earlier comparison between satellite and in-situ Chl. EMDs calculated for Chlobs

vs Chlsat, ChlRrs, and Chlmod, respectively, (Table 1) confirms these findings with much larger (and similar) distances for

ChlRrs and Chlmod than Chlsat. These dissimilar EMDs are the combined result of differences in medians, SD, and skewness

between the model and observations.265

[Figure 3 about here.]

While the distributions of Chlmod and ChlRrs are close to identical, there is much more variability between the two properties

when compared on a point-by-point basis. Figure 4, panel A, shows a 2D histogram of Chlmod and ChlRrs sampled from the

model at the same time and grid cell. While most values fall close to the 1–1, there is a large spread. The 95% confidence

interval of the residual is about two orders of magnitude. These results show the importance of diagnosing the model using a270

metric that’s comparable to Chlsat. Any divergence from the 1–1 line in Figure 4, panel A could incorrectly be interpreted as

model misfit.

[Figure 4 about here.]

3.3 Distributions in Different Biomes

As the global distributions show only general biases between Darwin-CBIOMES-0, in situ and satellite-derived Chl, we divide275

the data into biomes based on Longhurst (2007) to better understand the misfits. Conclusions about model performance will

be different if the shift in the probability distributions is caused by errors which are global, or limited to specific regions of
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the ocean. First we compare EMDs calculated using ChlRrs and Chlmod for each month and province, as shown in Figure 4,

panel B. We find that Chl distributions from Longhurst provinces in the Westerlies biome are similar, but that provinces in

the Trades biome and, particularly, the Polar biome show larger EMDs between Chlsat and Chlmod than Chlsat and ChlRrs.280

Provinces in coastal biome is omitted here and in the further analysis since Darwin-CBIOMES-0 is not developed to resolve

coastal processes.

Figure 5 shows cumulative distributions, analogous to Figure 3D, for the Polar (3,741 matches), Westerlies (1,240 matches),

Trades (3,328 matches), and Coastal (12,418 matches) biomes. Mismatches are different for the different biomes, with Chlsat

generally following Chlobs more closely than the model does. The general trend of Chlsat having less variance than Chlobs285

and both Chlmod and ChlRrs having a negative bias is also evident. Chlmod has a much wider distribution in the Polar biome

than Chlsat or ChlRrs, especially for low concentrations. All distributions show close similarities in the Westerlies biome,

suggesting that the model has a relatively high skill in simulating phytoplankton biomass (for which Chl act as a proxy) in this

biome. The largest mismatch between the model and observations is in the Coastal biome, something which is to be expected

considering the spatial resolution of the model. This biome is also where Chlsat shows the largest inconsistencies compared290

with Chlobs. Coastal areas tend to have more complex case II waters where Chl algorithms are more affected by Colored

Dissolved Organic Matter (CDOM) or Total Suspended Matter (TSM) (Morel and Prieur, 1977; Lee and Hu, 2006).

[Figure 5 about here.]

[Table 1 about here.]

3.4 Individual Longhurst provinces295

We extend the study to individual Longhurst provinces to further explore differences between the model and satellte-derived

observations. The limited geographical and seasonal coverage of in situ data limits our ability to include Chlobs, we therefore

focus on comparing Chlsat with Chlmod and ChlRrs in the following section while conceding the limitations of the approach:

Chlsat, for example, probably underestimates the variance in Chlobs, but is at the same time more representative of the reduced

variance within large model grids. We exclude coastal provinces from the analyses since the model is not expected to have as300

much skill near land or in shallow waters due to the relatively coarse vertical and horizontal grid resolution earlier discussed,

and the challenges with satellite retrieval of Chl in coastal waters. We still find interesting patterns when comparing Chl

distributions in individual open-ocean Longhurst provinces.

[Figure 6 about here.]

Individual histograms for Longhurst provinces in the Polar biome often show stark differences between Darwin-CBIOMES-305

0 and OCCCI, as seen in Figure 6. The very low Chl concentrations seen in the Polar biome (Figure 5) for the Chlmod

distribution primarily occurs in the Boreal Polar, Arctic, and Subarctic sections of the Atlantic Ocean (Figure 6). The Arctic

section of the Pacific Ocean shows a small bias towards low values as well, but much less extreme. Chl concentrations are biased

low in Darwin-CBIOMES-0 close to the Antarctic continent (Austral Polar province), but biased high towards the Antarctic
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Circumpolar Current (Antarctic province). This pattern could suggest a meridional misalignment of physical processes that310

drive Chl variability in the Antarctic Ocean. Since the comparisons are carried out only for match-up data where satellite and

model data are available, the differences observed here cannot be explained as a consequence of poor sampling of the Polar

biome by satellites due to adverse viewing conditions, especially in winter (Jönsson et al., 2020b).

[Figure 7 about here.]

Whereas Figure 5 shows a strong correspondence between Chlsat and ChlRrs in the Westerlies biome, we find a more315

complicated picture in the individual Longhurst provinces within this biome (Figure 7). In most provinces, Chlsat and ChlRrs

have similar medians, but the tails are often significantly different. Chl concentrations in the Darwin-CBIOMES-0 configuration

are biased to high values in most provinces in the Pacific Ocean and the Southern Ocean. ChlRrs also tends to have a bi-modal

distribution in contrast to the expected log-normal distribution of Chlsat. There is also a clear negative bias in ChlRrs in the

Mediterranean Sea, which may indicate that the model resolution is too coarse to resolve all the hydrodynamics in this small,320

but very complex sea.

[Figure 8 about here.]

Longhurst provinces in the Trades biome generally show similar distribution widths and shapes of Chlsat and ChlRrs aside

from biases in the medians (Figure 8). The main outliers are the North Tropical Gyre in the Atlantic Ocean and the Archipelagic

Deep Basin in the Pacific Ocean, where ChlRrs has a rectangular or weakly bi-modal distribution. The Western Warm Pool and325

South Gyre in the Pacific Ocean also stand out as the only two provinces where Chlsat has a bi-modal distribution and ChlRrs

does not.

3.5 Monthly Distributions

By extending the analysis to monthly distributions for each Longhurst province, we can identify temporal differences between

OC-CCI and Darwin-CBIOMES-0. The large number of resulting probability distributions is challenging to present, and we330

only show a few interesting examples here. Figures for all provinces are provided with the associated datasets described in the

acknowledgements. Figure 9 shows graphical representations of probability distributions for some representative provinces in

the North Atlantic Ocean, generated by aggregating daily Chlsat, ChlRrs, and Chlmod by climatological month. The largest

intra-annual differences are found in provinces in the Polar biome, as exemplified by the Atlantic Arctic province (Figure 9,

panel A), where Chlmod shows much lower concentrations and a much more variability than either Chlsat or ChlRrs during335

the winter and spring months. All three data products have similar distributions and progressively smaller variability during

the summer. But Chlsat shows both a significant drop in concentrations and an increase in variability in November, not seen in

either ChlRrs or Chlmod.

[Figure 9 about here.]

The Gulf Stream province, our chosen example for the Westerlies biome, has a distinct seasonal progression with elevated340

Chl concentrations during the spring bloom and low values in the summer (Figure 9, panel B). Both ChlRrs and Chmod
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generally compare well with ChlRrs, but with a negative bias during summer. The model products also tend to have a more

stretched out distribution for low values. The good agreement in the seasonal cycle somewhat hides misfits between the model

and satellite observations for individual months.

The two provinces representing the Trades biome (the Western Tropical Atlantic province and the Caribbean province) both345

show a weak seasonal cycle, but very different misfits. The Western Tropical Atlantic province (Figure 9 panel C) has a notable

similarity in medians between the different data sources, with the exception that the 99% percentile for Chlsat is much higher

than ChlRrs or Chlmod during spring and summer. This pattern could be interpreted such that processes generating rare bloom

events during that time of the year are missing in the Darwin-CBIOMES-0 configuration. The probability distributions of

Chlsat in the Caribbean province (Figure 9, panel D) are notably different from ChlRrs and Chlmod, with both much higher350

medians and higher 99% percentiles. This pattern is not unique to the province and can be seen for example in the North

Atlantic Tropical Gyre province as well (data not shown). The asymmetric shape of the probability distributions of Chlsat with

a high positive skewness is surprising and deserves closer examination in a future study.

3.6
:::::
Global

::::
and

::::::::
seasonal

:::::::
patterns

::
of

:
Earth Mover’s Distance

::::::::
Distances

The calculated EMD distances between Chlsat and Chlmod or Chlmod :::Rrs, respectively, for all province-month combinations355

(partly presented in Figure 9) are shown as maps in Figure 10 for two selected months – January and July – using color intensity

to depict the EMD between the two probability density functions for that province-month pair. Here, EMDs provide aggregated

information about how different the respective distributions are including
::
or

:::::::
example mean biases, SD, and skewness . Focusing

::
are

::
in
:::
the

:::::::::
respective

:::::::::::
distributions.

:::
The

::::::
global

::::::
patterns

::
in

:::::
EMD

:::::
when

:::::::::
comparing

:::::
Chlsat::::

with
:::::::
Chlmod::

or
::::::
ChlRrs:::

are
::::
quite

:::::::
similar,

::::
while

:::
the

::::::::::
magnitudes

:::
are

:::::::
slightly

:::::::
different.

::::
This

::::::
pattern

::
is
:::::
most

::::::::::
pronounced

::
in

::::
polar

:::::::
regions.

:
360

:::
The

::::::
ability

::
of

::::::
EMDs

::
to

:::::::
provide

:::::::::
aggregated

::::::::::
information

:::::
about

::::::::::
differences

:::::::
between

:::::::::::
distributions

:::
has

:::
the

:::::::::::
consequence

::::
that

::::
high

:::::
EMDs

::::
can

:::::
occur

:::
for

:::::::
different

:::::::
reason.

:::
To

:::::::::
investigate

::::
this,

:::
we

:::::
focus our attention on the six province-month pairs with

highest EMD , we
:::
and

:
compare the two Chl distributions as overlaid probability histograms in

:
(blue and green (

:::
lines

:::
in

Figure 11). In each of the panels in Figure 11, the two data sources have visibly different Chl distributions, and it is clear

that a large amount of probability mass needs to “move" for the two data sources to match. Out of the six, the Atlantic Arctic365

Province in March is of particular interest with the two distributions of Chl having similar means values, while the EMD is

very large. This discrepancy is due to a considerable difference in the second or higher moments between the two distributions

– the green distribution (Chlmod) has a much higher spread than the blue (Chlsat). This demonstrates how EMD can be an

effective scalar measure for summarizing the full distributional difference between two data sources.

[Figure 10 about here.]370

[Figure 11 about here.]
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4 Discussion

We combined satellite-derived Chl from OC-CCI in combination with in situ observations and model output from the Darwin-

CBIOMES-0 configuration to investigate three new approaches for comparing biogeochemical models and observations: The

use of Chl proxies analogous to satellite-derived properties instead of directly diagnosed Chl in the model; the utility of Earth375

Movers Distances (EMDs) as a metric for quantifying differences between distributions; and probability distributions instead

of point-by-point comparisons. The first approach has already been presented and evaluated in Dutkiewicz et al. (2018, 2019)

as a general tool, and we will focus on its use in the context of comparing distributions.

The main differences between ChlRrs and Chlmod occur on regional scales (Figures 3–8), particularly in the Polar and Trades

biomes, and these differences generally even out when aggregated over full biomes or globally (Figures 3–5, and Table 1). The380

differences seen in the Polar biome puts earlier results by Jönsson et al. (2015) – that ecosystem models underestimates

winter phytoplankton biomass in the Southern Ocean – in a new light. It is possible that the use of ChlRrs and Chlsat as a

proxy for phytoplankton biomass is biased in these regions by an inability to detect the low concentrations predicted by the

models, something that must be further explored with in situ observations. While this issue might seem irrelevant due to the

low Chl concentrations, it has large potential effects on the skill in simulating the seasonal progression of Polar ecosystems.385

Order of magnitude errors in regions with seasonally low Chl concentrations and large annual variability can be critical when

the growth is exponential, potentially requiring unrealistically high growth rates or leading to delays in the spring bloom.

::::::::::::::::::::
(Hague and Vichi, 2018).

:

ChlRrs is,
::::::::
however, not necessary a more "truthful" diagnostic than Chlmod, only closer to Chlsat, and quite possibly inherits

biases from satellite-derived proxies. Another motivation to use ChlRrs as the property of comparison is that Chlmod is poorly390

defined since the conversion from a depth resolved field to a 2D concentration might be performed differently between different

models.
:::
Our

::::::
results

::::
show

::::
that

::::::::::
comparisons

:::::::
between

:::::::
Chlmod :::

and
::::::
Chlsat :::

are
:::::::
generally

::::::::
sufficient

::
if

::::::
ChlRrs::::

isn’t
::::::::
available

::::::
(which

:
is
::::::::
normally

:::
the

::::
case)

::
as
::::
long

:::
as

::::
these

::::::
caveats

:::
are

::::::::::
considered.

::::::
Figures

:::
6-9

::::
can

::::::
provide

::::::::
guidance

::
to

:::::
which

::::::
regions

::::::
where

:::::::
cautions

:::::
should

:::
be

:::::::
applied.

EMDs provide a systematic and quantitative way to assess how the distribution of Chl differs between OC-CCI and the395

Darwin-CBIOMES-0 configuration. One major application is the ability to compare the likeliness between different distribu-

tions in an integrated fashion, as the maps presented in Figure 10. We find that the biggest differences between ChlRrs and

Chlmod occur in the Polar biome during winter. This pattern is supported by the scatter of EMDs shown in Figure 4, panel B,

where provinces in the Polar and Trades biomes tend to have larger EMDs for Chlmod than ChlRrs when compared to Chlsat.

When comparing probability distributions between the Darwin-CBIOMES-0 configuration, OC–CCI satellite-derived Chl400

product, and in situ observations of Chl, we find many similarities, but also important differences. Comparisons between Chlsat

and Chlobs (Figures 3 and 5) shows an interesting pattern where OC–CCI diverges from the expected log-normal distribution

with a smaller variance than the set of observations. This difference could be explained by OC–CCI being based on satellite

products with overpasses close to noon, limiting the ability to resolve the diurnal cycle, and 4 km-sized pixels that aggregates

variability on smaller scales. Chlobs data, on the other hand, are sampled at any time over the day and generally represent405
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a water volume of less than 1 m3. A small water volume has a higher chance to have outliers due to patchiness, while a

distribution of satellite-derived Chl observations is more clustered around the population mean from averaging many small

patches over a larger area. This difference is expected by the law of large numbers. It should also be noted that some of the

mismatches between Darwin-CBIOMES-0 and observations might be partly explained by the unevenness in temporal and

spatial coverage of observations. By only including satellite derived and modeled Chl concentrations, we are able to minimize410

potential problems with temporal and spatial representativeness of in situ observations since Chlsat is interpolated to the grid

of Darwin-CBIOMES-0 and only pixels with valid data in both data sources are used.

While the distributions of Chl in a direct match-up between Chlobs and Chlsat vs ChlRrs and Chlmod suggests that the model

underestimates Chl significantly, regional comparisons provides a more nuanced picture. Data from the Westerlies biome have

for example almost identical distributions. The largest discrepancies are found in coastal areas and the provinces in the Polar415

biome, both of which are notoriously challenging to model due to complex hydrology and large seasonal variability in forcings

(light, freshwater run-off from land, nutrient input, etc.). Provinces in the Trades biome generally show less seasonal average

variability, but larger differences in the high and low extreme values. These patterns are evident both in the EMD maps seen in

Figure 10 and in the individual histograms seen in Figures 6–8.
::::::
Eastern

:::::::::
Boundary

::::::::
Upwelling

::::::::
Systems

::::
show

:::::
large

:::::::::::
discrepancies

:::::::
between

::::::
ChlRrs:::

and
::::::
Chlsat.::::

This
::
is

::
to

::
be

::::::::
expected

::::
since

:::::
these

::::
areas

:::
are

:::::::::::
characterized

:::
by

:::::::
complex

::::::::::
interactions

:::::::
between

:::::::
physical420

:::
and

::::::::
biological

:::::::::
processes

::::
over

::::
short

::::::
spatial

::::::
scales.

:::::
Other

::::::
studies

:::::
have

:::
also

::::::
found

:::
that

:::
the

::::::::::
dominating

:::::::::
timescales

::
of

:::::::::
variability

::
in

::::
these

:::::::
regions

::
are

::::
very

:::::
short,

::::::
which

::::
most

::::::
global

:::::::::::::
biogeochemical

::::::
models

:::
are

:::
not

:::::::::
developed

::
to

::::::
resolve

::::::::::::::::::
(Jönsson et al., 2023).

:

Model Chl had long tails with low values in the provinces in the Polar biome, that might be connected to the Darwin-

CBIOMES-0 configuration overestimating respiration during winter or possibly exaggerating mixing (cf Jönsson et al., 2015).

The tendency of bimodality in PDFs from data generated by Darwin-CBIOMES-0 in the provinces in the Polar biome suggested425

that the model shows different distinct states in the phytoplankton community. It is not clear if this pattern is due to the

formulation and/or parameterization of the ecosystem model, or due to problems with the high-latitude retrieval of Chl by

Polar orbiting satellites at the beginning and end of the growing season (Jönsson et al., 2020a). In any case, our combined use

of Longhurst provinces, distributions, and EMD has allowed us to pose differences between models and observations in a way

which can be directly analyzed and tested.430

The tendency for bi-modal distributions in PDFs generated by the Darwin-CBIOMES-0 configuration also occurs in Longhurst

provinces in the Westerlies biome. Here, the differences between satellite-derived and modeled Chl is less clear, with some

provinces having extremely similar distributional shapes and others mainly having different variances. The province with

biggest differences is the Mediterranean Sea, a result that is not surprising considering the complex hydrology and distinct

ecosystem dynamics there. Longhurst provinces in the Trades biome shows generally good fits between the model and OC–435

CCI. Provinces in this biome showed a general pattern where model and satellite-derived Chl distributions had similar shapes,

but with an offset relative to each other. The biggest differences in the Trades biome are found in the Caribbean and the adja-

cent North Tropical Gyre. Both provinces shows significantly lower Chl concentrations in Darwin-CBIOMES-0 and tends to

be skewed towards low values with longer tails.
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Dividing the different datasets into monthly distributions allowed us to further diagnose possible differences between OC–440

CCI and the Darwin-CBIOMES-0 configuration. We found that provinces in the Polar biome tended to show the largest dis-

crepancies during winter and spring, a pattern consistent with results by Jönsson et al. (2015). It is also notable that these

provinces and seasons were where and when simulated Chl in Darwin-CBIOMES-0 differs the most from Rrs-derived Chl in

the model. These misfits can be due to a number of factors such as inadequate model inputs, forcings, parameterizations, nu-

merical schemes, problems arising from bio-optical constraints due to extreme light conditions, unresolved physical processes,445

or a combination of these. Two specific causes suggested by Jönsson et al. (2015) are a meridional misalignment of the physical

processes that drive Chl variability in the Antarctic Ocean, or a lack of small-scale variability in the mixed layer dynamics. The

latter explanation is supported by comparing distributions of mixed layer depths from Argo floats and two CMIP5-class climate

models with a 1◦ spatial resolution, showing that shallow mixed layers are observed even during the winter in the Southern

Ocean. These short-lived events could generate small phytoplankton blooms that keep the total biomass from decreasing to the450

low concentrations seen in the models (Jönsson et al., 2015). The difference in Polar phytoplankton biomass between models

and satellite-derived products is an area in need of more research.
:

:::
We

::::::
believe

::::
that

:::
the

::::
skill

:::
of

:::::::::::::
biogeochemical

:::::::
models

::
to

::::::::
generate

:::::::
realistic

:::::::::::
distributions

::
of

:::::::::
properties

:::
are

:::
as,

::
if

:::
not

::::::
more,

::::::::
important

::::
than

:::
the

:::::
skill

::
to

:::::::
predict

:
a
::::::::

property
::
at

::
a
:::::::
specific

::::
time

:::
an

:::::::
location

:::
or

:::
the

:::::::::
long-term

::::::::
averages.

:::::::
Recent

:::::
focus

:::
on

:::::::
regional

:::
heat

::::::
waves

::::::::::::::::
(Oliver et al., 2021)

:::
and

:::::
other

::::::
extreme

::::::
events

::::
have

:::::::::
highlighted

::::
that

:::
rare

:::::::
physical

:::::::::
conditions

:::
and

::::::::::
consequent455

::::::::
biological

::::::::
responses

::::
can

::::
have

::
an

::::::::::
outstanding

::::::::
influence

:::
on

:::::
ocean

::::::
health.

::
It

:::
has

::::
also

::::
been

:::::::::
suggested

:::
that

:::
the

:::::::::
frequency

::
of

::::
rare

:::::
events

:::::
might

::
be

:::
as

::::::::
important

::
as

::::::::
long-term

::::::::
averages

::
to

:::::::::
understand

:::::::
changes

::
in

::::::
marine

:::::::::
ecosystems

:::::::::::::::::::::::::
(Jönsson and Salisbury, 2016)

.

5 Conclusions

In this study, we have shown that using probability distributions of Chl provides a comprehensive approach to compare biogeo-460

chemical models with in situ data and satellite-derived fields. Direct point-by-point comparisons can be prone to overestimating

errors due to small temporal lags or displacements in space, while the ability for a model to generate a probability distribu-

tion function that matches well with the observed data suggests that physical and biological processes are resolved reasonably

well. We also found that Longhurst provinces act as a good classification system to use when generating the probability dis-

tributions, since they are defined to minimize within-region variability by separating areas that are controlled by different465

physico-chemical processes from one another. Finally, EMDs provided a powerful approach to quantify the difference between

distributions in an objective way. The combined use of PDFs, Longhurst provinces, and EMDs allowed us to identify Longhurst

provinces such as the Polar oceans and tropical North Atlantic Ocean which need specific attention, and areas where the model

already shows a lot of skill. It is clear that model versus data comparisons and skill assessments need to be conducted in such

a way that one can start to address the specific processes and conditions that lead to discrepancies.470
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B the Westerlies biome’s Gulf Stream province, panel C the Trades biome’s Western Tropical Atlantic province,
and panel D the Trades biome’s Caribbean province. Note that data are not available for January and December705
due to ice cover and adverse satellite viewing conditions in panel A. Red values are EMDs between the Chlsat
and ChlRrs distributions, green values EMDs between Chlsat and Chlmod distributions. . . . . . . . . . . . . . 32

10 Map of Earth Mover Distances between Chlsat and Chlmod (panels A & B) or Chlmod (panels A & B) for
different Longhurst provinces in January (panels A & C) or July (panels B & D). Dark grey color represents
areas where data are not available. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33710

11 Distributions of satellite derived (Chlsat, blue), and modeled Chl (Chlmod, green) in the top six province-month
pairs in terms of Earth Mover Distances (EMD). The vertical dashed lines mark the mean of each distribution.
There appears to be a clear distributional difference between the two data sources in each case – a large amount
of probability mass would have to be transported from one distribution to another to make the two equivalent.
Also notable is that EMD can be large while the mean difference is small – this highlights how EMD is a richer715
measure of distributional difference. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34
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Figure 1. Biogeochemical provinces according to Longhurst (2007). Purple shades denote the Polar biome, red-yellow the Westerlies biome,
blue the Trades biome, and green the Coastal biome. Regions analyzed in detail in this paper are identified by the codes ARCT (Atlantic
Arctic Province), GFST (Gulf Stream Province), WTRA (Western Tropical Atlantic Province), and CARB (Caribbean Province).
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Figure 2. Taylor diagrams based on comparisons between satellite-derived OC-CCI Chl (Chlsat) and Chl concentrations from the the Darwin-
CBIOMES-0 configuration (ChlRrs). Each point represents a Longhurst province. Model Standard Deviation is normalized to satellite data
(thick dashed line). Different colors denote different basins: cyan = Arctic Ocean, red = Atlantic Ocean, blue = Indian Ocean, green = Pacific
Ocean, black = Southern Ocean. Different marker shapes denote different biomes: triangle = Coastal, plus = Polar, circle = Trades, square
= Westerlies. Panel A: Point-by-point comparison between Chlsat and Chlmod where daily match-ups and each grid cell in the model and
satellite products are used. Panel B: the same as A but for Chlsat and ChlRrs. Panel C: Daily match-ups between Chlsat and Chlmod, but all
data falling within a Longhurst region is averaged to one value for each day for each Longhurst region. Panel D: the same as C but for Chlsat
and ChlRrs. Panel E: The daily time series in panel B are further aggregated to monthly averages for matchups between between Chlsat and
Chlmod. Panel F: the same as E but for Chlsat and ChlRrs.
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Figure 3. Distributions of in situ (Chlobs), satellite derived (Chlsat), modeled (Chlmod) chlorophyll (Chl), and Chl derived from simulated
Remote Sensing Reflectances in the Darwin-CBIOMES-0 configuration (ChlRrs). All datasets are matched in time and location and only
complete match-ups are used. Shadings show the 1%–99%, 10%-90%, and ±1σ percentiles in the respective distributions. Panel A shows
the respective histograms of Chlobs (orange line) and Chlsat (blue line). Panel B shows the corresponding cumulative distribution. Panels
C and D are analogous to A-B, but with Chlmod (green lines) and ChlRrs (red lines). Note that the datasets for Chlobs and Chlsat differ
between panels A-B and C-D due to the smaller coverage in temporal range of Darwin-CBIOMES-0.
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Figure 4. A) Point-by-point comparisons of satellite derived (Chlsat), modeled (Chlmod) chlorophyll. Colors denote number of data points
in that bin. B) Earth Mover Distances for each province and month calculated using Chlsat and either Chlmod or Chl derived from simulated
Remote Sensing Reflectances in the Darwin-CBIOMES-0 configuration (ChlRrs). Purple denotes the Polar biome, red the Westerlies biome,
and blue the Trades biome. The Coastal biome is omitted as to which described in the main text.
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Figure 5. Distributions of in situ (Chlobs), satellite derived (Chlsat), modeled (Chlmod) chlorophyll (Chl), and Chl derived from simulated
Remote Sensing Reflectances in the Darwin-CBIOMES-0 configuration (ChlRrs) for each of Longhurst’s biomes. All datasets are matched
by time and location and only match-ups where data from all four sources are present are used. Shadings show the 1%–99%, 10%-90%, and
±1σ percentiles in the respective distributions. Panel A shows cumulative distributions for match-ups located in provinces in the Polar biome
as defined by Longhurst (2007). Panel B shows analogous distributions for data in the Westerlies biome, panel C data for the Trades biome,
and panel D data for provinces in the Coastal biome.
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Figure 6. Distribution of satellite derived (Chlsat, blue) and modeled (ChlRrs, red; Chlmod, green) Chlorophyll for different Longhurst
provinces in the Polar biome. Red values are Earth Mover’s Distances (EMDs) between the Chlsat and ChlRrs distributions, green values
EMDs between Chlsat and Chlmod distributions.
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Figure 7. Distribution of satellite derived (Chlsat, blue) and modeled (ChlRrs, red; Chlmod, green) Chlorophyll for different Longhurst
provinces in the westerlies biome. The East Africa Coastal Province is included as it contains the Aghulas current. Red values are Earth
Mover’s Distances (EMDs) between the Chlsat and ChlRrs distributions, green values EMDs between Chlsat and Chlmod distributions.
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Figure 8. Distribution of satellite derived (Chlsat, blue) and modeled (ChlRrs, red; Chlmod, green) Chlorophyll for different Longhurst
provinces in the trade winds biome. Red values are Earth Mover’s Distances (EMDs) between the Chlsat and ChlRrs distributions, green
values EMDs between Chlsat and Chlmod distributions.
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Figure 9. Monthly distributions of satellite derived (Chlsat, blue), derived from model Rrs (ChlRrs, red), and simulated Chl (Chlmod,
green). Shadings show the 1%–99%, 10%-90%, and ±1σ percentiles in respective distributions. Black vertical lines denote the medians.
Panel A represent the Polar biome’s Atlantic Subarctic province, panel B the Westerlies biome’s Gulf Stream province, panel C the Trades
biome’s Western Tropical Atlantic province, and panel D the Trades biome’s Caribbean province. Note that data are not available for January
and December due to ice cover and adverse satellite viewing conditions in panel A. Red values are EMDs between the Chlsat and ChlRrs

distributions, green values EMDs between Chlsat and Chlmod distributions.
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Figure 10. Map of Earth Mover Distances between Chlsat and Chlmod (panels A & B) or Chlmod (panels A & B) for different Longhurst
provinces in January (panels A & C) or July (panels B & D). Dark grey color represents areas where data are not available.
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Figure 11. Distributions of satellite derived (Chlsat, blue), and modeled Chl (Chlmod, green) in the top six province-month pairs in terms
of Earth Mover Distances (EMD). The vertical dashed lines mark the mean of each distribution. There appears to be a clear distributional
difference between the two data sources in each case – a large amount of probability mass would have to be transported from one distribution
to another to make the two equivalent. Also notable is that EMD can be large while the mean difference is small – this highlights how EMD
is a richer measure of distributional difference.
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Table 1. Earth Mover Distances comparing distributions of in situ (Chlobs), satellite derived (Chlsat), modeled (Chlmod) chlorophyll (Chl),
and Chl derived from simulated Remote Sensing Reflectances in the Darwin-CBIOMES-0 configuration (ChlRrs). See Figure 1 for the extent
of each biome.

Domain Chlobs vs Chlsat Chlobs vs ChlRrs Chlobs vs Chlmod

Global 0.10 0.45 0.47
Polar 0.19 0.27 0.27

Westerlies 0.07 0.20 0.20
Trades 0.08 0.82 0.84
Coastal 0.35 0.57 0.58
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