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Abstract 

In this work we explore the performance of a statistical forecasting system for marine litter (ML) 

concentration in the Mediterranean Sea. In particular, we assess the potential skills of a system 15 

based on the analogues method. The system uses a historical database of ML concentration 

simulated by a high resolution realistic model and is trained to identify meteorological situations 

in the past that are similar to the forecasted ones. Then, the corresponding ML concentrations of 

the past analogue days are used to construct the ML concentration forecast. Due to the scarcity of 

observations, the forecasting system has been validated against a synthetic reality (i.e. the outputs 20 

from a ML modelling system). Different approaches have been tested to refine the system and the 

results show that using integral definitions for the similarity function, based on the history of the 

meteorological situation, improves the system performance. We also find that the system accuracy 

depends on the domain of application being better for larger regions. Also, the method performs 

well to capture the spatial patterns but performs worse to capture the temporal variability, 25 

specially the extreme values. Despite the inherent limitations of using a synthetic reality to 

validate the system, the results are promising and the approach has potential to become a suitable 

cost effective forecasting method for ML concentration.   

1. Introduction 

The ubiquity of the plastic waste pollution in seas and oceans worldwide raises great concern in 30 

the society and the scientific community, as it poses a significant environmental and 

socioeconomic threat (UNEP, 2009). In consequence, the analysis of the impacts of marine litter 
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(ML) pollution on the marine life and ecosystems has become a hot topic on marine research in 

recent years (Maximenko et al., 2019; Van Sebille et al., 2020; Lebreton et al., 2019; Lebreton 

and Andrady, 2019; Soto-Navarro et al., 2021). ML particles accumulate both in shallow and deep 35 

waters, and particularly in enclosed basins such as the Mediterranean Sea (Soto-Navarro et al., 

2020; Cózar et al., 2015), where the observed concentrations are in the same range of those 

measured in the great plastic patches formed in the subtropical gyres of the open oceans (Cózar 

et al., 2015; Law et al., 2014; Van Sebille et al., 2015). Moreover, risk analyses have shown that 

marine organisms in the Mediterranean basin can be highly impacted by ML pollution (Compa et 40 

al., 2019; Soto-Navarro et al., 2021). The starting point to analyze those impacts and to establish 

suitable mitigation strategies is to understand the spatial distribution and temporal evolution of 

the ML particles. Unfortunately, to carry on that analysis solely based on observations is not 

feasible. The large spatial and temporal heterogeneities of the field campaigns, along with the 

lack of standardized observational protocols, do not allow a synoptic representation of the ML 45 

distribution (see Maximenko et al. (2019) for a thorough analysis of the ML observations 

problems and proposed improvements). For these reasons, numerical modeling emerges as a 

fundamental tool to achieve a synoptic description of ML dispersion patterns and as the base for 

the forecasting systems that would reproduce its spatial variability and time evolution.  

ML forecasting systems are usually based on the combination of two different numerical models 50 

(Lebreton et al., 2012; Van Sebille et al., 2015; Maximenko et al., 2012). On the one hand, an 

ocean circulation forecasting system is implemented to provide ocean currents. On the other hand, 

a lagrangian model uses those currents to simulate the advection and diffusion of passive particles 

in the ocean that mimic the evolution of ML. In the Mediterranean, several studies using this 

methodology have been carried out using current fields from high resolution regional models 55 

covering the whole basin (Liubartseva et al., 2018; Macias et al., 2019; Mansui et al., 2015; Soto-

Navarro et al., 2020 ) or specific regions such as the Adriatic, the Tyrrhenian or the Aegean 

(Politikos et al., 2017; Fossi et al., 2017; Liubartseva et al., 2016; Palatinus et al., 2019). This 

modelling approach is considered to be the most accurate choice for ML forecasting (Van Sebille 

et al., 2020) provided the ML inputs are correctly prescribed (Liubartseva et al. (2018) , Soto-60 

Navarro et al. (2020)).   

The downside of developing a forecasting system based on the direct modelling approach is that 

it involves a high technical complexity and computational cost. In order to overcome this 

limitations, it might be possible to develop a fast and light forecasting system based on statistical 

methods. One choice would be the so called Statistical Downscaling Methods (SDMs) which 65 

relies on determining statistical relationships between large scale variables (usually atmospheric 

patterns) and local variables. They are broadly used in atmospheric modelling to forecast the 

evolution of local variables from large scale atmospheric models. The advantage of the SDMs is 
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that the mathematical relationship derived by the model between the local and the large scale 

variables is valid not only for the present climate, but can also be used to estimate the future 70 

evolution of the local variables. In summary, the SDMs provide a simplified ‘static’ methodology 

to forecast the evolution of local variables without the need of running a complex dynamical 

models.  There are numerous downscaling methodologies based on different statistical properties. 

Among them, the analogues method (Lorenz, 1969) is the most broadly used due to its simplicity 

and accuracy (Grouillet et al., 2016). This technique assumes that similar (or analogues) 75 

atmospheric patterns over a given region, represented by large scale atmospheric variables or 

predictors, lead to similar local meteorological outcomes (or predictands) in a particular location. 

This assumption provides a simple algorithm to downscale the local occurrence of the variable of 

interest from a given large scale atmospheric pattern (see section 2.1 for a detailed description). 

In general, it has been shown that the analogues method performs as well as other more 80 

sophisticated downscaling techniques (Zorita and von Storch, 1999), indicating that it is an 

efficient alternative for many downscaling problems. Its main advantages are that is non-

parametric (i.e. no assumptions are made about the distribution of the variables used as 

predictors), non-linear (i.e. it can take into account the non-linearity of the relationships between 

predictors and predictands), and it is spatially coherent (i.e., preserves the spatial covariance 85 

structure of the local variables). The analogues method has been satisfactorily applied in the 

Mediterranean region not only for the downscaling of meteorological or hydrological variables 

such as precipitation or river runoff (Grouillet et al., 2016; Wu et al., 2012; Caillouet et al., 2016), 

but also for the reconstruction of sea surface temperature in the glacial period (Hayes et al., 2005), 

the assimilation of satellite derived sea surface height (Lopez-Radcenco et al., 2019) and the 90 

projection of complex climatic impact indices such as the fire weather index or the physiological 

equivalent temperature (Casanueva et al., 2014).  

In this study, we explore the feasibility of a ML concentration forecasting system based on the 

analogues method. In particular, the surface ML concentration is linked to the atmospheric 

patterns during a reference period. Then, during the forecasting phase, the forecasted atmospheric 95 

situation is compared to those realized during the reference period to identify analogue situations. 

The ML concentration during those analogues situations is considered to be a good approximation 

of the ML concentration that will occur during the forecasted date.  As this is a new approach 

never tested before for ML dispersion, the first step has been to run several tests to fine-tune the 

methodology and to characterize its limits of validity.  Ideally, the tuning and validation of the 100 

method should had been done using in-situ observations but, unfortunately, the available ML 

concentration datasets are too scarce and this was not possible. Therefore, in this exploratory 

study, we have used numerically simulated ML concentration fields for the development and 

validation of the system.   
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The rest of the paper is organized as follows. In section 2, the statistical method, the datasets used 105 

and the different choices tested are introduced. In section 3, the model results are presented and 

discussed, and, finally, some conclusions about the capabilities of this new approach are outlined 

in section 4. 

2. Data and methods 

2.1. The analogues method  110 

The implementation of the analogues method requires two sets of data. First, we need a reference 

dataset of the variables that describe the atmospheric patterns over the region of study, the so 

called predictors (X). The second reference dataset consists on spatial patterns of the variable of 

interest for the same period for which the predictors are available. In our case, those predictands 

(Y) would be the ML concentration fields. Once they are defined, the methodology is based on 115 

the assumption that if two predictors are similar (X1 ~ X2) the corresponding predictands would 

also be similar (Y1 ~Y2). Then, in order to obtain a forecast of the ML concentration for a given 

date (Yfcst), what we can do is to use instead a forecast of the predictor for the same date (Xfcst). In 

particular, we look for K analogue dates within the reference period (tan,k) in which the predictor 

patterns are similar to the forecasted one (X (tan,k) ≈ Xfcst). Then the value of the variable of interest 120 

is estimated as a function of the predictands corresponding to the selected analogue dates Yfcst = f 

(Y(tan,k)). A scheme of the model algorithm is shown in figure 1a. 

In our case, the predictors used to characterize the atmospheric conditions will be the Sea Level 

Pressure (SLP) and the wind speed (U10, V10). These two variables have been successfully used to 

forecast ocean surface dynamics (Wang et al., 2010; Martínez-Asensio et al., 2016), so it is 125 

reasonable to think that they may be also good to forecast ML concentration as it is mainly driven 

by ocean currents. The reference dataset for the atmospheric situation is obtained from an 

atmospheric reanalysis (see section 2.3). Regarding the reference dataset for the predictand, we 

use the ML concentration outputs from the modeling system developed by Soto-Navarro et al. 

(2020) and described in section 2.4.  130 
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Figure 1. a) Scheme of the functioning of the analogues method. b) example of the JM1 cost function. The vertical 

red line marks the date forecasted (tfcst, in the example 26/04/2006). The thin black line is the JM1 cost function 

for the whole period, in the Mediterranean Sea region. Blue dots and vertical dashed lines indicate the analogue 

dates selected (tan,k, see text for details).    135 

2.2. Algorithm implementation  

The first step to implement the analogues method is to define a cost function, JM, that measures 

the similarity between different meteorological situations. Then, for the forecast day (tfcst) we 

estimate how close is the meteorological situation of that day to the rest of the days in the reference 

dataset by computing JM for the whole reference period. Those days with the lowest JM values 140 

are selected as the analogue days ({tan,k}, see figure 1b for an example). For the definition of JM, 

the most popular choice is to use the Euclidean distance or root mean square error difference 

(RMSED) (Zorita et al., 1995; Cubasch et al., 1996; Gutiérrez et al., 2013), although other metrics 

based on different statistics can also be used.  Here we have tested 4 different definitions for the 

cost function JM: 145 

𝐽𝐽𝐽𝐽1 = ���𝑆𝑆𝑆𝑆𝑆𝑆(𝑡𝑡) − 𝑆𝑆𝑆𝑆𝑆𝑆(𝑡𝑡𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓)�
2����������������������������������      (1) 

𝐽𝐽𝐽𝐽2 = ���𝑢𝑢10(𝑡𝑡) − 𝑢𝑢10(𝑡𝑡𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓)�
2 + �𝑣𝑣10(𝑡𝑡) − 𝑣𝑣10(𝑡𝑡𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓)�

2����������������������������������������������������������������   (2) 
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𝐽𝐽𝐽𝐽3 =  𝐽𝐽𝐽𝐽1(𝑡𝑡)/ 〈𝐽𝐽𝐽𝐽1(𝑡𝑡)〉  +  𝐽𝐽𝐽𝐽2(𝑡𝑡)/ 〈𝐽𝐽𝐽𝐽2(𝑡𝑡)〉     (3) 

𝐽𝐽𝐽𝐽4 =  ∑ 𝐽𝐽𝐽𝐽3(𝑡𝑡)𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓
𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓−∆𝑓𝑓

       (4) 

So, the similarity between meteorological situations is assessed either in terms of the sea level 150 

pressure (SLP, JM1), the 10-m winds (U10, V10; JM2), a normalized combination of both (JM3) 

or the cumulated values of JM3 during a period (Δt) before the reference day (JM4). In our case, 

Δt has been set to 7 days. Note that the horizontal bars indicate spatial averages for (JM1) and 

(JM2), while <> in (JM3) denotes temporal mean. 

In a second step, we identify the analogue dates as those with the lowest values of JM. We keep 155 

those dates in which JM is lower than the 1% percentile of all JM. Then, the ML concentration 

maps (C) obtained in the reference dataset for those days are combined to produce the forecast 

concentration map (Cfcst). In our case we use the median to reduce the influence of extreme 

concentration values close to ML sources: 

𝐶𝐶𝒇𝒇𝒇𝒇𝒇𝒇𝒇𝒇 = 𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚(𝐶𝐶{𝑡𝑡𝑎𝑎𝑎𝑎})       (5) 160 

2.3 Reanalysis data for the atmospheric fields 

The period considered for the implementation of the analogues method is 2003 – 2013, which 

coincides with the period simulated by the ML dispersion model (as described in the following 

section). The climatic  dataset necessary for the model reference period is based on the ERA5 

reanalysis dataset, available at the Copernicus Climate Change Service (C3S) web platform 165 

(https://climate.copernicus.eu/climate-reanalysis). All the information regarding the ERA5 

characteristics can be found on the C3S website.  

Two variables have been considered for the characterization of atmospheric patterns forcing the 

ML dispersion: the wind speed at 10 meters height (U10, V10) and the sea level pressure (SLP).  

Daily mean values of these variables over the Mediterranean Sea were downloaded and processed 170 

for the whole period. The spatial resolution of the atmospheric data is 0.25º (~25 km) and cover 

the whole Mediterranean basin and the region of the North Atlantic adjacent to the Iberian 

Peninsula. Figure 2 shows as an example the average SLP for year 2013 in the selected domain.  

https://climate.copernicus.eu/climate-reanalysis
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Figure 2. Average SLP ( in Pa) for the year 2013 in the region, computed from the ERA5 datset. The red line at 175 
the Strait of Sicily marks the boundary between the Western and Eastern basins. The red rectangles limit the 

sub-basins of the Baleric Islands, The Gulf of Lions and the Aegean Sea, where specific analyises were carried 

out.  

2.4 ML concentration data  

The ML concentration data is obtained from the simulations performed by Soto-Navarro et al., 180 

(2020), as they are considered to be among the most realistic for the Mediterranean Sea. Due to 

the relevance of the quality of the ML concentration data, some details on the modelling system 

are presented below and more information can be found in Soto-Navarro et al., (2020).   

The system is based on two components, a regional high resolution circulation model (RCM) 

reproducing the 3D current velocity field in the Mediterranean (NEMOMED36), and a lagrangian 185 

model that simulates the evolution of floating particles (Ichthyop 3.3).  

The hydrodynamical model used to simulate the Mediterranean current field is an implementation 

on the NEMO model, with a spatial resolution of 1/36 degrees (~ 3 km) in a domain that covers 

the whole Mediterranean. The atmospheric forcing is a dynamical downscaling performed by the 

APEGE-Climate model using spectral nudging, namely ARPERA (Herrmann and Somot, 2008).  190 

Note that the forcing of NEMOMED36 (ARPERA) is not the same that the one used to 

characterize the meteorological situations (ERA5). Although both datasets are very similar, they 

are not exactly the same, thus mimicking the inaccuracies that atmospheric forecasts will 

inherently have. 

The Individual Based Model (IBM) Ichthyop 3.3 (http://www.ichthyop.org/) is used to determine 195 

the 3D trajectories of the virtual ML particles from the NEMOMED36 current field. In the 

coastlines and the domain’s boundaries the configuration of the model is set as “bouncing”, 

meaning that the particles rebound back to the sea when reaching coastal pixels or the boundary 

of the domain. Therefore, no beaching scheme is implemented. Following the estimations of 

http://www.ichthyop.org/
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Jambeck et al., (2015), a total input of 100k tons of plastic per year into the whole Mediterranean 200 

Sea is set in the model. This total amount is distributed in three different types of sources: cities, 

rivers and maritime traffic or ships - lanes, according to the ratio 50:30:20% respectively. The 

modelling period covers ten years, between 2003 and 2013. Due to computational limitations, it 

has been divided in 120 simulations, each one running one year and starting the first day of each 

month. A total of 41872 particles are released every month, which for the complete experiment 205 

makes a total of more than 5 million particles. The initial concentrations at the different source 

location are represented in figure 3a. The experiments were carried out using particles with 

positive (floating), neutral, and negative (sinking) buoyancy. In this study, only the results for 

floating ML particles have been used. Soto-Navarro et al. (2020) showed that the dispersion 

patterns for floating and neutral particles are very similar, hence the results described below can 210 

be considered valid also for neutral particles.  

The results of the numerical experiments are processed to produce average ML concentration 

maps over the Mediterranean basin. These maps are computed by dividing the Mediterranean 

basin in a regular grid of 0.25º x 0.25º cells. The average concentration is estimated as the number 

of particles in each cell, divided by the cell surface, at each time step. Figure 3b shows the average 215 

ML concentration in the Mediterranean for the whole simulated period. 

 

 

Figure 3. a) Spatial distribution of initial marine litter concentrations (in kg/km2) for the three simulations. 

Circle filled points indicate cities, diamonds indicate rivers and points over the sea indicate the ship lines. b) 220 
Average ML concentration of neutral particles (kg/km2) for the period 2003 – 2013. 
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2.5 Experiments 

As mentioned before, there are no suitable observational datasets to validate the forecasting 

system. Homogenized datasets covering a long period of time would be required for this task. 

Although there are some efforts to develop new databases (Maximenko et al., 2019), up to our 225 

knowledge, there are no such datasets in the Mediterranean yet. Thus, in order to have a first 

assessment of the quality of this methodology we have to use the concentration ML maps from 

the database as a “virtual reality” and compare the forecast (Cfcst) with the C in the database for 

the forecast date (C(tfcst)). We are aware that this may produce overoptimistic results and this issue 

will be discussed below. 230 

To define the forecast day, we pick any date from the reference period and forecast the ML for 

that day using all the data available except for a week before and after of the forecast day to avoid 

spurious good results due to autocorrelation. This has been repeated for all the dates in the 

reference period (3650) and several statistical metrics have been computed to assess the skills of 

the method.  235 

To test if the model shows different skills depending on the domain of application, we have 

applied the method to seven different regions: the whole Mediterranean, the eastern and western 

basins, and in the Gulf of Lions, the region around the Balearic Islands, the Adriatic Sea and the 

Aegean Sea (see figure 2). In each case, the analogue days have been defined using only data on 

the selected region. 240 

Additionally, we have tested if the skill of the method depends on the time scales of the ML 

concentration variability. So, in addition to use the ML concentration dataset, we have used two 

filtered versions of it, separating those processes above and below 15 days (Chi-freq and Clo-freq). 

Finally, for completeness, we propose three additional models for the forecasting. First, we 

forecast the concentration change in 7 days (Δ7dC). The underlying idea is that the meteorological 245 

situation could be a better predictor of the rate of change than of the absolute value (e.g. winds 

may determine the changes in the concentration rather than the absolute value). The second one 

is to simply assume 7-days persistence as the forecasting model (I.e. we assume C(tref) = C(tref-7 

days)).  This model will tell us if having a good observational characterization of the ML 

concentration would be a good predictor of what will be the situation one week later. The last one 250 

is a combination of the previous two: we add the forecast of the concentration change to the 7 

days persistence (C(tref) = C(tref-7 days) + Δ7dC). In other words, we test if combining a good 

observational characterization of the ML concentration with an analogues-based forecast of the 

concentration change can improve the results. 
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In summary, we have tested 4 configurations of the model over 7 different regions to forecast C, 255 

Chi-freq and Clo-freq 

2.6 Quality assessment 

Several diagnostics are used to characterize the quality of the forecasts in the different 

experiments. The first one is the root median square error (RMEDSE): 

𝑅𝑅𝐽𝐽𝑅𝑅𝑅𝑅𝑆𝑆𝑅𝑅 =  �𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚 ��𝐶𝐶𝑎𝑎𝑎𝑎 −  𝐶𝐶𝑟𝑟𝑟𝑟𝑓𝑓�
2�     (6) 260 

We have chosen this parameter instead of the root mean square error to reduce the overall impact 

of outliers linked to very high concentration values close to ML sources. Complementary we also 

compute the temporal correlation ρ: 

𝜌𝜌 =  𝐶𝐶𝐶𝐶𝐶𝐶�𝐶𝐶𝑎𝑎𝑎𝑎,𝐶𝐶𝑟𝑟𝑟𝑟𝑓𝑓�
𝜎𝜎𝐶𝐶𝑎𝑎𝑎𝑎𝜎𝜎𝐶𝐶𝑟𝑟𝑟𝑟𝑓𝑓

        (7) 

where Cov represents the covariance and 𝜎𝜎 the standard deviation. Additionally, we compute the 265 

RMEDSE ratio (RR) which is defined as the ratio between the RMEDSE of the forecast (eq. 6) 

and the RMEDSE computed using all the days in the database, RMEDALL: 

𝑅𝑅𝑅𝑅 = 𝑅𝑅𝐽𝐽𝑅𝑅𝑅𝑅𝑆𝑆𝑅𝑅 𝑅𝑅𝐽𝐽𝑅𝑅𝑅𝑅𝑅𝑅𝑆𝑆𝑆𝑆⁄        (8) 

The lower the value of RR is, the better the forecast is. Values of RR close to 1 means that the 

quality would be the same than using any random day, so the forecast is not providing any new 270 

information.  RMEDSE, ρ and RR are computed spatially and/or temporally. 

3. Results  

3.1 Time variability 

The temporal correlation and the RR of the ML concentration reconstruction using different cost 

functions and forecasting models are presented in Figures 4 and 5.  The spatial patterns of the 275 

correlation are very consistent among the different combinations. The fields are relatively patchy 

with the highest values in the eastern basin, close to the Turkey coasts, in the Gulf of Gabes, in 

the west of Sardinia and towards the north of the Balearic Islands. Conversely, the minimum 

correlation values are found in the Alboran Sea, the Algerian basin and the Gulf of Lions. The 

RR maps are very consistent showing lower values where/when the correlation is higher and 280 

values closer to 1 where/when the correlation is lower.  

Concerning the different cost functions used to identify the analogue situations, the performances 

using only SLP (JM1) or only wind (JM2) are very similar. Using both variables the quality 

slightly increases (JM3) and becomes significantly better when using the 7-days average (JM4). 
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For model 1 (forecasting the concentration), the averaged correlation using each cost function is 285 

0.24, 0.25, 0.28 and 0.35 while the averaged RR is 0.93, 0.93, 0.90 and 0.86, respectively. The 

forecasting of the concentration change is worse for all cost functions, with averaged correlation 

values ranging from 0.08 to 0.19 and RR ranging from 1.00 to 0.98.  In the light of these results, 

from now on, we will only consider the results of the analogues-based forecast models that use 

the cost function JM4 (i.e. the one considering the 7-day averaged differences). Using it for 290 

forecasting the ML concentration we obtain correlation values ranging from 0.20 to up to 0.60 

depending on the region. When forecasting the ML concentration change the values range from 

non-significant to 0.40 (see Figure 4).  

Using 7-days persistence to forecast the ML concentration (Model 3, see Figure 4) the results 

largely improve. They show correlations that range from 0.20 in the Alboran Sea and the Gulf of 295 

Lions to 0.82 around Cyprus, with an average value of 0.60. The RR reaches values as low as 0.4 

with an average value of 0.79. Finally, combining both methodologies in Model 4 provides the 

best results. Combining the 7-days persistence with the analogues-based forecast of the 

concentration change increases the forecasting skills. In this case the averaged correlation is 0.62 

and the averaged RR 0.79. 300 

 

Figure 4. Temporal correlation of the forecasts using different models and cost functions with the reference 

dataset. Each column corresponds to a different forecasting model:  the analogues-based forecast of the 

concentration (model 1), the analogues-based forecast of the concentration changes in 7 days (model 2), the 

persistence (model 3), and the persistence in combination with the forecast of the concentration change in 7 days 305 
(model 4). Each row corresponds to the different cost functions used to identify the analogues (see text for 

details). Note that all panels in the third column are the same, as in Model 3 no cost function is used. 
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Figure 5. Same than Figure 5 but for the RMEDSE ratio. Values close to 1 (white) indicate the forecast brings 

little improvement with respect to use a random day. 310 

For completeness, we also include an example of the concentration time series for the reference 

and models 1, 3 and 4 for a point where the forecasts perform well (Figure 6a). It can be seen that 

Model 1 is well correlated with the reference, showing a good chronology of events although 

being unable of capturing the concentration peaks. During those periods, the analogues-based 

forecast largely underestimates the reference values. Models 3 and 4 show almost identical good 315 

results, as far as persistence is enough to capture most of the variability. The underlying reason 

for this success is that, at this location, the changes of ML concentration are relatively slower, so 

assuming persistence can be a good predictor. For comparison, the time series for a point where 

the models perform poorly are shown in Figure 6b. In this case, the analogues-based forecast is 

unable to capture any variability and it basically produces the mean value. The other two models 320 

are able to follow the variability, although in this case the skills are lower than in the previous 

case. The reason is that in this point the ML concentration varies more rapidly, so assuming the 

persistence is not as good predictor as it was in the previous location.  
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Figure 6. Time series of ML concentration (in kg/km2) for (top) a location where the analogues-based forecast 325 
works well and (bottom) a location where it performs worse. The plots show the reference values, the analogues-

based forecast, the persistence and the persistence in combination with the forecast of the concentration change.  

3.2 Spatial Variability 

A complementary view of the performance of the different forecasting models can be obtained 

looking at the ML concentration anomalies (i.e. with respect to the temporal mean) in given dates. 330 

In Figure 7, we show the results for a date when models show good agreement with the reference 

(spatial correlation values are 0.70, 0.76 and 0.78 for models 1, 3 and 4, respectively). All three 

models are able to identify the areas of high and low concentration. Maximum values in the north 

of the Balearic Islands, the Gulf of Gabes and south of Italy and minimum values in the Adriatic 

Sea, the Algerian basin and the easternmost part of the Med are well captured. The analogues-335 

based forecast (Model 1) shows smoother patterns with less low extremes. This is in good 

agreement with what has been seen in the time series in Figure 6, suggesting that this model has 

difficulties to capture very high concentration values. Regarding the persistence-based models, 

for this particular date, they perform very well capturing not only the large scale patterns but also 

the local features. Looking at a date when the performance is lower something interesting appears. 340 

Although the spatial correlation of Model 1 is not significant (Figure 8b), the large scale features 

seem to be well captured. However, the small scale features are clearly not captured which 

degrades the spatial correlation. This would also support the previous finding reinforcing the idea 

that the analogues-based forecast performs better for the large scale features. In places or dates 

where/when the small scale features become dominant, the performance of the model drops.  345 
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Figure 7. Maps of ML concentration anomaly for a date where the analogues-based forecast performs well (a) 

Reference (b) Analogues-based forecast (c) Persistence (d) Persistence in combination with the forecast of the 

concentration change in 7 days. 

 350 

Figure 8. Like Figure 7 but for a situation where the forecasts perform worse. 

The time series of the spatial correlation and spatial RR at each time step are presented in Figure 

9. The results are similar for the three models forecasting the ML concentration (Models 1, 3 and 

4). The skills of the forecasts show a high temporal variability with correlation values ranging 

from 0.5 to almost 1 and an averaged value of 0.78, 0.81 and 0.84, respectively. For RR the values 355 

range from 0.3 to more than 1 with an average value of 0.76, 0.79 and 0.71, respectively. This 
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diagnostic also confirms that the best model is the one combining the persistence with the forecast 

of the concentration change. 

 

Figure 9. Time series of (Top) Spatial Correlation and (Bottom) Spatial RR. for the analogues-based forecast 360 
(Model 1), the persistence (Model 3), and the persistence in combination with the forecast of the concentration 

change (Model 3).  

3.3 Regional dependence of the forecasting skills 

The methodology has also been applied to different domains. That is, the cost function, JM, has 

been computed in the regions defined in figure 2 and the validation has been performed looking 365 

only at the ML concentration in those regions. In general, better results are obtained when the 

analogues-based forecasts are applied to a larger region (see Table 1 and Table 2). For instance, 

the analogues-based forecast (Model 1) provides modest results, with correlations of 0.31 and 

0.35 and RR of 0.92 and 0.86 for the eastern and western Mediterranean, respectively. At local 

scale the correlation ranges between 0.29 and 0.34 and the RR ranges between 0.80 and 0.94. The 370 

analogues-based forecast for the concentration change (Model 2) shows lower skills with 

correlation below 0.23 and RR above 0.98 in all regions. Both models show better performance 

forecasting the low-frequency component than the high-frequency one. The correlation of Model 

1 forecasts in the different region ranges between 0.31 and 0.40 for the low frequency while it 

ranges between 0.15 and 0.22 for the high frequency. Consistent results are found when looking 375 

at the RR and Model 2 forecasts.  

The 7-days persistence (Model 3) shows to be a good predictor for the full signal and the low-

frequency component while it struggles to capture the high-frequency variability, as expected. 

Provided that the low-frequency part of the signal is what dominates the ML concentration 

variability, this model shows good skills for the full signal with correlations in all regions ranging 380 

from 0.55 to 0.64 and RR ranging from 0.75 to 0.82.  
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The best results for the forecast of the ML concentration are obtained combining the persistence 

with the analogues-based forecast of the 7-days concentration change (Model 4). The averaged 

temporal correlation is over 0.54 in all regions reaching a value of 0.65 when applied to the 

Western Mediterranean, while RR is below 0.80 and reaches 0.76 for the whole Mediterranean.  385 

Correlation 
Full High-frequency Low-frequency 

M1 M2 M3 M4 M1 M2 M3 M4 M1 M2 M3 M4 

Mediterranean 0,35 0,19 0,60 0,62 0,19 0,19 -0,13 -0,08 0,40 0,25 0,95 0,96 

East Med 0,31 0,19 0,55 0,57 0,19 0,18 -0,13 -0,08 0,34 0,22 0,95 0,95 

West Med 0,35 0,16 0,64 0,65 0,15 0,15 -0,12 -0,08 0,41 0,24 0,96 0,96 

Gulf of Lions 0,29 0,20 0,51 0,54 0,20 0,19 -0,16 -0,10 0,31 0,19 0,94 0,94 

Balearic Islands 0,36 0,18 0,60 0,62 0,17 0,17 -0,14 -0,09 0,40 0,20 0,95 0,96 

Adriatic Sea 0,31 0,23 0,53 0,56 0,22 0,21 -0,13 -0,07 0,28 0,17 0,94 0,94 

Aegean Sea 0,34 0,21 0,55 0,59 0,22 0,20 -0,12 -0,06 0,39 0,19 0,94 0,94 

Table 1. Regionally averaged temporal correlation of the different forecasting models (M1-M4) applied in 

different regions (see Figure 2). The models have been applied to forecast the full signal of ML concentration, 

the high frequency component (period < 15 days) and the low frequency component (period > 15 days). 

 

RR 
Full High-frequency Low-frequency 

M1 M2 M3 M4 M1 M2 M3 M4 M1 M2 M3 M4 

Mediterranean 0,86 0,98 0,79 0,76 0,97 0,98 1,47 1,44 0,82 0,92 0,26 0,24 

East Med 0,92 0,98 0,82 0,80 0,98 0,98 1,48 1,45 0,89 0,94 0,28 0,27 

West Med 0,86 1,00 0,75 0,74 0,98 0,99 1,47 1,45 0,79 0,93 0,25 0,23 

Gulf of Lions 0,80 0,98 0,80 0,79 0,97 0,98 1,49 1,46 0,79 0,96 0,26 0,25 

Balearic Islands 0,94 0,98 0,76 0,75 0,98 0,99 1,48 1,46 0,91 0,96 0,27 0,25 

Adriatic Sea 0,84 0,98 0,79 0,77 0,98 0,99 1,46 1,44 0,88 0,98 0,29 0,28 

Aegean Sea 0,85 1,00 0,80 0,75 0,97 0,99 1,46 1,45 0,82 0,97 0,27 0,26 

Table 2.  Same as Table 1 but for the RMEDSE ratio. 390 

The spatial diagnostics have also been computed applying the models to different domains (Table 

3). In this case, the analogues-based forecast of concentration (M1) show average spatial 

correlations higher than 0.62 when applied to any region reaching up to 0.94 in the Aegean Sea. 

Also, the analogues-based forecast of concentration change (M2) shows significant average 

correlations ranging between 0.19 and 0.30. 7-days persistence (M3) is again improving the 395 

results although the combination of persistence and the analogues-based forecast of concentration 

change (M4) is the best model when applied in any region. Average correlation ranges between 

0.67 and 0.96 and RR is lower than 0.83 everywhere. 

 

 400 
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Correlation RR 

M1 M2 M3 M4 M1 M2 M3 M4 

Mediterranean 0,75 0,23 0,83 0,84 0,86 1,00 0,80 0,75 

East Med 0,70 0,23 0,75 0,76 0,89 0,97 0,85 0,82 

West Med 0,76 0,22 0,84 0,85 0,86 1,00 0,78 0,72 

Gulf of Lions 0,65 0,19 0,66 0,67 0,83 0,98 0,85 0,83 

Balearic Islands 0,62 0,20 0,72 0,73 0,91 0,98 0,76 0,74 

Adriatic Sea 0,64 0,21 0,67 0,69 0,85 1,00 0,74 0,73 

Aegean Sea 0,94 0,30 0,96 0,96 0,86 1,00 0,78 0,78 

Table 3. Temporally averaged regional correlation and RR of the different forecasting models (M1-M4) applied 

in different regions (see Figure 2).  

It is worth mentioning that we have also tested other options for the cost function like using 

different temporal averages or using correlation as similarity metrics but no significant differences 

have been found. Also, we have tried to change the criterion to define the analogue days. Instead 405 

of identifying as analogues those days with JM lower than the 1% percentile of the whole JM 

time series, we have used less restrictive criteria (5% or 10%). In both cases the results worsened. 

4. Discussion and Conclusions 

The analogues-based forecasting technique has been applied to ML concentration for the first 

time, up to our knowledge. It has proven to be very inexpensive and relatively easy to set-up, so 410 

it is an alternative to direct modelling worth to be considered. A key step in the set-up is to select 

a suitable cost function and the best threshold to identify the analogue meteorological situations. 

In our case, it seems that using integral definitions for the cost function improve the results. In 

other words, it is better to identify the analogue days based on the history of the meteorological 

situation. Probably, using a different averaging time for each domain would allow increasing the 415 

skills of the analogues-based model. However, this fine tuning is out of the scope of this paper, 

as far as there are no suitable observations to validate it, as it will be discussed later.  

The quality of the analogues-based forecasts depends on the region of application. Our results 

suggest that the larger the region of application the better, as we get better results for the whole 

Mediterranean or for the East/West basins than in smaller local areas. A hypothesis for explaining 420 

this result is that using the atmospheric situation as a predictor may not be suitable to capture 

small scale features (e.g. those related to ocean currents or the interaction with coastlines). Further 

tests including other predictors could be done to refine the method, including ocean currents, for 

instance. 

Another important point is that the method struggles to capture the extreme values as it produces 425 

smooth spatio-temporal patterns of ML concentration. Therefore, in locations or regions where 
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short intense events or small scale features dominate the variability, the method performs worse. 

This is also one of the reasons why the temporal skills are relatively low (i.e. temporal correlation 

and RR, see section 3.1). Conversely, if instead of the time variability, what are aimed at are the 

spatial structures, the method shows high skills being able to locate relative maximum and 430 

minimum (see section 3.2). 

We have also shown that persistence is a very good predictor almost everywhere. This is because 

the ML concentration changes relatively slowly (i.e. the system has a several days memory), at 

least at the spatial scales solved by the reference dataset. This means that if reliable information 

was available (e.g. from a monitoring program), this could be used as a first guess of the ML 435 

concentration several days later. Complementary, the analogues-based method has also been 

applied to forecast concentration change. In this case the results were significantly poorer both to 

capture the time and spatial variability. However, it can be useful to improve the persistence-

based forecasts.  

Regarding the reliability of the analogues based forecasts that could be generated from this 440 

reference dataset, its quality would directly depend on the accuracy of the reference dataset. In 

our case this dataset comes from the outputs of a realistic modelling (Soto-Navarro et al., 2020). 

However, the model may have some shortcomings as its spatial resolution, beaching 

parameterization or realism of ML sources. Consequently, the forecasts would be, in the best case, 

as good as the model outputs are. Therefore, it would have been better to validate the different 445 

forecasting models against actual observations. Unfortunately, the lack of observations with a 

suitable spatial and temporal coverage prevents from doing it. In the future, it would be worth 

setting up a monitoring program with enough spatial and temporal resolution that would allow 

generating a comprehensive enough reference dataset. This dataset could be used to train the 

analogues-based forecasting system and to validate other existing systems. 450 

In any case, it is worth noting that the validation of the methodology can be considered as robust. 

For that purpose, it is not required that the reference dataset is an accurate representation of the 

actual ML concentration. Only the statistics of the ML concentration spatiotemporal evolution 

has to be reproduced. And in that sense, the model integrates the effects of a realistic atmospheric 

forcing and a realistic ocean current field. So, it is expected that the statistics of the ML 455 

concentration field is realistic enough. This extent should also be confirmed by a comprehensive 

observational dataset, at least in certain regions.  

In conclusion, the analogues-based model presented here has potential to become a suitable cost 

effective forecasting method for ML concentration. It could be easily implemented in any region 

of the world where a realistic reference dataset is available. In those regions where the large scale 460 



19 
 

ML concentration patterns dominate the variability the method will probably work better than in 

regions where the variability is dominated by small scale structures.  

5. Code and data availability 

The code and data required to implement the model described in the paper and to reproduce the 

results can be publicly accessed at Jordà and Soto-Navarro, (2022). Additionally, the atmospheric 465 

fields can be downloaded from the Copernicus portal (https://climate.copernicus.eu/climate-

reanalysis).   
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