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Abstract. Sea ice plays-an-impeortantrole-in-is important for Earth’s energy budget by-impacting-as it influences surface albedo

and air-sea fluxes in polar regions. On its margins, sea-iee-is-heavily-impacted-by-waves-and-we-ecurrently-do-not-haverou

waves heavily impact sea ice. Routine and repeat observations of waves in sea ice and-taek-are currently lacking, and therefore

a comprehensive understanding of how waves interact with sea ice and how-they-attenuateare attenuated by it is elusive.
In this paper, we propese-develop methods to separate the two-dimensional (2D) surface wave spectra from sea ice height

observations aleng-each-made by the ICESat-2 tracklaser altimeter, a polar-orbiting satellite. A combination of a linear inverse
method, called Generalized Fourier Transform (GFT), to estimate the wave spectra along each beam and a Metropolitan Hasting
(MH) algorithm to estimate the dominant wave’s incident angle was developed. It allows us to estimate the 2D wave signal
and its uncertainty from the high-density, unstructured ATLO3 ICESat-2 photon retrievals. The GFT is applied to re-binned
photon retrials on 25 km segments for all six beams and outperforms a discrete Fourier transform in accuracy while having
fewer constraints on the data structure.

The Metropolitan-Hasting-algorithm-infers-the-MH algorithm infers wave direction from beam pairs every 25 km using
coherent crests of the most energetic waves. Beth-Assuming a dominant incident angle, both methods together allow a de-
composition into a-2D surface wave spectra with the advantage that the residual surface heights can potentially be attributed
to other sea ice properties. The deseribed-method-canroutinely-deeompose-combined GFT-MH method shows promise in
routinely isolating waves propagating through sea ice in ICESat-2 tracks-and-constrain-wave-attenuationin-sea-tee—data. We
demonstrate its ability on a set of example ICESat-2 tracks, suggesting a detailed comparison against insitu data is necessary_
to understand the quality of retrieved spectra.
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1 Introduction and Problem Description

Sea ice covers up to 9% of the world’s oceans, and plays an important role in the energy balance of Earth’s climate. Even
though sea ice damps ocean surface waves (Squire, 2007), broad regions along the periphery of the sea-ice-covered ocean are
continually under the influence of surface waves (Rapley, 1984; Horvat et al., 2020; Thomson, 2022; Horvat, 2022). These
regions are collectively referred to as the Marginal Ice Zone (MIZ). In the MIZ, waves influence the-sea ice’s thermodynamic
and dynamic properties of-sea-ice;-and-also-and impact the coupled exchange between atmosphere and ocean. Currently, we
do not have areliable global observations of waves in sea ice, and hence are unable to sufficiently understand air-sea exchange
and wave propagation in the MIZ. This paper describes how ICESat-2 altimeter observations can be used to record waves-wave
spectra in the MIZ, and to infer additional sea ice properties to-irform-for building parametrizations of wave attenuation in sea
ice.

Models of wave propagation in sea ice typically evolve the ocean surface wave spectrum, Sh(k) (meter? k1, k is the
wavenumber), which is attenuated when it comes into contact with sea ice. There has been significant debate over the functional
form and dependencies of this attenuation (Squire, 2018; Thomson et al., 2021). Yet as it controls how deep waves reach into
sea ice, it is vital for modeling MIZ variability and coupled feedbacks in the polar seas.

Constraining ice-induced wave attenuation is challenging because wave observations in ice are difficult to make at scale.
A majority of observations of waves in ice are carried out using ships or arrays of floating buoys deployed by ships (or
by helicopters from ships, see, for example Thomson, 2022, and references therein). While such observations provide high
temporal frequency observations of wave spectra, they only cover a limited geographic domain, and are limited by the sea ice
types and conditions at the original buoy locations. Recently satellite remote sensing technologies have shown promise for
describing wave spectra in sea ice regions. SAR imagery is capable of observing wave crests as they move into the MIZ, and
the two-dimensional wave spectrum can be constructed in good agreement with in-situ-observed spectra if the sea ice is not
rough (Stopa et al., 2018; Ardhuin et al., 2017). However, SAR alone cannot observe continuous spectra as they propagate into
the sea ice.

The ICESat-2 (IS2) altimeter has the potential for-greathy-inereasing-the-to greatly increase the quantity of available obser-
vations of wave-ice interactions, either alone --or in combination with other remote sensing instruments (Collard et al., 2022).
ICESat-2 carries a single measurement tool, ATLAS, a six-beam laser oriented in three weak/strong pairs (Fig. 1a, colored
lines) offset at a near-uniform three kilometers on the ground, with a weak-strong beam lateral offset of about 90m meters.
ATLAS measures the return time of individual photons to infer the height of the ice/ocean surface. Typical along-track photon
spacings can be centimeters or smaller, and so IS-2 is capable of directly sampling ocean surface waves, particularly over
reflective sea ice.

Recent studies have examined waves in sea ice using IS-2, basing their results on a higher-order sea ice height product
derived from photon retrievals (known as ATL0O7). Horvat et al. (2020) identified the capability of IS-2 to retrieve ocean waves
by examining a storm in the Barents Sea in 2019 ;-and used a simple threshold to establish where and when waves were

observed in the sea ice to produce global maps of the MIZ. In Collard et al. (2022), IS-2 retrievals during this Barents Sea
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a) ICESat-2 ATLO3 data (track: 05160312)  b) Wave Observations by ICESat-2 in the Marginal Ice Zone ) Schematic of the observed phase lag and
and CDR Sea Ice Concentration incident angle by an ICESat-2 beam pair
on 2019-05-02
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Figure 1. Illustration of ICESat-2 (IS2) beams intersecting the Marginal Ice Zone (MIZ) under the presence of waves. a) ICESat-2 data and
the CDR Sea Ice Concentration for track 05160312 on May 2nd 2019. The three beam pairs are shown is-as red/orange (gt11/gt1r), dark/light
green (gt21/gt2r), or dark/light blue (gt31/gt3r) lines. The black dots show the segment positions 12.5 km apart (define in section 2.3). b

Schematic of the IS2 beams that observe sea ice and surface waves in the MIZ. The vertical black line is the nominal IS2 reference ground
track. The incident waves come from the top-right along the black arrow with wave crests (solid) and valleys (dashed). bc) Details view of
an ideal monochromatic wave observation by IS2 in sea ice. The IS2 beam pair (light/dark green lines) observes an incident wave (along the
black arrow) of wavelength A with an angle 6 as \". With the beam-pair distance d, one can calculate 6 from the phase lag of the incident
wave crests (sec. 3.1). The along-/across-track coordinate system is referenced to the nominal track, while each data point is the weighted
mean of a 20-meter stencil (see-textsec. 2.1).

f:fig02_geometry
storm were shown to compare well with model and SAR-based observation data. Brouwer et al. (2021) selected a series of
Southern Hemisphere IS-2 retrievals, analyzing wave attenuation using direct spectral transform methods. Both found that
areas affected by waves were common in both hemispheres, with repeated measurements of waves hundreds of kilometers into
the sea ice zone, particularly in the Southern Hemisphere.

Three challenges limit the direct comparison of ¥5-2-derived-1S-2-derived wave spectra to observations and models. First,

waves propagate at an angle 6 relative to the along-track direction of the satellite (Fig. 1b), and observable wave lengths A are
-1

aliased by an unknown factor €
. Second, observed surface height variability is a convolution of the dynamic ocean topography, sea ice topography, surface
waves, and noise. The surface wave signal can than-enty-then be successfully reconstructed if these other signals are on a
different scale, like the-dynamic ocean topography, or not periodic, like the sea ice topography and noise. Third, the fractured

nature of sea ice, the influence of clouds, and changing surface albedo cause gaps or irregularities in IS-2 photon retrieval

os(0) " (Rapley, 1984; Horvat et al., 2019; Yu e
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rates, creating an-a high-density but irregular observation. The method must be applicable to irregular data without generating
spurious sources of variance, i.e., artificial wave energy. All-ef-the-The above factors complicate direct assessments of spectra
and their attenuation in sea ice.

Here we develop-demonstrate a method for producing angle-corrected, two-dimensional (2D) wave spectra in sea ice -using

photon height data from ICESat-2. We partition surface height variability into waves and sea-ice or noise-related components;

wave energy along each track to record wave attenuation and evaluate numerical attenuation schemes. We show this partitioning
allows for significantly improved sea-ice-sea-ice height estimates in the MIZ, which-may-alow-for-an-expansion-of-and may
also allow for expanding existing higher-level IS-2 products to broader ice-covered regions.

In this paper, we demonstrate this method on four example cases, Track 1 to 4 (details in suppl. table. Their granule, i.e. their
identification number, is also given in each figure). We describe the pre-processing of IS-2 along-track photon heights in sec-
tion 2.1 and develop a (linear)-harmonic fitting procedure applied to individual IS-2 beams-beam in section 2.2 —Subsequently
(the GFT method). Subsequently, we develop a multi-beam, Monte-Carlo method for bias-correcting along-track wavelengths

in section 3 -

whieh-. It permits a direct assessment of way

providing-(the MH method), which enables us to provide two-dimensional wave spectra derived from along-track data in sec-
tion 3.2, and the-a decomposition of photon variance in section 4. In section Swe-address-how-the-angle-correction-and-variance
decompesition-, we discuss the limitations and assumptions of the proposed methods and conclude in section 6 how they can

be used to both-(a)-developed-develop improved models of attenuation of waves in sea ice;-and-(b)-improve-estimates-of sea-ice
freeboard.

2 Along-track Wave Spectra from IS-2

sec:Along-Track-Data
The primary aim of this analysis is to assess surface height variability in the MIZ. Hence we want to use the highest data
resolution we can handle, though we are agnostic about the classification of photon returns. That is the L2-level product
ATLO03 from Neumann et al. (2021). For comparison, we show the photon cloud data from ATLO3 and the surface heights and
type classifications from the higher level ATL07/10 product in figure 2 as dark blue, light blue, or orange dots (?). By requiring
150 consecutive photons to identify a sea ice segment, the ATLO7 product accounts for most of the height variability from the
ATLO3 product. Yet it misses retrievals in the MIZ (supisuppl. Fig. 2, white and gray area) and within the sea ice (Fig. 2). For

better resolution, the following analysis is based on the photon cloud data from ATLO3.

2.1 Data Pre-Processing
sec:prehandling

Linearly inverting photon data requires exact along and across-track information about photon positions. Along-track photon
positions are first re-referenced to the most equatorward position on the nominal ATLAS ground track —(Fig. 1b, black line).
The most equatorward position is evaluated from the ATLO7 (?) product and set to the beginning of the 1st 100 km seetion

that-has-of along-track data where there is an average of at least 0.02 photons per +00km—meter (defined as X = 0 throughout
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the paper). This threshold and re-referencing are used to exclude large areas of nearly no data in the transition zone between
the open ocean and MIZ. All tracks are then followed in a poleward direction, until the variance of any of the 6 beams exceeds

a factor of 10 times the variance of the first 15% on the equatorward side of the track (stptsuppl. Fig. 2, dashed black lines).
This avoids including impacts from coastal or land ice around the Antarctic coast. The redefined along-track direction x and
an across-track direction y are then used as the coordinate system throughout the analysis (Fig. 1b, suplsuppl. Fig. 1 and 2).

After removing the cumulative surface height correction (dem_h taken from the ATLO07/10 dataset, ?, ?), we bin photon
measurements into 20-meter stencils that overlap by 50%. This yields a 10-meter along-track resolution (Fig. 2 green line).
Note this differs from the procedure used to form sea ice surface heights in the ATLO7 product, which averages height data
for each set of 150 photons along-track. ATLO7 has a constant photon count, with the trade-off of irregularly spaced segments
of varying length in the MIZ, while our approach provides more regularly-spaced data with the trade-off of having a variable
photon count in each stencil and potentially including retrievals of water near sea ice. Stencils with fewer than five photons
are excluded, which also leads to data gaps corresponding to no or very low photon retrievals due to sea-ice leads, open water,
clouds, or other noise (suppl. Fig. S2S1). These data gaps also lead to an irregularity in the data, but here each stencil mean
represents the same area and hence better eapture-captures the wave phase.

The-photon-height-A mean photon height h.(x) is calculated in each 20-meter stencil #-{«)-is-ealeulated-as the mean of the
photons weighted by their inverse distance to the stencil center, using a Gaussian weighting function with a standard deviation
of 10m. We tested other data reduction methods, like using the median or mode of the stencil, finding results insensitive to
the choice of the binning method (suppl. Fig. S2). The same 20-meter stencil also provides an uncertainty estimate o, ()
(proportional to Fig. 2 blue area) representing the varying photon density. This uncertainty is used to define the data prior
(sec. A1) for the harmonic inversion in section 2.2.

The re-sampled surface-mean photon height data is used to calculate a series of along-track surface slopes (Fig. 2 thin blue
line) by taking the along-track derivative and applying a spike-removing algorithm. Using the along-track surface slope data
focuses the timeseries analysis on local photon-height changes ;—rather-then-rather than the magnitude of the total surface
height field. The spike-removal reduces peaks in the slope data, which can be from sea-ice height changes or especially those
resulting from ice-ocean transitions. Because the slope field approximates the derivative of the height field, the spectrum of
slopes S..(k) is readily connected to the spectrum of surface heights S=(%).Sy (k), as Sy, (k) = kS.(k). The surface height field
can therefore be directly reconstructed from the slope spectrum, as we show below. The generalized Fourier transform (sec. 2.2)
and directional estimates (sec. 3.1) are then applied on 25-km long segments of these surface slopes, with uncertainty estimates

(Fig. 2). The 25-km segments also overlap by 50%, providing an along-track spectral estimate every 12.5 km.

2.2 Generalized Fourier Transform (GFT)
sec:gFT

We estimate along-track wave spectra using a Generalized Fourier Transform (GFT). The GFT is an-a harmonic fit of sin- and
cos-pair coefficients, which together determine amplitude and phase at each wavenumber. The model complexity is defined by
the number of resolved wave numbers and its success depends on prior (assumed) knowledge about the data’s uncertainty and

model structure.
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Example Photon Heights in the Marginal Ice Zone
SH 2019-02-24 granule: 08800210
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Figure 2. &TEO? plll(Tt?)n Cloua and ArLo7 surface heights for example Frack-track 1. Individual photons are shown in black, and the 20-
meter weighted average as a green line. The ATLO7 Pheten-photon heights are are-shown as light blue, dark blue, or black dots, with the
color eorresponds—corresponding to their type category provided in ATLO7. tdentified-The ATLO7 sea ice feads-are-shown-and sea ice lead

classification is illustrated along y = -0.75 as gray and red segmentson-the-gray-tine. The surface slope based on the weighted photon average
is shown as a blue line with a -1.25 offset, and its uncertainty estimate is shown as blue shading with a—+an offset of y = —1. The panel b)

is an inset of the gray area in panel a).

We use a GFT to overcome several disadvantages arising-appearing when implementing a standard Discrete Fourier Trans-
form (DFT) to unstructured data. While the DFT is a fast variance-conserving algorithm, it requires periodic, continuous, and
equally-spaced data. The DFT implies that frequency bands are harmonics over a domain or segment length L, whieh-is-an
arbitrary limitation on the resolved frequencies. To make segments periodic, often tapering or windowing is applied to the
segmented data. In addition to the data’s non-periodicity, the common presence of data gaps in IS-2 retrievals requires ex-
trapolation or gap-filling to create continuous, equally spaced data suitable for a DFT. These both lead to commonly known
problems of the DFT, like energy leaks/compensation in spectral space. The data handling needed for DFT can erode the signal

substantially, especially in the MIZ (Fig. 3 b,c gray and green lines).
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The GFT method outlined below works on any grid, incorporates data uncertainty, and does not require periodicity. The
GFT can be customized to the frequencies of interest with the additional benefit of providing a standard error in real and

wavenumber Space.

2.3 Harmonic wave inversion
sec:harmonic

We follow Wunsch (1996), Menke (2018), and Kachelein et al. (2022), using generalized least squares to derive spectral
amplitudes in each 25-km segment X; (Fig. 4). Slope data in each section X is a series of unevenly spaced mean-zero data
points and is expressed as a column vector b = 0,z of length NV; where z are the height data. These data are then modeled as

the sum of sinusoids having-with wave numbers in the range of swell and wind waves

b:Hp—|—r, e:basic_mod&]>|
where H is an N; x 20 regressor matrix of basis functions, p is the model parameter vector of length 2/, and r is the vector
of the residual timeseries of length N;. The columns of H are sines and cosines of prescribed wave numbers, %= =
F = 21 [ Ay for wavelengths Ay, indexed by m = 1,2,.. Ms—e=- We use prime notation here and throughout the paper to
indicate observed wave variables along the direction of each beam and unprimed notation for variables in the direction of the
traveling wave (see Fig. 1¢). The problem can then be written as_

M

b= Z (amcos (kmx)cww + beppsin (K, x)sin (k;nx)> +r, e(.ﬁ
m=1
3)
with -model parameters,
p= [al,ag,...aM7b(11,...L)C]\/[]TXj:I;l,l’g.,...7:17N[T7 (@)
x=[r1, 22, on,] ®)

To find the most probable b given a set of model parameters p, we need to estimate the autocovariance matrices of the residual
R= <rrT>, i.e. the error of the data, and the autocovariance matrix of the model P = <ppT>, where ((-)) is the expected
value. Then the most probable estimate of the data b can be found by estimating the maximum of the posterior probability

distribution P(p|b). Using Bayes’ theorem (Kachelein et al., 2022), or, alternatively the matrix inversion lemma (Wunsch,
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1996), given the data |b, the most likely estimate of the model parameters p is found as,

— :p_h
p=(H'R'H+P) " HTR 'b. ©P-PE
Once the model parameters p are estimated, the model can be expressed in real space using b-

b=Hp, (7)

(Fig. 3a green lines), or as a power spectrum Scrr (Fig. 3b,c green lines, see suppl. material S1 for derivation). Note that Scrr
is substantially different from that of the DFT of the same data (Fig. 3b,c gray and green lines respectively). The-frequent-gaps
Gaps in the data, as well as the DFT’s requirement for the data to be peried-periodic, creates artificial power in the swell’s

wavenumber range that lead-to-miss-leading-leads to misleading results.

To estimate the model error, the posterior autocovariance of the difference between estimated and true model parameters is

defined as the inverse Hessian,
Hess ' = ((p—p)(p—p)’)=(H'R'H+P ) ', e:hegg

In practice, this is calculated from the se-called-"kernel" matrix H, and the (assumed) Gaussian distributed data and model

priors R and P. The trace tr(-) of the inverse Hessian is then be-used to estimate the error of the model parameters

Derr = tr(Hess ™), <Py

(Fig. 3d, shown in the same units as the power spectra)and-the-. The error of the fit to the modeled data is also related to the

~ :b
berr = (H? Hess 1)j, © _flr(ﬁ

{not-shewn)where j is a unit vector of length 2.
The harmonic inversion of this segment of Track 2 shows how wave spectra can be calculated from stron t2r) and weak

t21) beams, even if the data has gaps (Fig. 3a). Both beams’ spectra are similar in most parts and show a maximum at £ = 0.03

Fig. 3b,c). However, the strong beam (gt2r) does show a second local maximum at about k& = 0.06. Note that the DFT of the
same track, and with tapered data, results in a different PDF than the harmonic inversion because of the data gaps.
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2.3.1 Choice of model resolution and degrees of freedom

The quality of the GFT model depends on the degrees of freedom, the model prior p, and data priors r (eq. 8). While the number
of model parameters, 2/, remains fixed throughout the analysis, the number of data points in segment ¢, IN;, is variable, and
may be controlled by the segment length L, 25-km-which is in our case 25 km, with a 12.5km overlap (Fig. 4).

The number of degrees of freedom is then-2M — N; and depends on the number of data points in each 25-km segment. A
segment with no data gaps and a 10-meter resolution (sec. 2.1) contains N; = 2500 data points. With 2M=+7382M = 1740
model parameters, this is ther-an-overdetermined-an over-determined problem. However, frequent data gaps reduce the number
of-datapeint-data points per segment, which may result in an underdetermined problem ;-with more model parameters thea-than
data (2M > N;). The result is then a larger residual r and larger uncertainty estimate p.,.,. (eq. 9 and eq. 10). Even in cases
where eq. (1) is underdetermined, we are confident in our wave spectrum estimation within a given error because P contains
prior knowledge about the shape of the solution, i.e., the shape of typical surface wave spectra (sec. 2.4). Most of the segments
of the four example tracks in this study have close to 2500 data points and are over-determined (suppl. Fig. S3). Only track 1
and 2 (Fig. 3) are under-determined close to the edge of the ice cover (supply. Fig. S3 a,b).

The choice of segment length also determines the smallest resolvable wavenumber. For example, a segment length of 25-km
25 km resolves a wave with a 20s period at an incident angle of £75° about +0-ten times. We set the lowest reselved-to-be
resolved observed wavenumber to &} = 2.5 x 1073 rad m~! which corresponds to a maximum observed wavelength of 2500
meters (sec. 3.1). The highest wavenumber is chosen as &/, = 0.11 rad m™*, a typical period of wind waves of about six

seconds. Using evenly spaced wavenumbers with dk = 1.25 x 10~* this-results in M = 869 wavenumbers.

2.4 Iterative inversion along each beam
Sec:suggses ive

The GFT solution b depends on prior assumptions about the wave spectrum: the model prior P. Since the GFT is iteratively
applied along each beam, results from a previous {eloserto-the-open-ocean)-segment inform the subsequent segment as illus-
trated in Figure 4. Here we describe how a successive application of the GFT along the IS-2 beam can feads-]lead to an efficient

solution assuming that the wave’s spectral shape only slowly varies between the segments.

The initial-guess-of the-modelprior Py;r-takenditerative solution along each beam is initialized at the most ocean-ward edge
of the data is-a-with a prior P,,,;; that follows a common shape of a narrow banded surface wave field; the Pierson-Moskowitz

(PM) spectral slope function (based on Pierson and Moskowitz, 1964 );te-deseribe-the-general-shape-of-anarrow-banded-surface
wave-field—The-initial PMferm-. For this segment alone, the PM function is fit to a DFT of the data, and, for the DFT onl

any locations with missing data are defined with a slope of zero. This gap-filling creates artificial ringing in the DFT ;-but is
sufficient to estimate the spectrum’s peak wave number and energyef-the-speetrum. The PM-spectrum has, in its simplest form,
only two free parameters, the peak frequency, and spectral amplitude, which are fit to the DFT power spectra via an objective
function that is regularized by the observed spectral peak of the smoothed data (Appendix A, Hell et al., 2019).

The initial inversion of the most equatorward segment X is performed using Py =P, in eq. (6), leading to model

parameters Pg. For this first segment, a second inversion is applied on the same data, using an updated prior that is a smoothed
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version of Po (Fig. 4, left). The smoothing uses a Lanzos running smoother in wavenumber with a stencil-width of £0.19

27m ™!, or 150 data points. Inversions of the successive segments X1, X5, X3,... are then performed once, with the prior P; a

10
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smoothed version of p,_;. If missing data does not allow for a successful inversion of a segment, the algorithm is re-initiated
as done to obtain Py and pg.

This two-stage inversion for segments with no preceding along-track segment ensures that ordin wave spectra will be

identified at the margin while still having the flexibility to allow for more complex wave signals. The effect of the PM prior

and details about the derivation is shown in Appendix A.
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Figure 4. gél?ematlc?)?ghe%armomc inversion algorithm along an ICESat-2 beam, shown over the surface slope field of a typical beam in the
MIZ. The DFT in each successive segment X; has a prior P; derived from the previous segment centered around X;_1. For those segments
with no prior information available, the prior Py, is generated via a Discrete Fourier Transform (DFT) over the segments centered at X;.

2.5 Tracking of wave energy through Sea Ice

The GFT is applied to each 25 km-segment-with-more-then-km segment with more than 250 data points, leading to wave

spectral estimates along each beam. In Fig. 5(a-f) we show wavenumber spectra for each segment and for each of the beams
of Track 3 in the Southern Hemisphere on May 2, 2019. The per-segment cross-beam mean (Fig. 5h) and mean spectral error
(Fig. 5i) are derived by weighting each segment by its photon density before taking the mean. We define this weighted mean
and error as our best estimate of the along-track-along-track spectral evolution of wave energy.

The example track shows an attenuating swell signal starting at X = 0 km (X is the distance from the ice edge as defined
in section 2.1) and a second wave-energy maximum with shorter wavelength (k' =~ 100m) at about X = 150 km in both, the
Sﬁee&egfamﬂf—%he—weighfed—meaﬁlgm as well as in individual beams (Fig. 5a to f, and h). The-correspondingerrorper
s(These wave events are further analyzed in section
M&%WWM@MW&(% 5 iywhich-are-tikelyjustrelated-totarger
amplitudesin-the data—, Instances with a low photon density and more frequent data gaps may fail to invert for the wave signal,

resulting in a spectrogram that may not follow expected spectral shapes. These can be identified through their substantiall
larger error (suppl. Fig. S4

The estimated wave numbers are the observed along-track wave numbers &', which are different than the true wave number
length |k| along the incident wave vector k (see Fig. 1). To estimate a wavenumber spectrum along the dominant propagation

direction rather then-than the direction it is observed, we outline a method to correct this bias in the following section.
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Figure 5. gl%)%e spectra for the six beams (a to f) of example Track 3 (granule 05160312, see suppl. Table) resulting from the GFT
inversion (sec. 2.4) for granule 05160312. The photon density per segment (g) is used to calculate the weighted mean spectrum (re-binned

as in Fig. 3b,c) (h) and error (i) for each track segment. The horizontal axis is defined as the distance to the most equatorward point with a
hoton rate exceeding 0.02 photons per meter (sec. 2.1).
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3 Two-dimensional wave spectra from nearly one-directional observations
sec:Multi-Beam-Data

3.1 Metropolitan estimates of the incident angle
sec:angle

The observed wave spectra are distorted by a misalignment between the wave’s incident angle and the beam’s direction
(Fig. 1bc). While the ICESat-2 track orientations are well known, the surface waves can originate from any direction, and
245 the angle between these two directions is 6. If 6 is known, the observed wave number &', or wavelength A’ along the beam can
be corrected using k=Hkcos—(63k = k'cos(0) " The same geometrical distortion will also affect estimates of the attenua-
tion rate between X;-positions along the track (Fig. 1b) because the wave energy attenuates along their dominant propagation

direction and not along the direction they are observed by the satellite.

e-We use the phase lag between weak-strong beam
250 pairs —Fhat-means—to estimate § from the photon data. This requires that wave crests observed in one beam may—alse—be
observed-in-the-other—Yet-using-the-eoherenee-are also observed in another, Using the phase lag to measure the incident angle

has several limitations that have to be taken into account when designing an optimization method:

— The eoherenee-phase lag between beam pairs can only usefully be calculated for not too oblique angles {-about=4=X=X>-SuppkFig—S-
Fig. S5, and Yu et al,, 2021) and high enough photon densities in both beams. The angle limits in which the

255 hase lag can be resolved depend on the chosen wavelength and the distance between the beams. Since both, wavelength
and distance, change for each segment, we here limited the analysis to angles of +£75°,

— Across-beam eoherence-relies—on-an—aeccurate-measure-of-the-distanee-phase lag relies on accurately measuring the
distance between the beams. Uncertainty in the intra-beam distance d can further ebseured-obscure angle estimates
based on eoherenee-the phase lag (Fig. 1b). Since d varies along the track (suppl. Fig. S+56), using the nominal distance

260 rather then-than the observed value will also bias angle estimates.

— The complex generation and propagation history of waves (Kitaigorodskii, 1962; Villas Bdas and Young, 2020; Marechal
and Ardhuin, 2021; Hell et al., 2021) leads to a dynamic distortion in the incident angle. While a monochromatic
plane wave would be coherent across beam pairs, estimating its direction is limited by the periodicity of the waves and
observational noise. In reality, the incident swell wave energy at any given time is contained in several wavenumbers

265 although concentrated in a narrow-banded 2D-spectrum (Longuet-Higgins and Deacon, 1957). Henee;-the-bandwidth-of
the-A narrow-banded 2D swell field Himits-the-coherenee-leads to wave groups in real space and limits the observable
phase lag between strong/weak beam pairs. While a narrower 2D-spectrum-resuttsin-2D spectrum results in spatially
larger coherent wave crestsin-the-across—wave-direetion, a broader spectrum spans more random-phase waves, which
diminishes—the-coherenee-diminishing the observable phase lag between wave crests (suppl. Fig.8)—kess—wave-erest

270 oherence-in-broader spectra-limits estimates of the incident-angle when the surface is-only-observed-along two beams

13



275

280

285

290

295

300

With IS-2, the incident wave energy along k is observed along the beam direction for wavenumbers #-={k}eos—#;-or-as
i i istortionk’ = |k|cosf . In the case of IS-2 beam pairs, we know
neither ¢ nor the bandwidth of the incident spectrum (Longuet-Higgins, 1984) and both factors limit the possible angle inversion

based on beam pairs alone (suppl. Fig.58 S7). Despite these limitations, we describe in the following how the incidence angle
0 can still be retrieved within these limitations.

As explained in section 2.2, the surface wave field can be interpreted as the superposition of monochromatic plain-plane
waves. For a narrow-banded swell spectrum, the majority of the wave energy is contained in a few wave-ntmbers-wavenumbers
and hence a superposition of the-these most energetic monochromatic waves explains the-majority-most of the surface slope
variability. In the following, we optimize the incident angle and phase of the most energetic monochromatic waves-wave num-
bers using a Metropolis-Hastings (MH) algorithm (Foreman-Mackey et al., 2013). We accumulate the marginal distributions
of possible incident angles across the dominant wave numbers and beam pairs, which results in a-the best guess of possible
incident angle. This approach leads to directional wave information similar to the maximum entropy method used in wave
buoys (Lygre and Krogstad, 1986).

We focus on the 25 most-energetic wavenumbers of each beam pair and segment X; based on the GFT result (sec. 2.2). To
identify these wavenumbers, the beam-pairs mean wave power is smoothed using a three-wavenumber running mean to select
possible wave-numbers-wave numbers within the distorted narrow-banded spectrum (similar to the thick green lines in Fig. 3

b,c). For each of these n = 25 observed wavenumbers k/,, we define a monochromatic model,

fln(nvl/ |k/’97 ¢> = Cos(k/n+lly+¢)’ eq:mono_mo%eljj
in the local reference system of the segment centered around X; and y = 0 such that the local along-track coordinate is
1 =x — X; and the across-track coordinate is v =y with the observable across-track wavenumber !’ = k' tan (), and the
phase ¢.

The monochromatic model is than-then used to define the objective function ®,, for each wavenumber
Ao eq: angle_c&s‘t>|
(I)n:”b_hnH +60 P@,n(e)a 2

where b is the normalized slope data of the beam pair, 3 is a hyper-parameter which controls the regularization Py ,, of the
incidence angle 6 for the n-th wavenumber, and Py ,, (6, k) is a prior estimate that we describe in sec. 3.1.2.

The log-probability of the objective function eq. (12) is sampled for each beam pair, selected wavenumber, and along-track
position X;. To derive independent estimates of the incident angle for each n-th wavenumber we use an-Metropolis-Hastings-a
MH Scheme (Marcov-Chain Monte Carlo, MCMC, Foreman-Mackey et al., 2013) by first initializing equally-spaced samples
of the objective function over the domain §-={—0-477-04771-0 = [-0.427,0.427] and ¢ = [0, 27) and advancing the ensem-
ble of samples (ensemble of walkers) using MCMC. The MCMC method will quickly cluster walkers in the areas of low-cost,
or small objective function (Fig. 6b, black dots). A high density of walker positions is than-then interpreted as a high likelihood

of an incident angle and phase for the chosen wavenumber (Fig. 6b, black dots).
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We derive a sample of the joint phase and angle distribution by advancing the walkers 300 iterations, and only the last
270 iterations for each walker are used to established-establish the joint histogram D(6,¢). The joint histogram D is then
marginalized for the incident angle 6 and normalized to a probability distribution function (Fig. 6¢). This procedure is repeated
for each selected wavenumber k,, and for each (available) beam pair per segment X; (suppl. Fig. $9-S8 a to ¢). The best incident
angle PDF 0pp (X, k,beampair) can then be derived using the weighted average across wavenumber, beam-pair, or both.

The-An example of the resulting beam- and wavenumber-average PDF of-is shown in figure 7b for Track 3 at X; = 87:-fer
example;—shows-more-than-one-maximum(Fig—7b)—(Here, Here, the individual PDFs are weighted by the mean power of
the respectlve wavenumber and the number of data points per segment palr}—’Pht&mef&eemp}eHﬂafgmal—dﬁfﬂbﬁﬁeﬁeemes

with multiple maxima are a typical result for this method and appear in many other tested sections and tracks (not shown).

They come from different maxima in the joint PDFs of different wavenumbers. If one trusts the angle estimate of a single
wavenumber, this ean-be-interpretresult can be interpreted as a wave field with waves from multiple directions. The alternative
— likely better — perspective is that the marginal PDF of each-a single wavenumber is not a robust estimate of the incident angle,
and hence the PDF in figure 7b is-the-result-of-the-helps estimate the uncertainty of the method;-as-explained-in-the-next-seetion.

3.1.1 Robustness of the Marginal PDFs

The deseribed-limitations in retrieving the incident angle (sec. 3.1) indieate-lead to a low signal-to-noise regime and demand a
careful evaluation of the method for sampling the objective function ®,,. While larger samples may ensure convergence of the
distribution estimate, a large sampler of each wavenumber, beam pair, and segment may not be necessary ;-or computationally
affordable. We decide for a systematic under-sampling of each realization of the marginal PDFs 6(X;, k,beampair) and, in a
second step, make a super-sample from the marginal PDFs across beam pairs and wavenumber if needed.

st, their super-sample will still provide a
good estimate of the mean incident angle and its standard deviation. Each realization of the joint 6-¢ distribution requires 6750

function evaluations for 270 iterations per walker. The walkers-walker’s auto-correlation is about 20 to 30 iterations, which

‘When combining the systematic under-sampled PDFs

implies that each joint distribution maybe not be well established (the effective degrees of freedom per walker are about 9 to
14). Hence the marginalization of each joint distribution may misrepresent the angle uncertainty (i.e. a too wide distribution
of the walker’s PDF). To reduce uncertainty, we take a super-sample of the marginal PDFs, by averaging across wavenumbers
and/or the three beam pairs. The super-sampling results in a statistically robust result with 5 x 10° function evaluations per
segment X, thatis-abeuteffeetive-which is about 3.5 — 5.5 x 103 effective degrees of freedom per segment. Longer Markov
Chains, i.e. more iterations, may result in a better sampling of the individual fit, but may not affect the overall result since
they sample from generally smooth objective functions in a low signal-to-noise regime. However, in cases where a directional

estimate per wavenumber or beam group is needed, the MCMC iteration length can be adjusted.

3.1.2 Constraining direction estimates with other data products
sec: open_ocean_priors
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Incident Angle Sampling
model wavelength=168.4m
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Figure 6. Iﬁdla\ill&cﬁcéle estimate using a monochromatic wave model with and without a prior Py. (a) Data of the beam pair gtll and gtlr
(light and dark green) and model (black, eq. 11) for a segment of Track 3 (granule 05160312, centered at X; = 62.5 km. (b). The objective
function with prior Py is sampled using a brute-force method (shading) and MCMC (black dots and lines). The prior angle 8y and prior
uncertainty oy for this wavelength (168.4 metermeters) are shown as thick orange tine-lines and shading. The best fit using a dual-annealing
method is shown is-shews-as red dot (Tsallis and Stariolo, 1996). (c) Marginal PDF of the incident angle 6 from MCMC sampling. (d) and
(e) same as (b) and (c) but without the prior Py.
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Figure 7. Ifn]ﬂ%érr{lccemocfzthe WW?3 prior on the marginal PDFs of Track 3 (granule 05160312) at X; = 87 km. (a) Mean marginal PDFs for
all beam-pairs-beam pairs as a function of wavenumber. The WW?3 spectral partitions are shown as black dots and the interpolated prior 0o ;
and its spread oy,; (eq. B1) are shown as orange line and orange shading. (b) The smoothed weighted mean across the pairs of the most likely
incident angle is shown as a black thick line and the WW3 priors for all wave numbers are used as orange lines.

Sampling-A sampling of the objective function eq. (12) as described in sec. 3.1 results in a joint distribution of most likely
incident angles and phases —Thesejoint-distributions-per sampled wavenumber £,,. This joint distribution may have multiple
equally likely incident-angles—<(Fig—6d-blue-area)-due—to—theJimited-across-track-observations-and-distortionmaxima, i.e.
multiple likely incident angles due to the periodicity of the wave (27 ambiguity). As illustrated in figure 6d (shadin

lead to a) maxima for positive and negative incident angles and b) multiple maxima on both sides. To break the symmetry in

the marginalized PDF of incident angles (Fig. 6e) we define a prior Py (6, k) in the objective function using ridge-regression

this can

(Appendix B). The effect of the prior on the joint- and marginalized distribution is shown by comparing Figure 6 b and ¢ with d
and e. Here we inform the prior with WW3 global hindcast wave-partitions (Tolman, 2009, using the Integrated Ocean Waves
for Geophysical and other Applications (IOWAGA) hindcast)). WW3 must be treated with caution due to wind-observational
biases in the Southern Ocean (Belmonte Rivas and Stoffelen, 2019; Hell et al., 2020). This wave hindcast is currently the only
readily available dataset for this global purpose, and priors from observational datasets would improve the quality of this data
and the overall wave inversion.

The level of certainty in the WW3 prior is expressed in the hyperparameter-hyperparameter 3y and the performance of the

MCMC sampling is sensitive to its value (eq. 12). Since a-validation of the WW3 prior is limited, we set 8y = 2. Its effect on
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the objective function can be seen by comparing the shading in figure 6 b and d. The choice of 5y = 2 leads to the desired
result in breaking the directional ambiguity while not fully determining the incident angle distribution (Fig. 7a). Other-We
tested other values of 3y are-tested;-but-but found empirically that higher values tend to everfit-overfit to the prior, and lower

values do not break the ambiguity well.

This method is limited to angles of about +85°-Obligue-£75° deviation from the nominal track direction. More oblique, i.e.
steeper incidence angle can not be captured by this metheds—method because a steeper angle requires more coherence between
wave crests. The coherence of a single wave crest is, however, limited by the curvature of the wave spectrum and not well
known (suppl. Fig. S7). In addition, the model has a 180° ambiguity such that s&mples—m—fhe—f—{)a—te—%—afeﬁta{—af&waves

coming from hig

Antaretic-eoastfor-tracks-considered-herethese-are-less-plausiblethe equator side of the track (as assumed), or waves comin

from the pole side (less likely) can result in the same phase lag and hence in the same incident angle, even though they come

from the opposite direction.

3.2 Two-dimensional spectra in along-track data

sec:reconstruct
With the spectral {see-2-2)-and-angle-and angle estimates (sec. 3-H-estimates2.2 and 3.1), we now can describe waves observed
along-track in terms of their two-dimensional wavenumber spectra (Fig. 8). The estimated wavenumber amplitudes b (eq.2) are
corrected by eesiéé}cows(ﬁﬁusing the most likely incident angle (sec. 3.1, Fig. 7b) resulting in the corrected wavenumber
spectrogram (Fig. 8a). We use the most likely angle along the track, although the above analysis can provide angle distributions
for each segment X; and wavenumber k (sec. 3.1.2, Fig. 8b).
The corrected power spectrum and directional distribution (Fig. 8 a,b) can be expressed as directional surface wave spectra
every 12.5 km in the MIZ, similar to conventional surface wave buoys (Fig. 8 c to e). This permits tracking the attenuation of

wave energy per frequency in MIZ. In the case of Track 3 (granule 05160312), for example, we see a wave event coming

from about 45° to the right of the ground track that mostly attenuates in the first 75 km from the sea ice edge, while the overall
attenuation rate is similar between the six beams (Fig. 5a-f). One could identify a migration of the peak wavelength from
about 275 meters to about 300 meters within 12.5 km (Fig. 8 d,e, similar to Alberello et al., 2022); we leave this analysis of

the attenuation to future work.

Past the primary wave event, a second signal further into the ice with energy on scales shorter than 200 meters extend from
X > 75 km about 100 km or more (Fig. 8 i i i
analysisto-understand-attenuation-in-the MiZa,b). This signal is at shorter wavelengths than the identified cut-off frequencies
for the event at the track beginning. Without further information about the ice conditions, we suggest that this short-wavelength
energy deeper in the sea ice is due to sea ice variability itself rather than due to waves.

18



380

385

a) Slope Power Spectra (m/m)? k=1
for SH 2019-05-02 granule: 05160312

. -30.0
£
£ -40.0
o
c
k9] .
o -50.0 @
>
g g
o -60.0
- ]
o
o
5 - -70.0
(%)
T
50 100 150
b) Direction PDFs
o 2
[e)) w
< g
TO\
23
ST
ox
o E
EE
w m
o
=}

-60° -60° -60°

ig:final ted
Figure 8. Eﬁl%l esjﬁrrlrl%te_ ocfotﬁe]:f %ower (a), directional (b), and joint (c,d,e) surface slope spectra every 12.5 km along an ICESat-2 beam

(example Track 3). (a) The angle-corrected, cross-beam average spectrogram as a function of estimated wavelength ) and distance from the
ice-edge X. The powerspeetral-spectrogram is re-binned in 2.5 x 10”% wavenumber segments and its wavelength where-is corrected by
about a factor of three due to a peak incident angle of about 66° (orange line in b). The observed and corrected peak wavelengths A" and A
are shown as dashed and solid black linelines. (b) Mean directional PDF between £85° every 12.5 km, rebinned into 10° segments. (c) to
(e) Rolling-mean smoothed directional wave spectra at the positions indicated at the respective green lines in (a) and (b).

4 Deeomposition-ef-Isolating the wave signal in the along-track datate-waves-and-surfaeceroughness

sec:variance
The estimate of the wave signal from sec. 2.3 can be used to decompose wave and ice surface variability. Each photon retrieval
is a super-position of ocean waves and sea ice variability-signals like surface roughness, floe-size;-and-free-board-floe size,
and freeboard height. A decomposition of the surface variability between waves and ice can rely on the coherence of across-
beam wave statistics, as-wel-as-their-a common noise level in wavenumber space, and an approximate scale separation of the
dominant wave energy and the sea ice. For the purpose of decomposing the data we define similar signal-to-noise levels across
beams in each 25 km segment (Fig. 5 a to f).
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The results of seetien2-3the GFT (sec. 2.3) are used to delineate ATLO3 photon heights between wave and sea ice surface
variability. We construct a binned wave height field aleng-track-along the track from the GFT-derived surface slepe-spectrum,
by filtering out high-wavenumber components that likely do not correspond to swell waves. This-In Figure 9 we show the

identified low-pass filters and the displacement spectrum m? k~1) rather than the slope spectrum ((m/m)? k1), as in Fig. 8) to

better separate the high-frequency noise from the lower-frequency waves. The low-pass filter is defined by a cutoff-wavenumber
Fee—whieh-is-k7, the first wavenumber where the observed power spectrum changes slope. A change in the pewer-speetral-stope

slope of the displacement spectrum in log-log scaling from the expected slope of surface wave spectra (k=5/2 or similar,
Toba, 1973) to horizontal indieated-indicates a change in the signal-to-noise regime in the data (Fig. 9). Hence, horizontal
slopes at high wavenumber indicates-indicate Gaussian (white) noise, while steep-wavenumber-slope-are-the-result-of-steeper
slopes at lower wavenumber result from wave-wave interaction (Kitaigorodskii, 1962; Hasselmann et al., 1973). The critical

wavenumber %=k, between both regimes is found using piecewise regression on the weighted cross-beam log-log power

spectrum (Fig. 9, Pilgrim, 2021). In cases where the piecewise regression fails to identify a separation a steep and horizontal
slope, no primary wave spectrum is identified and no low-pass filter is applied (Fig. 8b, X > 87.5km).

For illustrative purposes, we define a low-pass filter by setting %+, as the cut-off wavenumber. This low-pass filter po-
tentially creates artificial ringing in real space and for better results, this should be replaced by a more complex filter design.
Here, wavenumbers higher than %%/, are excluded from the wave height model of all beams (Fig. 10a, gray and blue lines
and the gray area in the inlet) by truncating the wavenumber space of the slope model p. From this truncated slope model, we
can directly construct a coefficient matrix for the wave-height model Z for each individual-beam by integrating in wavenumber

space. The coefficient matrix of the wave-height model Z is

_ , , T
d= [;b:\?lv;b:ng'“,;b:gCaah"'aCa] )

where b, and a. are the model amplitudes corresponding the-the-eutoff-frequeney+to the cutoff frequency k. (note the
integration of the trig-formula changes order and sign of the indices). The reconstructed wave-height model Z can then be

directly calculated from the original regressor matrix,
e:z_recon f £
13

S ATaE e ; T as shown in figure 10b blue line. The residual between the
height model Z and the observed smoothed photon heights z, z,.. = z — Z, is an estimate of the freeboard height absent
in absence of the influence of waves (Fig. 10d). The residual z,.. has similar data density to the original ATLO3 photon
retrievals but may reveal secondary, non-wavelike structures in the photon heights as shown in figure 10d. We provide additional
examples in suppl. Fig. S6-and-S7S9 and S10.

Decomposing heights into wave and sea-iee-sea-ice components allows us to estimate the fraction of the total height variance

that is neither due to waves nor photon variance on scales shorter than the 10-meter stencil. As shown in figure 10e, the
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majority of the total variance is due to the photon variance around its 20-meter stencil mean for scales smaller then-than the
stencil (Fig. 10d red line and black dots, ?). In this particular trackwave-variance-than-comprises-between—, wave variance
comprises then another 20% to 50% of total photon height variance. The remaining varianceabetit, about 5% to 20%, due-te
neither-is then neither due to waves nor the photon clouds-. It is from differences in the observed and modeled wave heights, 2
and z—We-assume-thisis-, and we assign this to sea-ice-related variability.

The distribution of the residual statistics is, by model design, approximately Gaussian (Fig. 3e) and hence non-wave signals
with non-linear imprint could contaminate the wave estimate and decomposition. fa—generallf the contribution of non-wave
signals to the across beam average is minor, this decomposition removes waves as the dominant source of variance on scales
larger than 20 meters;-allowing-. This allows for additional analysis of the residual signal, and more consistent surface height
signals in wave-affected and low-sea ice regions. A better filter design can further improve this separation between waves and

seaice.

Cut-off Frequency for Displacement Spectral
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Figure 9. géc%:o(r:llslgfgélfved displacement power spectra Sy, for Track 3 (Fig. 8) for each beam (a to f). The black lines show the position
of the estimated cut-off wavenumber #=k; based on piece-wise regression on the weighted mean of all beams. Darker colored lines show
sections closer to the sea ice edge and lighter colors show sections further into the sea ice. EMM@MM
slope separation (compare to Fig. 8a). Note that we show the uncorrected displacement spectrum rather than the corrected slope spectrum as

in figure 8. The corrected spectral peak at A = 125 meter (Fi -1

. 8) corresponds to the peak about k£’ = 0.02 meter " in this figure.

5 Discussion
sec:discussion

ICESat-2 photon data frequently shows wave-like signals in sea ice and these substantially impacts-impact the marginal ice
zone. In this paper, we show, for the first time, how paired laser-altimeter observations can be converted into directional surface
wave spectra. We describe a two-part algorithm that efficiently decomposes the IS2 photon retrievals into a surface wave signal

as well as variability due to sea ice. The +stfirst (GFT) part of the algorithm is based on a linear inversion method to fit

21
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Figure 10. I%Lr%fn%g %g(%%lposition of the photon-cloud data (ATL03) based on the GFT of example Track 2. (a) The observed mean surface
height slope b is shown in gray and the truncated model b in blue. The inset shows the corresponding smoothed spectral amplitudes and
cut-off wavenumber k?j;\ém as a black line. (b) The observed photon cloud is shown as black dots, re-binned data z as a red line (sec. 2.1),
and the reconstructed surface heights as a thin blue line z (eq. 13). (c) Corresponding ATL07 surface heights product shown as in figure 2.
(d) Residual photon heights (black) and binned heights (red) using z — z. (e) Variance fraction every kilometer with the fraction due to the
photon cloud (gray), the truncated wave model z (blue), the variance of wavenumber=>k-—wavenumbers > k;. (green), and the residual of
the model r (red, eq. 1).

wavenumber coefficients to the ATLO3 data (sec. 2.2 to 2.4), and the 2rd-second (MH) part uses a non-linear inversion method

that optimizes for most-likely wave incident angles (sec. 3.1).
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The combined method than—provides a highly-resolved 2D-surface wave spectra every 12.5 km along each IS-2 track
(Fig. 8a,b) as well as an improved surface height estimate when the wave signal is removed (Fig. 10). The surface wave
estimate relies on the one hand on the redundancy across beams to optimize the signal-to-noise ratio in wavenumber space
and on the other hand on the difference across beams for the angle inversion. The iterative solution proposed here leads to an
interpretation of the IS-2 track as a streak of two-dimensional wave spectra, including error estimates on each variable (Fig. 8c
to e).

We identify the range of wavenumbers that contain wave energy in each segment by establishing a dynamic noise level
(sec. 4). Removing the wave energy as a dominant source of variance reveals additional structure in the ATLO3 photon cloud
data that is not as readily present in the ATLO7, or other higher level products (Fig. 10d, or suppl. Fig. S6-and-S7S9 and S10),
either because it is obscured by wave signals or the data is not present. A-Even though we do not investigate the residual
photon heights further, we believe that a removal of the wave signal may have substantial benefits for understanding the sea ice
structure and classifying photon data for ATLO7 products and above. Not removing the wave signal likely leads to an aliasing

effect of the waves into the freeboard height (compare panel-panels b and d in figure 10).
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ariance

ont1 ATLO3 photon cloud data and comparison with ATLO7 data. (a) Across-beam averaged variances for

Track 3 (granule 05160312, see suppl. Table). The photon cloud variance is shown in black-gray (same as Fig. 10b black dots), the variance
of the 20-meter stencils is shown in light blue (same as Fig. 10b red line), and the variance of the low-pass filtered wave model in dark blue
with a black outline (same as Fig. 10b blue line). (b) Variance of ATLO7 based on the provided segment heights. Gray hatched areas indicate
no data in ATLO7 as-for this track. Btaek-The black line is repeated from panel (a) for comparison. (c and d) Same as (a) and (b) but for Track
2 (granule 08070210). (e and f) Same as (a) and (b) but for Track 4 (granule 05180312)

Our quantification of wave energy allows for an improved understanding of pheten—varianee—While-in-three-the observed

surface elevations in sea-ice-covered areas. We showed that ocean surface waves have an important contribution to the variance
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in the MIZ. While the example tracks have a substantial amount of variance in photon height on scales smaller thea-than
20-meters (Fig. 11a,c,e gray area), the variance on scales longer than 20-meters is clearly dominated by the effect of waves
(Fig. 11a,c,e blue area). Especially in the MIZ, only a small fraction of this re-binned variance is due to aea-wavy-non-wave-like

features of the surface (Fig. 11a and e gray-blue area at 0 - 50 km from the ice edge).

The chosen examples show a clear wave signal that can be separated from high-frequency noise by using a simple low-pass
filter with a cut-off frequency k. (sec. 4). This cut-off frequency assumes a scale separation between waves and sea ice variance,
that generally may not exist. The identified cut-off frequency lies in the plausible range of wind waves (k = 0.05 to 0.1). In
cases with wind waves and complex sea ice structures (Alberello et al., 2022), a separation between the wave and sea ice signal
is hampered. Without adding observations other than ICESat-2, we are not able to directly differentiate between wind sea and

well.

This wave-induced variance in the photon cloud of ATL03 can, under certain conditions, also be captured by ATLO7. How-
ever, we suggest that the ATLO7 algorithm also can potentially capture an aliased wave signal, or can fail to provide a sufficient
sea-ice height product at all. While in the case of Track 3 (Fig. 11a,b), waves clearly affect the observation, ATLO7 does not
provide data in this region (see also suppl. Fig. $2S1) and so our inversion method using ATLO3 allows for improved MIZ
freeboard data. In other cases, like Track 2 (Fig. 11d), ATLO7 does provide data at some but not all locations aleng-trackalong
the track, even though there is a high photon density throughout the track.

In the MIZ, ATLO7 variance can exceed the variance estimates of waves, indicating a-potential aliasing of wave-induced
signal to other scales (Fig. 11d). This aliasing can be due to the binning of data based on photon counts which result in varying

bin length. Varying bins-length potentially sub-samples the wave’s energy at scales on, or around the Nyquist frequency of

the dominant waves. Since both the wavelength and photon density highly vary, it is generally unknown whether or not the

phete-count-based-photo-count-based measure samples these wavelengths eerreet-correctly and does not negatively affect
freeboard retrievals or wave energy estimates in the MIZ .

5.1 Applying the Generalized Fourier Transform method for along-track wave spectra

We chose a generalized Fourier transform (GFT) method for the wave field inversion instead of more common methods like
DFT, or Lomb-Scargle (LS, sec. 2.2, Lomb, 1976; Scargle, 1982; Wunsch, 1996; Kachelein et al., 2022). In contrast to the
DFT and LS, the GFT is variance conserving method that can be applied to unstructured data and does not require periodicity

over an (arbitrary) window length.
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As with any linear inverse method, the GFT assumes Gaussian statistics, which is obeyed by linear waves but potentiall

violated by sea ice surface variability. To minimize the effect of sea ice heights on the wave inversion, we use mean surface

slopes rather than heights (sec. 2.1), which results in an approximate Gaussian residual (Fig. 3e).

The GFT is eustomize-able-customizable to the wavenumbers of interest and additionally provides uncertainty bounds on
all parameters. In turn, it comes with the requirement to apriori know what spectral resolution is needed. Given Atlas’s high
resotation-high-resolution photon cloud data, we chose to resolve the plausible wavenumber range for surface waves on a
resolution about twice the one of the DFT. Other, more targeted, narrow-banded wavenumber-spaces-wavenumber spaces are
possible, but here we choose wavenumber ranges that are the most general for surface waves. A-higherresolutions-Higher
resolution, especially at long wavenumber allows us to provide new insights in-into how narrow-banded the surface wave field
is; a parameter that is related to the surface’s curvature and likely important for wave-induced sea-ice breakup (Meylan and
Squire, 1994).

A major advantage of the GFT is that it can be extended to inversions of the wave field for each IS2 track by coupling
neighboring or overlapping segments, similar to Kalman inversion methods. We illustrate this by simply iterative updating the
data segments and models priors (sec. 2.4, Fig. 4). This coupling of inversions along segments advances the task on hand to
the task of solving the coupled inversions consistently along each beam, rather then-than independently for each segment. The

same idea can be extended by coupling the model prior P across beams. This coupled approach ensures smoothly varying

wave statistics along and across-track, with the amount of smoothness tuned through the amplitude of P in (eq. 6). Future

comparison with other observations will help to constrain the amplitude of P.

5.2 Applying the Metropolis-Hastings method for wave angle inversion

The inversion for the wave’s incident angle is based on the cross-beam eeherenee-phase lag (sec. 3). The eoherence-phase
lag between two beams is limited by the geometry (Fig. 1b), a difficult-to-estimate properties-property of the wave field €i-e-
its—groupiness’s—suppl—Fig—S7H(i.e. its "

vational noise (sec. 3.1). We choose to approach this low signal-to-noise problem with a super-sample of marginal distribu-

ins and Deacon, 1957), as well as obser-

tions derived from independent MCMC samples of menoeromatie-monochromatic plane waves. The unweighted mean of this
method across all wavenumbers is similar to the lag-cross correlation of the beam pair. However, by focusing on a limited set

of energy-containing wavenumbers, the signal-to-noise-ratio-signal-to-noise ratio improves above a lagged cross-correlation
approach. Limiting the sample to the most energetic waves and using a prior raises the signal-to-noise ratio and is what enables

an inversion of the approximate wave angle (Fig. 7d). Alternatively—ensemble-based-approaches-ceonld-search—fe OO

The quality of MH inversion method depends on the wayelength, wave amplitude, and curvature of the wave spectrum. The
longer the wave the better the phase lag can be observed, but those are not the most energetic. In turn, the most energetic waves
have typically shorter wavelengths that are of 80-250 times the segment length (25km), which can lead to multiple minima in
the optimization due to a 27 ambiguity. Finally, the curvature of the wave spectrum characterized the length of wave groups,
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which in 2D, erode the ability to observe the average phase lag between the two beams (2nd bullet point in sec. 3.1, suppl.
Fig. S7).

The inversion is limited by the geometry of the observation (Fig. 1¢). Waves coming from steep angles relative to the IS-2

track cannot be resolved, such that our 2D-wave field estimates are limited in range (about £75°). This problem may be
515 overcome by using better, observationally-based priors, or enriching our WW3 priors with data from other sources.
The angle inversion method generally can sample multiple incident angles, i.e multiple minima in the objective function-

when-observed-onty-atong segments—(Fig—6)—, and may be able to detect multiple wave systems from different directions
(Alberello et al., 2022). However, after testing the effect of wave groups and uncorrelated noise on the sampling method, we
520 came to the conclusion that the signal-to-noise ratio is too low for a frequency-dependent angle correction, even after adding
angle of the most energetic waves. Even though the true wave field may be a superposition of multiple wave systems with
varying directions, the single incident angle is justifiable here, because we are focused on the attenuation and propagation of

the dominant wave energy.
525 The low signal-to-noise of the angle inversion requires regularization (sec. 3.1). Since directional wave ebservation-observations

co-located with IS2 tracks are sparse and not readily available, we relied on Wave Watch III (WW3) hindcast models as a prior
(IOWAGA Tolman, 2009). The wave hindcasts may perform sufficiently well in the Northern Hemisphere but are known to
have limitations in the Southern Ocean MIZ, potentially due to wind biases (Belmonte Rivas and Stoffelen, 2019; Hell et al.,
20205 ?). The lack of certainty in WW3’s peak direction and frequency is expressed in the value of the hyperparameter

530 hyperparameter 3y (eq. 12). A value of Sy = 2 leads to the desired behavior of breaking the symmetry (compare shading in
figure 6 b and d) but not imposing the optimization result through the prior (Fig. 7d blue and orange lines).

The ang proposed MCMC method shares aspects
with the Wavelet Directional Method (WDM, Donelan et al., 1996, 2015), which decomposes the signals of at least three
stationary wave observations into wavelets for each frequency. Similar to our method, WDM uses the phase lag of the wavelets

535 between the three stations to identify a wave incident angle per frequency. WDM could be applied to transects of the wave
surface as present in our analysis. However, ICESat-2 only provides two neighboring laser beams, and other beam pairs are too
distant (about 3 km) for coherent phase analysis. In addition, the signal-to-noise may be substantially lower in the ICESat-2
observations, as wave crests are potentially distorted by sea ice structure, Therefore, we introduced a wave-angle prior (eq.12)
to break the ambiguity in the observed phase lag (Fig. 6b.d, shading).

540 6 Conclusion
sec:conclusion
We proposed and tested a method to decompose photon retrievals from the ICESat-2 satellite into a surface wave signal and
residual variance. The surface wave signal is identified using a Generalized Fourier Transform, and it can be expressed as
a directional surface wave spectrum by adding a Metropolitan-Hastings sampling method to identify the incident angle of
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the dominant wave ener: sec. 3). The wave and sea ice signal is separated using a simple cut-off frequency that implies a

separation of scales.

Surface waves and sea ice can have complex non-linear interactions that are important to model for improving sea ice and
climate projections. This method will enable us to observe the interaction between the dominant waves and sea ice by utilizing
large datasets from ICESat-2 (IS2). However, 12’s nearly one-dimensional snapshots of the surface wave statisties-height can
hardly capture all possible interactions between waves and ice. Besides gaps in the observations due to clouds and varying
photon densities between sea ice types, a correct wave field inversion is only possible with sufficient data density and a limited
range of incident angles (sec. 3-H)—Waves-eoming from steep-angels-compared-to-the 3). Even though this method outlines
a better, more transparent wave-field inversion than a DFT, it remains to be seen how the interaction of those limitations can
be used to provide a highly-resolved global wave-in-ice product. Comparisons with other data sources, either from in-situ or
remote sensing observations, are needed to understand these limitations better and validate this method.

Waves and sea ice have scales ranging multiple orders of magnitude such that it is challenging to separate both in the IS2
observations. The choice of the parameters in this analysis (10-meter bins, 25km segment length, and the slope-based cut-off
frequency k) focus on identifying swell wave events routinely created by synoptic storms (Hell et al., 2021). However, even
on these scales (80 to 350 meters), a separation between wave and sea-ice signal may only be possible when the sea ice variance
is weak on those scales and the data is not too gappy, as in the chosen example tracks (Fig. 3, Fig. 10). High levels of sea ice
variance or frequent data gaps will lead to systematic biases and aliasing effects in the wave spectral estimates. To identify
these more complex cases, we proposed mitigation strategies that exploit the fact that swell spectra normally vary over larger
scales than the segment length (12.5 km) or the separation distance of the beam pairs (3 km): By applying an iterative inversion

Fi .9.eq. 10

Fig. 51, Fig. 7b), the method provides ample auxiliary data to detect unusual features in the observations. Complex cases that

show a large spread between beams, or large errors, can be identified and excluded from further analysis (suppl. Fig. S4).

Despite the shortcomings and limitations of individual track inversions, the method has promise, especially when applied
at scale. We expect 10 — 15% of the IS-2 ichdimi : i

. 5), and provide error estimates in frequency, real space, and direction (e

. 4), using cross-beam average (Fi

s—tracks in polar regions to be dominated
by waves (Brouwer et al., 2021), which means there is already large collection of diverse wave observations from IS-2. Because
IS-2 can also record freeboard heights, floe sizes, and sea ice types, this analysis can provide complimentary sea ice information

to constrain dynamics in the MIZ. This will be used to statistically constrain parametrizations of wave-attenuation in sea ice
Fig. 5 .10 d).

‘While-Finally, while the here developed methods-are-method is customized for ICESat-2 photon retrievals, this approach is
apphieable-applies to any unstructured quasi-instantaneous observation of a-two-dimenstonal-wavefieldthe ocean surface. In the

case of IS-2, cross-track information is limited, but other future remote-sensing methods may have complimentary information

and can potentially leverage the wave-removed residual signal to improve ice classification (Fi

about the surface wave field. Such an inversion could combine data from IS-2, SAR, and CFOSat to help constrain the surface

wave filed in the MIZ or the open ocean (Collard et al., 2022).
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Code and data availability. The algorithms are available through Hell (2022a, DOI: 10.5281/zenodo.6908645) and data are available through
580 Hell (2022b, DOI: 10.5281/zenodo.6928350). The 1S-2 ATL03 data (Neumann et al., 2021) and ATLO7/10 data (?) is available through
NSIDC (https://nsidc.org/data/icesat-2/data-sets), or OpenAltimetry (https://openaltimetry.org/data/icesat2/, Khalsa et al., 2020). The wave
model data are available through the Integrated Ocean Waves for Geophysical and Other Applications IOWAGA) project: ftp.ifremer.fr/ifremer/cersat/proc

The analysis uses and modifies the icesar2 toolkit (https://read-icesat-2.readthedocs.io/)

Appendix A: GFT priors
app:GFT_priors

585 Al DataPrior R

sec:data_prior

We define the data prior R based on the surface slope uncertainty, as

_ 2 Oh
R—ﬁRO'(b) A

where the stencil width is Az = 20 meters, o(b) is the standard deviation of the data b within the segment, o, is the vector
of standard deviation of each data point (each stencil, sec. 2.1), and B is a tuning parameter that determines the ratio of the
model and data priors in eq. 6 (Fig. 2 blue lines). The standard deviation, or error, of the data is divided by the stencil size to
get an error in units of surface slopeand-R-is-amplified-by-, and the variance of the data is then used to amplify the prior R to

590 scale it against the model prior.
To avoid over-fitting the ratio of the model prior P and data prior R has to be adjusted. For this we try different values of

1 and set it to 102 such that the distribution of the residual r is approximately Gaussian and that
pp y
|[r[|=[b—Hp||~1,

as shown in Figure 3e. At locations with no data, this results in a model decay to zero (Fig. 3 orange lines) on scales similar to

the data’s auto correlation.
A2 Model Prior P

As described in section 2.4, the GFT’s prior is-initialty-for initial segments are derived from a PM-spectrum that is fitted to
595 a DFT of the segment data (Fig. Alagray-and-black-b gray and black-dashed line). The initial prior P;y;; is then defined
as the peak-normalized PM-spectrum multiplied by the data variance o(b)? plus a 10% noise floor (Fig. Ala-—green— black
dashed line). The initial prior is used to perform a first inversion of this seement, but — to avoid over-fitting to the PM spectrum

(Fig. Alc black line). The power of the resulting-2nd (final) GFT model coefficients p is then shown asred-ine-infigure-Adasin
600 green figure Alc).
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Segments with a successful inversion in the previous segment do not make use of the PM-based prior; Instead, they use the
data prior from the previous segment; For a segment ¢ with a sueeessfully-successful inversion in the previous segment ¢ — 1,
we use a smoothed power spectrum based on p;_; to derive P; (figFig. Alb-greentine-¢ and g, black lines, sec. 2.4). Note that
even though the initial PM-prior pushes the model to a single peak spectrogram (Fig. Alb and c dashed line), in cases where
the data does not support this shape, as in this example, the PM-prior does not determine the result (Fig. Alc.e,g green lines).
Any spectral shape, including double peaks, can appear. Cases where a PM prior improves the inversion are shown in suppl.

Appendix B: Wave-watch III Prior

app:angle
The prior in eq. 12 uses an incident angle 6y (k) with an uncertainty oy (k), defining the prior
Oo(k)—0 2 eq:p_angl
Py(0,k)=(——F——) . 1

Both variables in the prior have to be taken from other data sources than IS-2, and here they are derived from WW?3 global
hindcast wave-partitions (Tolman, 2009, using the Integrated Ocean Waves for Geophysical and other Applications (IOWAGA)
hindcast)) and depend on wavenumber. The WW3 hindcast data is selected in a box around the most equatorward photons in
ICESat-2 (suppl. Fig. S4-S11 and. sec. 2.1). In cases where this box is within the sea-ice mask of WW3, it is moved equatorward
along the IS-2 track until at least 2/3 of the box’s grid cells are not covered by the WW3 sea-ice mask.

Within each box, the mean of the peak period, peak direction, and directional spread is calculated for each of the five
WW3 wavenumber partitions (Fig. 7a black dots). These partitions are interpolated and smoothed to the k; wave numbers of
interest to provide-a-best-guess-of-best guess the wavenumber-dependent peak direction and spread (Fig. 7 a-an orange line
and shading). Note that it is hard to validate the WW3 partitions in the Southern Ocean due to a lack of contemporaneous
in-situ observations. The a-lack of certainty in the wave-hindcast, in combination with (any) smoothing procedure, can lead to
biases in the directional prior. Hence, we do not expect the direct alignment of the WW3 wave directions and those observed
in ICESat-2 observations. The WW3 incident angle is here solely used to reduce ambiguities in the objective function (Fig. 6
b and d and Figure 7) and can give a preferred incident wave angle, rather than a certain estimate of the dominant wave angle
(Fig. 7).
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