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Abstract. The seminal, Ekman (1905)’s, f-plane theory of wind driven transport at the ocean surface is extended to the 3-plane
by substituting the pseudo angular momentum for the zonal velocity in the Lagrangian equation. When the /3 term is added,
the equations become nonlinear, which greatly complicates the analysis. Though rotation relates the momentum equations in
the zonal and the meridional directions, the transformation to pseudo angular momentum greatly simplifies the longitudinal
dynamics, which yields a clear description of the meridional dynamics in terms of a slow drift compounded by fast oscillations,
which can then be applied to describe the motion in the zonal direction. Both analytical expressions and numerical calculations
highlight the critical role of the equator in determining the trajectories of water columns forced by eastward directed (in the
northern hemisphere) wind stress even when the water columns are initiated far from the equator. Our results demonstrate that
the averaged motion in the zonal direction depends on the amplitude of the meridional oscillations and itis independent of the

direction of the wind stress. The zonal drift is determined by a balance between the initial conditions and the magnitude of the

wind stress so is-it can be as large as the mean meridional motion i.e., the averaged flow direction

is not necessarily perpendicular to the wind direction.

Copyright statement. TEXT

1 Introduction

The seminal theory of wind driven transport at the ocean surface was developed about 120 years ago by the Swedish oceanog-
rapher Vagn Walfrid Ekman for the highly idealized case of constant Coriolis frequency — the f-plane. The Ekman (1905)
theory addresses the downward spiraling horizontal velocity in the ocean’s surface and its vertical integral — the transport.
Ekman’s elegant solution of the problem has become a textbook material in physical oceanography, dynamical meteorology
and geophysical fluid dynamics (see e.g. Gill, 1982; Pedlosky, 1987; Vallis, 2017). For uniform wind stress the dynamics on
the f-plane consists of two parts: A steady flow to the right/left of the wind direction in the northern/southern hemisphere
and inertial oscillations (of frequency f; — the constant Coriolis frequency). However, though it is one of the cornerstones of

atmosphere and ocean dynamics, the theory was never extended to include the latitudinal increase in the Coriolis frequency,



25

30

35

40

45

50

55

known as the /3 effect, which is the focus of the present study. In contrast to the 3-plane, in spherical coordinates the theory of
wind-driven transport was studied numerically in Constantin and Johnson (2019) and Paldor (2002) but due to the complexity
of the governing equations in these coordinates, the numerical solutions have not yielded analytic understanding. With the
wind-driven dynamics on the f-plane fully understood and quantified, the 5-plane offers an in-between set-up where analytical
insight can complement the numerical solutions.

For given wind-stress forcing the known general differences between the dynamics on the f-plane and §-plane suggest

heuristically that the extension of Ekman’s transport theory to the 3-plane should include the following qualitative elements:

1. An increase/decrease in mean meridional velocity for an eastward/westward directed stress due to the decrease/increase

in Coriolis frequency when the water column moves southward/northward.

2. The frequency of oscillation about the mean velocity should decrease/increase (so oscillation period should increase/de-
crease) due to the decrease/increase in Coriolis frequency along the trajectory (for an eastward directed stress in the

northern hemisphere while the opposite changes occur for westward directed tress and in the southern hemisphere).

3. Since the oscillation’s frequency and amplitude are inversely correlated (energy flux is unchanged) a decrease in fre-

quency should lead to an increase in amplitude and vise versa.

4. Since inertial oscillations, that form a perfectly circular motion on the f-plane, drift westward on the S-plane the averaged
zonal motion should drift to the west. A heuristic reasoning of the westward drift in terms of the change in the radius of
the inertia circle was proposed by Von Arx (1964) and complete quantitative theories of the drift were developed in Ripa

(1997) and Paldor (2007).

The numerical solutions of the governing Lagrangian equations (see section 2 below) shown in figure 1 fully confirm the first
3 expectations listed above but contradict the fourth one — for both westward (right panel) and eastward (left panel) stresses,
the trajectories drift to the east. From the particular example shown in figure 1 it is unclear whether the eastward transition is
a general feature of the wind driven dynamics on the 3-plane or a specific occurrence related to the particular choice of initial
conditions and/or parameter values.

In addition to resolving the issue of the zonal drift and quantifying the various rates of changes, the present study also
addresses the equatorial problem that exists only on the 3-plane. This equatorial issue can be described as follows: An eastward
directed stress in the northern hemisphere forces a net southward directed mean flow which, on the $-plane, is accompanied
by a decrease in the Coriolis frequency. Thus, at some time the wind forced water column must find itself in a latitude where
the Coriolis frequency vanishes — the equator. From that point onward the water column is subject to non-rotating dynamics
and must move eastward at an accelerated velocity. In the rest of this work we will estimate the time it takes the water column
to change its dynamics from rotating to non-rotating and analyze how the two dynamical regimes connect with one another.

The work is organized as follows: In section 2 we nondimensionalize the governing Lagrangian equations and simplify them
by substituting the pseudo angular momentum for the zonal velocity. The simplified system is analyzed in section 3 and the

work concludes with a discussion and summary in section 4.
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Figure 1. The (longitude, latitude) trajectories of water columns at the ocean surface subject to westward directed (right panel) and eastward
directed (left panel) wind stress on the f-plane (blue curves) and on the 5-plane (red curves). The time unit is the inverse of the mean Coriolis
frequency and the longitude and latitude distances are scaled on Earth’s radius. The value of b (scaled [3) corresponds to 30° latitude. The
scaling of the wind stress (7%) is detailed in section 2. Both trajectories start from (z,y) = (0,0) located at the bottom-right point in the right

panel and at the upper-left point in the left panel

2 The Nondimensional Model

The time-dependent trajectory of a column of water in the surface Ekman layer forced by the overlying uniform wind stress on
the f-plane is a fundamental problem of Physical Oceanography that is fully described in most textbooks (Gill, 1982; Pedlosky,
1987; Vallis, 2017). The governing Lagrangian equations that describe the dynamics of vertically integrated-averaged horizontal
velocity components consist of the momentum equations in the zonal and meridional directions and the (trivial) relations

between these velocity components and the changes in the coordinate of the moving column i.e.:

dx dy daUu T % av
—_— = —_— = —_— = —_— _— = . 1
dt v dt v dt v+ P ﬂ’ dt v M

Here 7% is the uniform zonally directed wind stress (which is positive/negative for eastward/westward directed wind, re-
spectively), p is the water density, H is the depth (thickness) of the layer, f = fo+ By is the Coriolis parameter (where
fo =2Qsin(¢o), B = 2€Qcos(¢po)/ewith-a-R, with R, and 2 — Earth’s radius and rotation frequency, respectively and ¢ — the
latitude where the plane is tangential to Earth), U and V' are the vertically integrated-averaged horizontal velocity components

in the eastward and northward directions, respectively, and = and y are the respective coordinates in these directions. The only
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added complication of this system relative to that studied in details in e.g. chapter 9 of Gill (1982) is that here the Coriolis
frequency, f, in the momentum equations is y-dependent.

The 4-dimensional system (1) can be easily integrated numerically but the general properties of its solutions can be best
deciphered by reducing the number of its free parameters. This is done by scaling time, ¢, on % x and y on a-[7, so the velocity
scale is v i
layer fo R.. With this scaling the nondimensional Coriolis frequency is 1 + by where b:?%ee&@g—}b = @ = cot is

the nondimensional . The system is further simplified by replacing U by the pseudo angular momentum, defined as D =

U—y(1+ gy) in nondimensional units. As was shown by Paldor (2007) when 7% = 0 i.e., in the Inertial case, D is conserved.
We note that in spherical coordinates the conservation of angular momentum, which is the spherical counterpart of D, yields
a simple relation between the zonal velocity and the latitude (Paldor, 2001). Formally, a similar quantity relating the zonal
velocity, U, and the meridional coordinate, y, can also be derived in Cartesian coordinates but, unlike spherical coordinates,

this conserved quantity is not the angular momentum. With these changes system (1) transforms to:

% = D+y(1+gy), @)
% I (3)
% I 4)
O = D4y + o). )

Here ¢, , y and V denote the nondimensional counterparts of the dimensional variables denoted by the same symbols in sys-
tem (1) and, as explained above, D = U —y(1+ %y) is the nondimensional pseudo angular momentum. Equation (4) confirms

that D is indeed conserved when I' = 0. The solutions of this system are determined by the 4 required initial conditions and the 2

parameters: 19# M:Aﬁgjm:mcot(qbo) — the nondimensional 5 and F= > fz)z-a 7 Qf@;é@é: the constant, nondimensional,
surface wind stress. The value of b at ¢ = 30° is 1.75 and for realistic values of 72 /p-~s 2 H0=1mZs=27% /p ~ 2 x 10 *m?s 2,
fo=10"*s"tand, H =30m, I' = 103 so the theory should be applicable to b of O(1) and I < 1. The sign of I is that of
7% — positive for eastward directed stress and negative for westward directed stress.

We solve this system by starting at the origin of the 8-plane, i.e. 2(0) = y(0) = 0 and assume that the initial V'(0) and D(0) =
U(0) are sufficiently small. The numerical solutions presented below are initiated with D(0) = 0 and V' (0) # 0. However, the
definition of D implies that trajectories emanating from D(0) # 0 and y(0) = 0 can also be calculated starting from D(0) =0
and a suitable y(0) # 0. Note that the choice D(0) = 0 does not restrict the generality of our solutions since the shift of time
from ¢ to t' =t + D(0)/T yields D(¢t' = 0) = 0 so D(0) = 0 can be assumed. The analysis of the solutions of system (2) — (5),

including numerical examples, are presented in the next section.
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Figure 2. The-A schematic demonstration of the change in the potential ®(y,¢) forb=0.1andI' = 0.1 at¢ = 0, 10,20, ..., 100. The direction
of increase in time is indicated by the green-black arrows for ¢ < t., (left panel) and ¢ > ¢, (right panel). The minima, v+, of the potentials

are indicted by red circles.

3 Analysis

The analysis of system (2)-(5) begins with the (V, y) subsystem, i.e. equations (3) and (5) along with the (trivial) solution
D =Tt of (4). The derived solution of y(¢) will then be substituted in Eq. (2) to yield the zonal propagation speed. First, we
combine equations (3) and (5) to the single second-order equation

d?y

= —(1+by) [D+y(1+by>]- ©

2
We will discuss solutions of this equation for initial conditions in the vicinity of y = dy/dt =V = 0 and assume that T" is

sufficiently small [for the smallness condition see equation (A3) in the Appendix]. We proceed by rewriting Eq. (6) as

Py 0%(y,t)
&= a @
where
1 1 2
S(y.t) =5 [Tt+y(1+50y )| - (8)

Equation (7) describes the dynamics of a quasi-particle in a slowly (for small I') time varying quasi-potential well ®(y,t).
In figure 2 we illustrate this potential for I' = b= 0.1 at times t = 0, 10, 20, ..., 100. The minima of these potentials, denoted

collectively by y,,, are given by the 3 roots of:

0P = {Ft + Y (1 + ;bym)] (14 byym) = 0. 9)

y

Y=Ym
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Two cases should be considered depending on time being below or above the critical time

1
ter = ——. 10
20T (10
For ¢ < tcp, there exist two minima defined by I't + yy,, (1 + $bym) =0, i.e.,
1
yi:g(qi\/kzbrt) (11)
while for ¢ > t.,., there exists a single minimum located at
1
0
—— 12
Ym b (12)

=D =0and V =0.002,
As predicted, the exact solution of y(¢) oscillates with small amplitude (that increases with the value of V(¢ = 0)) about the
evolution curves of ;- and 42, shown by the black curves. The direction of evolution of :—in-timey,! (t) and its transformation
to 42—the constant y° (¢) at t = t..,. correspond to the evolution of the red circles in figure 2 y-are-indicated-by-the green-arrows
for t <., (left panel) and ¢ > ., (right panel)infigure2-—, The averaged numerical solution is expected to deviate appreciably

The main idea of the following analysis is that since the system starts near y = dy/dt =V =0, i.e. near the minimum of

Figure 3 shows the numerical solutions of (¢) when the column originates near vy i.e. z =

the potential, ¥}, by the adiabatic theory (see pages 531-535 in Goldstein, 1980) it will stay near this minimum for ¢ < t,..
At t=t.,, yﬁg transforms into y?n and therefore at all ¢ > ¢, the system remains near y?n. Thus, the column remains near
the minimum of ® at all times, while this minimum is slowly decreasing for ¢ < ¢, and stays constant for ¢t > t.,.. Since the
trajectory originates near the minimum ¥t and since for small T the variation of the potential is slow (see Eq. (9)), we expect

the solution for y to be of the form

Y =ym(t)+ oy (13)

where y,,, (t) starts at y;- and later (i.e. at t = t,,.) transforms into 32, and &y is a small perturbation. We substitute this form of

solution into Eq. (6) and rewrite the resulting equation as

d?6y

e = F —wi(t)oy — Asy* — Boy® (14)
where F' = —d?y,, /dt? is an inhomogeneous forcing term and the coefficients of the other 3 terms on the RHS of this equation
are:

1+byt)2=1-2Tt, t<t.
WOt —1/2, t>te

3/2)bwg, t<te
A= (/)wo (16)
0, t>te
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Figure 3. Numerical solutions of y(t) in system (2) - (5) starting from #=y=WV=P= > z=0=y=2D and from

5V = 0.002. The green-black curve shows the evolution of 4 {t}y, (£)

W(l 1) for t < t., and ofy iven by equation (12) for ¢ > t.... The values of b= 2 and I' = 0.001 used here imply that
the change between the two approximate solutions occurs at te, = si= = 50.

and
B =1
In the present model, equation (11) implies-imply d?y; /dt? = —bT'2(1 — 2bI't)~3/2 s0 F-=—d24rt et according to

equation (15) F' = —d?y,\, /dt? = bI'* Jwd > 0 for t < t.,. The second term on the RHS of Eq. (14) describes linear oscillations
having slowly varying frequency wy(t), while the third and fourth terms represent the effect of small anharmonicity of the
potential well near the minimum. Note that for y,,, = y;%. the term 4%, (¢) in Eq. (13) describes slow monotonic variation of the
latitude shown by the green—curves-in-ourexample-in-black arrows in figure 2 at ¢ < ... No such variation exists at ¢t > ¢,
since then y,, = y¥, = const. As will be shown below, the nonlinear terms in (14) mostly affect the zonal drift in z.
Importantly, for constant parameters wp, A and B the solution of Eq. (14) can be found in textbooks (see e.g. pages 86-87 in

Landau and Lifshitz, 1982) and it has the form

F ACI,2 Aa2 3
5y:w—g—i—acosw—ﬁ—&—@cos(Zw)—!—O(a ), (17)
where ¢ = wt + ¢, (¢ takes into account initial conditions;), a is the amplitude of the linear part of the Jy and
3B 5A%\ ,
— _ 18
@ w0+<8w0 12w8)a (18)

Therefore, dy includes harmonic oscillations of amplitude a and O(a?) corrections and oscillation frequency w (that includes

an O(a?) correction to wp). As is shown in the Appendix, when wy is a slow function of time as in our case [dw/dt ~ O(T')],



T - St te: (20) for t < tcr »the-amplitude-of-oseiltationsistarger-when
¥~~0and by equation (21) for t > t. where t., = 50 as in figure 3. The black curves terminate near the equator where the adiabaticit
breaks down since the frequency, wg, tends to 0 there according to equation (15)

of-oscillations-istarger-when1/<~0and by equation (21) for ¢ > t., where t., = 50 as in figure 3. The black curves terminate

near the equator where the adiabaticity breaks down since the frequency, wq, tends to O there according to equation (15)

Figure 4. Numerical solutions of z(t) in system (2) - (5) starting from the same initial conditions as in figure 3 for-the-blue-andred-eurves.
The green-two black curves show the monotonic evolution taveraged-over-oseiltations)-of x described by the-theory-developed-herefor-two

05) oscillate -about the evolution curve oty

heamphitudeof oscillationsis] henV 4 Oand
by equation (21) for ¢ > t., where t., = 50 as in figure 3. The black curves terminate near the equator where the adiabaticity breaks down
since the frequency, wy, tends to 0 there according to equation (15)

~

the solution (17) remains the same, but ¢ is replaced by +-=—fwdt—+¢o-1) = [ wdt + ¢g and the oscillation’s amplitude a

becomes a slow function of time such that wa? = const.
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Figure 5. The different water column trajectories for b = 2, initial conditions x = y = D = 0 and differentinitial-veloetties; -V = 0.002.
Left panel (bhered curves): ¥{t==6}—=0-60large T'*; Right panel (red-blue curves): ¥-{+=6}=6-65small I'>. The values of I" are noted

near each of the curves: thin curves denote negative (westward directed) stresses and thick curves denote positive (eastward directed) stresses.

The integration time is 2t.,- in all cases but the curves terminate just prior to reaching the equator. Note that for I' = 0.00001 the integration

time, . is 5000 i.e. the columns in the right panel complete several thousand oscillations in the course of the integration

This completes our solution for the latitude, y, and we proceed to the longitudinal dynamics.
The dynamics in the zonal direction, x, is governed by Eq. (2) which after substitution of (13) becomes

dr

b b
2 = [P ym (L Sym) |+ (14 bym)dy + 200°. (19)
Here again we consider two cases. For t < .., D +y(1+ gyj,tb) =0 and, therefore, by averaging intime{i-e—negleeting
osetlatery-compeonents-due-to-dt)-locally in time over a single oscillation and using Eqs. (17) and (15) we get
d(z) ba®> F
- 4 20
dt 2 Wo (20)
This equation shows that the average zonal drift is a nonlinear phenomenon in terms of the amplitude of oscillation. Since,

as was shown above, F' > 0 for t < t,,, the drift is determined by the balance between ba? / 2 {determined-by—the—initial
i 2 and F/wy = bI'? /wy. Thus, the sign (direction)

of the zonal drift is independent of the sign of I'. {ﬁeeﬂtfask—fe%

For t > tey, y9, = —1/b,s0 D+ 49 (14 2y%,) =T't — 1/(2b) and therefore,

d(x) 2
dt Ft_2b+ Jha (1)

Figure 3 displays numerical solutions of x(¢) in system (2) - (5) starting from the same initial conditions as in figure

3for-the-blue-and-red-eurves—The-green—. The black curves show the monotonic evolution (averaged over oscillations) of x



170

175

180

185

190

195

200

described by the theory developed heref:

. Since the trajectories originate
in mid-latitudes, a westward directed wind-stress will always stir the trajectories away from the equator so I in equation (21)

must be positive i.e. the long-term zonal drift on the equator is-pesitive-and monetonichas to be directed eastward.
Figure 5 compares the (x(t),y(t)) trajectories emanating from differentinitial-veloeities V-foraz = 0= D = yand V = 0.002

for two pairs of eastward directed (selic-thick curves) and westward directed (thin curves) wind stressesefidentical-magnitade
—TFhe-vartous-eurves-clearly-demeonstrate-. In the right panel the magnitude of the wind stress is small (=0.0001) and in the left
anel the magnitude of the wind tress is large (=0.005). The two curves in each panel demonstrate that, as concluded above

the zonal drift is independent of the €

atienssign (direction) of the wind stress (since
according to equation (20) it is proportional to I’ o I'?). A comparison between the trajectories in the two panels shows that

for tiny wind stress (right panel) the trajectories drift westward as in the force-free, inertial, oscillations while with the increase

in the magnitude of the wind-stress (left panel) the zonal drift is directed eastward. In accordance with the intuits presented in

the Introduction on the f-plane solution the oscillation’s (inertial) frequency changes with latitude i.e. increasing/decreasing in

northward/westward directed trajectories while the oscillation’s amplitude follow the opposite pattern. As-expected;-thezonal

4 Discussion and Summary

The two simple limits of b = 0 (Ekman transport on the f-plane) and I' = 0 (inertial trajectories on the -plane) should be dis-
cussed as special cases of the invelved-theorypresented-herepresent theory. These limits are well known in physical oceanog-
raphy but they were never presented as limits of a single dynamical system.

In the b = 0 limit (wind forced transport on the f-plane) the potential in (8) becomes ®(y) = %(D +1)? (recall: D =T't).
This potential has a single minimum at yf = —D and the frequency of oscillation near this point is wf = 1. Near 37 the
potential, ®, is identical to that of Harmonic Oscillator: %(y — y/)2. The substitation-b—0-Jeaves-equation-unchanged-so
B%P&&’Mmf = —D must decrease (or increase, depending on the sign of I') indefinitely at the-samerate
as-a rate that equals I" —Thus-i.e. the potential ® simply translates in the 4+y or —y directions without changing its shape.

The I' =0 limit (inertial trajectories on the [-plane) implies, according to equation (4), that D is conserved e—it—is
time-independent—Thts;—so_system (2) - (5) has two conserved quantities — D and the energy — E. With the increase in
the initial energy (say by increasing V' (¢ = 0)) the inertial trajectory will oscillate in (V,y) while drifting westward (see Ripa,
1997; Paldor, 2007) as on the sphere (Paldor, 2001). Equation (20) and the trajectories shown in figure 5 show that the long-
term westward drift on the 5-plane when I" # 0 is slower than in the inertial, I' = 0, case and it is independent of the sign of
.

10
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The solutions of the nonlinear system (2) - (5) are determined by the 2 initial conditions {==8=2D-V (t = 0) and y(t = 0)
(recall: z(t =0) =0 = D(t=0) can be assumed without loss of generality since = does not affect the dynamics and D can
be translated in time) and the values of the two parameters, b and I' (that represent the dimensional parameters 3 and 77,
respectively) for a total of 4 parameters! Thus, these solutions display a wide-range of temporal evolution and this work
describes and analyzes the general properties of these solutions and illustrates them in numerical examples. In particular, the
westward drift of the trajectories can be eastward (as in figure 1 and the left panel of figure 5) or westward (as in the right panel
of figure 5. The sensitive dependence of the drift on parameter values (including initial conditions) is a defining property of

nonlinear systems such as that studied here.

The intent of the analysis in this work is to provide an overview of the complex phenomena that result from the extension
of Ekman’s theory to the §-plane. In particular, this work shows that the zonal drift is independent of the sign of 7% but
depends on a (previously unknown) balance between V (0)? (or the initial displacement from (y)?) and (7%)2. The values

of the parameters used in the numerical results presented here were chosen so as to highlight the phenomena being discussed

while still being realistic. Thus, with the velocity scale of fo . = 640m /s the value of V(0) = 0.002 used in figures 3 — 5

corresponds to a dimensional velocity of about 1ms—!. Trajectories of much higher oscillation amplitudes will be encountered
with higher V (0) values.

The symmetry between y;! and y,,, in the present theory suggests that for the same wind stress, I, the southern hemisphere’s

fixed point will also move towards the equator, i.e. northward. However, in all other respects the evolution near y,,, is identical
to that described above for y;!.

The importance of latitudes where the curl of the wind-stress vanishes, that play a fundamental role in (Stommel, 1948)
vorticity based theory of wind driven ocean gyres, can not be captured in extensions of the present Lagrangian theory. However,
extensions of the present new Lagrangian theory on the S-plane can include variable zonal wind stress, 77 (y), which can
highlight the role played by latitudes where the wind-stress itself vanishes. Furthermore;-the-extension—of-the-present-study
The application of the concepts developed here to spherical geometry using-the-coneepts-developed-here-and to wind-driven
circulation over the continental shelf (where the sloping bottom yields the topographic S-effect) is an interesting and-vatuable

Appendix A: Adiabatic evolution of meridional oscillations and initial conditions

In this appendix we discuss adiabatic (slow) evolution of linear longitudinal oscillations described by [see Eq. (14)]

d?6y
dt?

F
=—wj(t)0y + — (Al)
Wo

and seek solution of this equation of form

t

dy = a(t) cos(/wo(t)dt +¢o) + % (A2)
0
0

11
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Here ¢, is added to take into account initial conditions and we assume that the change of wy during one period 27 /wq of

oscillations is small, i.e.

dwo 27

22 < w (A3)
dt wo

which is guaranteed if I is sufficiently small. This is our adiabaticity criterion. A similar condition, % i—’; < a, is also assumed

for the amplitude of oscillations. Next, we substitute (A2) into (A1) and neglect d%a / dt? to get

da dwy
2— — =0 A4
720 +a 7 ; (A4)
yielding
woa? = I = Const. (A5)

The constant I (the action) is given by initial conditions. When the nonlinear terms in (14) are included in the analysis, all
the derivation of weakly nonlinear solution as described in pages 86-87 of Landau and Lifshitz (1982) is not affected by the
replacement of the linear component a cos(wt + ¢g) by a(t) cos( fg w(t)dt + ¢p) in the adiabatic problem which is the basis of
solution (17) in section 3.

Finally, the action I, which remains constant all all times, can be calculated from the initial conditions, éy(0) and V' (0) =
d(6y)/dt|;=o. Using (A2) we have §y(0) = a(0) cos ¢pg + F(0)/w?(0) and V' (0) = —a(0)wp(0)sin ¢g. Then

w00 = (6(0) - 53(8))2 * (wv(<%)>) (A0

and

F(O)\*, V2(0)
I= 0) ( oy(0) — A7
The case depicted in figures 3 and 3 has 6y(0) = 0, so one gets a?(0) = F2(8J)+(0V)2(0) and I = wo(0)a*(0).
0
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