

1 ***The perception of palaeontology in commercial off-the-shelf video games and an***
2 ***assessment of their potential as educational tools.***

3 Thomas Clements ^{*1†}, Jake Atterby, ^{*1†}, Terri Cleary ^{1,2}, Richard P. Dearden ¹ and Valentina
4 Rossi ^{3,4}.

5 1: School of Geography, Earth and Environmental Sciences, University of Birmingham, Birmingham, B15
6 2TT, UK

7 2: Independent researcher

8 3. Museo di Scienze Naturali dell'Alto Adige, Bolzano, 39100, Italy

9 4. School of Biological, Earth and Environmental Sciences, University College Cork, Cork, T23 TK30,
10 Ireland

11 *Joint first authors.

12 † Corresponding author. clements.taph@gmail.com

13

14 *Video games now comprise the largest sector of the media entertainment industry. Hundreds of*
15 *video games, spanning a huge variety of genres and platforms, use extinct animals and/or*
16 *palaeontological themes as a basis for their gameplay. Because of this, many players, especially*
17 *children, spend long periods of time engaging with, and immersed in, palaeontological concepts*
18 *and themes. Video games may be the first medium of implicit or tangential science communication*
19 *they engage with, especially with regards to palaeontology. However, commercial off-the-shelf*
20 *video games are not primarily designed to be educational tools, and the proliferation of some*
21 *common tropes can disseminate harmful and/or unethical (mis)information regarding*
22 *palaeontology. This paper introduces the major types of palaeontological video games and*
23 *discusses their educational potential. We highlight the most common palaeontological tropes*
24 *observed in video games, both positive and negative, to better equip science communicators*
25 *about the perception of palaeontology (and ancient animals) in this massively influential medium*
26 *that they may encounter when undertaking scientific engagement. Furthermore, by highlighting*
27 *common misconceptions and harmful tropes we aim to bring awareness to game developers who*
28 *may be unaware that they could be propagating negative tropes about palaeontological science.*

29

30 **1. Introduction**

31 Video games are the largest and fastest growing sector of the media entertainment industry. In
32 2020, approximately 2.7 billion users generated an estimated \$159.3 billion in revenue; more
33 revenue than the movie and music industry combined (Newzoo Global Games Market Report,
34 2020). The rise of games playable on mobile devices has massively increased the accessibility

35 of video games to a broad range of demographics, mainly because they do not require specialist
36 hardware, are often free-to-play, and have huge diversity in regard to subject matter and
37 necessary skill level. Furthermore, gaming related entertainment, such as live-streaming services
38 like the websites Mixer, Twitch, YouTube etc., are hugely popular, with over 12.4 billion hours of
39 gaming live-streams consumed in the first two quarters of 2020 (Stream Hatchet Video Game
40 Streaming Trends Report, 2020). Combined, this indicates that not only are video games
41 increasing in popularity but that, when not playing, many users will still engage with video games
42 by watching others play online via streaming services. Palaeontological science communicators
43 should recognise the size of the captive audience, and how influential the medium of video games
44 is as a resource for engagement practices.

45 Broadly speaking, video games can be separated into two categories: educational and
46 commercial games. Educational games actively promote learning by introducing information and
47 engaging the user with specific content, known as 'Digital Game Based Learning' (DGBL; see
48 Habgood & Ainsworth, 2011). Video games that focus on specific STEM subjects have been
49 shown to be beneficial to both non-students and students by positively aiding learning outcomes
50 (e.g. Shute *et al.* 2013; Mani *et al.* 2016; Pringle *et al.* 2017; etc.), especially for students who
51 struggle with traditional teaching practices (Mayo, 2009). However, studies also indicate that
52 some users can find educational games patronising (Klopfer & Osterweil, 2013), or lose interest
53 rapidly and disengage, decreasing the likelihood of positive learning outcomes (Kerawalla &
54 Crook, 2005; Habgood & Ainsworth 2011). Furthermore, educational video games are typically
55 niche in their subject matter, difficult to programme (e.g. Pringle *et al.* 2017), difficult to implement
56 (e.g. Mani *et al.* 2016; Mozelius et. al., 2017), and require extensive funding to develop (Annetta,
57 2008; Mayo, 2009). These games are often made in association with specific outreach projects
58 with limited funding (e.g. Mani *et al.* 2016; Pringle *et al.* 2017), making protracted development
59 an impossibility (Mayo, 2009). It should also be noted that it can be difficult to monitor the learning
60 outcomes from these educational video games (e.g. Mani *et al.* 2016) especially if they are
61 released to the public. Ultimately, educational video games are viable learning aids, but they do
62 not appeal to the wider public.

63 The second type of video games are commercial-off-the-shelf (COTS) games. These
64 games make up the overwhelming majority of the gaming ecosystem and are incredibly diverse
65 in their genres and themes. Typically, COTS games are developed to a much higher standard of
66 graphics and gameplay mechanics than educational video games (Mozelius et. al., 2017) and are
67 designed specifically to capture the attention of the user by motivating and challenging them in
68 an interactive environment, often reinforcing this through repetition and reward (Brown *et al.*

69 2014). Despite the dated perception that video games are nothing more than a trivial time sink,
70 evidence suggests that video games can have positive benefits to cognition, motivation, and
71 social skills in players (e.g. Granic *et al.* 2014). Furthermore, COTS games can effortlessly provide
72 early exposure to educational themes and concepts, even if the specific COTS game is not
73 primarily designed for this purpose. Because of the huge variety in genres, engaging gameplay,
74 ability to play online with friends, and high production quality, it has been proposed that COTS
75 games are a resource that could be incorporated into teaching environments (Van Eck, 2006),
76 with multiple studies undertaking utilising COTS in teaching environments (e.g. Charsky and
77 Mims, 2008; Mohanty & Cantu, 2011; Sun *et al.* 2015; Cadwell *et al.* 2017; etc.). Recently, some
78 COTS games have included specific sections of the game that are focused on education: for
79 example, *Assassin's Creed: Origins* (2017, Ubisoft Montreal) and later instalments in the
80 *Assassin's Creed* franchise contain a 'Discovery Tour' mode that removes combat and quests in
81 the game to allow players to explore the games' historical settings accompanied with factual
82 information and quizzes. Generally speaking, however, whilst educational video games often
83 sacrifice entertainment for accuracy, many COTS video games do the opposite (Van Ecy; 2006
84 Mozelius et. al., 2017; McGowan & Scarlett, 2021), and therefore must be carefully vetted prior
85 to integration into curricula, often leading to increased workload for educators (e.g. Sun *et al.*
86 2015; Cadwell *et al.* 2017 etc.).

87 One important and often overlooked aspect of computer gaming is the potential for implicit
88 and tangential learning (Mozelius et. al., 2017; Crowley *et al.* 2021; McGowan & Scarlett, 2021).
89 Implicit (or unconscious) learning occurs when learning takes place in an incidental manner
90 without the awareness of the person engaging in an activity (e.g. Frensch and Rünger, 2003).
91 Conversely, tangential learning is the semi-conscious process of self-education via exposure to
92 a topic in an already enjoyable, non-educational format (Brown *et al.* 2014). Many COTS games
93 impart complex scientific and historical content to their audiences by presenting the topic within
94 fun and engaging game mechanics in a non-scholastic format (see Herrero *et al.* 2014; Crowley
95 *et al.* 2021) and can be used as a tool within a wider educational framework (Herrero *et al.* 2014).
96 However, it is also possible that any implicit and tangential learning from a COTS game may be
97 a completely unintended or entirely accidental element of game design. Consequently, because
98 COTS games are not primarily designed with educational purposes in mind, inaccuracies either
99 intentional (disinformation), or unintentional (misinformation), could have a powerful effect on less
100 informed players, misleading audiences about key concepts and even reinforce harmful
101 stereotypes.

102 This is particularly pertinent to the science communication community, especially for
103 palaeontology. For over 150 years, ancient organisms have inspired a plethora of popular books,
104 films, cartoons and toys. It should therefore be of no surprise that ancient life is a popular topic
105 for the video game industry. In fact, one of the first 3D games for the home computer was *3D*
106 *Monster Maze* (1982, J. K. Greye Software), a maze game where the player was chased and,
107 unless they could successfully escape, eaten by a *Tyrannosaurus rex* (Figure 1). Since then, the
108 diversity of palaeontological video game genres has greatly increased and is currently a popular
109 theme for COTS games (see Figure 2). This means that a considerable number of people,
110 particularly children, will be introduced to the field of palaeontology through the medium of video
111 games. Because players repeatedly engage with a single video game and new games containing
112 palaeontological themes are released frequently, COTS games have a much greater reach than
113 traditional outreach events.

114 The aim of this paper is twofold: 1) to familiarise science communicators with the types of
115 palaeontological COTS video games; 2) to identify and discuss common tropes and
116 misconceptions that often arise where scientific accuracy is compromised for entertainment value.
117 This paper seeks to raise awareness to science communicators of the perception of
118 palaeontology (and ancient animals) that the video game-playing public are exposed to, especially
119 those that have been introduced to the subject via these games. Here, we highlight harmful tropes
120 (i.e. unethical behaviour, misogyny, racism, etc.) to inform science communicators of the
121 perception of palaeontology that is disseminated by COTS videogames. Furthermore, this review
122 may be of interest to COTS game writers, developers, and video game artists who may be
123 unaware that they are propagating damaging tropes pertaining to palaeontological science.

124

125 **2. General introduction to palaeontological video games**

126 In this review, we focus on COTS video games that incorporate fossils and/or ancient animals as
127 one of the playable or interactive aspects of the game, which we term 'palaeo-video games'. This
128 review does not include games based on human remains or artefacts (archaeology).

129 Currently, there is a huge diversity of video games that contain palaeontological content. As of
130 2021, there are over 270 palaeo-themed COTS games available on Steam, the largest digital
131 video game distribution service (PC games only) (Figure 2). It is important to note that this number
132 does not include games that have been released for games consoles (such as the SNES,
133 PlayStation, Xbox etc.) and so the number of palaeo-themed COTS games is much greater. Many
134 of the games available on Steam are made by small development teams and will not sell in large
135 quantities, however, mainstream titles can often sell large numbers of games. For example, by

136 2020 *Jurassic World Evolution* (2018, Frontier Developments) sold over 3 million copies (Kerr,
137 2020). Due to the vast quantity of palaeo-themed COTS games, there are titles not explicitly
138 discussed herein.

139 In this review we do not discuss COTS games only incorporating ancient animals as 'set
140 dressing'. Examples include games such as *The Last Of Us Part II* (2020, Naughty Dog), *Batman: Arkham City* (2011, Rocksteady Studios), and *BioShock* (2007, 2K Boston) that feature levels in
141 museums containing skeletons or animatronic replicas of extinct animals, or *Battlefield 4* (2013,
142 DICE), which features a hidden 'easter egg' allowing the players to summon a giant *Otodus megalodon* during live multiplayer matches. While some of these games, such as *The Last Of Us Part II*, do have playable museum levels allowing players to interact with fossils, typically the
143 palaeo-content of many of these games is purely aesthetic and, therefore, would be of limited use
144 to science communicators. Another common use of ancient animals is purely cosmetic; many
145 multiplayer games feature 'skins' that the players can unlock to customise their characters, and
146 these often resemble ancient animals e.g. dinosaur outfits in *Fortnite* (2017, Epic Games), and
147 dinosaur themed armoured suits in *Destiny 2* (2017, Bungie Inc.) (Figure 2). These 'skins' are
148 purely aesthetic changes that do not alter the core gameplay and will not be discussed further.

149 In order to understand the tropes commonly seen in palaeo-video games, it is important
150 to identify the major categories of palaeo-video games available on the market. Despite the
151 diversity of game types and styles (Figure 2), most games align with one of the following
152 categories (though some span multiple): 1) ancient animals as adversaries (Figure 3a); 2) ancient
153 animals as tools (Figure 3b); 3) fossils as collectibles (Figure 3c); 4) ancient animal management
154 simulators (Figure 3d); and 5) ancient animal simulators (Figure 3e).

155

156 2.1 *Ancient animals as adversaries*

157 This category is, by far, the most common type of palaeontological video game (65% of palaeo-
158 game titles on Steam Figure 2d). Many video games use ancient animals (typically dinosaurs and
159 pterosaurs) as adversaries that must be defeated (i.e., killed) for the player to proceed and
160 continue the game. In this type of game, the ancient animals are programmed to be hostile if
161 approached and/or will actively hunt the player. Examples include *The Legend of Zelda* (1986,
162 Nintendo EAD), *Turok: Dinosaur Hunter* (1997, Iguana Entertainment; Figure 3a), *Trespasser*
163 (1998, DreamWorks Interactive), *Dino Crisis* (1999, CAPCOM), *Tomb Raider* (1996, Core
164 Design), *Peter Jackson's King Kong: The Official Game of the Movie* (2005, Ubisoft Montpellier).

165

169 Another type of palaeo-video game within this category is the ‘wave shooter’, in which the
170 player fights off waves of hostile enemies with a suite of exotic weapons in order to progress. The
171 enemies in these games are presented as cannon fodder that exhibit little or no natural behaviour,
172 swarming en masse to overwhelm the player. Examples include *Dino Stalker* (2002, CAPCOM),
173 *Dino D-Day* (2011, Digital Ranch), *Dinosaur Hunt* (2015, Racing Bros), *Carnivores: Dinosaur*
174 *Hunter (Reborn)* (2015, Digital Dreams Entertainment LLC), *Wrath of the Goliaths: Dinosaurs*
175 (2018, Ascendence Studios), *Hunt: Primal Reptiles* (2020, HugeLittleStudio), *Prehistoric Hunt*
176 (2020, Antiproto Studios), and *Second Extinction* (2020, Systemic Reaction). Some games
177 subvert this category and allow the option to play as the ancient animals in order to hunt and kill
178 humans, such as *Primal Carnage* (2012, Lukewarm Media) and *Orion Prelude* (2012, DANKIE).

179 Generally, category 1 games offer very limited educational content. At best, the player can
180 access a glossary of the hostile units which may contain some scientific information, however,
181 many of these games rely heavily on tropes such as monsterification (see below) to make the
182 enemies appear and behave more frightening or lethal. In fact, in most category 1 games, the
183 ancient animals could be replaced by any other generic adversaries (i.e. aliens or zombies) with
184 little effect on core gameplay.

185

186 2.2 *Ancient animals as tools*

187 Another common use of ancient animals in COTS games is as a tool to help the player progress
188 through the game. One of the most famous and recognisable examples is Yoshi, a fictional
189 omnivorous theropod dinosaur who first appeared in *Super Mario World* (1990, Nintendo EAD;
190 Figure 3b). Yoshi was a mount for the Mario brothers, who rode Yoshi in their adventures to
191 rescue Princess Peach, but Yoshi’s popularity promoted him to full sidekick status and has
192 spawned several dedicated sequels (e.g. *Yoshi’s Story*, 1997, Nintendo EAD). A variety of other
193 games allow tamed ancient animals to be utilised as mounts, such as *Far Cry Primal* (2016,
194 Ubisoft Montreal), *Ark: Survival Evolved* (2017, Studio Wildcard), *Total War: Warhammer I* and *II*
195 (2016, 2017, Creative Assembly), and *World of Warcraft: Battle for Azeroth* (2018, Blizzard
196 Entertainment), with some games even going so far as to mount weapons such as machine guns
197 and cannons, to ancient animals e.g. *Nanosaur* (1998, Ideas From the Deep), *Dino D-Day*, and
198 *Total War: Warhammer II*.

199 Ancient animals as tools are also featured in the video game sub-genre of role-playing
200 games (RPGs). In the context of palaeontology, the most famous examples are the *Pokémon*
201 games, in which a diverse group of *Pokémon* are based on or inspired by ancient animals. In
202 these games the player can catch, train, and fight the creatures in sanctioned competitions in

203 order to become the best trainer in their respective worlds. Pokémons fossils can be found, revived,
204 and used to battle other trainers as the player progresses through the game (e.g. *Pokémon*
205 *Red/Blue*, 1999, Game Freak). Similarly, the *Fossil Fighters* series (2008, Nintendo EAD) allows
206 players to take part in detailed fossil excavations, revive the discovered dinosaurs (referred to as
207 vivosaurs), and train them to fight in order to complete the main story.

208 Similar to category 1 games, category 2 games have very limited educational content but
209 may have some information about the ancient animals in databases or glossaries.

210

211 2.3 *Fossils as collectibles*

212 Collectibles are a common aspect of COTS games: items found throughout the game setting that
213 the player can collect as they progress and explore through the game. These collectibles are often
214 an optional side quest separate to the main storyline, that provide additional worldbuilding or
215 upgrades, but which in some games are used as resources to craft tools and materials.

216 Fossils are frequently a form of collectible seen in COTS games (Figure 4). For example,
217 *Red Dead Redemption 2* (2018, Rockstar Games; Figure 4e), features a side quest where the
218 player is tasked to locate 30 fossil specimens across the game world in order to assist an aspiring
219 palaeontologist. Another example is in the Pokémons franchise; as mentioned above, fossils can
220 be found and resurrected by the player in order to complete the secondary objective of the game
221 (Figure 4o) – filling the digital Pokémons encyclopaedia, or Pokédex, with every type of Pokémons
222 that can be found in the game world (e.g. *Pokémon Red/Blue*).

223 Most other games use fossils as a natural resource, alongside crystals, ore, geodes, etc.
224 that can be used to collect, sell, or build other objects. In *Minecraft* (2011, Mojang; Figure 4n),
225 *The Sims 4* (2014, Maxis; Figure 4f - h), *Starbound* (2016, Chucklefish; Figure 4i - m), *Stardew*
226 *Valley* (2016, ConcernedApe; Figure b - d), and *Animal Crossing: New Horizons* (2020, Nintendo
227 EAD; Figure 3c, Figure 4p - t) players can collect fossils for a variety of reasons — from displaying
228 in virtual museums or in their own personal collections, to being used as fertiliser. However, in
229 the majority of category 3 games, fossils are also used as (or associated with) in-game financial
230 resources as a tradable commodity. This has implications for the public perception of fossil
231 collecting (see *Representing ethics in palaeontology*).

232 Virtual fossil collectibles are almost always based on real organisms and often include
233 database entries or facts pertaining to the collectibles items. This has enormous potential for
234 educating the player, provided the information is well researched (see supplementary table 2).
235 However, category 3 games can easily impart misinformation or even disinformation especially
236 when presented in an otherwise informative context.

237

238 *2.4 Ancient animal management simulators*

239 'Construction and management simulations', sometimes referred to as park management
240 simulators (or park sims) are games where the goal is to construct a financially viable park or zoo
241 by managing the construction, park layout, guest management, animal welfare, and breeding
242 programmes with often very limited resources. Ancient animals tend to be a common focus for
243 park sim games, and they often have a diverse variety of realistically modelled organisms tending
244 to exhibit 'naturalistic' behaviours (although some games are heavily stylized and/or simplistic for
245 aesthetic reasons) for the player to engage with. There are several park sim games based on the
246 Jurassic Park franchise, e.g. *Jurassic Park III: Park Builder* (2001, Konami), *Jurassic Park: Operation Genesis* (2003, Blue Tongue Entertainment), *Jurassic Park Builder*, (2012 Ludia) and *Jurassic World: Evolution* (Figure 3d), but independent franchises based on ancient animals are
247 also popular e.g. *DinoPark Tycoon* (1993, Manley & Associates), *Zoo Tycoon: Dinosaur Digs*
248 (2002, Blue Fang Games), *Parkasaurus* (2020, Washbear Studio) and *Prehistoric Kingdom*
249 (2022, Blue Meridian).

250 Category 4 games often contain the most detailed compendiums on ancient organisms,
251 allowing the player to find information regarding their required virtual living conditions and about
252 the relevant science and/or discovery of the organism. They can also contain detailed information
253 about fossil sites, fossilisation processes, phylogenetic relationships, and evolutionary processes.
254 As with previous categories, this information can yield useful educational content if accurate, but
255 be misleading if incorrect or disinformation is presented.

256

257 *2.5 Ancient animal simulators*

258 The last decade has seen the emergence of 'survival simulators' — games where the player can
259 control an individual animal through an entire life cycle in a natural, open world, environment.
260 While many COTS games, e.g. *Yoshi's Story*, *Project Bolan (Dinosaur Game)* (2014, Google),
261 *DinoRun DX* (2015, PixelJAM Games) etc., allow the player to play as an ancient animal. within
262 such games, the player's avatar could be replaced by any other organism without altering the
263 gameplay experience and are not the focus of this category.

264 In survival simulators, the player's ancient animal avatar must survive by finding water and
265 food (by hunting A.I. controlled animals or, potentially, other players) while avoiding natural
266 hazards and being predated themselves. Typically, these games have focused on dinosaurs, e.g.
267 *Saurian* (2017, Urvogel Games, LLC; Figure 3e), *The Archotek Project* (2017, The Archotek
268 Project Team), *Beasts of Bermuda* (2018, Sastrei Studios, LLC), *Dinosaurs: Prehistoric Survivors*

271 (2018, Arcupion Art), *The Beasts of 9500* (2020, Dragons), and *Path Of Titans* (2020, Alderon
272 Games) etc., however, some games do focus on non-dinosaurian animals groups such as early
273 hominids e.g. *Ancestors: The Humankind Odyssey* (2019, Panache Digital Games). Survival
274 simulators tend to market themselves as being as scientifically accurate as possible in both their
275 palaeo-environmental and animal reconstructions (e.g. *Saurian*).

276 Another genre of game within this category allows the player to visit ancient ecosystems
277 as a passive observer. Video games such as *Abzû* (2016, Giant Squid Studios), allow the player
278 to swim through ocean environments inhabited by a plethora of ancient aquatic organisms from
279 throughout geological time. *Robinson: The Journey* (2016, Crytek) utilises virtual reality headset
280 technology to create an immersive experience for the player who must journey through a world
281 inhabited by dinosaurs. This genre of game introduces the player to a diverse range of flora and
282 fauna from the ancient past but is relatively uncommon.

283

284 **3. Common palaeontological video game tropes**

285 Within the context of this paper, a 'trope' is a recurring theme or motif that occurs across video
286 games. Although many tropes are considered clichés, they are still commonly used throughout
287 popular entertainment as recognisable touchstones to provide familiarity to the audience (see
288 García-Sánchez, 2021). Many tropes seen in COTS video games are shared across the
289 entertainment industry (especially in television and film), however, due to the interactive medium
290 of video games, some tropes are unique to the format. Here we identify some of the most common
291 tropes appearing in video games, to highlight how palaeontological science is represented in pop-
292 culture and the entertainment industry, and to demonstrate that some tropes propagated by the
293 video game industry may be scientifically misleading and/or perpetuate harmful stereotypes.

294

295 *3.1 Ancient death machines: monsterification*

296 The most frequent use of ancient animals in video games is as enemies for players to combat.
297 Typically, these animals are designed to appear vicious, frightening, and brutish; this is known as
298 'monsterification'. This is often achieved by 'shrink wrapping' (reducing the organisms' soft tissue
299 until they are just skin and bone. See Conway *et al.* 2012), increasing the animal's body size to
300 exaggerated proportions, and grotesquely exaggerating features like claws, teeth, and horns.
301 However, monsterification is not limited to an organism's appearance — it can also include
302 behaviour such as being unrealistically aggressive, erratic and, most often, mindlessly and noisily
303 torpedoing towards their prey. By consciously combining these aspects, ancient animals are
304 made to appear more terrifying while also physically dissociated from real animals, meaning that

305 players have a desensitised and guilt-free experience slaughtering them. Interestingly, Jański
306 (2016) found that when extant animals were used as background assets or companions for the
307 player in video games, they were more likely to be accurately represented, whereas when animals
308 were depicted as enemies or tools, their appearance and behaviour was more likely to be
309 inaccurate, exaggerated, objectified and even monsterified. Indeed, some games actively task
310 the player to 'monsterify' ancient animals: *Jurassic World: Evolution* encourages the player to
311 breed dinosaurs to create hyper aggressive monsters in order to have them fight each other for
312 the entertainment of park guests.

313 Monsterification is not a novel concept nor is it unknown to science communicators. From
314 as early as the 19th Century, palaeo-reconstructions have liberally and creatively portrayed
315 ancient life provocatively as monsters to stir the imagination and these images have permeated
316 into modern popular culture. However, for science communicators there are some important
317 aspects of monsterification that are not normally considered: 1) monsterification is not restricted
318 to carnivorous animals in video games. Examples such as *Orion Prelude*, *Dinosaur Hunt* and
319 *Second Extinction* etc. utilise hyper aggressive herbivores such as stegosaurs, ceratopsians, and
320 ankylosaurs as opponents for the player to dispatch; 2) monsterification is not limited to dinosaurs.
321 For example, *ARK: Survival Evolved* applies some degree of monsterification to almost every
322 animal in the game – several taxa are much larger than their fossil remains indicate (e.g.
323 *Diplocaulus*, *Paraceratherium* etc.), while the giant fish taxon, *Leedsichthys*, is coated in jagged
324 spikes and scutes, and is depicted as highly aggressive despite fossil evidence suggesting they
325 were filter feeding organisms. Similarly, *Far Cry: Primal* depicts 'ice age' (Pleistocene) mammals
326 as colossal, aggressive monsters, and in the case of some animals, such as mammoths, twice
327 the size of their largest fossil remains; 3) extreme monsterification can lead to a situation where
328 ancient animals are indistinguishable from and/or confused with mythical creatures. In *ARK: Survival
329 Evolved* a wide variety of ancient animals live alongside fictional animals, such as
330 wyverns, basilisks and gryphons, that the player can also interact with and tame. In-game
331 information and even achievements do not differentiate between the mythical and real animals,
332 which could lead to confusion for some players.

333 Monsterification of ancient animals is not the same trope as video game monster designs
334 heavily based on the appearance of ancient life. This is very common in video games, with
335 examples including *Monster Hunter Rise* (2021, CAPCOM), where many of the monsters clearly
336 resemble theropod dinosaurs, and *Horizon Zero Dawn* (2017, Guerrilla Games) where a post-
337 apocalyptic world is populated by an ecosystem of mechanical creatures loosely based upon

338 extinct megafauna, including sauropod and theropod dinosaurs, as well as terror birds, giant
339 crocodyliforms and cave hyenas.

340

341 *3.2 Fossil = dinosaur = Tyrannosaurus rex: lack of palaeodiversity*

342 Since their discovery in the 1800s, dinosaurs have captured the public imagination. Today, that
343 popularity has continued, as dinosaurs dominate popular culture — so much so they are almost
344 synonymous with ancient life in the entertainment industry. The video game industry is no
345 different, with the vast majority of video games incorporating ancient animals featuring only
346 dinosaurs (Figure 2c). The perpetuation of this trope poses a challenge to science
347 communicators, as it presents a false impression to the audience that ancient ecosystems lack
348 complexity, as well as diminishing ancient diversity and species distribution through geological
349 time and space.

350 Yet, even within this trope, the representation of dinosaur diversity is typically limited to a
351 handful of 'iconic' dinosaur species that are perpetually recycled by the entertainment industry
352 (Figure 5). Many of these species are well documented from North Americans fossil sites like the
353 Morrison or Hell Creek Formation (see Dodson *et al.* 1980; White *et al.* 1998), such as
354 *Tyrannosaurus*, *Stegosaurus*, *Triceratops*, *Brachiosaurus* etc., while other commonly used
355 species are typically predatory (e.g. *Velociraptor*, *Spinosaurus* etc.). Within the video game
356 industry, this recycling of dinosaurs serves a practical purpose: for smaller game developers,
357 building new digital assets can be highly labour intensive and costly. It makes commercial sense
358 to use pre-made, often free, resources (e.g. 3D models, animations, sound effects and reference
359 material) to recreate popular and recognisable dinosaurs, despite this further oversaturating their
360 prevalence in the video game market place. Another group of ancient animals within the overused
361 trope are the 'ice-age' (Pleistocene) animal pair of the woolly mammoth (*Mammuthus primigenius*)
362 and the sabre-toothed cat (*Smilodon* sp.). As charismatic mega-mammals frequently used in
363 media, they are recognisable to the public and often used as more relatable monsters than
364 dinosaurs in some video games (e.g. *Far Cry: Primal*; *The Elder Scrolls V: Skyrim*, 2011,
365 Bethesda Game Studios; *Syberia*, 2002, *Microids*.).

366 However, in recent years, there is a growing number of games that use a greater diversity
367 of dinosaur species as an active selling point to market the game. Park building games such as
368 *Jurassic World: Evolution* allows the player to send teams of scientists to real world fossil sites to
369 collect DNA from a host of lesser-known dinosaur species such as *Baryonyx*, *Huayangosaurus*,
370 *Proceratosaurus*, *Carcharodontosaurus*, *Tsintaosaurus* etc.. Dinosaur simulator games such as
371 *Saurian* often feature lesser-known dinosaurs, while *Ark: Survival Evolved* features an abundance

372 of relatively obscure dinosaurs (e.g. *Yutyrannus*) but also Permian therapsids (e.g. *Moschops* and
373 *Lystrosaurus*), Mesozoic birds (e.g. *Ichthyornis* and *Hesperornis*) and Cenozoic mammals (e.g.
374 *Chalicotherium* and *Phiomia*). Although, many of these animals are still ‘monsterified’, and the
375 game proves the point of this section by referring to every ancient animal in the game as a
376 dinosaur in the in-game information.

377 As new games seek to find a niche within the gaming ecosystem, there are a number of
378 popular video games featuring and drawing attention to even more obscure palaeo-taxa and time
379 periods. The hugely popular game, *Animal Crossing: New Horizons* tasks players with finding
380 fossils for display within a local museum and, in so doing, introduced players to a variety of
381 relatively niche groups such as *Anomalocaris* (a stem arthropod), *Eusthenopteron* (a
382 sarcopterygian fish), *Acanthostega* (a basal tetrapod) and *Myllokunmingia* (a stem chordate).
383 Interestingly, these fossils (and others found by the player) are displayed in a large phylogeny
384 demonstrating evolutionary patterns in a simple but highly informative manner. Another game,
385 *Abzû*, features a large number of obscure aquatic ancient animals such as ammonoids,
386 *Anomalocaris*, *Arandaspis* (a jawless fish), *Diplocaulus* (amphibian), *Archelon* (giant sea turtle)
387 etc., although there is no context or distinction of where/when these organisms lived for the player.
388 *Ancestors: The Humankind Odyssey* avoids this trope entirely by being specifically set in Miocene
389 Africa, including a suite of time-specific organisms such as *Stegotetrabelodon* (a stem elephant),
390 *Machairodus* (sabre-toothed cat) and *Enhydriodon* (giant otter). All these games introduce the
391 player to organisms and concepts they would have had limited (if any) exposure to in other types
392 of media.

393

394 3.3 “Did you know...?”: *palaeotrichia and palaeodatabases*.

395 In order to help the player understand complex topics or to introduce elements of story, many
396 video games feature in-built encyclopaedias or glossaries containing fact-files about characters,
397 objects and locations integral to the game’s setting. In games featuring palaeontological themes,
398 fact files, databases, and bonus trivia provide the ideal opportunity for optional, longer-form,
399 educational content with the potential to inform and provoke further investigation from players,
400 especially those who were not necessarily attracted to the game for the science.

401 In-game encyclopaedias can be extremely informative. This is particularly common in park
402 management games such as *Jurassic World: Evolution* and the *Zoo Tycoon* series (Blue Fang
403 Games, 2001 - 2017) that feature highly detailed databases about each ancient animal found in
404 game, often incorporating facts pertaining to the organism such as where and when the animal
405 was discovered as well as general information. This information is not necessary to play the game,

406 but because such databases are detailed and well researched, they often add to the 'scientific'
407 aesthetic of these types of games and are useful educational tools.

408 More typically encountered is the usage of 'palaeo-facts' within different elements of the
409 game. One excellent example is *Animal Crossing: New Horizons*, where Blathers, the strigiform
410 (owl) museum curator, will regale the player with light-hearted but informative trivia about each
411 fossil presented to the museum (See supplementary table 2). Another example commonly
412 employed is the use of 'palaeo-facts' to entertain the player on loading screens (i.e. a picture the
413 player must watch while the game is initialising). *LEGO Jurassic World* (2015, TT Fusion) uses
414 this tactic to deliver bite-sized informative facts about many of the dinosaur species encountered
415 in the game.

416 Generally speaking, the inclusion of palaeo-facts and databases in video games are good
417 science communication, if they are well researched. However, if factual information is presented
418 alongside misinformation, it can be difficult for some players to discern the difference. For
419 example, in *The Sims 4* various fossils can be found throughout the game world – including trace
420 fossils, trilobites, plants, and raptor dinosaur claws. However, other fossils items, ranging from
421 the ridiculous (fossilised cow udders) to the bizarre ('perfectly preserved moustaches') are
422 presented as genuine fossil remains. While clearly light-hearted and for comedic effect, the
423 indiscriminate mixing of real and fake fossils presents a challenge for science communicators.

424 Tangentially, many of the games mentioned in this section have large, dedicated player
425 fan-bases who often form distinct online communities. In order to assist with completing aspects
426 of the games, many players create, edit and maintain sizable publicly editable online 'wikis' (an
427 online database resource). These online encyclopaedias not only provide game specific
428 information but often contain further reading and palaeo-trivia for interested players making them
429 a useful educational resource, however, the degree of moderation and fact checking varies wildly.
430

431 *3.4 The depiction of palaeontological science*

432 The perception of palaeontology as a scientific discipline is difficult to gauge in computer games.
433 Most palaeo-video games convey good palaeontological communication by explicitly integrating
434 physical and biological processes into gameplay and world-building that will, either directly or
435 indirectly, increase the knowledge of the player. However, most games typically focus on very
436 specific aspects of palaeontology (e.g. fossil collection, genetics, evolution) and can take creative
437 liberties in order to make engaging gameplay mechanics. This can mean the player may get an
438 inaccurate or misleading representation of palaeontological science. We discuss some of these
439 below.

440

441 3.4.1 *Geological processes*

442 Though it is often taken for granted, many open-world video games heavily rely on aspects of
443 climate, topography, biomes and even natural disasters to create realistic settings, the exploration
444 of which can subtly communicate basic earth science to the player. Enormous effort is taken to
445 accurately capture the surface geology, flora and fauna, and variable ecosystems in open world
446 games such as *Red Dead Redemption 2*, allowing players to learn tangentially (see Crowley *et*
447 *al.* 2021). Other games, such as *American Truck Simulator* (2016, SCS Software) allow players
448 to take virtual road trips across hyper-realistic (albeit scaled-down) sections of the United States
449 including many famous North American fossil localities (e.g. Dinosaur National Monument,
450 Colorado, USA). Other games incorporate geological processes to build the gameworld for the
451 player to explore. *Subnautica* (2018, Unknown Worlds Entertainment) is an underwater
452 survival/horror game based in the crater of a guyot (a submerged volcanic seamount) on an alien
453 planet. The explorable map is separated into distinct biomes, some of which contain large
454 fossilised remains preserved due to the area's specific environmental conditions. The processes
455 of fossils formation (e.g. taphonomy) is explained to the player by scanning the fossils with
456 scientific equipment in their inventory.

457 As computing power increases, greater graphical fidelity allows more accurate geological
458 features to become standard in computer gaming and as a tangential effect this can be used by
459 science communicators in engagement activities. During the recent COVID-19 pandemic, where
460 travel was restricted, some academic institutions created virtual field trips for their students using
461 technology commonly utilised by video gamers (e.g. VR headsets; Klippel *et al.* 2019).
462 Furthermore, video game engines allow complex geological features to be explored in ways that
463 would be difficult for actual students in the field (e.g. utilising aerial imagery; Klippel *et al.* 2020).
464 This demonstrates that video games have great potential for geological engagement, especially
465 for players who are unable to access key sites due to travel restrictions or accessibility issues,
466 not to mention the reduced environmental cost associated with virtual fieldwork.

467

468 3.4.2 *Depicting evolution*

469 ‘Evolution’ is a common theme in video games, but while video games are potentially a
470 great way to introduce players to the complex process of evolution, it should be remembered that
471 COTS games must prioritise delivering engaging gameplay far above educational content. It
472 should also be noted that the term ‘evolution’ is commonly used in video games to encompass a
473 host of different game mechanics not accurately representing biological processes, potentially

474 skewing the player's understanding of the phenomenon. One example of the term 'evolution'
475 being misused is as a levelling up mechanic. In the *Pokémon* franchise, the *Pokémon* 'evolve'
476 into larger, more powerful forms as they gain more experience and level up, despite the process
477 actually being a type of metamorphosis.

478 Another common misuse of the term evolution applies to games where novel
479 morphological traits are acquired via predation. In *Spore* (2008, Maxis) players must guide the
480 'evolution' of their own custom creatures from microscopic organisms to an interstellar empire by
481 acquiring new evolutionary traits by scavenging them from the creatures they ingest (see Poli *et*
482 *al.* 2012; Herrero *et al.* 2014). This depiction of 'evolution' is also seen in *E.V.O.: Search for Eden*
483 (1992, Enix) where the main character begins as a generic fish, and must acquire teeth, jaws,
484 limbs, and other features by eating prey items as they advance through levels inspired by different
485 geological eras. This gameplay mechanic re-enforces the trope that evolutionary changes are a
486 result of a conscious decision by an organism as opposed to random coincidentally beneficially
487 traits with greater likelihood to be passed to the next generation via natural selection.

488 Other games tackle evolution as a gradual process with greater nuance, however many
489 of these games are limited by the need for fun game mechanics. In *Cell to Singularity: Evolution
490 Never Ends* (2018, Computer Lunch) the player clicks or taps the screen to acquire currency,
491 which is spent to advance Earth history in short steps. The game is presented as a branching tree
492 with each node representing a new species or event, however the order in which evolutionary
493 milestones are achieved is entirely arbitrary, presenting evolution as a simplified linear checklist
494 of sequential events. Even games accurately depicting ancient organisms and past environments
495 often portray the processes of evolution poorly. *Ancestors: The Humankind Odyssey* depicts the
496 evolution of early humans as distinct leaps from one species to next as opposed to multiple
497 species coexisting at the same time (see Snyder, 2022). Similarly, the game also refers to the
498 levelling-up mechanism of learning new skills and abilities, such as being able to use tools, as
499 'evolution'. By presenting evolution as an oversimplified, linear process, it also re-enforces the
500 outdated notion that humans are the pinnacle product of evolution.

501 Conversely, some games approach evolution from a palaeontologist's perspective – using
502 fossils to infer evolutionary patterns. In the puzzle game *Fossil Corner* (2021, Overfull Games),
503 the player is given a box of procedurally generated fossils and is tasked with resolving their family
504 tree by observing morphological character changes through each generation. This introduces the
505 player to the concepts underlying maximum parsimony, a method to generate phylogenetic trees
506 for extinct organisms commonly used by palaeontologists. As such, *Fossil Corner* is a good
507 example of Digital Game Based Learning (DGBL).

508

509 3.4.3 Cloning and resurrecting extinct animals

510 One aspect of palaeontological science that consistently arises in video games is cloning/de-
511 extinction. The *Jurassic Park* (Crichton, 1990) franchise popularised the concept of extracting
512 genetic information from fossiliferous material in order to clone ancient animals (for a review of
513 this topic see Jones, 2018). This concept pervades video games based on the franchise such as
514 *Jurassic World: Evolution* but is also prevalent in many other video games. For example, in
515 *Terraria* (2011, Re-Logic), ancient amber is one of many natural resources that can be collected
516 by the player and each piece has a tiny chance of containing a fossil mosquito. The player can
517 then process the fossiliferous amber using an 'extractinator' to resurrect a pet baby dinosaur. In
518 *Pokémon Red/Blue* the player receives a fossil as a reward and can take it to a laboratory on
519 Cinnabar Island, where a scientist will resurrect the extinct *Pokémon*. This is taken to the extreme
520 in *Pokémon Sword* and *Pokémon Shield* (2019, Game Freak), where the palaeontologists take
521 the player's fossils, splice them together, and resurrect them into horrific, often unviable,
522 chimaeras.

523 Because the trope of DNA extraction from fossiliferous material is so prevalent in media,
524 video game players may not be aware that, currently, we are not able to extract viable genetic
525 material from fossilised remains to 'resurrect' extinct animals (although fragmentary fossil DNA
526 can be extracted from some more recent fossils and has allowed important scientific advances in
527 identifying these fossils and placing them in the tree of life (e.g. Buckley and Collins, 2011;
528 Orlando *et al.*, 2013; Perri *et al.* 2021; etc.). Generally, there is very little nuance in video games
529 regarding the depiction of the growing field of palaeo-proteomics (i.e., the study of ancient
530 proteins) and the recent advances made in the last decade (see Buckley *et al.* 2018).
531 Furthermore, there is very little discussion in any video games about the ethical considerations of
532 de-extinction (bioethics; see Attwood 2021) and this should be considered by science
533 communicators when discussing this popular and exciting field of science.

534

535 3.4.4 Keeping up with science

536 Most media is dated by the science it is based on. A classic example is the *Jurassic Park*
537 franchise, which was lauded for its exciting and scientifically accurate dinosaurs when the first
538 film was released in 1993. However, as the series has progressed, it has chosen to maintain a
539 distinct aesthetic rather than keeping up-to-date with the current scientific understanding (Polo,
540 2015). Similarly, while video games can be limited by graphical constraints (due to the computing
541 power of the consoles or graphics cards they are designed for; see Figure 5), many games choose

542 to be scientifically inaccurate because of the need for recycled assets or because they have a
543 specific aesthetic (e.g. *Jurassic World: Evolution*). However, unlike other traditional media, PC
544 and (most) game consoles are connected to the internet, meaning game developers (and even
545 fan communities) can issue updates and 'mods' (modifications) that update gameplay, graphics,
546 or visual assets indefinitely after the games are released. Therefore, new fossil discoveries can
547 be incorporated into game updates to keep games scientifically up-to-date. However, this relies
548 on the game developer issuing updates, which may not be viable due to financial or time
549 constraints. One example of this is *Animal Crossing: New Horizons*, which was released in March
550 2020. The game contains a skeleton of *Spinosaurus* that the player can find, accession, and
551 mount in their museum (similar to Fig. 4 t). Three weeks after the games release however, Ibrahim
552 *et al.* (2020) was published, which detailed a new *Spinosaurus* specimen from Morocco with a
553 previously unknown tail section of significant scientific and public interest. This hype caused
554 considerable media interest in whether Nintendo Entertainment Analysis & Development Division
555 (EAD), the game developers of *Animal Crossing*, would update the visual asset in line with this
556 new discovery (Watts, 2020; Rochlin, 2020). As of publication, the *Spinosaurus* model in *Animal*
557 *crossing* has not been updated despite multiple updates to the game.

558 Inevitably, any released COTS video game will be overtaken by palaeontological
559 advances and rendered out-dated, especially if developers are no longer working on updates for
560 the game. From a science communication perspective, outdated game design can still be used
561 to engage with the public, allowing science communicators to communicate up-to-date science,
562 but also the history of scientific thought, and to explore the ever-shifting process of scientific
563 discovery.

564

565 3.4.5 *Depicting palaeontological fieldwork*

566 Collecting raw materials is an extremely common game mechanic, and often games use fossils
567 as a resource. In most of these games, fossils are acquired by approaching specific types of rock
568 and breaking them with a tool (e.g. *The Sims 4*; *Stardew Valley*, *No Man's Sky*, etc.) or by digging
569 holes in specific locations (e.g. *Animal Crossing: New Horizons*; see Figure 3c). In *Red Dead*
570 *Redemption 2*, fossils can just be collected off the ground (albeit often in hidden or difficult to
571 reach locations) while fossils can be found in *Stardew Valley* by fishing in streams in fossiliferous
572 areas. Because fossil extraction is so common, and often simple, in video games, it can give
573 players the impression fossil extraction is effortless, unmethodical, and skill-less – quite the
574 opposite of the time-consuming, laborious, and often hazardous excavations often required to
575 extract fossils.

576 Video games can also create the incorrect perception that fossils are a common
577 occurrence in all types of rocks and a destructive approach is required to extract fossil material.
578 This can be problematic as it may not be obvious to amateur fossils hunters that using hammers
579 on fossiliferous rock faces may cause irreparable damage, be potentially dangerous, and in some
580 areas illegal. Recently, local government organisations have started to introduce ethical rock
581 collection policies (see Scottish Geodiversity Forum 2017), which can be disseminated to the
582 public by science communicators.

583 Some games do take a more nuanced approach to fossil collection. In *Starbound*, fossils
584 can only be uncovered with specialised tools, such as brushes and rock hammers, and failure to
585 carefully extract the fossil-bearing rock permanently destroys the fossil. Once collected, fossils
586 can be placed in customisable display cabinets at the player's base, which features a placard with
587 basic trivia. *Tap! Dig! My Museum!* (2019, Oridio) is a mobile game where the player manages a
588 museum, but also takes part in prospecting and excavating dinosaur skeletons. By tapping the
589 screen, the player can remove layers of rocks piece by piece to find individual bone elements.
590 Although simplified and highly stylised, the game does represent the processes of uncovering
591 and transporting fossils in a fieldwork setting.

592 Another aspect of palaeontological fieldwork which is not commonly addressed in video
593 games is ethical issues, which are highlighted below.

594

595 3.4.6 *Representation of ethics in palaeontological video games*

596 Palaeontology has a long colonial history with deep rooted extractive and exploitative practises
597 (Monarrez *et al.* 2021). Because many harmful practises (e.g. the erasure of indigenous
598 contributions, the illegal acquisition/removal of fossil material from their country of origin by higher
599 income countries, the refusal to repatriate fossil material, etc. — see Monarrez *et al.* 2021, Raja
600 *et al.* 2021; Cisneros *et al.* 2022) are so ingrained within palaeontological science, they often
601 appear within video games unchallenged with little objective analysis. For example, to clone more
602 dinosaurs and expand your park in *Jurassic World: Evolution*, the player must send dig teams to
603 sites across the globe to extract more fossil genetic material. These dig sites are based on real-
604 world localities, which is a good educational tool. However, many of these sites have strict laws
605 governing the removal and sale of fossils, for example Mongolia, where it has been illegal to
606 remove fossils from the country for almost 100 years. This is ignored in gameplay, obscuring a
607 complex legal and ethical situation players could learn from.

608 While finding and collecting fossils is an integral part of the enjoyment of palaeontology
609 and is important scientifically, one of the most contentious ethical issues facing palaeontology is

610 the buying and selling of fossils (Shimada *et al.* 2014). The commercialisation of fossil material,
611 especially over the internet and in high-profile public auctions (Shimada *et al.* 2014), directly leads
612 to a myriad of issues including the destruction of fossiliferous sites by illegal fossil hunters
613 (DeMiguel *et al.* 2021; Murphy, 2007), samples being lost to science (Shimada *et al.* 2014), and
614 in the worst case, the illegal exportation and smuggling of fossil material (e.g., Pérez Ortega,
615 2021) has dire real-world consequences, e.g. fuelling humanitarian crises, such as in Myanmar
616 (Dunne *et al.* 2021; Raja *et al.* 2021). There is increasing awareness of the problems of fossil
617 commercialisation, yet, in virtually every game featuring fossils as collectibles, excess fossils exist
618 purely to be sold for profit. For example, in *Jurassic World: Evolution*, the game is designed so
619 any non-dinosaur fossil found by the player must be sold instantly to raise funds. In the space
620 exploration game *No Man's Sky* (2016, Hello Games), the players can journey between planets
621 and find fossils on the worlds they visit, however, these fossils serve no function other than to be
622 sold for in-game currency. Even in games that otherwise represent museum curation and fossil
623 finding in a positive and educational manner such as *Animal Crossing: New Horizons*, fossils are
624 among the most financially valuable natural resources available. Once a fossil has been donated
625 to the museum by the player, any duplicates found can be sold at the local market for in-game
626 currency. These games do little to challenge unethical practises and normalise the
627 commercialisation of fossiliferous material as a standard procedure within the palaeontological
628 community. We therefore suggest it is vital science communicators are aware of the impact of the
629 illegal trade in fossils and incorporate issues such as ethical fossil extraction and fossil ownership
630 into public engagement to counter this narrative where possible.

631

632 *3.5 Male, pale and stale: the depiction of palaeontologists in video games*

633 COTS video games introduce the public to palaeontologists and allied workers, however, the
634 diversity and representation of palaeontologists in video games is very limited.

635 Often scientists and/or palaeontologists are portrayed in video games as old, white, men
636 that often resemble Charles Darwin (e.g. Professor Snail in *Stardew Valley* etc.). Another common
637 trope is the perpetuation of the 'Indiana Jones stereotype' (Fitzpatrick, 2020). For example,
638 *Dinosaur Fossil Hunter* (Demo released 2020, Pyramid Games) is a 'palaeontologist simulator'
639 which aims to simulate fossil discovery, digging, and extraction (even tasking players with
640 jacketing fossils in plaster). However, at the time of publication, the game uses only a white male
641 character model to market the game — complete with stereotypical fedora. Not only does the
642 reliance on these characters re-enforce the perception of palaeontology as a white male
643 dominated science (Panciroli, 2017), but they also propagate the 'brilliant lone scientist' trope

644 (Black, 2019), failing to illustrate the requisite collaborative nature of actual palaeontological
645 science and fieldwork.

646 Some palaeo-video games do have more diverse casts. However, these characters are
647 always able-bodied, often poorly fleshed out characters, and are typically plagued with
648 questionable motives and ethics. For example, in *Jurassic World: Evolution* the player must liaise
649 with Dr Kajal Dua, the head of the science division. However, her character has almost no
650 backstory and often undermines her position as a scientist by tasking the player to undertake
651 ethically dubious missions such as cloning dinosaurs specifically bred to be hyper aggressive
652 when fighting other dinosaurs. Likewise, the cowboy simulator *Red Dead Redemption 2* has the
653 player meet Deborah MacGuiness, an older white woman, digging up fossils on the American
654 frontier of 1899. The player learns that she, like many women in the nineteenth century, was
655 rejected from several universities and that no other academics take her scientific ideas seriously.
656 She resembles, and is most likely inspired by, Mary Anning the most famous of the multitude of
657 female palaeontologists overlooked by their male peers. After the player collects a number of
658 fossils from across the game world to help her with her research, she assembles a biologically
659 impossible chimaera, and reveals she was a terrible scientist all along thus reenforcing the
660 unethical genius and incompetent woman tropes (see Weingart *et al.* 2003). The game could
661 have included some genuine information about the infamous 'Bone Wars' of early American
662 palaeontology, and about women fighting for their place in science but, by including a female
663 character who validates every rejection she was served, a potentially interesting characterisation
664 and story (and the potential to educate players on such) was lost.

665 Historically and stereotypically, non-disabled white men have dominated the narrative of
666 palaeontology, and this in turn has shaped the depiction of palaeontologists in media, especially
667 video games. The systematic lack of diversity in the earth sciences, especially palaeontology, is
668 well known (Bernard & Cooperdock, 2018; Warnock *et al.* 2020). One potential aspect contributing
669 to the lack of diversity (amongst many) in palaeontology, is the lack of minority role models
670 (Panciroli, 2017). The poor representation seen in COTS video games fails to counteract this —
671 if minority players, who may be prospective students and future scientists, do not see role models
672 represented in games and only see white male faces, they may be discouraged from pursuing
673 their interest in earth science. This is especially relevant to games that are marketed as
674 'palaeontologist simulators' but only contain white, non-disabled, male characters.

675

676 *3.6 Perpetuation of harmful, misogynistic, and racist tropes in palaeo-games.*

677 Video games have a history of perpetuating problematic tropes, especially ableism, sexism,
678 misogyny, and racism (Nakamura, 2019). Although these tropes are not specific to palaeo-video
679 games, they do warrant attention from science communicators as they can have an impact on
680 how palaeontology may be perceived by players.

681 A common problematic video gaming trope is the hypersexualisation of women (Beasley
682 & Standley, 2002). Evidence shows that the negative representation of women in video games
683 can have severe negative effects for female gamers including self-objectification and low levels
684 of self-efficacy (see Gestos *et al.* 2018). One of the most egregious examples of casual
685 hypersexualisation seen in a palaeo-video game is found in *Trespasser* (1998, DreamWorks
686 Interactive), where the player's character, Anne, is stranded on a dinosaur infested island. The
687 game does not feature any visual cues for the player (i.e. health or ammunition counters) and so
688 in order to check the health of the character, the player must actively look down to check a heart
689 shaped tattoo on her breast that fades as the player is closer to death. Analysis has shown that
690 hypersexualisation of women video game characters has decreased since the 1990s (Lynch *et*
691 *al.* 2016) with a notable example being the de-sexualisation of Lara Croft, the protagonist of the
692 *Tomb Raider* franchise, in recent games. While female lead characters are becoming more
693 commonplace (e.g. Aloy, the lead character in *Horizon Zero Dawn*), it should be noted that Lynch
694 *et al.* (2016) found COTS video games still typically depict female characters in secondary roles
695 and that these characters are more sexualised than their male counterparts. Furthermore, within
696 palaeontological video games, sexist and misogynistic tropes can also be coupled with racism,
697 often thanks in part to the perpetuation of the “lost world” fantasy genre, which pervades palaeo-
698 adjacent culture. Based on Arthur Conan Doyle’s book *The Lost World* (1912), wherein an ancient
699 ecosystem is found in the Amazon basin by white explorers, this genre combines palaeontology,
700 colonialism, and the mystification and exotification of indigenous cultures (see Harrer 2018). Many
701 aspects of this sub-genre are harmful – propagating damaging stereotypes, economic oppression,
702 and cultural appropriation. Care should be taken by scientific communicators to not disseminate
703 these damaging tropes if using video games as part of their engagement, and also take further
704 action by actively highlighting and challenging these practises within palaeontology themed
705 media.

706

707 **4. Conclusion**

708 Video games are culturally prolific, and this sector is rapidly becoming one of the largest
709 entertainment markets in the world. Palaeontological themed video games are extremely popular,
710 and because of this, increasing numbers of the public are exposed to ancient animals and

711 palaeontological science — far eclipsing engagement efforts undertaken by scientists and allied
712 palaeo-workers. Many COTS video games contain elements of good science communication —
713 and some games, especially dinosaur simulators, strive for scientific accuracy. Indeed, aspects
714 of palaeontological themed COTS video games can be used by science communicators to
715 highlight, engage, and educate the public regarding core concepts of palaeontological science.
716 However, as with most types of media, palaeontological video games can contain a suite of
717 negative and potentially damaging tropes. Many of these tropes are widespread issues in the
718 gaming industry (e.g. poor representation, monsterification, hypersexualisation, etc.), but their
719 presence in palaeontological video games specifically detracts from their use as science
720 communication tools. Science communicators, therefore, should undertake careful examination
721 of COTS video games before using them as educational tools. Furthermore, because
722 palaeontological themed video games are so popular, science communicators should be aware
723 of and challenge harmful tropes in their engagement and outreach efforts to the public and, if
724 possible, to COTS video game developers. By raising awareness of these damaging tropes, we
725 can relegate them into extinction.

726

727 **Acknowledgments:**

728 We would like to thank Edward McGowan and Jazmin Scarlett for inspiring this paper with their
729 recent work on volcanoes in video games, and to Jazmin for fruitful discussions during the early
730 draft phases of this paper. We also would like to thank the Palaeocast Gaming Network (PGN)
731 Group for feedback and ideas. A. Clements and E. Dunne are thanked for proofreading. Thanks
732 to Flavia Strani, Elsa Panciroli, and Andrea Villa for their thoughtful reviews which have enhanced
733 this manuscript.

734 T.C. is funded by a Leverhulme Early Career Fellowship (ECF-2019-097). J.A. is supported by a
735 Royal Society Research Grants for Research Fellows RGF\R1\181021. V.R. was supported by a
736 Research Südtirol/Alto Adige grant (CUP H32F20000010003).

737

738 **Author contributions:**

739 **Conceptualization:** Clements, Atterby. **Methodology:** Clements, Atterby, Cleary, Dearden,
740 Rossi. **Investigation:** Clements, Atterby. **Formal analysis:** Clements, Atterby. **Resources:**
741 Clements, Atterby, Cleary, Dearden, Rossi. **Data Curation:** Clements, Atterby. **Writing - Original**
742 **Draft:** Clements, Atterby. **Writing - Review & Editing:** Clements, Atterby, Cleary, Dearden,
743 Rossi. **Visualisation:** Clements, Atterby, Cleary, Dearden, Rossi. **Visualisation (figures):**
744 Clements, Atterby. **Supervision:** N/A. **Project administration:** Clements, Atterby. **Funding**

745 **acquisition:** This project is not directly funded; however, T. Clements is funded by a Leverhulme
746 Early Career Fellowship (ECF-2019-097). J.A. is supported by a Royal Society Research Grants
747 for Research Fellows RGF\R1\181021. V.R. was supported by a Research Südtirol/Alto Adige
748 grant (CUP H32F20000010003).

749

750 ***Competing interests.***

751 The authors declare that they have no conflict of interest.

752

753

754

755

756

758 Figure 1. A timeline of major events in palaeontology, video games, and palaeontological video
759 games between 1970 - 2020.

760
761

762
763 Figure 2. a) Number of PC games released per year on Steam, the largest video game digital
764 distribution service. b) Number of games released per year that utilise palaeontological keyword

765 'tags' on Steam. c) Percentage of palaeontological COTS video games on Steam that contain
766 dinosaurs versus those that only contain non-dinosaurian ancient animals (excluding crown group
767 birds). d) Breakdown of palaeontological COTS video games on Steam by categories identified
768 in this paper. Source a: <https://steamdb.info/> (accessed March 2022). Source b, c, d:
769 <https://statista.com> (accessed March 2022). A full list of the palaeontological COTS video games
770 on Steam and 'tags' searched can be found in the supplementary material.
771

772 Figure 3. Screenshots of COTS video games that represent the 5 categories of palaeontological
 773 video games outlined in this paper. a) Ancient animals as adversaries. The player is fighting a
 774 cybernetically enhanced *Tyrannosaurus* armed with laser shooting ocular augments and fire
 775 breath in *Turok: Dinosaur Hunter* (1997, Iguana Entertainment). b) Ancient animals as tools. Mario
 776 riding Yoshi in *Super Mario World* (1990, Nintendo EAD). c) Fossils as collectibles. The player
 777 discovers a fossil in *Animal Crossing: New Horizons* (2020, Nintendo EAD). d) Ancient animal
 778 management simulators. A paddock of velociraptors exhibiting modelled in-game behaviours (the
 779 alpha is fighting for dominance of the pack). *Jurassic World: Evolution* (2018, Frontier
 780 Developments). e) Ancient animal simulators. The player's avatar, a *Dakotaraptor*, sits near a
 781 water body while *Triceratops* and *Pachycephalosaurus* graze in the background. *Saurian*, (2017,
 782 Urvogel Games, LLC). f) Examples of cosmetic items that are based on ancient animals from
 783 *Fortnite* (2017, Epic Games) - often these only change the players character models (and not
 784 core gameplay mechanics) and are known as 'skins'.
 785

786

787 Figure 4. Examples of fossil collectibles in COTS video games. a) 'Generic fossil'. b) Prehistoric
788 skull (described in game as a ground sloth skull). c) Trilobite. d) Nautilus Fossil. e) Dinosaur bone

789 (note: this is a walrus skull). f) 'Enormous Trilobite'. g) Raptor Claw. h) 'Perfectly Preserved
790 Moustache'. i) *T. rex* skull. j) Ammonite. k) Sabretooth skull. l) Fossil Fern. m) Footprint Fossil. n)
791 Fossil Rib Cage. o) Helix fossil. p) *Anomalocaris*. q) Coprolite. r) Ammonite s) Shark-tooth pattern
792 (note: this is a *Helicoprion* tooth 'whorl') t) completed *Ophthalmosaurus* skeleton consisting of two
793 collectibles – *Ophthalmosaurus* skull (which includes the front flippers and anterior section of the
794 ribcage) and the *Ophthalmosaurus* torso (consisting of posterior ribs, hind flippers, and tail
795 section). Video games: a: *No Man's Sky* (2016, Hello Games). b - d: *Stardew Valley* (2016,
796 ConcernedApe). e: *Red Dead Redemption 2* (2018, Rockstar Games). f - h: *The Sims 4* (2014,
797 Maxis). i - m: *Starbound* (2016, Chucklefish). n: *Minecraft* (2011, Mojang). o: *Pokémon* series
798 (1999, Gamefreak). p - t: *Animal Crossing: New Horizons* (2020, Nintendo EAD). Virtual fossil
799 collectibles often include database entries – the accompanying facts for these fossil collectibles
800 can be seen in supplementary table 2.

801

802
803 Figure 5. The representation of *Tyrannosaurus rex* in COTS video games through time. a) 3D
804 *Monster Maze* (1982, J. K. Greye Software). PC. b) *Primal Rage* (1994, Midway Games West
805 Inc) Super Nintendo Entertainment System. c) *Tomb Raider* (1996, Core Design). Playstation. d)
806 *The Lost World: Jurassic Park* (1997, DreamWorks Interactive). Playstation. e) *Dino Crisis* (1999,
807 CAPCOM). Playstation. f) *Jurassic Park: Operation Genesis* (2003, Blue Tongue Entertainment).
808 PC. g) *Turok* (2008, Propaganda Games). PC. h) *Dino D-Day* (2011, Digital Ranch). PC. i)
809 *Parkasaurus* (2020, Washbear Studio). PC. j) *Second Extinction* (2020, Systemic Reaction). PC.
810 k) *Saurian* (2017, Urvogel Games, LLC). PC. l) *Jurassic World: Evolution* (2018, Frontier
811 Developments). PC.

812

- 813 Annetta, L.A., Video games in education: Why they should be used and how they are being used.
814 *Theory into practice*, 47(3), pp.229-239. <https://doi.org/10.1080/00405840802153940>. 2008.
- 815
- 816 Attwood, A. I. A Perspective on the Educational Psychological Value of Jurassic Park and Similar
817 Films for Bioethics Discussions. *Frontiers in Education*, p. 345. 2021.
- 818
- 819 Bakker, R.T., The dinosaur heresies. William Morrow & Company, New York City, New York,
820 USA, 1986.
- 821
- 822 Beasley, B. and Collins Standley, T.. Shirts vs. skins: Clothing as an indicator of gender role
823 stereotyping in video games. *Mass Communication & Society*, 5(3), pp.279-293.
824 https://doi.org/10.1207/S15327825MCS0503_3. 2002.
- 825
- 826 Bernard, R.E., Cooperdock, E.H.G. No progress on diversity in 40 years. *Nature Geosci* 11, 292–
827 295.. <https://doi.org/10.1038/s41561-018-0116-6>. 2018.
- 828 Black, R. It's Time for the Heroic Male Paleontologist Trope to Go Extinct. *Slate*.
829 <https://slate.com/technology/2019/04/what-the-new-yorker-dinosaur-story-gets-wrong.html>.
830 Accessed Feb 2022. 2019.
- 831 Brown, T., Li, H., Nguyen, A., Rivera, C. and Wu, A. Development of tangential learning in video
832 games. Department of CIS, University of Pennsylvania, PA. 2014.
- 833
- 834 Buckley M. Paleoproteomics: An Introduction to the Analysis of Ancient Proteins by Soft Ionisation
835 Mass Spectrometry. In: Lindqvist C., Rajora O. (eds) *Paleogenomics. Population Genomics*.
836 Springer, Cham. 2018.
- 837
- 838 Buckley M and Collins MJ. Collagen survival and its use for species identification in Holocene-
839 lower Pleistocene bone fragments from British archaeological and paleontological sites. *Antiqua*
840 1 (1): e1. 2011.
- 841
- 842 Caldwell, K.E.H., Osterweil, S., Urbano, C., Tan, P. and Eberhardt, R. "I Just Don't Know Where
843 to Begin": Designing to Facilitate the Educational Use of Commercial, Off-the-Shelf Video Games.
844 In *Serious games and edutainment applications* (pp. 625-648). Springer, Cham.DOI:
845 10.1007/978-3-319-51645-5_27. 2017.

- 846
- 847 Charsky, D., & Mims, C. Integrating commercial off-the-shelf video games into
848 school curriculums. *TechTrends*, 52(5), 38–44. 2008.
- 849
- 850 Cisneros, J.C., Ghilardi, A.M., Raja, N.B. and Stewens, R.P. The moral and legal imperative to
851 return illegally exported fossils. *Nat Ecol Evol* 6, 2–3 <https://doi.org/10.1038/s41559-021-01588-9>. 2022.
- 853
- 854 Conway, J., Koseman, C. M., and Naish, D., All yesterdays. Irregular Books, UK. 2012.
- 855
- 856 Crichton, M. Jurassic Park. Alfred A. Knopf, New York City, New York, USA. 1990.
- 857
- 858 Crowley, E.J., Silk, M.J. and Crowley, S.L. The educational value of virtual ecologies in Red Dead
859 Redemption 2. *People and Nature*, 3(6), 1229-1243. 2021.
- 860
- 861 DeMiguel, D., Brilha, J., Alegret, L., Arenillas, I., Arz, J.A., Gilabert, V., Strani, F., Valenciano, A.,
862 Villas, E. and Azanza, B. Linking geological heritage and geoethics with a particular emphasis on
863 palaeontological heritage: the new concept of ‘palaeontoethics’. *Geoheritage* 13, 69.
864 <https://doi.org/10.1007/s12371-021-00595-3>. 2021.
- 865
- 866 Dodson, P., Behrensmeyer, A.K., Bakker, R.T. and McIntosh, J.S. Taphonomy and paleoecology
867 of the dinosaur beds of the Jurassic Morrison Formation. *Paleobiology*, 6(2), pp.208-232.1980.
- 868
- 869 Doyle, A. C. *The Lost World*. Hodder and Stoughton, London, UK. 1912.
- 870
- 871 Dunne, E., Raja, N. B., Stewens, P. P., & Thein, Z. M. M. Ethics, law, and politics in
872 palaeontological research: The case of Myanmar amber. <https://doi.org/10.31219/osf.io/awjex>.
873 2018.
- 874
- 875 Fitzpatrick, A. You Will Never Be Indiana Jones. *Lady Science*.
876 <https://www.ladyscience.com/essays/you-will-never-be-indiana-jones-toxic-masculinity-archaeology>. Accessed Feb 2022. 2019.
- 878

- 879 Frensch, P.A. and Rünger, D. Implicit learning. *Current directions in psychological science*, 12(1),
880 pp.13-18. <https://doi.org/10.1111/1467-8721.01213>. 2003.
- 881
- 882 García-Sánchez, P., Velez-Estevez, A., Merelo, J.J. and Cobo, M.J. The Simpsons did it:
883 Exploring the film trope space and its large scale structure. *Plos one*, 16(3), p.e0248881. 2021.
- 884
- 885 Gestos, M., Smith-Merry, J., & Campbell, A. Representation of women in video games: a
886 systematic review of literature in consideration of adult female wellbeing. *Cyberpsychology,
887 Behavior, and Social networking*, 21(9), 535-541. <https://doi.org/10.1089/cyber.2017.0376>. 2018.
- 888
- 889 Gould, S.J. *Wonderful life: the Burgess shale and the nature of history*. W. W. Norton & Co., New
890 York City, New York, USA. 1989.
- 891
- 892 Granic, I., Lobel, A., & Engels, R. C. The benefits of playing video games. *American psychologist*,
893 69(1), 66. <https://doi.org/10.1037/a0034857>. 2014.
- 894
- 895 Habgood, M.J. and Ainsworth, S.E. Motivating children to learn effectively: Exploring the value of
896 intrinsic integration in educational games. *The Journal of the Learning Sciences*, 20(2), pp.169-
897 206. <https://doi.org/10.1080/10508406.2010.508029>. 2011.
- 898
- 899 Harrer, S. Casual empire: Video games as neocolonial praxis. *Open Library of Humanities*, 4(1).
900 <https://doi.org/10.16995/olh.210>. 2018.
- 901
- 902 Herrero, D., del Castillo, H., Monjelat, N., Garca-Varela, A., Checa, M., and Gómez, P. Evolution
903 and natural selection: learning by playing and reflecting. *Journal of New Approaches in
904 Educational Research (NAER Journal)*, 3, 1, 26-33. 2014.
- 905
- 906 Jański, K. Towards a categorisation of animals in video games. *Homo Ludens*, 1 (9), 85-101.
907 2016.
- 908
- 909 Jones, E. D. Ancient DNA: a history of the science before Jurassic Park. *Studies in history and
910 philosophy of biological and biomedical sciences*, 68, 1-14. 2018.
- 911

- 912 Jurassic Park, Directed By: Steven Spielberg. Universal Pictures, Universal City, California, USA,
913 1993.
- 914
- 915 Klippel, Alexander, Jiayan Zhao, Kathy Lou Jackson, Peter La Femina, Chris Stubbs, Ryan
916 Wetzel, Jordan Blair, Jan Oliver Wallgrün, and Danielle Oprean. Transforming Earth Science
917 Education Through Immersive Experiences: Delivering on a Long Held Promise. *Journal of*
918 *Educational Computing Research* 57, no. 7. 1745–71.
- 919 <https://doi.org/10.1177/0735633119854025>. 2019.
- 920
- 921 Klippel, A., Zhao, J., Oprean, D., Wallgrün, J. O., Stubbs, C., La Femina, P., & Jackson, K. L. The
922 value of being there: Toward a science of immersive virtual field trips. *Virtual Reality*, 24(4), 753-
923 770. <https://doi.org/10.1007/s10055-019-00418-5>. 2020.
- 924
- 925 Klopfer, E. and Osterweil, S. The boom and bust and boom of educational games. In: Pan Z.,
926 Cheok A.D., Müller W., Liarokapis F. (eds) *Transactions on Edutainment IX*. Lecture Notes in
927 Computer Science, vol 7544. Springer, Berlin, Heidelberg. DOI: 10.1007/978-3-642-37042-7_21.
928 2013.
- 929
- 930 Kerawalla, L. and Crook, C. From promises to practices: The fate of educational software in the
931 home. *Technology, Pedagogy and Education*, 14(1), pp.107-125.
932 <https://doi.org/10.1080/14759390500200195>. 2005.
- 933
- 934 Kerr, C. Planet Zoo has surpassed 1 million sales in under six months. *Game Developer*.
935 [https://www.gamedeveloper.com/business/-i-planet-zoo-i-has-surpassed-1-million-sales-in-](https://www.gamedeveloper.com/business/-i-planet-zoo-i-has-surpassed-1-million-sales-in-under-six-months)
936 [under-six-months](https://www.gamedeveloper.com/business/-i-planet-zoo-i-has-surpassed-1-million-sales-in-under-six-months). Accessed May 2022. 2020.
- 937
- 938 Lynch, T., Tompkins, J. E., Van Driel, I. I., & Fritz, N. Sexy, strong, and secondary: A content
939 analysis of female characters in video games across 31 years. *Journal of Communication*, 66(4),
940 564-584. <https://doi.org/10.1111/jcom.12237>. 2016.
- 941
- 942 Mani, L., Cole, P.D. and Stewart, I. Using video games for volcanic hazard education and
943 communication: an assessment of the method and preliminary results. *Natural Hazards and Earth*
944 *System Sciences*, 16(7), pp.1673-1689. <https://doi.org/10.5194/nhess-16-1673-2016>. 2016.
- 945

- 946 McCullough, K. M., Wong, Y. J., & Stevenson, N. J. Female video game players and the protective
947 effect of feminist identity against internalized misogyny. *Sex Roles*, 82(5), 266-276.
948 <https://doi.org/10.1007/s11199-019-01055-7>. 2020.
- 949
- 950 McGowan, E.G. and Scarlett, J.P. Volcanoes in video games: the portrayal of volcanoes in
951 commercial off-the-shelf (COTS) video games and their learning potential. *Geoscience
952 Communication*, 4(1), pp.11-31. <https://doi.org/10.5194/gc-4-11-2021>. 2021.
- 953
- 954 Mohanty, S.D. and Cantu, S. Teaching introductory undergraduate physics using commercial
955 video games. *Physics Education*, 46(5), p.570. <https://doi.org/10.1088/0031-9120/46/5/009>.
956 2011.
- 957
- 958 Monarrez, P.M., Zimmt, J.B., Clement, A.M., Gearty, W., Jacisin, J.J., Jenkins, K.M., Kusnerik,
959 K.M., Poust, A.W., Robson, S.V., Sclafani, J.A. and Stilson, K.T. Our past creates our present: a
960 brief overview of racism and colonialism in Western paleontology. *Paleobiology*, pp.1-13.
961 doi:10.1017/pab.2021.28. 2021.
- 962
- 963 Mozelius, P., Fagerström, A. and Söderquist, M. Motivating Factors and Tangential Learning for
964 Knowledge Acquisition in Educational Games. *Electronic Journal of e-Learning*, 15(4), pp.343-
965 354. 2017.
- 966
- 967 Murphy, S. Fossil hunters angry at reckless plunder of sites with dynamite. *Independent*.
968 [https://www.independent.co.uk/news/science/fossil-hunters-angry-at-reckless-plunder-of-sites-
969 with-dynamite-5333579.html](https://www.independent.co.uk/news/science/fossil-hunters-angry-at-reckless-plunder-of-sites-with-dynamite-5333579.html) Accessed June 2022. 2007.
- 970
- 971 Nakamura, L. Gender and race in the gaming world. In: *Society and the Internet: How networks
972 of information and communication are changing our lives* Editors: Mark Graham, William H.
973 Dutton. 127-145. 2019.
- 974
- 975 Newzoo Global Games Market Report, 2020. Available at: <https://newzoo.com/>. Accessed:
976 February 2021.
- 977

- 978 Orlando, L., Ginolhac, A., Zhang, G., Froese, D., Albrechtsen, A., Stiller, M., Schubert, M.,
979 Cappellini, E., Petersen, B., Moltke, I. and Johnson, P.L. Recalibrating equus evolution using the
980 genome sequence of an early Middle Pleistocene horse. *Nature* 499 (7456): 74–78. 2013.
- 981
- 982 Panciroli, E. Beards and Gore-Tex: does palaeontology have an image problem? *The Guardian*.
983 [https://www.theguardian.com/science/2017/aug/16/beards-and-gore-tex-does-palaeontology-](https://www.theguardian.com/science/2017/aug/16/beards-and-gore-tex-does-palaeontology-have-an-image-problem)
984 [have-an-image-problem](https://www.theguardian.com/science/2017/aug/16/beards-and-gore-tex-does-palaeontology-have-an-image-problem). Accessed: December 2021. 2017.
- 985
- 986 Pérez Ortega, R. 2021. 'It's like a second extinction': Retraction deepens legal and ethical battle
987 over rare dinosaur. *Science*. [https://www.science.org/content/article/it-s-second-extinction-](https://www.science.org/content/article/it-s-second-extinction-retraction-deepens-legal-and-ethical-battle-over-rare-dinosaur?utm_campaign=NewsfromScience&utm_source=Social&utm_medium=Twitter)
988 [retraction-deepens-legal-and-ethical-battle-over-rare-](https://www.science.org/content/article/it-s-second-extinction-retraction-deepens-legal-and-ethical-battle-over-rare-dinosaur?utm_campaign=NewsfromScience&utm_source=Social&utm_medium=Twitter)
989 [dinosaur?utm_campaign=NewsfromScience&utm_source=Social&utm_medium=Twitter](https://www.science.org/content/article/it-s-second-extinction-retraction-deepens-legal-and-ethical-battle-over-rare-dinosaur?utm_campaign=NewsfromScience&utm_source=Social&utm_medium=Twitter)
990 Accessed: December 2021. 2021
- 991
- 992 Perri, A. R., Mitchell, K. J., Mouton, A., Alvarez-Carretero, S., Hulme-Beaman, A., Haile, J., &
993 Frantz, L. A. Dire wolves were the last of an ancient New World canid lineage. *Nature*, 591(7848),
994 87-91. 2021.
- 995
- 996 Poli, D., Berenotto, C., Blankenship, S., Piatkowski, B., Bader, G. A., & Poore, M. Bringing
997 evolution to a technological generation: a case study with the video game SPORE. *The American*
998 *Biology Teacher*, 74(2), 100-103. 2012.
- 999
- 1000 Polo, S. Jurassic World explains its featherless dinos while poking fun at blockbusters. *Polygon*.
1001 <https://www.polygon.com/2015/6/10/8760275/jurassic-world-dinosaurs-feathers>. Accessed June
1002 2021.2015.
- 1003
- 1004 Pringle, J.K., Bracegirdle, L. and Potter, J.A. Educational forensic e-gaming as effective learning
1005 environments for Higher Education students. In *Forensic Science Education and Training: A Tool-*
1006 *Kit for Lecturers and Practitioner Trainers*. Edited by Anna Williams, John P. Cassella, and Peter
1007 D. Maskell. John Wiley & Sons Ltd. p.119-136. 2017.
- 1008
- 1009 Raja, N. B., Dunne, E. M., Matiwane, A., Khan, T. M., Nätscher, P. S., Ghilardi, A. M., &
1010 Chattopadhyay, D. Colonial history and global economics distort our understanding of deep-time

1011 biodiversity. *Nature ecology & evolution*, 1-10. <https://doi.org/10.1038/s41559-022-01682-6>.
1012 2021.
1013
1014 Rochlin, J. Animal Crossing: New Horizons Fans Want the Spinosaurus Skeleton to Be Updated.
1015 *Gamerant*.
1016 <https://gamerant.com/animal-crossing-new-horizons-spinosaurus-fossil-update-science-paleontology/> Accessed Feb 2022. 2020.
1018
1019 Scottish Geodiversity Forum. Scotland's Geodiversity Charter 2018–2023. Edinburgh:
1020 Scottish Geodiversity Forum. 2017.
1021
1022 Shute, V.J., Ventura, M. and Kim, Y.J. Assessment and learning of qualitative physics in Newton's
1023 playground. *The Journal of Educational Research*, 106(6), pp.423-430.
1024 <https://doi.org/10.1080/00220671.2013.832970>. 2013.
1025
1026 Shimada, Kenshu, Currie, Philip J., Scott, Eric, and Sumida, Stuart S. The greatest challenge to
1027 21st century paleontology: When commercialization of fossils threatens the science.
1028 *Palaeontologia Electronica* Vol. 17, Issue 1; 1E: 4. <https://doi.org/10.26879/141>. 2014.
1029
1030 Snyder, W. Have Video Games Evolved Enough to Teach Human Origins?: A Review of
1031 Ancestors: The Humankind Odyssey. *Advances in Archaeological Practice*, 10(1), 122-127.
1032 doi:10.1017/aap.2021.40. 2022.
1033
1034 Stream Hatchet Video Game Streaming Trends Report,
1035 <https://insights.streamhatchet.com/stream-hatchet-2020-yearly-report-1>. 2020.
1036
1037 Sun, C.T., Ye, S.H. and Wang, Y.J. Effects of commercial video games on cognitive elaboration
1038 of physical concepts. *Computers & Education*, 88, pp.169-181.
1039 <https://doi.org/10.1016/j.compedu.2015.05.002>. 2015.
1040
1041 Van Eck, R. Digital game-based learning: It's not just the digital natives who are restless.
1042 *EDUCAUSE review*, 41(2), p.16. 2006.
1043
1044 Walking with Dinosaurs, Created By: Tim Haines. BBC Natural History Unit, London, UK, 1996.

1045
1046 Warnock, R., Dunne, E., Giles, S., Saupe, E., Soul, L., & Lloyd, G. Are we reaching gender parity
1047 among Palaeontology authors? <https://doi.org/10.31219/osf.io/9puje>. 2020.
1048
1049 Watts, S. Animal Crossing Fossil Is Already Rendered Inaccurate After New Discovery.
1050 Gamespot. [https://www.gamespot.com/articles/animal-crossing-fossil-is-already-rendered-
1051 inaccur/1100-6476642/](https://www.gamespot.com/articles/animal-crossing-fossil-is-already-rendered-inaccur/1100-6476642/). Accessed Feb 2022. 2020.
1052
1053 Weingart P, Muhl C, Pansegrouw P. Of Power Maniacs and Unethical Geniuses: Science and
1054 Scientists in Fiction Film. *Public Understanding of Science*.12(3): 279-287. 2003.
1055
1056 White, P.D., Fastovsky, D.E. and Sheehan, P.M. Taphonomy and suggested structure of the
1057 dinosaurian assemblage of the Hell Creek Formation (Maastrichtian), eastern Montana and
1058 western North Dakota. *Palaios*, 13(1), pp.41-51. 1998.
1059 -----
1060
1061 Games referenced in this paper:
1062
1063 *3D Monster Maze*. Sinclair ZX81. J. K. Greye Software, Bristol, UK. 1982
1064 *Abzû*. Microsoft Windows, Nintendo Switch, Playstation 4, Xbox One. Giant Squid Studios, Santa
1065 Monica, California, USA, 2016.
1066 *American Truck Simulator*. Linux, macOS, Microsoft Windows. SCS Software, Prague, Czechia,
1067 2016.
1068 *Ancestors: The Humankind Odyssey*. Microsoft Windows, Playstation 4, Xbox One. Panache
1069 Digital Games, Montreal, Canada, 2019.
1070 *Animal Crossing: New Horizons*. Nintendo Switch. Nintendo Entertainment Analysis &
1071 Development Division (EAD), Kyoto, Japan. 2020.
1072 *Ark: Survival Evolved*. Android, iOS Linux, macOS, Microsoft Windows, Nintendo Switch,
1073 Playstation 4, Xbox One. Studio Wildcard, Redmond, Washington, USA, 2017.
1074 *Assassin's Creed: Origins*. Microsoft Windows, Playstation, Xbox One.. Ubisoft Montreal,
1075 Montreal, Canada, 2017.
1076 *Batman: Arkham City*. Microsoft Windows, PlayStation 3, PlayStation 4, Xbox 360, Xbox One, Wii
1077 U. Rocksteady Studios, London, UK. 2011.

- 1078 *Battlefield 4*. Microsoft Windows, PlayStation 3, PlayStation 4, Xbox 360, Xbox One. DICE, Stockholm, Sweden. 2013.
- 1080 *Beasts of Bermuda*. Microsoft Windows. Sastrei Studios, LLC, Raleigh, North Carolina, USA, 2018.
- 1082 *BioShock*. Microsoft Windows, PlayStation 3, Xbox 360. 2K Boston, Westwood, Massachusetts, USA. 2007.
- 1084 *Carnivores: Dinosaur Hunter (Reborn)*. Microsoft Windows. Digital Dreams Entertainment LLC, Chicago, USA. 2015.
- 1086 *Cell to Singularity: Evolution Never Ends*. Android, iOS, Microsoft Windows, macOS. Computer Lunch, New York City, New York, USA, 2018
- 1088 *Destiny 2*. Microsoft Windows, PlayStation 4, PlayStation 5, Xbox One, Xbox Series X and Series S. Bungie Inc, Bellevue, Washington, USA. 2017.
- 1090 *Dino Crisis*. Dreamcast, Microsoft Windows, PlayStation, PlayStation 2, Xbox. CAPCOM, Osaka, Japan. 1999.
- 1092 *Dino D-Day*. Microsoft Windows. 800 North & Digital Ranch, Burbank, California, USA. 2011.
- 1093 *Dino Stalker*. Playstation 2. CAPCOM, Osaka, Japan. 2002.
- 1094 *DinoPark Tycoon*. MacOS, MS-DOS. Manley & Associates, Issaquah, Washington, USA, 1993.
- 1095 *DinoRun DX*. macOS, Microsoft Windows. PixelJAM Games, Asheville, North Carolina, USA, 2015.
- 1097 *Dinosaur Fossil Hunter (Demo)*. Microsoft Windows. Pyramid Games, Lublin, Poland, 2020.
- 1098 *Dinosaur Hunt*. Microsoft Windows. Racing Bros. 2015
- 1099 *Dinosaurs: Prehistoric Survivors*. Microsoft Windows. Arcupion Art, Jakarta, Indonesia, 2018.
- 1100 *E.V.O.: Search for Eden*. Super Nintendo Entertainment System. Enix, Tokyo, Japan, 1992.
- 1101 *Far Cry Primal*. Microsoft Windows, Playstation 4, Xbox One. Ubisoft Montreal, Montreal, Canada, 2016.
- 1103 *Fortnite*. Microsoft Windows, PlayStation 4, PlayStation 5, Xbox One, Xbox Series X and Series S. Epic Games, Cary, North Carolina, USA. 2017.
- 1105 *Fossil Corner*. macOS, Microsoft Windows. Overfull Games, Chicago, Illinois, 2021.
- 1106 *Fossil Fighters*. Nintendo DS. Nintendo Switch. Nintendo Entertainment Analysis & Development Division (EAD), Kyoto, Japan. 2008.
- 1108 *Horizon Zero Dawn*. Microsoft Windows, Playstation 4. Guerrilla Games, Amsterdam, Netherlands, 2017.
- 1110 *Hunt: Primal Reptiles*. Microsoft Windows. HugeLittleStudio, 2020.
- 1111 *Jurassic Park III: Park Builder*. Game Boy Advance. Konami, Tokyo, Japan. 2001

- 1112 *Jurassic Park Builder*. Android, Facebook, iOS. Ludia, Montreal, Canada, 2012
- 1113 *Jurassic Park: Operation Genesis*. Microsoft Windows, Playstation 2, Xbox. Blue Tongue
- 1114 Entertainment, Melbourne, Australia, 2003.
- 1115 *Jurassic World: Evolution*. Microsoft Windows, Playstation 4, Xbox One. Frontier Developments,
- 1116 Cambridge, UK. 2018.
- 1117 *Jurassic World: Evolution 2*. Microsoft Windows, Playstation 4, Playstation 5, Xbox One, Xbox
- 1118 Series X and Series S. Frontier Developments, Cambridge, UK. 2021.
- 1119 *LEGO Jurassic World*. Android, iOS, macOS, Microsoft Windows, Nintendo 3DS, Nintendo
- 1120 Switch, Playstation 3, Playstation 4, Xbox 360, Xbox One, Wii U. TT Games, Maidenhead, UK,
- 1121 2015.
- 1122 *Minecraft*. Microsoft PC, Nintendo Switch, PlayStation 3, PlayStation 4, Xbox 360, Xbox One, Wii
- 1123 U. Mojang Studios, Stockholm, Sweden. 2011.
- 1124 *Monster Hunter Rise*. Microsoft Windows, Nintendo Switch. Capcom, Osaka, Japan, 2021.
- 1125 *Nanosaur*. iOS, MacOS, Microsoft Windows. Ideas From The Deep, Little Elm, Texas, 1998.
- 1126 *No Man's Sky*. Microsoft Windows, Nintendo Switch, Playstation 4, Playstation 5, Xbox One, Xbox
- 1127 Series X and Series S. Hello Games, Guildford, UK, 2016.
- 1128 *Orion Prelude*. Microsoft Windows. DANKIE, 2012
- 1129 *Parkasaurus*. Microsoft Windows. Washbear Studio, Canada, 2020
- 1130 *Path Of Titans*. Android, iOS, Linux, macOS, Microsoft Windows. Alderon Games, Victoria,
- 1131 Australia, 2020
- 1132 *Peter Jackson's King Kong: The Official Game of the Movie*. Game Boy Advance, GameCube,
- 1133 Microsoft Windows, Nintendo DS, PlayStation 2, Xbox, Xbox 360. Ubisoft Montpellier, Castelnau-
- 1134 le-Lez, France. 2005.
- 1135 *Pokémon Blue*. Game Boy, Game Boy Advance, Nintendo 3DS. Game Freak, Tokyo, Japan,
- 1136 1999.
- 1137 *Pokémon Go*. Android, iOS. Niantic, San Francisco, California, USA. 2016.
- 1138 *Pokémon Red*. Game Boy, Game Boy Advance, Nintendo 3DS. Game Freak, Tokyo, Japan,
- 1139 1999.
- 1140 *Pokémon Shield*. Nintendo Switch. Game Freak, Tokyo, Japan, 2019.
- 1141 *Pokémon Sword*. Nintendo Switch. Game Freak, Tokyo, Japan, 2019.
- 1142 *Prehistoric Hunt*. Microsoft Windows. Antiproto Studios, Kouvola, Finland. 2020.
- 1143 *Prehistoric Kingdom*. Microsoft Windows. Blue Meridian. Unknown. 2021.
- 1144 *Primal Carnage*. Microsoft Windows. Lukewarm Media, Henderson, Nevada, USA, 2012.

- 1145 *Primal Rage*. Super Nintendo Entertainment System. Midway Games West Inc, Milpitas, California, USA. 1994.
- 1147 *Project Bolan (Dinosaur Game)*. Google Chrome. Google, Menlo park, California, USA. 2014.
- 1148 *Red Dead Redemption 2*. Microsoft Windows, Playstation 4, Xbox One. Rockstar Games, New York City, New York, USA, 2018.
- 1150 *Robinson: The Journey*. Microsoft Windows, Playstation 4. Crytek, Frankfurt, Germany, 2016.
- 1151 *Saurian*. Linux, MacOS, Microsoft Windows. Urvogel Games, LLC, Saint Paul, Minnesota, 2017.
- 1152 *Second Extinction*. Xbox One, Xbox Series X and Series S, Microsoft Windows, Systemic Reaction, Stockholm, Sweden. 2020.
- 1154 *Spore*. macOS, Microsoft Windows. Maxis, Walnut Creek, California, USA. 2008
- 1155 *Starbound*. Linux, macOS, Microsoft Windows, Playstation 4, Xbox One. Chucklefish, London, UK, 2016.
- 1157 *Stardew Valley*. Android, iOS, Linux, macOS, Microsoft Windows, Nintendo Switch, Playstation 4, Xbox One. ConcernedApe, Seattle, Washington, 2016.
- 1159 *Subnautica*. Microsoft Windows, Playstation 4, Playstation 5, Xbox One, Xbox Series X and Series S. Unknown Worlds Entertainment, San Francisco, California, USA, 2018.
- 1161 *Super Mario World*. Super Nintendo Entertainment System. Nintendo Entertainment Analysis & Development Division (EAD), Kyoto, Japan. 1990.
- 1163 *Syberia*, Microsoft Windows, Playstation 2, Xbox 360. Microids, Paris, France. 2002.
- 1164 *Tap! Dig! My Museum!* Android, iOS. Oridio, Tokyo, Japan, 2019.
- 1165 *Terraria*. Android, iOS, Nintendo Switch, Playstation 4, Xbox One. Re-Logic, Floyds Knobs, Indiana, USA, 2011.
- 1167 *The Archotek Project*. Linux, MacOS, Microsoft Windows. The Archotek Project Team, 2017
- 1168 *The Beasts of 9500*. Microsoft Windows. Dragons, 2020.
- 1169 *The Elder Scrolls V: Skyrim*. Microsoft Windows, PlayStation 4, PlayStation 5, PlayStation 3, Xbox 360, Xbox One, Xbox Series X and Series S. Bethesda Game Studios, Rockville, Maryland, USA, 2011.
- 1172 *The Last Of Us Part II*. Playstation 4. Naughty Dog, Santa Monica, California, 2020.
- 1173 *The Legend of Zelda*. Nintendo Entertainment System. Nintendo Entertainment Analysis & Development Division (EAD), Kyoto, Japan. 1986.
- 1175 *The Lost World: Jurassic Park*. Playstation, Sega Saturn. DreamWorks Interactive, Los Angeles, USA. 1997
- 1177 *The Sims 4*. macOS, Microsoft Windows, PlayStation 4, Xbox One. Maxis, Walnut Creek, California, USA. 2014

- 1179 *Tomb Raider* Microsoft Windows, Playstation, Sega Saturn. Core Design, Derby, UK. 1996.
- 1180 *Tomb Raider II* Windows, Playstation. Core Design, Derby, UK. 1997.
- 1181 *Total War: Warhammer I*. Linux, MacOS, Microsoft Windows. Creative Assembly, Horsham, UK, 2016.
- 1182 *Total War: Warhammer II*. Linux, MacOS, Microsoft Windows. Creative Assembly, Horsham, UK, 2017.
- 1183 *Trespasser*. Microsoft Windows. DreamWorks Interactive, Los Angeles, USA. 1998
- 1184 *World of Warcraft: Battle for Azeroth*. Linux, MacOS, Microsoft Windows. Blizzard Entertainment, 1185 Irvine, California, USA, 2018
- 1186 *Wrath of the Goliaths: Dinosaurs* Microsoft Windows. Ascendence Studios, 2018.
- 1187 *Turok: Dinosaur Hunter*. Nintendo64, Microsoft Windows. Iguana Entertainment, Austin, Texas, 1188 USA. 1997.
- 1189 *Yoshi's Story*. Nintendo64. Nintendo Entertainment Analysis & Development Division (EAD), 1190 Kyoto, Japan. 1997.
- 1191 *Zoo Tycoon* series. macOS, Microsoft Windows. Blue Fang Games, Waltham, Massachusetts, 1192 USA, 2001-2017.
- 1193 *Zoo Tycoon: Dinosaur Digs*. macOS, Microsoft Windows. Blue Fang Games, Waltham, 1194 Massachusetts, USA, 2002.
- 1195
- 1196
- 1197