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Abstract. Sea ice plays an important role in
::
is

::::::::
important

:::
for Earth’s energy budget by impacting

::
as

:
it
:::::::::
influences surface albedo

and air-sea fluxes in polar regions. On its margins, sea ice is heavily impacted by waves and we currently do not have routine

:::::
waves

::::::
heavily

::::::
impact

:::
sea

::::
ice.

::::::
Routine

::::
and

:::::
repeat

:
observations of waves in sea ice and lack

::
are

::::::::
currently

:::::::
lacking,

:::
and

::::::::
therefore

:
a
::::::::::::
comprehensive

:
understanding of how waves interact with sea ice and how they attenuate

:::
are

::::::::
attenuated

:::
by

:
it
::
is
::::::
elusive.

In this paper, we propose
::::::
develop

:
methods to separate the two-dimensional (2D) surface wave spectra from sea ice height5

observations along each
::::
made

::
by

:::
the

:
ICESat-2 track

::::
laser

::::::::
altimeter,

:
a
:::::::::::
polar-orbiting

:::::::
satellite. A combination of a linear inverse

method, called Generalized Fourier Transform (GFT), to estimate the wave spectra along each beam and a Metropolitan Hasting

:::::
(MH) algorithm to estimate the dominant wave’s incident angle was developed. It allows us to estimate the 2D wave signal

and its uncertainty from the high-density, unstructured ATL03 ICESat-2 photon retrievals. The GFT is applied to re-binned

photon retrials on 25 km segments for all six beams and outperforms a discrete Fourier transform in accuracy while having10

fewer constraints on the data structure.

The Metropolitan Hasting algorithm infers the
:::
MH

:::::::::
algorithm

:::::
infers wave direction from beam pairs every 25 km using

coherent crests of the most energetic waves. Both
:::::::::
Assuming

:
a
::::::::
dominant

:::::::
incident

::::::
angle,

::::
both

:
methods together allow a de-

composition into a 2D surface wave spectra with the advantage that the residual surface heights can potentially be attributed

to other sea ice properties. The described method can routinely decompose
::::::::
combined

::::::::
GFT-MH

:::::::
method

:::::
shows

:::::::
promise

:::
in15

:::::::
routinely

::::::::
isolating

:::::
waves

::::::::::
propagating

:::::::
through

:::
sea

:::
ice

::
in
:
ICESat-2 tracks and constrain wave attenuation in sea ice.

::::
data.

:::
We

::::::::::
demonstrate

::
its

::::::
ability

::
on

::
a
::
set

:::
of

:::::::
example

::::::::
ICESat-2

::::::
tracks,

:::::::::
suggesting

:
a
:::::::
detailed

::::::::::
comparison

::::::
against

::::::
in-situ

::::
data

:
is
:::::::::
necessary

::
to

:::::::::
understand

:::
the

::::::
quality

::
of

::::::::
retrieved

::::::
spectra.

:
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1 Introduction and Problem Description

Sea ice covers up to 9% of the world’s oceans, and plays an important role in the energy balance of Earth’s climate. Even20

though sea ice damps ocean surface waves (Squire, 2007), broad regions along the periphery of the sea-ice-covered ocean are

continually under the influence of surface waves (Rapley, 1984; Horvat et al., 2020; Thomson, 2022; Horvat, 2022). These

regions are collectively referred to as the Marginal Ice Zone (MIZ). In the MIZ, waves influence the
::
sea

:::::
ice’s thermodynamic

and dynamic properties of sea ice, and also
:::
and impact the coupled exchange between atmosphere and ocean. Currently

:
, we

do not have a reliable global observations of waves in sea ice, and hence are unable to sufficiently understand air-sea exchange25

and wave propagation in the MIZ. This paper describes how ICESat-2 altimeter observations can be used to record waves
::::
wave

spectra in the MIZ, and to infer additional sea ice properties to inform
:::
for

:::::::
building parametrizations of wave attenuation in sea

ice.

Models of wave propagation in sea ice typically evolve the ocean surface wave spectrum, S̃h(k) (meter2 k−1, k is the

wavenumber), which is attenuated when it comes into contact with sea ice. There has been significant debate over the functional30

form and dependencies of this attenuation (Squire, 2018; Thomson et al., 2021). Yet as it controls how deep waves reach into

sea ice, it is vital for modeling MIZ variability and coupled feedbacks in the polar seas.

Constraining ice-induced wave attenuation is challenging because wave observations in ice are difficult to make at scale.

A majority of observations of waves in ice are carried out using ships or arrays of floating buoys deployed by ships (or

by helicopters from ships, see, for example Thomson, 2022, and references therein). While such observations provide high35

temporal frequency observations of wave spectra, they only cover a limited geographic domain, and are limited by the sea ice

types and conditions at the original buoy locations. Recently satellite remote sensing technologies have shown promise for

describing wave spectra in sea ice regions. SAR imagery is capable of observing wave crests as they move into the MIZ, and

the two-dimensional wave spectrum can be constructed in good agreement with in-situ-observed spectra if the sea ice is not

rough (Stopa et al., 2018; Ardhuin et al., 2017). However, SAR alone cannot observe continuous spectra as they propagate into40

the sea ice.

The ICESat-2 (IS2) altimeter has the potential for greatly increasing the
::
to

::::::
greatly

:::::::
increase

:::
the

:::::::
quantity

:::
of available obser-

vations of wave-ice interactions, either alone , or in combination with other remote sensing instruments (Collard et al., 2022).

ICESat-2 carries a single measurement tool, ATLAS, a six-beam laser oriented in three weak/strong pairs (Fig. 1a, colored

lines) offset at a near-uniform three kilometers on the ground, with a weak-strong beam lateral offset of about 90m meters.45

ATLAS measures the return time of individual photons to infer the height of the ice/ocean surface. Typical along-track photon

spacings can be centimeters or smaller, and so IS-2 is capable of directly sampling ocean surface waves, particularly over

reflective sea ice.

Recent studies have examined waves in sea ice using IS-2, basing their results on a higher-order sea ice height product

derived from photon retrievals (known as ATL07). Horvat et al. (2020) identified the capability of IS-2 to retrieve ocean waves50

by examining a storm in the Barents Sea in 2019 , and used a simple threshold to establish where and when waves were

observed in the sea ice to produce global maps of the MIZ. In Collard et al. (2022), IS-2 retrievals during this Barents Sea

2
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Figure 1. Illustration of ICESat-2 (IS2) beams intersecting the Marginal Ice Zone (MIZ) under the presence of waves. a)
::::::

ICESat-2
::::
data

:::
and

::
the

::::
CDR

:::
Sea

:::
Ice

:::::::::::
Concentration

::
for

::::
track

::::::::
05160312

::
on

::::
May

:::
2nd

::::
2019.

:
The three beam pairs are shown is

::
as red/orange

::::::::
(gt1l/gt1r), dark/light

green
:::::::
(gt2l/gt2r), or dark/light blue

::::::::
(gt3l/gt3r) lines. The

::::
black

::::
dots

::::
show

:::
the

::::::
segment

::::::::
positions

:::
12.5

:::
km

::::
apart

::::::
(define

::
in

::::::
section

::::
2.3).

::
b)

:::::::
Schematic

::
of
:::

the
:::
IS2

:::::
beams

:::
that

:::::::
observe

::
sea

:::
ice

:::
and

::::::
surface

:::::
waves

:
in
:::

the
::::
MIZ.

::::
The vertical black line is the nominal IS2 reference ground

track. The incident waves come from the top-right along the black arrow with wave crests (solid) and valleys (dashed). b
:
c) Details view of

an ideal monochromatic wave observation by IS2 in sea ice. The IS2 beam pair (light/dark green lines) observes an incident wave (along the
black arrow) of wavelength λ with an angle θ as λ′. With the beam-pair distance d,

:
one can calculate θ from the phase lag of the incident

wave crests
:::
(sec.

::::
3.1).

:
The along-/across-track coordinate system is referenced to the nominal track, while each data point is the weighted

mean
::
of a 20-meter stencil (see text

::
sec.

:::
2.1). f:fig02_geometry

storm were shown to compare well with model and SAR-based observation data. Brouwer et al. (2021) selected a series of

Southern Hemisphere IS-2 retrievals, analyzing wave attenuation using direct spectral transform methods. Both found that

areas affected by waves were common in both hemispheres, with repeated measurements of waves hundreds of kilometers into55

the sea ice zone, particularly in the Southern Hemisphere.

Three challenges limit the direct comparison of IS-2 derived
::::::::::
IS-2-derived wave spectra to observations and models. First,

waves propagate at an angle θ relative to the along-track direction of the satellite (Fig. 1b), and observable wave lengths λ are

aliased by an unknown factor cos−1 θ (Rapley, 1984; Horvat et al., 2016; Yu et al., 2021)
::::::::
cos(θ)

−1
:::::::::::::::::::::::::::::::::::::::::
(Rapley, 1984; Horvat et al., 2019; Yu et al., 2021)

. Second, observed surface height variability is a convolution of the dynamic ocean topography, sea ice topography, surface60

waves, and noise. The surface wave signal can than only
:::
then

:::
be successfully reconstructed if these other signals are on a

different scale, like the
:::::::
dynamic ocean topography, or not periodic, like the sea ice topography and noise. Third, the fractured

nature of sea ice,
::
the

:
influence of clouds, and changing surface albedo cause gaps or irregularities in IS-2 photon retrieval

3



rates, creating an
:
a
:
high-density but irregular observation. The method must be applicable to irregular data without generating

spurious sources of variance, i.e.
:
, artificial wave energy. All of the

:::
The above factors complicate direct assessments of spectra65

and their attenuation in sea ice.

Here we develop
::::::::::
demonstrate

:
a
::::::
method

:::
for

:::::::::
producing angle-corrected, two-dimensional (2D) wave spectra in sea ice , using

photon height data from ICESat-2. We partition surface height variability into waves and sea-ice or noise-related components,

which
:
.
::
It permits a direct assessment of wave energy attenuation and sea-ice properties for evaluation of

::
the

:::::
most

:::::::::
significant

::::
wave

::::::
energy

:::::
along

::::
each

::::
track

::
to

::::::
record

::::
wave

::::::::::
attenuation

:::
and

:::::::
evaluate numerical attenuation schemes. We show this partitioning70

allows for significantly improved sea ice
::::::
sea-ice

:
height estimates in the MIZ, which may allow for an expansion of

:::
and

::::
may

:::
also

:::::
allow

:::
for

:::::::::
expanding existing higher-level IS-2 products to broader ice-covered regions.

::
In

:::
this

:::::
paper,

:::
we

::::::::::
demonstrate

::::
this

::::::
method

:::
on

:::
four

:::::::
example

::::::
cases,

:::::
Track

:
1
::
to

::
4

::::::
(details

::
in

:::::
suppl.

:::::
table.

:::::
Their

:::::::
granule,

:::
i.e.

::::
their

:::::::::::
identification

:::::::
number,

::
is

:::
also

:::::
given

::
in

:::::
each

::::::
figure). We describe the pre-processing of IS-2 along-track photon heights in sec-

tion 2.1 and develop a (linear) harmonic fitting procedure applied
:
to

:
individual IS-2 beams

::::
beam

:
in section 2.2 . Subsequently75

:::
(the

::::
GFT

::::::::
method).

::::::::::::
Subsequently, we develop a multi-beam, Monte-Carlo method for bias-correcting along-track wavelengths

in section 3 . We then demonstrate this method on three example cases (Track 1 to 3, see suppl. Table for granule names),

providing
:::
(the

::::
MH

::::::::
method),

:::::
which

:::::::
enables

::
us

::
to

:::::::
provide two-dimensional wave spectra derived from along-track data in sec-

tion 3.2, and the
:
a
:
decomposition of photon variance in section 4. In section 5we address how the angle correction and variance

decomposition
:
,
:::
we

::::::
discuss

:::
the

:::::::::
limitations

::::
and

::::::::::
assumptions

::
of

:::
the

::::::::
proposed

:::::::
methods

::::
and

::::::::
conclude

::
in

::::::
section

:
6
::::

how
::::
they

:
can80

be used to both (a) developed
::::::
develop improved models of attenuation of waves in sea ice, and (b) improve estimates of sea-ice

freeboard.

2 Along-track Wave Spectra from IS-2
sec:Along-Track-Data

The primary aim of this analysis is to assess surface height variability in the MIZ. Hence we want to use the highest data

resolution we can handle, though we are agnostic about the classification of photon returns. That is the L2-level product85

ATL03 from Neumann et al. (2021). For comparison, we show the photon cloud data from ATL03 and the surface heights and

type classifications from the higher level ATL07/10 product in figure 2 as dark blue, light blue, or orange dots (?). By requiring

150 consecutive photons to identify a sea ice segment, the ATL07 product accounts for most of the height variability from the

ATL03 product. Yet it misses retrievals in the MIZ (supl
::::
suppl. Fig. 2, white and gray area) and within the sea ice (Fig. 2). For

better resolution, the following analysis is based on the photon cloud data from ATL03.90

2.1 Data Pre-Processing
sec:prehandling

Linearly inverting photon data requires exact along and across-track information about photon positions. Along-track photon

positions are first re-referenced to the most equatorward position on the nominal ATLAS ground track .
::::
(Fig.

:::
1b,

:::::
black

:::::
line).

The most equatorward position is evaluated from the ATL07 (?) product and set to the beginning of
:::
the 1st 100 km section

that has
:
of

::::::::::
along-track

::::
data

:::::
where

:::::
there

::
is

::
an

:::::::
average

::
of at least 0.02 photons per 100km.

::::
meter

:::::::
(defined

:::
as

:::::
X = 0

::::::::::
throughout95
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::
the

:::::::
paper).

::::
This

::::::::
threshold

:::
and

::::::::::::
re-referencing

:::
are

::::
used

:::
to

::::::
exclude

:::::
large

:::::
areas

::
of

:::::
nearly

:::
no

::::
data

::
in

:::
the

::::::::
transition

::::
zone

::::::::
between

::
the

:::::
open

:::::
ocean

:::
and

:::::
MIZ. All tracks are then followed in a poleward direction, until the variance of any of the 6 beams exceeds

a factor of 10
:::::
times the variance of the first 15% on the equatorward side of the track (supl

::::
suppl. Fig. 2, dashed black lines).

This avoids including impacts from coastal or land ice around the Antarctic coast. The redefined along-track direction x and

an across-track direction y are then used as
::
the

:
coordinate system throughout the analysis (Fig. 1b, supl

::::
suppl. Fig. 1 and 2).100

After removing the cumulative surface height correction (dem_h taken from the ATL07/10 dataset, ?, ?), we bin photon

measurements into 20-meter stencils that overlap by 50%. This yields a 10-meter along-track resolution (Fig. 2 green line).

Note this differs from the procedure used to form sea ice surface heights in the ATL07 product, which averages height data

for each set of 150 photons along-track. ATL07 has a constant photon count, with the trade-off of irregularly spaced segments

of varying length in the MIZ, while our approach provides more regularly-spaced data with the trade-off of having a variable105

photon count in each stencil and potentially including retrievals of water near sea ice. Stencils with fewer than five photons

are excluded, which also leads to data gaps corresponding to no or very low photon retrievals due to sea-ice leads, open water,

clouds, or other noise (suppl. Fig. S2
::
S1). These data gaps also lead to an irregularity in the data, but here each stencil mean

represents the same area and hence better capture
:::::::
captures

:::
the wave phase.

The photon height
::
A

::::
mean

::::::
photon

::::::
height

:::::
hc(x)

::
is

:::::::::
calculated in each 20-meter stencil hc(x) is calculated as the mean of the110

photons weighted by their inverse distance to the stencil center, using a Gaussian weighting function with
:
a standard deviation

of 10m. We tested other data reduction methods, like using the median or mode of the stencil, finding results insensitive to

the choice of the binning method (suppl. Fig. S2). The same 20-meter stencil also provides an uncertainty estimate σh(x)

(proportional to Fig. 2 blue area) representing the varying photon density. This uncertainty is used to define the data prior

(sec. A1) for the harmonic inversion in section 2.2.115

The re-sampled surface
:::::
mean

::::::
photon height data is used to calculate a series of along-track surface slopes (Fig. 2 thin blue

line) by taking the along-track derivative and applying a spike-removing algorithm. Using the along-track surface slope data

focuses the timeseries analysis on local photon-height changes , rather then
:::::
rather

::::
than

:
the magnitude of the total surface

height field. The spike-removal reduces peaks in the slope data, which can be from sea-ice height changes or especially those

resulting from ice-ocean transitions. Because the slope field approximates the derivative of the height field, the spectrum of120

slopes Ŝc(k) is readily connected to the spectrum of surface heights S̃c(k)
::::
S̃h(k), as S̃h(k) = kS̃c(k). The surface height field

can therefore be directly reconstructed from the slope spectrum, as we show below. The generalized Fourier transform (sec. 2.2)

and directional estimates (sec. 3.1) are then applied on 25-km long segments of these surface slopes, with uncertainty estimates

(Fig. 2). The 25-km segments also overlap by 50%, providing an along-track spectral estimate every 12.5 km.

2.2 Generalized Fourier Transform (GFT)125
sec:gFT

We estimate along-track wave spectra using a Generalized Fourier Transform (GFT). The GFT is an
:
a
:
harmonic fit of sin- and

cos-pair coefficients, which together determine amplitude and phase at each wavenumber. The model complexity is defined by

the number of resolved wave numbers and its success depends on prior (assumed) knowledge about the data’s uncertainty and

model structure.

5



Figure 2.
fig:B01_stencil_mean
ATL03 photon cloud and ATL07 surface heights for example Track

::::
track

:
1. Individual photons are shown in black

:
, and the 20-

meter weighted average as a green line. The ATL07 Photon
:::::
photon

:
heights are are shown as light blue, dark blue, or black dots, with the

color corresponds
:::::::::::
corresponding to their type category provided in ATL07. Identified

::
The

::::::
ATL07

:
sea ice leads are shown

:::
and

:::
sea

::
ice

::::
lead

:::::::::
classification

::
is
::::::::
illustrated

::::
along

:
y
::
=

::::
-0.75 as

::::
gray

:::
and red segmentson the gray line. The surface slope based on the weighted photon average

is shown as a blue line with
:
a
:
-1.25 offset, and its uncertainty estimate

:
is
:::::
shown

:
as blue shading with a -1

::
an

:
offset

::
of

::::::
y = −1. The panel b)

is an inset of the gray area in panel a).

We use a GFT to overcome several disadvantages arising
::::::::
appearing

:
when implementing a standard Discrete Fourier Trans-130

form (DFT)
::
to

::::::::::
unstructured

::::
data. While the DFT is a fast variance-conserving algorithm,

:
it requires periodic, continuous,

:
and

equally-spaced data. The DFT implies that frequency bands are harmonics over a domain or segment length L, which is an

arbitrary limitation on the resolved frequencies. To make segments periodic, often tapering or windowing is applied to the

segmented data. In addition to the data’s non-periodicity
:
,
:
the common presence of data gaps in IS-2 retrievals requires ex-

trapolation or gap-filling to create continuous,
:
equally spaced data suitable for a DFT. These both lead to commonly known135

problems of the DFT, like energy leaks/compensation in spectral space. The data handling needed for DFT can erode the signal

substantially, especially in the MIZ (Fig. 3 b,c gray and green lines).
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The GFT method outlined below works on any grid, incorporates data uncertainty, and does not require periodicity. The

GFT can be customized to the frequencies of interest with the additional benefit of providing a standard error in real and

wavenumber space.140

2.3 Harmonic wave inversion
sec:harmonic

We follow Wunsch (1996), Menke (2018), and Kachelein et al. (2022), using generalized least squares to derive spectral

amplitudes in each 25-km segment Xi (Fig. 4). Slope data in each section Xi is a series of unevenly spaced mean-zero data

points and is expressed as a column vector b = ∂xz of length Ni where z are the height data. These data are then modeled as

the sum of sinusoids having
:::
with

:
wave numbers in the range of swell and wind waves145

b = Hp+ r, (1)
e:basic_modele:basic_model

where H is an Ni×2M regressor matrix of basis functions, p is the model parameter vector of length 2M , and r is the vector

of the residual timeseries of length Ni. The columns of H are sines and cosines of prescribed wave numbers, km = 2π/λm

:::::::::::
k′m = 2π/λm:

for wavelengths λm indexed by m= 1,2, ..M , i. e.:
:
.
:::
We

:::
use

:::::
prime

::::::::
notation

::::
here

:::
and

:::::::::
throughout

::::
the

:::::
paper

::
to

::::::
indicate

::::::::
observed

:::::
wave

:::::::
variables

:::::
along

:::
the

::::::::
direction

::
of

:::::
each

::::
beam

::::
and

::::::::
unprimed

:::::::
notation

:::
for

::::::::
variables

::
in

:::
the

::::::::
direction

::
of

:::
the150

:::::::
traveling

:::::
wave

:::
(see

::::
Fig.

::::
1c).

:::
The

:::::::
problem

::::
can

::::
then

::
be

::::::
written

::
as

:

b =

M∑
m=1

(
amcos(kmx)cos(k′mx)

::::::::
+ bcmsin(kmx)sin(k′mx)

::::::::

)
+ r, (2)

e:be:b

(3)

with ,
:::::
model

::::::::::
parameters,

p = [a1,a2, ...aM , bc1, ...bcM ]Tx=x1,x2, ...,xNi

T . (4)155

:
at
::::::::
positions

:

x
:
=
:

[x1,x2, ...,xNi
:::::::::::

]T .
:

(5)

To find the most probable b given a set of model parameters p, we need to estimate the autocovariance matrices of the residual

R =
〈
rrT
〉
, i.e. the error of the data, and the autocovariance matrix of the model P =

〈
ppT

〉
, where (〈·〉) is the expected

value. Then the most probable estimate of the data b can be found by estimating the maximum of the posterior probability160

distribution P (p|b). Using Bayes’ theorem (Kachelein et al., 2022), or, alternatively the matrix inversion lemma (Wunsch,

7



1996), given the data |b, the most likely estimate of the model parameters p̂ is found as,

p̂ =
(
HTR−1H+P−1

)−1
HTR−1b. (6)

e:p_hate:p_hat

Once the model parameters p̂ are estimated, the model can be expressed in real space using b̂

b̂
:

= H
::::

p̂
:
, (7)165

(Fig. 3a green lines), or as a power spectrum ˆ̃SGFT (Fig. 3b,c green lines, see suppl. material S1 for derivation). Note that ˆ̃SGFT

is substantially different from that of the DFT of the same data (Fig. 3b,c gray and green lines respectively). The frequent gaps

::::
Gaps

:
in the data, as well as the DFT’s requirement for the data to be period

:::::::
periodic,

:
creates artificial power in the swell’s

wavenumber range that lead to miss leading
::::
leads

::
to

:::::::::
misleading

:
results.

To estimate the model error, the posterior autocovariance of the difference between estimated and true model parameters is170

defined as the inverse Hessian,

Hess−1 =
〈
(p− p̂)(p− p̂)T

〉
=
(
HTR−1H+P−1

)−1
, (8)

e:hesse:hess

In practice,
:
this is calculated from the so called “kernel" matrix H, and the (assumed) Gaussian distributed data and model

priors R and P. The
::::
trace

::::
tr(·)

::
of

:::
the inverse Hessian is then be used to estimate the error of the model parameters

p̂err = tr(Hess−1), (9)
e:p_erre:p_err

175

(Fig. 3d, shown in the same units as the power spectra)and the
:
.
:::
The

:
error of the fit to the modeled data

::
is

::::
also

::::::
related

::
to

:::
the

::::::
inverse

::::::
Hessian,

b̂err = (H2 Hess−1)j, (10)
e:b_erre:b_err

(not shown) where j is a unit vector of length 2M .

:::
The

::::::::
harmonic

::::::::
inversion

::
of

::::
this

:::::::
segment

::
of

:::::
Track

::
2

:::::
shows

::::
how

:::::
wave

::::::
spectra

:::
can

:::
be

::::::::
calculated

:::::
from

:::::
strong

::::::
(gt2r)

:::
and

:::::
weak180

::::
(gt2l)

::::::
beams,

:::::
even

:
if
:::
the

::::
data

:::
has

::::
gaps

::::
(Fig.

::::
3a).

::::
Both

::::::
beams’

::::::
spectra

:::
are

::::::
similar

::
in

::::
most

:::::
parts

:::
and

:::::
show

:
a
::::::::
maximum

::
at

::::::::
k = 0.03

::::
(Fig.

:::::
3b,c).

::::::::
However,

:::
the

::::::
strong

::::
beam

::::::
(gt2r)

::::
does

:::::
show

:
a
::::::
second

::::
local

:::::::::
maximum

::
at

:::::
about

::::::::
k = 0.06.

:::::
Note

:::
that

:::
the

:::::
DFT

::
of

:::
the

::::
same

:::::
track,

:::
and

:::::
with

::::::
tapered

::::
data,

::::::
results

::
in

:
a
::::::::
different

::::
PDF

::::
than

:::
the

::::::::
harmonic

::::::::
inversion

:::::::
because

::
of

:::
the

:::
data

:::::
gaps.
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2.3.1 Choice of model resolution and degrees of freedom

The quality of the GFT model depends on the degrees of freedom, the model prior p, and data priors r (eq. 8). While the number185

of model parameters, 2M , remains fixed throughout the analysis, the number of data points in segment i, Ni, is variable, and

may be controlled by the segment length L, 25 km
:::::
which

::
is in our case

::
25

:::
km, with a 12.5km overlap (Fig. 4).

The number of degrees of freedom is then 2M −Ni and depends on the number of data points in each 25-km segment. A

segment with no data gaps and a 10-meter resolution (sec. 2.1) contains Ni = 2500 data points. With 2M = 1738
::::::::::
2M = 1740

model parameters, this is then an over determined
::
an

:::::::::::::
over-determined problem. However, frequent data gaps reduce the number190

of datapoint
:::
data

::::::
points per segment, which may result in an underdetermined problem , with more model parameters then

::::
than

data (2M >Ni). The result is then a larger residual r and larger uncertainty estimate p̂err (eq. 9 and eq. 10). Even in cases

where eq. (1) is underdetermined, we are confident in our wave spectrum estimation within
:
a
:
given error because P contains

prior knowledge about the shape of the solution, i.e.
:
, the shape of typical surface wave spectra (sec. 2.4).

::::
Most

::
of

:::
the

::::::::
segments

::
of

:::
the

::::
four

:::::::
example

:::::
tracks

::
in

::::
this

:::::
study

::::
have

::::
close

:::
to

::::
2500

::::
data

:::::
points

::::
and

:::
are

::::::::::::::
over-determined

::::::
(suppl.

:::
Fig.

::::
S3).

:::::
Only

::::
track

::
1195

:::
and

:
2
:::::
(Fig.

::
3)

:::
are

:::::::::::::::
under-determined

::::
close

::
to

:::
the

::::
edge

:::
of

:::
the

::
ice

:::::
cover

:::::::
(supply.

::::
Fig.

::
S3

::::
a,b).

The choice of segment length also determines the smallest resolvable wavenumber. For example, a segment length of 25-km

::
25

:::
km

:
resolves a wave with a 20s period at an incident angle of ±75◦ about 10

::
ten

:
times. We set the lowest resolved

::::
to-be

:::::::
resolved

:::::::
observed

:
wavenumber to k′1 = 2.5× 10−3 rad m−1 which corresponds to a maximum

:::::::
observed

:
wavelength of 2500

meters (sec. 3.1). The highest wavenumber is chosen as k′m = 0.11 rad m−1, a typical period of wind waves of about six200

seconds. Using evenly spaced wavenumbers with dk = 1.25× 10−4 this results in M = 869 wavenumbers.

2.4 Iterative inversion along each beam
sec:suggsesive

The GFT solution b̂ depends on prior assumptions about the wave spectrum: the model prior P. Since the GFT is iteratively

applied along each beam, results from a previous (closer to the open ocean) segment inform the subsequent segment as illus-

trated in Figure 4. Here we describe how a successive application of the GFT along the IS-2 beam can leads
:::
lead

:
to an efficient205

solution assuming that the wave’s spectral shape only slowly varies between the segments.

The initial guess of the model prior Pinit, taken
:::::::
iterative

:::::::
solution

:::::
along

::::
each

::::
beam

::
is
:::::::::
initialized at the most ocean-ward edge

of the data is a
::::
with

:
a
::::
prior

:::::
Pinit::::

that
::::::
follows

::
a
:::::::
common

:::::
shape

::
of

::
a
::::::
narrow

::::::
banded

::::::
surface

:::::
wave

:::::
field;

:::
the Pierson-Moskowitz

(PM) spectral slope function (based on Pierson and Moskowitz, 1964), to describe the general shape of a narrow banded surface

wave field. The initial PM form
:
.
:::
For

::::
this

:::::::
segment

:::::
alone,

:::
the

::::
PM

:::::::
function

:
is fit to a DFT of the data, and

:
,
:::
for

:::
the

::::
DFT

:::::
only,210

any locations with missing data are defined with a slope of zero. This gap-filling creates artificial ringing in the DFT , but is

sufficient to estimate the
:::::::::
spectrum’s peak wave number and energyof the spectrum. The PM-spectrum has, in its simplest form

:
,

only two free parameters, the peak frequency
:
, and spectral amplitude, which are fit to the DFT power spectra via an objective

function that is regularized by the observed spectral peak of the smoothed data (Appendix A, Hell et al., 2019).

The initial inversion of the most equatorward segment X0 is performed using P0 = Pinit in eq. (6), leading to model215

parameters p̂0. For this first segment, a second inversion is applied on the same data, using an updated prior that is a smoothed

9
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Figure 3.
fig:GFT_result
Example model and spectral estimate for a 25-km segment in the MIZ for Track 2 (granule 08070210, see suppl. Table). (a) Data

(gray), model (dark and light green), and predicted modeled (orange) photon heights for two neighboring beams
:
, gt2l (dark green) and gt2r

(light green). The data is offset by 0.5. (b and c) Corresponding power spectral estimates using GFT (green) and standard DFT (gray). The
thick green lines are smoothed

:::
the GFT estimates with a rolling 10-wavenumber mean

:::::::
re-binned

:::
into

:::::
blocks

::
of

::::::::::::::
∆k = 2.5× 10−3. (d) Power

spectral error for both beams as
:
a function of wave number.

:
(e) Residual PDF of r for both beams

:
, respectively.

version of p̂0 (Fig. 4, left). The smoothing uses a Lanzos running smoother in wavenumber with a stencil-width of ±0.19

2πm−1, or 150 data points. Inversions of the successive segments X1,X2,X3, ... are then performed once, with the prior Pi a

10



smoothed version of p̂i−1. If missing data does not allow for a successful inversion
:
of

::
a

:::::::
segment, the algorithm is re-initiated

as done to obtain P0 and p̂0.220

::::
This

::::::::
two-stage

::::::::
inversion

:::
for

::::::::
segments

::::
with

:::
no

::::::::
preceding

::::::::::
along-track

::::::::
segment

::::::
ensures

::::
that

:::::::
ordinary

:::::
wave

::::::
spectra

::::
will

:::
be

::::::::
identified

::
at

:::
the

::::::
margin

:::::
while

::::
still

::::::
having

:::
the

::::::::
flexibility

::
to

:::::
allow

:::
for

:::::
more

:::::::
complex

:::::
wave

:::::::
signals.

:::
The

:::::
effect

:::
of

:::
the

:::
PM

:::::
prior

:::
and

::::::
details

:::::
about

::
the

:::::::::
derivation

::
is

::::::
shown

::
in

::::::::
Appendix

::
A.

:

X1

GFT{�1}�1 

X3

GFT{�3}�3 �5 ... �init

X0

GFT(�0) �2 �4 

X2

GFT(�2)
X4

GFT(�4)DFT(�0)

137.5 km

150 km

162.5 km

175 km

187.5 km
Along track distance (km)

Figure 4.
fig:GFT_alter
Schematic of the harmonic inversion algorithm along an ICESat-2 beam, shown over the surface slope field of a typical beam in the

MIZ. The DFT in each successive segment Xi has a prior Pi derived from the previous segment centered around Xi−1. For those segments
with no prior information available, the prior Pinit is generated via a Discrete Fourier Transform (DFT) over the segments centered at Xi.

2.5 Tracking of wave energy through Sea Ice

The GFT is applied to each 25 km-segment with more then
:::
km

:::::::
segment

::::
with

:::::
more

::::
than

:
250 data points, leading to wave225

spectral estimates along each beam. In Fig. 5(a-f) we show wavenumber spectra for each segment and for each of
::
the

:
beams

of Track 3 in the Southern Hemisphere on May 2, 2019. The per-segment cross-beam mean (Fig. 5h) and mean spectral error

(Fig. 5i) are derived by weighting each segment by its photon density before taking the mean. We define this weighted mean

and error as our best estimate of the along track
:::::::::
along-track spectral evolution of wave energy.

The example track shows an attenuating swell signal starting at X = 0 km
::
(X

::
is

:::
the

:::::::
distance

:::::
from

:::
the

:::
ice

::::
edge

::
as

:::::::
defined230

::
in

::::::
section

::::
2.1) and a second wave-energy maximum with shorter wavelength (k′ ≈ 100m) at about X = 150 km in both, the

spectrogram of the weighted mean
:::
best

:::::::
estimate as well as in individual beams (Fig. 5a to f, and h). The corresponding error per

wave-number and position indicates larger error were we see wave signals
::::::
(These

::::
wave

::::::
events

:::
are

::::::
further

:::::::
analyzed

:::
in

::::::
section

::
4).

::::
The

::::::::::::
corresponding

:::::
errors

:::
are

:::::
often

:::::
larger

:::::
where

:::
the

:::::
wave

::::::
signals

:::
are

:::::
larger

:
(Fig. 5 i)which are likely just related to larger

amplitudes in the data.
:
.
::::::::
Instances

::::
with

:
a
::::
low

::::::
photon

::::::
density

:::
and

:::::
more

:::::::
frequent

::::
data

::::
gaps

::::
may

:::
fail

::
to

:::::
invert

:::
for

::
the

:::::
wave

::::::
signal,235

:::::::
resulting

::
in

::
a
::::::::::
spectrogram

::::
that

::::
may

:::
not

::::::
follow

::::::::
expected

:::::::
spectral

::::::
shapes.

::::::
These

:::
can

:::
be

::::::::
identified

:::::::
through

::::
their

:::::::::::
substantially

:::::
larger

::::
error

::::::
(suppl.

::::
Fig.

::
S4

::
g

::
to

::
i).

The estimated wave numbers are the observed along-track wave numbers k′, which are different than the true wave number

length |k| along the incident wave vector k (see Fig. 1). To estimate a wavenumber spectrum along the dominant propagation

direction rather then
:::
than

:
the direction it is observed, we outline a method to correct this bias in the following section.240
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Figure 5.
fig:GFT_2
Slope spectra for the six beams (a to f) of example Track 3 (granule 05160312, see suppl. Table) resulting from the GFT

inversion (sec. 2.4) for granule 05160312. The photon density per segment (g) is used to calculate the weighted mean spectrum (
:::::::
re-binned

:
as
::

in
::::

Fig.
::::
3b,c)

:
(h) and error (i) for each track segment.

:::
The

:::::::
horizontal

::::
axis

:
is
::::::

defined
::
as

:::
the

::::::
distance

::
to
:::
the

::::
most

::::::::::
equatorward

::::
point

:::
with

::
a

:::::
photon

:::
rate

::::::::
exceeding

:::
0.02

:::::::
photons

::
per

:::::
meter

::::
(sec.

:::
2.1).
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3 Two-dimensional wave spectra from nearly one-directional observations
sec:Multi-Beam-Data

3.1 Metropolitan estimates of the incident angle
sec:angle

The observed wave spectra are distorted by a misalignment between the wave’s incident angle and the beam’s direction

(Fig. 1bc). While the ICESat-2 track orientations are well known, the surface waves can originate from any direction, and

the angle between these two directions is θ. If θ is known, the observed wave number k′, or wavelength λ′ along the beam can245

be corrected using k = k′cos−1(θ)
:::::::::::::
k = k′cos(θ)

−1. The same geometrical distortion will also affect estimates of the attenua-

tion rate between Xi-positions along the track (Fig. 1b) because the wave energy attenuates along their dominant propagation

direction and not along the direction they are observed by the satellite.

To estimate θ from the photon data we make use of the spatial coherence
:::
We

:::
use

:::
the

:::::
phase

:::
lag

:
between weak-strong beam

pairs . That means
::
to

:::::::
estimate

::
θ
::::
from

::::
the

::::::
photon

:::::
data.

::::
This

:::::::
requires

::::
that

:
wave crests observed in one beam may also be250

observed in the other. Yet using the coherence
:::
are

::::
also

:::::::
observed

::
in
:::::::
another.

::::::
Using

:::
the

:::::
phase

:::
lag

::
to

:::::::
measure

:::
the

:::::::
incident

:::::
angle

has several limitations that have to be taken into account when designing an optimization method:

– The coherence
:::::
phase

::
lag

:
between beam pairs can only usefully be calculated for not too oblique angles ( about ±XX◦, Suppl. Fig. S3, and Yu et al., 2021)

::::::::::::::::::::::::::::::
(Suppl. Fig. S5, and Yu et al., 2021) and high enough photon densities in both beams.

:::
The

:::::
angle

::::::
limits

::
in

::::::
which

:::
the

:::::
phase

::
lag

::::
can

::
be

:::::::
resolved

::::::
depend

:::
on

:::
the

::::::
chosen

:::::::::
wavelength

::::
and

:::
the

:::::::
distance

:::::::
between

:::
the

::::::
beams.

:::::
Since

::::
both,

::::::::::
wavelength255

:::
and

:::::::
distance,

:::::::
change

::
for

:::::
each

:::::::
segment,

:::
we

::::
here

::::::
limited

:::
the

:::::::
analysis

::
to

::::::
angles

::
of

:::::
±75◦.

:

– Across-beam coherence relies on an accurate measure of the distance
::::
phase

:::
lag

::::::
relies

::
on

:::::::::
accurately

:::::::::
measuring

::::
the

:::::::
distance

:::::::
between

:
the beams. Uncertainty in the intra-beam distance d can further obscured

::::::
obscure

:
angle estimates

based on coherence
:::
the

:::::
phase

::
lag

:
(Fig. 1b). Since d varies along the track (suppl. Fig. S1

::
S6), using the nominal distance

rather then
::::
than the observed value will

:::
also

:
bias angle estimates.260

– The complex generation and propagation history of waves (Kitaigorodskii, 1962; Villas Bôas and Young, 2020; Marechal

and Ardhuin, 2021; Hell et al., 2021) leads to a dynamic distortion in the incident angle. While a monochromatic

plane wave would be coherent across beam pairs, estimating its direction is limited by the periodicity of the waves and

observational noise. In reality, the incident swell wave energy at any given time is contained in several wavenumbers

although concentrated in a narrow-banded 2D-spectrum (Longuet-Higgins and Deacon, 1957). Hence, the bandwidth of265

the
::
A

::::::::::::
narrow-banded

:
2D swell field limits the coherence

::::
leads

::
to

:::::
wave

::::::
groups

::
in

::::
real

:::::
space

:::
and

:::::
limits

:::
the

::::::::::
observable

:::::
phase

:::
lag between strong/weak beam pairs. While a narrower 2D-spectrum results in

::
2D

::::::::
spectrum

::::::
results

::
in

::::::::
spatially

:::::
larger coherent wave crestsin the across wave-direction, a broader spectrum spans more random-phase waves, which

diminishes the coherence
::::::::::
diminishing

:::
the

::::::::::
observable

:::::
phase

:::
lag

:
between wave crests (suppl. Fig.8). Less wave-crest

coherence in broader spectra limits estimates of the incident angle when the surface is only observed along two beams.270

::::
S7).
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With IS-2, the incident wave energy along k is observed along the beam direction for wavenumbers k′ = |k|cos−1 θ, or as

a distorted wavenumber because of the above described distortion
::::::::::::
k′ = |k|cosθ−1. In the case of IS-2 beam pairs, we know

neither θ nor the bandwidth of the incident spectrum (Longuet-Higgins, 1984) and both factors limit the
::::::
possible

:
angle inversion

based on beam pairs alone (suppl. Fig.S8
:::
S7). Despite these limitations, we describe in the following how the incidence angle275

θ can still be retrieved within these limitations.

As explained in section 2.2, the surface wave field can be interpreted as the superposition of monochromatic plain
:::::
plane

waves. For a narrow-banded swell spectrum,
:
the majority of the wave energy is contained in a few wave numbers

:::::::::::
wavenumbers

and hence a superposition of the
::::
these

:
most energetic monochromatic waves explains the majority

::::
most

:
of the surface slope

variability. In the following,
:
we optimize the incident angle and phase of the most energetic monochromatic waves

::::
wave

:
num-280

bers using a Metropolis-Hastings
:::::
(MH)

:
algorithm (Foreman-Mackey et al., 2013). We accumulate the marginal distributions

of possible incident angles across the dominant wave numbers and beam pairs, which results in a
::
the

:
best guess of possible

incident angle. This approach leads to directional wave information similar to the maximum entropy method used in wave

buoys (Lygre and Krogstad, 1986).

We focus on the 25 most-energetic wavenumbers of each beam pair and segment Xi based on the GFT result (sec. 2.2). To285

identify these wavenumbers, the beam-pairs mean wave power is smoothed using a three-wavenumber running mean to select

possible wave-numbers
::::
wave

::::::::
numbers within the distorted narrow-banded spectrum (similar to the thick green lines in Fig. 3

b,c). For each of these n= 25 observed wavenumbers k′n, we define a monochromatic model,

ĥn(η,ν |k′,θ,φ) = cos(k′η + l′ν +φ), (11)
eq:mono_modeleq:mono_model

in the local reference system of the segment centered around Xi and y = 0 such that the local along-track coordinate is290

η = x−Xi and the across-track coordinate is ν = y with the observable across-track wavenumber l′ = k′ tan(θ), and the

phase φ.

The monochromatic model is than
:::
then

:
used to define the objective function Φn for each wavenumber

Φn = ||b− ĥn||2 +βθ Pθ,n(θ), (12)
eq:angle_costeq:angle_cost

where b is the normalized slope data of the beam pair, βθ is a hyper-parameter which controls the regularization Pθ,n of the295

incidence angle θ for the n-th wavenumber, and Pθ,n(θ,k) is a prior estimate that we describe in sec. 3.1.2.

The log-probability of the objective function eq. (12) is sampled for each beam pair, selected wavenumber, and along-track

position Xi. To derive independent estimates of the incident angle for each n-th wavenumber we use an Metropolis-Hastings
:
a

:::
MH

:
Scheme (Marcov-Chain Monte Carlo, MCMC, Foreman-Mackey et al., 2013) by first initializing equally-spaced samples

of the objective function over the domain θ = [−0.47π,0.47π]
:::::::::::::::::
θ = [−0.42π,0.42π] and φ= [0,2π) and advancing the ensem-300

ble of samples (ensemble of walkers) using MCMC. The MCMC method will quickly cluster walkers in the areas of low-cost,

or small objective function (Fig. 6b, black dots). A high density of walker positions is than
::::
then interpreted as a high likelihood

of an incident angle and phase for the chosen wavenumber (Fig. 6b, black dots).
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We derive a sample of the joint phase and angle distribution by advancing the walkers 300 iterations, and only the last

270 iterations for each walker are used to established
:::::::
establish the joint histogram D(θ,φ). The joint histogram D is then305

marginalized for the incident angle θ and normalized to a probability distribution function (Fig. 6c). This procedure is repeated

for each selected wavenumber kn and for each (available) beam pair per segmentXi (
::::
suppl.

:
Fig. S9

::
S8 a to c). The best incident

angle PDF θPDF (X,k,beampair) can then be derived using the weighted average across wavenumber, beam-pair, or both.

The
::
An

:::::::
example

:::
of

:::
the resulting beam- and wavenumber-average PDF of

:
is

::::::
shown

::
in

:::::
figure

:::
7b

::
for

:
Track 3 at Xi = 87, for

example, shows more than one maximum (Fig. 7b). (Here
:
.
:::::
Here,

:
the individual PDFs are weighted by the mean power of310

the respective wavenumber and the number of data points per segment pair). This more complex marginal distribution comes

:
.
:::
The

:::::
most

:::::
likely

:::::::
incident

:::::
angle

::
is

::
at

:::::
−37◦,

::::::
while

:::
two

:::::
other

::::::
angles

:::::
−63◦

:::
and

:::
0◦

::::
also

::::
show

:::::
high

:::::::::
likelihood.

::::::::
Marginal

:::::
PDFs

::::
with

:::::::
multiple

:::::::
maxima

:::
are

::
a

::::::
typical

:::::
result

:::
for

:::
this

:::::::
method

:::
and

::::::
appear

:::
in

:::::
many

::::
other

::::::
tested

:::::::
sections

:::
and

::::::
tracks

::::
(not

:::::::
shown).

::::
They

:::::
come

:
from different maxima in

:::
the

::::
joint

:
PDFs of different wavenumbers. If one trusts the angle estimate of a single

wavenumber, this can be interpret
:::::
result

:::
can

::
be

:::::::::
interpreted

:
as a wave field with waves from multiple directions. The alternative315

– likely better – perspective is that the marginal PDF of each
:
a
:::::
single

:
wavenumber is not a robust estimate

::
of the incident angle,

and hence the PDF in figure 7b is the result of the
::::
helps

:::::::
estimate

:::
the uncertainty of the method, as explained in the next section.

3.1.1 Robustness of the Marginal PDFs

The described limitations in retrieving the incident angle (sec. 3.1) indicate
:::
lead

::
to a low signal-to-noise regime and demand a

careful evaluation of the method for sampling the objective function Φn. While larger samples may ensure convergence of the320

distribution estimate, a large sampler of each wavenumber, beam pair, and segment may not be necessary , or computationally

affordable. We decide for a systematic under-sampling of each realization of the marginal PDFs θ(Xi,k,beampair) and, in a

second step, make a super-sample from the marginal PDFs across beam pairs and wavenumber if needed.

When combining the systematic under-sampled PDFsthey are still statistically robust,
:::::
their

:::::::::::
super-sample

:::
will

::::
still

::::::
provide

::
a

::::
good

:::::::
estimate

::
of

:::
the

:::::
mean

:::::::
incident

:::::
angle

:::
and

::
its

::::::::
standard

:::::::
deviation. Each realization of the joint θ-φ distribution requires 6750325

function evaluations for 270 iterations per walker. The walkers
:::::::
walker’s auto-correlation is about 20 to 30 iterations, which

implies that each joint distribution maybe not be well established (the effective degrees of freedom per walker are about 9 to

14). Hence the marginalization of each joint distribution may misrepresent the angle uncertainty (i.e. a too wide distribution

of the walker’s PDF). To reduce uncertainty, we take a super-sample of
:::
the marginal PDFs, by averaging across wavenumbers

and/or the three beam pairs. The super-sampling results in a statistically robust result with 5× 105 function evaluations per330

segment Xi, that is about effective
:::::
which

::
is
:::::
about

:
3.5− 5.5× 103

:::::::
effective degrees of freedom per segment. Longer Markov

Chains, i.e. more iterations, may result in a better sampling of the individual fit, but may not affect the overall result since

they sample from generally smooth objective functions in a low signal-to-noise regime. However, in cases where a directional

estimate per wavenumber or beam group is needed, the MCMC iteration length can be adjusted.

3.1.2 Constraining direction estimates with other data products335
sec:open_ocean_priors
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Figure 6.
fig:mcmc
MCMC angle estimate using a monochromatic wave model with and without a prior Pθ . (a) Data of the beam pair gt1l and gt1r

(light and dark green) and model (black, eq. 11) for a segment of Track 3 (granule 05160312, centered at Xi = 62.5 km. (b). The objective
function with prior Pθ is sampled using a brute-force method (shading) and MCMC (black dots and lines). The prior angle θ0 and prior
uncertainty σθ for this wavelength (168.4 meter

:::::
meters) are shown as thick orange line

::::
lines and shading. The best fit using a dual-annealing

method is shown is shown as red dot (Tsallis and Stariolo, 1996). (c) Marginal PDF of the incident angle θ from MCMC sampling. (d) and
(e) same as (b) and (c) but without the prior Pθ .
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fig:mcmc2
Influence of the WW3 prior on the marginal PDFs of Track 3 (granule 05160312) at Xi = 87 km. (a) Mean marginal PDFs for

all beam-pairs
::::
beam

::::
pairs as a function of wavenumber. The WW3 spectral partitions are shown as black dots and the interpolated prior θ0,i

and its spread σθ,i (eq. B1) are shown as orange line and orange shading. (b) The smoothed weighted mean across the pairs of the most likely
incident angle is shown as

:
a
:
black thick line and the WW3 priors for all wave numbers

::
are used as orange lines.

Sampling
::
A

::::::::
sampling of the objective function eq. (12) as described in sec. 3.1 results in a joint distribution of most likely

incident angles and phases . These joint distributions
:::
per

:::::::
sampled

:::::::::::
wavenumber

:::
kn.

::::
This

::::
joint

::::::::::
distribution

:
may have multiple

equally likely incident angles (Fig. 6d blue area) due to the limited across-track observations and distortion
:::::::
maxima,

::::
i.e.

:::::::
multiple

:::::
likely

:::::::
incident

:::::
angles

::::
due

::
to

:::
the

:::::::::
periodicity

::
of

:::
the

:::::
wave

:::
(2π

::::::::::
ambiguity).

:::
As

::::::::
illustrated

::
in

:::::
figure

:::
6d

::::::::
(shading)

:::
this

::::
can

:::
lead

::
to
:::

a)
:::::::
maxima

::
for

:::::::
positive

::::
and

:::::::
negative

:::::::
incident

::::::
angles

:::
and

::
b)

::::::::
multiple

:::::::
maxima

::
on

::::
both

:::::
sides. To break the symmetry in340

the marginalized PDF of incident angles (Fig. 6e) we define a prior Pθ(θ,k) in the objective function using ridge-regression

(Appendix B). The effect of the prior on the joint- and marginalized distribution is shown by comparing Figure 6 b and c with d

and e. Here we inform the prior with WW3 global hindcast wave-partitions (Tolman, 2009, using the Integrated Ocean Waves

for Geophysical and other Applications (IOWAGA) hindcast)). WW3 must be treated with caution due
::
to wind-observational

biases in the Southern Ocean (Belmonte Rivas and Stoffelen, 2019; Hell et al., 2020). This wave hindcast is currently the only345

readily available dataset for this global purpose, and priors from observational datasets would improve the quality of this data

and the overall wave inversion.

The level of certainty in the WW3 prior is expressed in the hyper parameter
:::::::::::::
hyperparameter βθ and the performance of the

MCMC sampling is sensitive to its value (eq. 12). Since a validation of the WW3 prior is limited, we set βθ = 2. Its effect on
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the objective function can be seen by comparing the shading in figure 6 b and d. The choice of βθ = 2 leads to the desired350

result in breaking the directional ambiguity while not fully determining the incident angle distribution (Fig. 7a). Other
:::
We

:::::
tested

::::
other

:
values of βθ are tested, but

:::
but

:::::
found

:::::::::
empirically

::::
that

:
higher values tend to over fit

:::::
overfit

:
to the prior, and lower

values do not break the ambiguity
:::
well.

This method is limited to angles of about±85◦. Oblique
:::::
±75◦

:::::::
deviation

:::::
from

:::
the

:::::::
nominal

::::
track

::::::::
direction.

:::::
More

:::::::
oblique,

:::
i.e.

::::::
steeper incidence angle can not be captured by this methods.

::::::
method

::::::
because

::
a

::::::
steeper

:::::
angle

::::::
requires

:::::
more

:::::::::
coherence

:::::::
between355

::::
wave

::::::
crests.

::::
The

::::::::
coherence

:::
of

:
a
::::::
single

:::::
wave

::::
crest

::
is,

::::::::
however,

:::::::
limited

::
by

:::
the

:::::::::
curvature

::
of

:::
the

:::::
wave

::::::::
spectrum

:::
and

::::
not

::::
well

:::::
known

::::::
(suppl.

::::
Fig.

::::
S7). In addition, the model has a 180◦ ambiguity such that samples in the +95◦ to−95◦ arc, that are waves

coming from higher latitudes rather than from the equator , would be equally possible. However given the geography of the

Antarctic coast for tracks considered here, these are less plausible
::
the

:::::::
equator

:::
side

:::
of

:::
the

::::
track

:::
(as

:::::::::
assumed),

::
or

:::::
waves

:::::::
coming

::::
from

:::
the

::::
pole

::::
side

::::
(less

::::::
likely)

:::
can

:::::
result

::
in

:::
the

:::::
same

:::::
phase

:::
lag

:::
and

:::::
hence

:::
in

:::
the

::::
same

:::::::
incident

::::::
angle,

::::
even

::::::
though

::::
they

:::::
come360

::::
from

:::
the

:::::::
opposite

::::::::
direction.

3.2 Two-dimensional spectra in along-track data
sec:reconstruct

With the spectral (sec. 2.2) and angle
:::
and

::::
angle

::::::::
estimates

:
(sec. 3.1) estimates

::
2.2

::::
and

:::
3.1), we now can describe waves observed

along-track in terms of their two-dimensional wavenumber spectra (Fig. 8). The estimated wavenumber amplitudes b̂ (eq. 2) are

corrected by cos−1 (θ)
:::::::
cos(θ)

−1
:
using the most likely incident angle (sec. 3.1, Fig. 7b) resulting in the corrected wavenumber365

spectrogram (Fig. 8a). We use the most likely angle along the track, although the above analysis can provide angle distributions

for each segment Xi and wavenumber k (sec. 3.1.2, Fig. 8b).

The corrected power spectrum and directional distribution (Fig. 8 a,b) can be expressed as directional surface wave spectra

every 12.5 km in the MIZ, similar to conventional surface wave buoys (Fig. 8 c to e). This permits tracking the attenuation of

wave energy per frequency in MIZ. In the case of Track 3 (granule 05160312),
:
for example, we see a

::::
wave

:::::
event

:::::::
coming370

::::
from

:::::
about

:::
45◦

::
to

:::
the

::::
right

:::
of

::
the

:::::::
ground

::::
track

::::
that

:::::
mostly

:::::::::
attenuates

::
in

:::
the

::::
first

::
75

:::
km

::::
from

:::
the

:::
sea

:::
ice

:::::
edge,

:::::
while

:::
the

::::::
overall

:::::::::
attenuation

::::
rate

::
is

::::::
similar

:::::::
between

:::
the

::::
six

:::::
beams

:::::
(Fig.

:::::
5a-f).

::::
One

:::::
could

:::::::
identify

::
a migration of the peak wavelength from

about 275 meters to about 300 meters within 12.5 km
:::::::::::::::::::::::::::::::::::
(Fig. 8 d,e, similar to Alberello et al., 2022);

:::
we

:::::
leave

:::
this

:::::::
analysis

:::
of

::
the

::::::::::
attenuation

::
to

:::::
future

:::::
work.

:::
Past

:::
the

:::::::
primary

:::::
wave

:::::
event,

:
a
:::::::
second

:::::
signal

::::::
further

:::
into

:::
the

:::
ice

::::
with

::::::
energy

:::
on

:::::
scales

::::::
shorter

::::
than

::::
200

:::::
meters

::::::
extend

:::::
from375

::::::
X > 75

:::
km

:::::
about

::::
100

:::
km

::
or

::::
more

:
(Fig. 8d,e)as shorter waves tend to attenuate faster. Future work will systematically use this

analysis to understand attenuation in the MIZ
:::
a,b).

::::
This

::::::
signal

:
is
::
at
:::::::
shorter

::::::::::
wavelengths

::::
than

:::
the

::::::::
identified

::::::
cut-off

::::::::::
frequencies

::
for

:::
the

:::::
event

::
at

:::
the

::::
track

:::::::::
beginning.

:::::::
Without

::::::
further

::::::::::
information

:::::
about

::
the

:::
ice

::::::::::
conditions,

::
we

:::::::
suggest

:::
that

:::
this

:::::::::::::::
short-wavelength

:::::
energy

::::::
deeper

::
in

:::
the

:::
sea

:::
ice

::
is

:::
due

::
to
:::
sea

:::
ice

:::::::::
variability

::::
itself

::::::
rather

::::
than

:::
due

::
to

:::::
waves.
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Figure 8.
fig:final_corrected
Final estimate of the

::::
slope

:
power (a), directional (b), and joint (c,d,e) surface slope spectra every 12.5 km along an ICESat-2 beam

(example Track 3). (a) The angle-corrected,
:::::::::

cross-beam
::::::
average

:
spectrogram as a function of estimated wavelength λ and distance from the

ice-edge X . The power spectral
:::::::::
spectrogram

::
is

:::::::
re-binned

::
in

:::::::::
2.5× 10−3

::::::::::
wavenumber

:::::::
segments

:::
and

::
its

:
wavelength where

:
is
:
corrected by

about a factor of three due to a peak incident angle of about 66◦ (orange line in b). The observed and corrected peak wavelengths λ′ and λ
are shown as dashed and solid black line

:::
lines. (b) Mean directional PDF between ±85◦ every 12.5 km,

:::::::
rebinned

:::
into

::::
10◦

:::::::
segments. (c) to

(e) Rolling-mean smoothed directional wave spectra at the positions indicated at the respective green lines in (a) and (b).

4 Decomposition of
::::::::
Isolating

:::
the

:::::
wave

:::::
signal

::
in

::::
the along-track datato waves and surface roughness380

sec:variance

The estimate of the wave signal from sec. 2.3 can be used to decompose wave and ice surface variability. Each photon retrieval

is a super-position of ocean waves and sea ice variability
::::::
signals

:
like surface roughness, floe-size, and free board

:::
floe

:::::
size,

:::
and

::::::::
freeboard

:
height. A decomposition of

:::
the surface variability between waves and ice can rely on the coherence of across-

beam wave statistics, as well as their
:
a common noise level in wavenumber space

:
,
:::
and

:::
an

::::::::::
approximate

:::::
scale

:::::::::
separation

::
of

:::
the

::::::::
dominant

::::
wave

::::::
energy

:::
and

:::
the

:::
sea

:::
ice. For the purpose of decomposing the data we define similar signal-to-noise levels across385

beams in each 25 km segment (Fig. 5 a to f).
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The results of section 2.3
:::
the

::::
GFT

::::
(sec.

::::
2.3)

:
are used to delineate ATL03 photon heights between wave and sea ice surface

variability. We construct a binned wave height field along-track
:::::
along

:::
the

::::
track

:
from the GFT-derived surface slope spectrum,

by filtering out high-wavenumber components that likely do not correspond to swell waves. This
::
In

::::::
Figure

::
9

:::
we

:::::
show

:::
the

::::::::
identified low-pass

:::::
filters

:::
and

:::
the

:::::::::::
displacement

::::::::
spectrum

::::
(m2

::::
k−1)

:::::
rather

::::
than

:::
the

::::
slope

::::::::
spectrum

:::::::
((m/m)2

:::::
k−1),

::
as

::
in

::::
Fig.

::
8)

::
to390

:::::
better

::::::
separate

:::
the

:::::::::::::
high-frequency

:::::
noise

::::
from

:::
the

:::::::::::::
lower-frequency

::::::
waves.

:::
The

::::::::
low-pass filter is defined by a cutoff-wavenumber

kc, which is
::
k′c,:the first wavenumber where the

:::::::
observed

:
power spectrum changes slope. A change in the power-spectral slope

::::
slope

:::
of

:::
the

:::::::::::
displacement

::::::::
spectrum

:
in log-log scaling from the expected slope of surface wave spectra (k−5/2 or similar,

Toba, 1973) to horizontal indicated
:::::::
indicates a change in the signal-to-noise regime in the data (Fig. 9). Hence, horizontal

slopes at high wavenumber indicates
::::::
indicate

:
Gaussian (white) noise, while steep wavenumber-slope are the result of

::::::
steeper395

:::::
slopes

::
at

:::::
lower

:::::::::::
wavenumber

:::::
result

:::::
from wave-wave interaction (Kitaigorodskii, 1962; Hasselmann et al., 1973). The critical

wavenumber kc :
k′c:between both regimes is found using piecewise regression on the weighted cross-beam log-log power

spectrum (Fig. 9, Pilgrim, 2021).
::
In

:::::
cases

:::::
where

:::
the

:::::::::
piecewise

::::::::
regression

::::
fails

::
to
:::::::
identify

::
a

::::::::
separation

::
a
:::::
steep

:::
and

:::::::::
horizontal

:::::
slope,

::
no

:::::::
primary

:::::
wave

::::::::
spectrum

:
is
::::::::
identified

::::
and

::
no

::::::::
low-pass

::::
filter

::
is

::::::
applied

:::::
(Fig.

:::
8b,

::::::::::::
X > 87.5km).

For illustrative purposes,
:
we define a low-pass filter by setting kc ::

k′c:as the cut-off wavenumber. This low-pass filter po-

tentially creates artificial ringing in real space and for better results
:
, this should be replaced by a more complex filter design.

Here, wavenumbers higher than kc ::
k′c are excluded from the wave height model of all beams (Fig. 10a

:
, gray and blue lines

and
:::
the gray area in

:::
the inlet) by truncating the wavenumber space of the slope model p. From this truncated slope model

:
, we

can directly construct a coefficient matrix for the wave-height model ẑ for each individual beam by integrating in wavenumber

space. The coefficient matrix of the wave-height model ẑ is

d̂ = [−b−c
::1,−b−c::2, ...,−b−c::c

,a1, ...ac, ]
T ,

where bc :
cc:and ac are the model amplitudes corresponding the the cutoff frequency kc :

to
::::

the
:::::
cutoff

::::::::
frequency

:::
k′c:(note the400

integration of the trig-formula changes order and sign of the indices). The reconstructed wave-height model ẑ can then be

directly calculated from the original regressor matrix,

ẑ = H d̂ kck
′
c

::

−1, (13)
e:z_reconstre:z_reconstr

with kc = [k1,k2, ...,kc,k1, ...,kc]
T

:::::::::::::::::::::::::
k′c = [k′1,k

′
2, ...,k

′
c,k
′
1, ...,k

′
c]
T as shown in figure 10b blue line. The residual between the

height model ẑ and the observed smoothed photon heights z, zfree = z− ẑ, is an estimate of the freeboard height absent405

::
in

:::::::
absence

::
of

:
the influence of waves (Fig. 10d). The residual zfree has similar data density to the original ATL03 photon

retrievals but may reveal secondary, non-wavelike structures in the photon heights as shown in figure 10d. We provide additional

examples in suppl. Fig. S6 and S7
::
S9

::::
and

:::
S10.

Decomposing heights into wave and sea ice
::::::
sea-ice components allows us to estimate the fraction of the total height variance

that is neither due to waves nor photon variance on scales shorter than the 10-meter stencil. As shown in figure 10e, the410
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majority of the total variance is due to the photon variance around its 20-meter stencil mean for scales smaller then
::::
than the

stencil (Fig. 10d red line and black dots, ?). In this particular trackwave variance than comprises between ,
:::::

wave
::::::::
variance

::::::::
comprises

::::
then

:
another 20% to 50% of total photon height variance. The remaining varianceabout, about 5% to 20%, due to

neither
:
is
::::
then

::::::
neither

::::
due

::
to waves nor the photon cloud,

:
.
::
It is from differences in the observed and modeled wave heights, ẑ

and z. We assume this is
:
,
:::
and

:::
we

:::::
assign

::::
this to sea-ice-related variability.415

The distribution of the residual statistics is, by model design, approximately Gaussian (Fig. 3e) and hence non-wave signals

with non-linear imprint could contaminate the wave estimate and decomposition. In general
:
If
::::

the
::::::::::
contribution

::
of

:::::::::
non-wave

::::::
signals

::
to

:::
the

:::::
across

:::::
beam

:::::::
average

::
is

:::::
minor, this decomposition removes waves as the dominant source of variance on scales

larger than 20 meters, allowing .
::::
This

::::::
allows for additional analysis of the residual signal, and more consistent surface height

signals in wave-affected and low-sea ice regions.
:
A

:::::
better

::::
filter

::::::
design

:::
can

::::::
further

::::::::
improve

:::
this

:::::::::
separation

:::::::
between

:::::
waves

::::
and420

:::
sea

:::
ice.
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fig:cut_off
Sections of derived displacement power spectra ˆ̃Sh for Track 3 (Fig. 8) for each beam (a to f). The black lines show the position

of the estimated cut-off wavenumber kc :
k′c:based on piece-wise regression on the weighted mean of all beams. Darker colored lines show

sections closer to the sea ice edge and lighter colors show sections further into the sea ice.
:::::::
Estimates

::
of

::
k′c::

at
:::::::
X > 100

:::
km

:::
fail

:::
due

::
to
:::

no

::::
slope

::::::::
separation

:::::::
(compare

::
to

:::
Fig.

:::
8a).

::::
Note

:::
that

:::
we

::::
show

:::
the

:::::::::
uncorrected

::::::::::
displacement

:::::::
spectrum

::::
rather

::::
than

::
the

::::::::
corrected

::::
slope

:::::::
spectrum

::
as

:
in
:::::
figure

::
8.

:::
The

:::::::
corrected

::::::
spectral

::::
peak

::
at

::::::
λ= 125

:::::
meter

::::
(Fig.

::
8)

:::::::::
corresponds

::
to

:::
the

:::
peak

:::::
about

:::::::
k′ = 0.02

:::::::
meter−1

::
in

:::
this

:::::
figure.

5 Discussion
sec:discussion

ICESat-2 photon data frequently shows wave-like signals in sea ice and these substantially impacts
:::::
impact

:
the marginal ice

zone. In this paper, we show, for the first time, how paired laser-altimeter observations can be converted into directional surface

wave spectra. We describe a two-part algorithm that efficiently decomposes the IS2 photon retrievals into a surface wave signal425

as well as variability due to sea ice. The 1st
::::
first

:::::
(GFT)

:
part of the algorithm is based on a linear inversion method to fit
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Figure 10.
fig:decomp
Variance decomposition of the photon-cloud data (ATL03) based on the GFT of example Track 2. (a) The observed mean surface

height slope b is shown in gray and the truncated model b̂ in blue. The inset shows the corresponding smoothed spectral amplitudes and
cut-off wavenumber kc::

k′c:as a black line. (b) The observed photon cloud is shown as black dots, re-binned data z as a red line (sec. 2.1),
and the reconstructed surface heights as a thin blue line ẑ (eq. 13). (c) Corresponding ATL07 surface heights product shown as in figure 2.
(d) Residual photon heights (black) and binned heights (red) using ẑ− z. (e) Variance fraction every kilometer with the fraction due to the
photon cloud (gray), the truncated wave model ẑ (blue),

:::
the variance of wavenumber > kc::::::::::

wavenumbers
::::
> k′c:(green), and the residual of

the model r (red, eq. 1).

wavenumber coefficients to the ATL03 data (sec. 2.2 to 2.4), and the 2nd
::::::
second

:::::
(MH) part uses a non-linear inversion method

that optimizes for most-likely wave incident angles (sec. 3.1).
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The combined method than provides a highly-resolved 2D-surface wave spectra every 12.5 km along each IS-2 track

(Fig. 8a,b) as well as an improved surface height estimate when the wave signal is removed (Fig. 10). The surface wave430

estimate relies on the one hand on the redundancy across beams to optimize the signal-to-noise ratio in wavenumber space

and on the other hand on the difference across beams for the angle inversion. The iterative solution proposed here leads to an

interpretation of the IS-2 track as
:
a streak of two-dimensional wave spectra, including error estimates on each variable (Fig. 8c

to e).

We identify the range of wavenumbers that contain wave energy in each segment by establishing a dynamic noise level435

(sec. 4). Removing the wave energy as a dominant source of variance reveals additional structure in the ATL03 photon cloud

data that is not as readily present in the ATL07, or other higher level products (Fig. 10d, or suppl. Fig. S6 and S7
:::
S9

:::
and

::::
S10),

either because it is obscured by wave signals or the data is not present. A
::::
Even

::::::
though

:::
we

:::
do

:::
not

::::::::::
investigate

:::
the

:::::::
residual

::::::
photon

::::::
heights

::::::
further,

:::
we

::::::
believe

::::
that

:
a removal of the wave signal may have substantial benefits for

:::::::::::
understanding

:::
the

:::
sea

:::
ice

:::::::
structure

:::
and

:
classifying photon data for ATL07 products and above. Not removing the wave signal likely leads to

::
an

:
aliasing440

effect of the waves into the freeboard height (compare panel
:::::
panels b and d in figure 10).

a)

b)

c)

d)

e)

f )

Figure 11.
fig:variance_decomp
Variance decomposition of ATL03 photon cloud data and comparison with ATL07 data. (a) Across-beam averaged variances for

Track 3 (granule 05160312, see suppl. Table). The photon cloud variance is shown in black
:::
gray (same as Fig. 10b black dots), the variance

of the 20-meter stencils is shown in light blue (same as Fig. 10b red line), and the variance of the low-pass filtered wave model in dark blue
with a black outline (same as Fig. 10b blue line). (b) Variance of ATL07 based on the provided segment heights. Gray hatched areas indicate
no data in ATL07 as for this track. Black

:::
The

::::
black

:
line is repeated from panel (a) for comparison. (c and d) Same as (a) and (b) but for Track

2 (granule 08070210). (e and f) Same as (a) and (b) but for Track 4 (granule 05180312)

Our quantification of wave energy allows for an improved understanding of photon variance . While in three
::
the

::::::::
observed

::::::
surface

::::::::
elevations

::
in

:::::::::::::
sea-ice-covered

:::::
areas.

:::
We

:::::::
showed

:::
that

:::::
ocean

::::::
surface

::::::
waves

::::
have

::
an

:::::::::
important

::::::::::
contribution

::
to

:::
the

:::::::
variance
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::
in

:::
the

:::::
MIZ.

:::::
While

:::
the

:
example tracks have a substantial amount of variance in photon height on scales smaller then

::::
than

20-meters (Fig. 11a,c,e gray area), the variance on scales longer than 20-meters is clearly dominated by the effect of waves445

(Fig. 11a,c,e blue area). Especially in the MIZ, only a small fraction of this re-binned variance is due to non-wavy
::::::::::::
non-wave-like

features of the surface (Fig. 11a and e gray-blue area at 0 - 50 km from the ice edge).

:::
The

::::::
chosen

::::::::
examples

:::::
show

:
a
:::::
clear

::::
wave

::::::
signal

:::
that

:::
can

:::
be

::::::::
separated

::::
from

:::::::::::::
high-frequency

:::::
noise

::
by

:::::
using

:
a
::::::
simple

::::::::
low-pass

::::
filter

::::
with

:
a
::::::
cut-off

::::::::
frequency

::
k′c:::::

(sec.
::
4).

::::
This

::::::
cut-off

::::::::
frequency

:::::::
assumes

::
a

::::
scale

:::::::::
separation

:::::::
between

:::::
waves

:::
and

:::
sea

:::
ice

::::::::
variance,

:::
that

::::::::
generally

::::
may

:::
not

:::::
exist.

::::
The

::::::::
identified

::::::
cut-off

:::::::::
frequency

:::
lies

::
in

:::
the

::::::::
plausible

:::::
range

::
of

:::::
wind

::::::
waves

::::::::
(k = 0.05

::
to

::::
0.1).

:::
In450

::::
cases

::::
with

:::::
wind

:::::
waves

:::
and

::::::::
complex

:::
sea

::
ice

:::::::::
structures

::::::::::::::::::
(Alberello et al., 2022)

:
,
:
a
:::::::::
separation

:::::::
between

:::
the

::::
wave

::::
and

:::
sea

:::
ice

:::::
signal

:
is
:::::::::
hampered.

:::::::
Without

::::::
adding

:::::::::::
observations

::::
other

::::
than

:::::::::
ICESat-2,

:::
we

:::
are

:::
not

::::
able

::
to

::::::
directly

:::::::::::
differentiate

:::::::
between

::::
wind

:::
sea

::::
and

::::
well.

This wave-induced variance in
::
the

:
photon cloud of ATL03 can, under certain conditions, also be captured by ATL07. How-

ever, we suggest that the ATL07 algorithm also can potentially capture an aliased wave signal, or can fail to provide a sufficient455

sea-ice height product at all. While in the case of Track 3 (Fig. 11a,b), waves clearly affect the observation, ATL07 does not

provide data in this region (see also suppl. Fig. S2
::
S1) and so our inversion method using ATL03 allows for improved MIZ

freeboard data. In other cases, like Track 2 (Fig. 11d), ATL07 does provide data at some but not all locations along-track
:::::
along

::
the

:::::
track, even though there is a high photon density throughout the track.

In the MIZ, ATL07 variance can exceed the variance estimates of waves, indicating a potential aliasing of wave-induced460

signal to other scales (Fig. 11d). This aliasing can be due to the binning of data based on photon counts which result in varying

bin length. Varying bins-length potentially sub-samples the wave’s energy at scales on, or around the Nyquist frequency of

the dominant waves. Since both the wavelength and photon density highly vary, it is generally unknown whether or not the

photo-count based
:::::::::::::::
photo-count-based measure samples these wavelengths correct

:::::::
correctly

:
and does not negatively affect

freeboard retrievals or wave energy estimates in the MIZ .465

The provided algorithm has particular use when applied at scale. We expect 10− 15% of the IS-2 tracks in polar regions

to be dominated by waves (Brouwer et al., 2021). That implies roughly 3− 4.5× 103 cases of diverse wave observation in the

MIZ (as of June 2022) to sample the large space of wave-ice interaction, which is likely enough to better constrain sea-ice

wave interactions. Because IS-2 can also record freeboard heights, floe sizes, and sea ice types, this analysis can provide

complimentary sea ice information to better constrain dynamics in the MIZ. In particular this analysis will be used to provide470

data for case studies of wave-ice interaction in the MIZ, statistically constrain wave attenuation in sea ice (Fig. 5), and leverage

the wave-removed residual signal to improve ice classification (Fig. 10 d).

5.1
:::::::

Applying
::::
the

::::::::::
Generalized

:::::::
Fourier

::::::::::
Transform

:::::::
method

:::
for

::::::::::
along-track

:::::
wave

:::::::
spectra

We chose a generalized Fourier transform (GFT) method
::
for

:::
the

:::::
wave

::::
field

::::::::
inversion

:
instead of more common methods like

DFT, or Lomb-Scargle (LS, sec. 2.2, Lomb, 1976; Scargle, 1982; Wunsch, 1996; Kachelein et al., 2022). In contrast to the475

DFT and LS, the GFT is variance conserving method that can be applied to unstructured data and does not require periodicity

over an (arbitrary) window length.
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::
As

::::
with

::::
any

:::::
linear

::::::
inverse

:::::::
method,

::::
the

::::
GFT

:::::::
assumes

::::::::
Gaussian

::::::::
statistics,

::::::
which

::
is

::::::
obeyed

:::
by

:::::
linear

:::::
waves

::::
but

:::::::::
potentially

::::::
violated

:::
by

:::
sea

:::
ice

:::::::
surface

:::::::::
variability.

::
To

::::::::
minimize

::::
the

:::::
effect

::
of

:::
sea

:::
ice

::::::
heights

:::
on

:::
the

:::::
wave

::::::::
inversion,

:::
we

:::
use

:::::
mean

:::::::
surface

:::::
slopes

:::::
rather

::::
than

::::::
heights

:::::
(sec.

::::
2.1),

:::::
which

::::::
results

::
in

::
an

:::::::::::
approximate

::::::::
Gaussian

::::::
residual

:::::
(Fig.

:::
3e).480

The GFT is customize-able
::::::::::
customizable

:
to the wavenumbers of interest and additionally provides uncertainty bounds on

all parameters. In turn, it comes with the requirement to apriori know what spectral resolution is needed. Given Atlas’s high

resolution
::::::::::::
high-resolution

:
photon cloud data, we chose to resolve the plausible wavenumber range for surface waves on a

resolution about twice the one of the DFT. Other, more targeted, narrow-banded wavenumber-spaces
::::::::::
wavenumber

::::::
spaces are

possible, but here we choose wavenumber ranges that are the most general for surface waves. A higher resolutions
::::::
Higher485

::::::::
resolution,

:
especially at long wavenumber allows us to provide new insights in

:::
into

:
how narrow-banded the surface wave field

is; a parameter that is related to the surface’s curvature and likely important for wave-induced sea-ice breakup (Meylan and

Squire, 1994).

A major advantage of the GFT is that it can be extended to inversions of the wave field for each IS2 track by coupling

neighboring or overlapping segments, similar to Kalman inversion methods. We illustrate this by simply iterative updating the490

data segments and models priors (sec. 2.4, Fig. 4). This coupling of inversions along segments advances the task on hand to

::
the

::::
task

::
of

:
solving the coupled inversions consistently along each beam, rather then

::::
than independently for each segment. The

same idea can be extended by coupling the model prior P across beams. This coupled approach ensures smoothly varying

wave statistics along and across-track, with the amount of smoothness tuned through the amplitude of P in (eq. 6).
:::::
Future

:::::::::
comparison

::::
with

:::::
other

:::::::::::
observations

:::
will

::::
help

::
to

::::::::
constrain

:::
the

::::::::
amplitude

:::
of

::
P.495

5.2
:::::::

Applying
::::
the

:::::::::::::::::
Metropolis-Hastings

:::::::
method

:::
for

:::::
wave

:::::
angle

::::::::
inversion

The inversion for the wave’s incident angle is based on the cross-beam coherence
::::
phase

::::
lag (sec. 3). The coherence

:::::
phase

::
lag

:
between two beams is limited by the geometry (Fig. 1b), a difficult-to-estimate properties

:::::::
property of the wave field (i.e.

its "groupiness", suppl. Fig. S7),
:::::::::::::::::::::::::::::::::::::::::::::::::::::::::::
(i.e. its "groupness", suppl. Fig. S7, Longuet-Higgins and Deacon, 1957),

:
as well as obser-

vational noise (sec. 3.1). We choose to approach this low signal-to-noise problem with a super-sample of marginal distribu-500

tions derived from independent MCMC samples of monocromatic
:::::::::::::
monochromatic

:
plane waves. The unweighted mean of this

method across all wavenumbers is similar to the lag-cross correlation of the beam pair. However, by focusing on a limited set

of energy-containing wavenumbers, the signal-to-noise-ratio
:::::::::::
signal-to-noise

:::::
ratio improves above a lagged cross-correlation

approach. Limiting the sample to the most energetic waves and using a prior
::::
raises

:::
the

:::::::::::::
signal-to-noise

::::
ratio

:::
and

:
is what enables

an inversion of the approximate wave angle (Fig. 7d).Alternatively, ensemble-based approaches could search for a common505

direction across wavenumbers simultaneously, but the presented MCMC method has an advantage in that it

:::
The

::::::
quality

::
of

::::
MH

::::::::
inversion

::::::
method

:::::::
depends

:::
on

:::
the

::::::::::
wavelength,

:::::
wave

:::::::::
amplitude,

:::
and

::::::::
curvature

::
of

:::
the

:::::
wave

::::::::
spectrum.

::::
The

:::::
longer

:::
the

:::::
wave

::
the

::::::
better

::
the

:::::
phase

:::
lag

::::
can

::
be

::::::::
observed,

:::
but

:::::
those

:::
are

:::
not

::
the

:::::
most

::::::::
energetic.

::
In

::::
turn,

:::
the

:::::
most

:::::::
energetic

::::::
waves

::::
have

:::::::
typically

::::::
shorter

:::::::::::
wavelengths

:::
that

:::
are

::
of

:::::::
80-250

:::::
times

:::
the

:::::::
segment

:::::
length

:::::::
(25km),

::::::
which

:::
can

::::
lead

::
to

:::::::
multiple

:::::::
minima

::
in

::
the

:::::::::::
optimization

::::
due

::
to

:
a
:::
2π

:::::::::
ambiguity.

:::::::
Finally,

:::
the

::::::::
curvature

::
of

:::
the

:::::
wave

:::::::
spectrum

::::::::::::
characterized

:::
the

:::::
length

:::
of

::::
wave

:::::::
groups,510

25



:::::
which

::
in

::::
2D,

:::::
erode

:::
the

::::::
ability

::
to

:::::::
observe

:::
the

::::::
average

::::::
phase

:::
lag

:::::::
between

:::
the

::::
two

::::::
beams

::::
(2nd

:::::
bullet

:::::
point

::
in

::::
sec.

:::
3.1,

::::::
suppl.

:::
Fig.

::::
S7).

:::
The

::::::::
inversion

::
is

::::::
limited

:::
by

:::
the

::::::::
geometry

::
of

:::
the

::::::::::
observation

::::
(Fig.

::::
1c).

::::::
Waves

::::::
coming

:::::
from

::::
steep

::::::
angles

:::::::
relative

::
to

:::
the

::::
IS-2

::::
track

::::::
cannot

:::
be

::::::::
resolved,

::::
such

::::
that

:::
our

::::::::
2D-wave

:::::
field

::::::::
estimates

:::
are

::::::
limited

:::
in

:::::
range

::::::
(about

::::::
±75◦).

::::
This

::::::::
problem

::::
may

:::
be

::::::::
overcome

::
by

:::::
using

::::::
better,

::::::::::::::::::
observationally-based

:::::
priors,

::
or
:::::::::
enriching

:::
our

:::::
WW3

:::::
priors

::::
with

::::
data

::::
from

:::::
other

:::::::
sources.515

:::
The

:::::
angle

::::::::
inversion

:::::::
method

::::::::
generally can sample multiple

:::::::
incident

::::::
angles,

:::
i.e

:::::::
multiple

:
minima in the objective function.

Multiple minima, and therefore multiple potential incidence angles, are a plausible result for two-dimensional wave fields

when observed only along segments (Fig. 6). ,
::::

and
::::
may

:::
be

::::
able

::
to

::::::
detect

:::::::
multiple

:::::
wave

:::::::
systems

:::::
from

:::::::
different

:::::::::
directions

::::::::::::::::::
(Alberello et al., 2022)

:
.
::::::::
However,

::::
after

::::::
testing

:::
the

:::::
effect

:::
of

::::
wave

::::::
groups

::::
and

::::::::::
uncorrelated

:::::
noise

:::
on

:::
the

::::::::
sampling

:::::::
method,

:::
we

::::
came

::
to

:::
the

::::::::::
conclusion

:::
that

:::
the

:::::::::::::
signal-to-noise

::::
ratio

::
is

:::
too

:::
low

:::
for

::
a
:::::::::::::::::
frequency-dependent

:::::
angle

:::::::::
correction,

::::
even

:::::
after

::::::
adding520

:
a
:::::
prior.

::::::
Hence,

:::
for

:::
the

:::::::
purpose

::
of

:::::
angle

:::::::::
correction,

:::
we

::::
here

:::::::
assume

:::
that

:::
all

::::
wave

::::::
energy

::::::
comes

:::::
from

:::
the

::::
same

::::::
angle,

:::
i.e.

:::
the

::::
angle

:::
of

:::
the

::::
most

::::::::
energetic

::::::
waves.

:::::
Even

::::::
though

:::
the

::::
true

:::::
wave

::::
field

::::
may

:::
be

::
a

:::::::::::
superposition

::
of

::::::::
multiple

::::
wave

:::::::
systems

:::::
with

::::::
varying

:::::::::
directions,

:::
the

:::::
single

:::::::
incident

:::::
angle

::
is
:::::::::
justifiable

::::
here,

:::::::
because

:::
we

:::
are

:::::::
focused

::
on

:::
the

::::::::::
attenuation

:::
and

::::::::::
propagation

:::
of

::
the

::::::::
dominant

:::::
wave

::::::
energy.

The low signal-to-noise of the angle inversion requires regularization (sec. 3.1). Since directional wave observation
::::::::::
observations525

co-located with IS2 tracks are sparse and not readily available, we relied on Wave Watch III (WW3) hindcast models as a prior

(IOWAGA Tolman, 2009). The wave hindcasts may perform sufficiently well in the Northern Hemisphere but are known to

have limitations in the Southern Ocean MIZ, potentially due to wind biases (Belmonte Rivas and Stoffelen, 2019; Hell et al.,

2020; ?). The lack of certainty in WW3’s peak direction and frequency is expressed
::
in

:
the value of the hyper parameter

:::::::::::::
hyperparameter βθ (eq. 12). A value of βθ = 2 leads to the desired behavior of breaking the symmetry (compare shading in530

figure 6 b and d) but not imposing the optimization result through the prior (Fig. 7d blue and orange lines).

The angle inversion is limited to the geometry of the observation and the nature
:::::::
proposed

:::::::
MCMC

:::::::
method

:::::
shares

:::::::
aspects

::::
with

:::
the

:::::::
Wavelet

::::::::::
Directional

:::::::
Method

::::::::::::::::::::::::::::::
(WDM, Donelan et al., 1996, 2015),

::::::
which

::::::::::
decomposes

::::
the

::::::
signals

::
of

:::
at

::::
least

:::::
three

::::::::
stationary

::::
wave

:::::::::::
observations

::::
into

:::::::
wavelets

:::
for

::::
each

:::::::::
frequency.

::::::
Similar

::
to

:::
our

:::::::
method,

::::::
WDM

::::
uses

::
the

:::::
phase

:::
lag

::
of

:::
the

::::::::
wavelets

:::::::
between

:::
the

::::
three

:::::::
stations

::
to
:::::::

identify
::
a
:::::
wave

:::::::
incident

:::::
angle

:::
per

:::::::::
frequency.

::::::
WDM

:::::
could

::
be

:::::::
applied

::
to

::::::::
transects

::
of

:::
the

:::::
wave535

::::::
surface

::
as

::::::
present

::
in

:::
our

::::::::
analysis.

::::::::
However,

::::::::
ICESat-2

::::
only

:::::::
provides

:::
two

::::::::::
neighboring

:::::
laser

::::::
beams,

:::
and

:::::
other

::::
beam

:::::
pairs

:::
are

:::
too

:::::
distant

::::::
(about

::
3

:::
km)

:::
for

::::::::
coherent

:::::
phase

::::::::
analysis.

::
In

::::::::
addition,

:::
the

::::::::::::
signal-to-noise

::::
may

:::
be

::::::::::
substantially

:::::
lower

:::
in

:::
the

::::::::
ICESat-2

:::::::::::
observations,

::
as

::::
wave

:::::
crests

:::
are

:::::::::
potentially

::::::::
distorted

::
by

:::
sea

:::
ice

::::::::
structure.

:::::::::
Therefore,

:::
we

:::::::::
introduced

:
a
::::::::::
wave-angle

:::::
prior

::::::
(eq.12)

::
to

::::
break

:::
the

:::::::::
ambiguity

::
in

:::
the

::::::::
observed

:::::
phase

:::
lag

::::
(Fig.

:::::
6b,d,

:::::::
shading).

6
::::::::::
Conclusion540

sec:conclusion

:::
We

::::::::
proposed

:::
and

:::::
tested

::
a
::::::
method

:::
to

:::::::::
decompose

::::::
photon

::::::::
retrievals

:::::
from

:::
the

::::::::
ICESat-2

:::::::
satellite

:::
into

::
a
::::::
surface

:::::
wave

:::::
signal

::::
and

::::::
residual

::::::::
variance.

::::
The

:::::::
surface

::::
wave

::::::
signal

::
is

::::::::
identified

:::::
using

::
a
::::::::::
Generalized

:::::::
Fourier

:::::::::
Transform,

::::
and

::
it

:::
can

:::
be

::::::::
expressed

:::
as

:
a
:::::::::
directional

:::::::
surface

:::::
wave

::::::::
spectrum

::
by

::::::
adding

::
a
:::::::::::::::::::
Metropolitan-Hastings

::::::::
sampling

:::::::
method

::
to

:::::::
identify

:::
the

:::::::
incident

:::::
angle

:::
of
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::
the

:::::::::
dominant

::::
wave

::::::
energy

:::::
(sec.

:::
3).

:::
The

:::::
wave

:::
and

::::
sea

:::
ice

:::::
signal

::
is

::::::::
separated

:::::
using

::
a

::::::
simple

::::::
cut-off

::::::::
frequency

::::
that

::::::
implies

::
a

::::::::
separation

::
of

::::::
scales.

:
545

::::::
Surface

::::::
waves

:::
and

:::
sea

:::
ice

:::
can

:::::
have

:::::::
complex

:::::::::
non-linear

::::::::::
interactions

:::
that

:::
are

:::::::::
important

::
to

:::::
model

:::
for

:::::::::
improving

:::
sea

:::
ice

::::
and

::::::
climate

::::::::::
projections.

::::
This

::::::
method

::::
will

::::::
enable

::
us

::
to

::::::
observe

:::
the

:::::::::
interaction

::::::::
between

::
the

:::::::::
dominant

:::::
waves

:::
and

:::
sea

:::
ice

:::
by

:::::::
utilizing

::::
large

:::::::
datasets

::::
from

::::::::
ICESat-2

::::::
(IS2).

::::::::
However,

:::
I2’s

::::::
nearly

::::::::::::::
one-dimensional

::::::::
snapshots

:
of the surface wave statistics

:::::
height

::::
can

:::::
hardly

:::::::
capture

::
all

::::::::
possible

::::::::::
interactions

:::::::
between

:::::
waves

::::
and

::::
ice.

::::::
Besides

:::::
gaps

::
in

:::
the

:::::::::::
observations

:::
due

:::
to

:::::
clouds

::::
and

:::::::
varying

::::::
photon

:::::::
densities

:::::::
between

:::
sea

:::
ice

:::::
types,

::
a

::::::
correct

::::
wave

::::
field

::::::::
inversion

::
is

::::
only

:::::::
possible

::::
with

::::::::
sufficient

::::
data

::::::
density

:::
and

::
a

::::::
limited550

::::
range

:::
of

:::::::
incident

::::::
angles (sec. 3.1). Waves coming from steep angels compared to the

:::
3).

::::
Even

:::::::
though

:::
this

:::::::
method

:::::::
outlines

:
a
:::::
better,

:::::
more

::::::::::
transparent

:::::::::
wave-field

:::::::
inversion

::::
than

::
a
:::::
DFT,

:
it
:::::::
remains

::
to
:::

be
::::
seen

::::
how

:::
the

:::::::::
interaction

::
of

:::::
those

:::::::::
limitations

::::
can

::
be

::::
used

::
to

:::::::
provide

:
a
::::::::::::::
highly-resolved

:::::
global

::::::::::
wave-in-ice

:::::::
product.

:::::::::::
Comparisons

::::
with

:::::
other

::::
data

:::::::
sources,

:::::
either

:::::
from

:::::
in-situ

:::
or

::::::
remote

::::::
sensing

:::::::::::
observations,

:::
are

::::::
needed

::
to

::::::::::
understand

::::
these

:::::::::
limitations

:::::
better

::::
and

::::::
validate

::::
this

:::::::
method.

:::::
Waves

::::
and

:::
sea

:::
ice

::::
have

:::::
scales

:::::::
ranging

:::::::
multiple

::::::
orders

::
of

:::::::::
magnitude

:::::
such

:::
that

::
it

::
is

::::::::::
challenging

::
to

:::::::
separate

::::
both

::
in

:::
the

::::
IS2555

:::::::::::
observations.

:::
The

::::::
choice

::
of

:::
the

::::::::::
parameters

::
in

:::
this

:::::::
analysis

:::::::::
(10-meter

::::
bins,

:::::
25km

:::::::
segment

::::::
length,

::::
and

:::
the

::::::::::
slope-based

::::::
cut-off

::::::::
frequency

:::
k′c):::::

focus
:::
on

:::::::::
identifying

:::::
swell

::::
wave

::::::
events

::::::::
routinely

::::::
created

:::
by

:::::::
synoptic

::::::
storms

:::::::::::::::
(Hell et al., 2021).

::::::::
However,

:::::
even

::
on

:::::
these

:::::
scales

:::
(80

::
to

:::
350

:::::::
meters),

:
a
:::::::::
separation

:::::::
between

:::::
wave

:::
and

::::::
sea-ice

:::::
signal

::::
may

::::
only

::
be

:::::::
possible

:::::
when

:::
the

:::
sea

:::
ice

:::::::
variance

:
is
:::::
weak

:::
on

::::
those

::::::
scales

:::
and

:::
the

::::
data

::
is

:::
not

:::
too

::::::
gappy,

::
as

::
in

:::
the

::::::
chosen

::::::::
example

:::::
tracks

::::
(Fig.

::
3,
::::
Fig.

::::
10).

::::
High

::::::
levels

::
of

:::
sea

:::
ice

:::::::
variance

::
or

:::::::
frequent

::::
data

:::::
gaps

:::
will

::::
lead

:::
to

:::::::::
systematic

:::::
biases

::::
and

:::::::
aliasing

::::::
effects

::
in

:::
the

:::::
wave

:::::::
spectral

::::::::
estimates.

:::
To

:::::::
identify560

::::
these

:::::
more

:::::::
complex

:::::
cases,

:::
we

::::::::
proposed

:::::::::
mitigation

::::::::
strategies

::::
that

::::::
exploit

:::
the

:::
fact

::::
that

::::
swell

:::::::
spectra

:::::::
normally

:::::
vary

::::
over

:::::
larger

:::::
scales

::::
than

:::
the

:::::::
segment

:::::
length

:::::
(12.5

:::
km)

::
or
:::
the

:::::::::
separation

:::::::
distance

::
of

:::
the

:::::
beam

::::
pairs

::
(3

::::
km):

:::
By

::::::::
applying

::
an

:::::::
iterative

::::::::
inversion

::::
(Fig.

:::
4),

::::
using

::::::::::
cross-beam

:::::::
average

::::
(Fig.

:::
5),

::::
and

::::::
provide

:::::
error

::::::::
estimates

::
in

:::::::::
frequency,

:::
real

::::::
space,

:::
and

::::::::
direction

::::
(eq.

::
9,

:::
eq.

:::
10,

:::
Fig.

:::
5i,

::::
Fig.

:::
7b),

:::
the

:::::::
method

:::::::
provides

::::::
ample

:::::::
auxiliary

::::
data

::
to

::::::
detect

::::::
unusual

:::::::
features

::
in
:::
the

::::::::::::
observations.

:::::::
Complex

:::::
cases

::::
that

::::
show

::
a

::::
large

::::::
spread

:::::::
between

::::::
beams,

::
or

:::::
large

:::::
errors,

::::
can

::
be

::::::::
identified

:::
and

::::::::
excluded

::::
from

::::::
further

:::::::
analysis

::::::
(suppl.

::::
Fig.

::::
S4).565

::::::
Despite

:::
the

::::::::::::
shortcomings

:::
and

:::::::::
limitations

:::
of

::::::::
individual

:::::
track

:::::::::
inversions,

:::
the

:::::::
method

:::
has

::::::::
promise,

::::::::
especially

:::::
when

:::::::
applied

:
at
::::::

scale.
:::
We

::::::
expect

::::::::
10− 15%

::
of

:::
the

:
IS-2 track cannot be resolved, which limits successful 2D-wave field estimates to cases

where we have an educated guess of an incident angle that is not too steep. This problem may be overcome by using better,

observationally-based priors, or enriching our WW3 priors with data from other sources.
:::::
tracks

::
in

::::
polar

:::::::
regions

::
to

::
be

:::::::::
dominated

::
by

:::::
waves

::::::::::::::::::
(Brouwer et al., 2021)

:
,
:::::
which

::::::
means

::::
there

::
is

::::::
already

:::::
large

::::::::
collection

::
of

::::::
diverse

:::::
wave

::::::::::
observations

::::
from

:::::
IS-2.

:::::::
Because570

:::
IS-2

::::
can

:::
also

::::::
record

::::::::
freeboard

:::::::
heights,

:::
floe

:::::
sizes,

:::
and

:::
sea

:::
ice

:::::
types,

:::
this

:::::::
analysis

:::
can

:::::::
provide

::::::::::::
complimentary

:::
sea

:::
ice

::::::::::
information

::
to

:::::::
constrain

:::::::::
dynamics

::
in

:::
the

:::::
MIZ.

::::
This

::::
will

::
be

::::
used

::
to
::::::::::

statistically
::::::::
constrain

::::::::::::::
parametrizations

::
of

:::::::::::::::
wave-attenuation

::
in

:::
sea

:::
ice

::::
(Fig.

::
5)

::::
and

::::
can

:::::::::
potentially

:::::::
leverage

:::
the

::::::::::::
wave-removed

:::::::
residual

:::::
signal

::
to

:::::::
improve

:::
ice

:::::::::::
classification

::::
(Fig.

:::
10

:::
d).

While
::::::
Finally,

:::::
while

:
the here developed methods are

::::::
method

::
is customized for ICESat-2 photon retrievals, this approach is

applicable
:::::
applies

:
to any unstructured quasi-instantaneous observation of a two-dimensional wave field

::
the

:::::
ocean

::::::
surface. In the575

case of IS-2, cross-track information is limited, but other future remote-sensing methods may have complimentary information

about the surface wave field. Such an inversion could combine data from IS-2, SAR, and CFOSat to help constrain the surface

wave filed in the MIZ or the open ocean (Collard et al., 2022).
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Code and data availability. The algorithms are available through Hell (2022a, DOI: 10.5281/zenodo.6908645) and data are available through

Hell (2022b, DOI: 10.5281/zenodo.6928350). The IS-2 ATL03 data (Neumann et al., 2021) and ATL07/10 data (?) is available through580

NSIDC (https://nsidc.org/data/icesat-2/data-sets), or OpenAltimetry (https://openaltimetry.org/data/icesat2/, Khalsa et al., 2020). The wave

model data are available through the Integrated Ocean Waves for Geophysical and Other Applications (IOWAGA) project: ftp.ifremer.fr/ifremer/cersat/products/gridded/wavewatch3/hindcast/.

The analysis uses and modifies the icesat2 toolkit (https://read-icesat-2.readthedocs.io/)

Appendix A: GFT priors
app:GFT_priors

A1 Data Prior R585
sec:data_prior

We define the data prior R based on the surface slope uncertainty, as

R = βR σ(b)2
σh
∆x

where the stencil width is ∆x= 20 meters, σ(b) is the standard deviation of the data b within the segment, σh is the vector

of standard deviation of each data point (each stencil, sec. 2.1), and βR is a tuning parameter that determines the ratio of the

model and data priors in eq. 6 (Fig. 2 blue lines). The standard deviation, or error, of the data is divided by the stencil size to

get an error in units of surface slopeand R is amplified by
:
,
:::
and the variance of the data

:
is

::::
then

::::
used

::
to

:::::::
amplify

:::
the

::::
prior

:::
R to

scale it against the model prior.590

To avoid over-fitting the ratio of the model prior P and data prior R has to be adjusted. For this we try different values of

βR and set it to 102 such that the distribution of the residual r is approximately Gaussian and that

||r||= ||b−H p̂|| ≈ 1,

as shown in Figure 3e. At locations with no data,
:
this results in a model decay to zero (Fig. 3 orange lines) on scales similar to

the data’s auto correlation.

A2 Model Prior P

As described in section 2.4, the GFT’s prior is initially
:::
for

:::::
initial

::::::::
segments

:::
are

:
derived from a PM-spectrum that is fitted to

a DFT of the segment data (Fig. A1a gray and black
:
b
:::::
gray

:::
and

:::::::::::
black-dashed

:
line). The initial prior Pinit is then defined595

as the peak-normalized PM-spectrum multiplied by the data variance σ(b)2 plus a 10% noise floor (Fig. A1a green
:
c
:::::
black

::::::
dashed

::::
line).

::::
The

:::::
initial

::::
prior

::
is

::::
used

::
to

:::::::
perform

:
a
::::
first

::::::::
inversion

::
of

:::
this

::::::::
segment,

:::
but

:
–
::
to
:::::
avoid

::::::::::
over-fitting

::
to

:::
the

:::
PM

::::::::
spectrum

:
–
::
a

::::::
seconds

::::::::
inversion

:::::
with

:::
the

::::
same

::::
data

::
is
:::::
done,

:::
but

::::
now

:::::
with

:
a
::::::
"data"

:::::
prior,

:::
i.e.,

:::
the

:::::::::
smoothed

:::::
result

::
of

:::
the

::::
first

::::::::
inversion

::::
(Fig.

::::
A1c

::::
black

:
line). The power of the resulting

:::
2nd

:::::
(final)

:
GFT model coefficients p̂ is then shown as red line in figure A1a.

::
in

::::
green

::::::
figure

:::::
A1c).600
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::::::::
Segments

::::
with

:
a
:::::::::
successful

::::::::
inversion

::
in

:::
the

:::::::
previous

:::::::
segment

:::
do

:::
not

:::::
make

:::
use

::
of

:::
the

:::::::::
PM-based

:::::
prior;

:::::::
Instead,

::::
they

:::
use

:::
the

:::
data

:::::
prior

::::
from

:::
the

::::::::
previous

:::::::
segment:

:
For a segment i with a successfully

::::::::
successful

:
inversion in the previous segment i− 1

:
,

we use a smoothed power spectrum based on p̂i−1 to derive Pi (fig
:::
Fig. A1b green line,

:
e

:::
and

::
g,

:::::
black

::::
lines,

:
sec. 2.4).

::::
Note

::::
that

::::
even

::::::
though

:::
the

:::::
initial

::::::::
PM-prior

::::::
pushes

:::
the

::::::
model

::
to

:
a
:::::
single

:::::
peak

::::::::::
spectrogram

:::::
(Fig.

::::
A1b

:::
and

::
c

::::::
dashed

::::
line),

:::
in

::::
cases

::::::
where

::
the

::::
data

::::
does

::::
not

::::::
support

::::
this

:::::
shape,

::
as

::
in

::::
this

::::::::
example,

::
the

::::::::
PM-prior

:::::
does

:::
not

::::::::
determine

:::
the

:::::
result

:::::
(Fig.

::::::
A1c,e,g

:::::
green

::::::
lines).605

:::
Any

:::::::
spectral

::::::
shape,

::::::::
including

::::::
double

::::::
peaks,

:::
can

::::::
appear.

::::::
Cases

:::::
where

::
a

:::
PM

::::
prior

::::::::
improves

:::
the

::::::::
inversion

:::
are

::::::
shown

::
in

::::::
suppl.

:::::
Figure

::::
S12.

:

Appendix B: Wave-watch III Prior
app:angle

The prior in eq. 12 uses an incident angle θ0(k) with an uncertainty σθ(k), defining the prior

Pθ(θ,k) =

(
θ0(k)− θ
σθ(k)

)2

. (B1)
eq:p_angleeq:p_angle

610

Both variables in the prior have to be taken from other data sources than IS-2
:
,
:
and here they are derived from WW3 global

hindcast wave-partitions (Tolman, 2009, using the Integrated Ocean Waves for Geophysical and other Applications (IOWAGA)

hindcast)) and depend on wavenumber. The WW3 hindcast data is selected in a box around the most equatorward photons in

ICESat-2 (suppl. Fig. S4
:::
S11 and. sec. 2.1). In cases where this box is within the sea-ice mask of WW3,

:
it is moved equatorward

along the IS-2 track until at least 2/3 of the box’s grid cells are not covered by the WW3 sea-ice mask.615

Within each box, the mean of the peak period, peak direction, and directional spread is calculated for each of the five

WW3 wavenumber partitions (Fig. 7a black dots). These partitions are interpolated and smoothed to the ki wave numbers of

interest to provide a best guess of
:::
best

::::::
guess the wavenumber-dependent peak direction and spread (Fig. 7 a

::
an

:
orange line

and shading). Note that it is hard to validate the WW3 partitions in the Southern Ocean due to a lack of contemporaneous

in-situ observations. The a lack of certainty in the wave-hindcast,
:
in combination with (any) smoothing procedure

:
, can lead to620

biases in the directional prior. Hence, we do not expect
::
the

:
direct alignment of the WW3 wave directions and those observed

in ICESat-2 observations. The WW3 incident angle is here solely used to reduce ambiguities in the objective function (Fig. 6

b and d and Figure 7) and can give a preferred incident wave angle, rather than a certain estimate of the dominant wave angle

(Fig. 7).
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