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Abstract. We examine 20 years of monthly global ocean color data and modeling outputs of nutrients 12 
using self-organizing map (SOM) analysis to identify characteristic spatial and temporal patterns of High 13 
Nutrient Low Chlorophyll (HNLC) regions and their association with different climate modes. The global 14 
nitrate to chlorophyll ratio threshold of NO3:Chl>17 (mmol NO3/mg Chl) is estimated to be a good 15 
indicator of the distribution limit of this unproductive biome that, on average, covers 92x106 km2 (~25% 16 
of the ocean). The trends in satellite-derived surface chlorophyll (0.6±0.4 to 2±0.4% yr-1) suggest that 17 
HNLC regions in polar and subpolar areas have experienced an increase in phytoplankton biomass over 18 
the last decades but much of this variation, particularly in the Southern Ocean, is produced by a climate-19 
driven transition in 2009-2010. Indeed, since 2010, the extent of the HNLC zones has decreased at the 20 
poles (up to 8%) and slightly increased at the equator (<0.5%). Our study finds that chlorophyll variations 21 
in HNLC regions respond to major climate variability signals such as El Niño Southern Oscillation 22 
(ENSO) and Meridional Overturning Circulation (MOC) at both short (2-4 years) and long (decadal) 23 
timescales. These results suggest global coupling in the functioning of distant biogeochemical regions. 24 

1 Introduction 25 

High nutrient low chlorophyll (HNLC) areas are ocean regions where primary production should be 26 
potentially high but phytoplankton biomass remains relatively low and constant despite the perennial 27 
nutrient availability for growth (Martin and Fitzwater, 1988; Chisholm and Morel, 1991). They are 28 
interesting regions because they challenge the accepted paradigm of a positive relation between 29 
macronutrient concentrations and phytoplankton biomass in open waters but, most importantly, because 30 
they represent an important fraction of the global ocean carbon inventories and, therefore, their extent 31 
influences the potential withdrawal of atmospheric CO2 to the deep ocean (Martin et al., 1990; De Baar 32 
et al., 1995; Boyd et al., 2005). It is estimated that HNLC biomes roughly cover between 20 and 30% of 33 
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the world’s oceans comprising three major ocean areas; the Subarctic North Pacific (SNP), the Eastern 34 
Equatorial Pacific (EEP), and most of the Southern Ocean (SO) (Martin, 1990; Coale et al., 1996; Parekh 35 
et al., 2005).  36 

Because nitrogen is the mineral nutrient needed in greatest abundance by phytoplankton and owing to its 37 
generalized depletion in surface waters over much of the oceans, it is considered a key limiting nutrient 38 
for ocean production. In HNLC regions, where nitrogen is in excess, other non-exclusive factors such as 39 
rapid top-down control by zooplankton grazing, low irradiance, limitations by silicic acid availability, 40 
and/or iron (Fe) limitation, have been hypothesized to explain the persistently low chlorophyll (Chl). 41 
While these factors may contribute in different degrees to the observed low Chl and determine the 42 
phytoplankton dynamics in HNLC regions (see, Chavez et al., 1991; Cullen, 1995; Coale et al., 1996; 43 
Dugdale and Wilkerson, 1998; Landry et al., 2011), it is generally acknowledged that Fe availability is 44 
central to the productivity of HNLC regions (Boyd et al., 2007). All HNLC regions share a chronic Fe-45 
depletion in surface waters and experimental results show highly positive productivity responses to Fe 46 
addition (Martin et al., 1994; Boyd et al., 2000, 2004; Tsuda et al., 2003; Coale et al., 2004). Indeed, Fe 47 
requirements are the largest among the trace metals for several metabolic processes, and not surprisingly, 48 
it has been considered the ultimate limiting nutrient (Moore and Doney, 2007). This has led to propose a 49 
conceptual model of phytoplankton nutrient limitation in the modern ocean based on two functioning 50 
regimes: one in which the supply of nutrients is relatively slow and nitrogen availability limits 51 
productivity, and a complementary regime, with enhanced macronutrient supply, where Fe limits 52 
productivity (Moore et al., 2013).  53 

Iron limitation influences the uptake of nitrogen thereby explaining the unused nitrate concentrations in 54 
HNLC regions. Indeed, it has been proposed that a delicate balance between nitrogen and Fe availability 55 
modulates phytoplankton growth and that co-limitation is rather ubiquitous in the sea (Bryant, 2003; 56 
Browning et al., 2017). Other elements and compounds such as B-vitamins, which are also scarce in Fe-57 
limited areas, can also be co-limiting factors for phytoplankton growth in these regions (e.g. Koch et al., 58 
2011; Bertrand et al., 2012). For example, it has been experimentally shown that the addition of Fe and 59 
B12 to Antarctic phytoplankton assemblages can synergistically increase phytoplankton growth (Bertrand 60 
et al., 2011; Cohen et al., 2017).  61 

Despite their relevance for global ocean productivity and carbon fluxes, HNLC regions remain loosely 62 
defined and knowledge of their temporal and spatial variability and trends is limited. Moreover, their 63 
response in a global warming scenario is uncertain. Only general aspects such as expected shifts in 64 
phytoplankton community composition or changes in Fe-cycling rates have been addressed to date (Fu et 65 
al., 2016; Lauderdale et al., 2020). The original description of HNLC systems by Minas et al. (1986) 66 
referred to a slowly growing phytoplankton standing stock despite the presence of high nutrient 67 
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concentrations. However, there are no rigid criteria accurately defining the functioning of these 68 
ecosystems. Several ecosystem characteristics such as species composition, ecosystem structure, carbon 69 
utilization pathways, and response to climate change also differ between the HNLC and other ecosystems, 70 
reflecting differences in the limiting factor (Falkowski et al., 1998; Ono et al., 2008).  71 

Of particular interest are the aspects related to the reduced variability and high permanence (i.e. temporal 72 
persistence) typically characterizing large HNLC regions. These features are distinctive from those of 73 
highly variable systems, which may temporarily present HNLC conditions. For example, some light-74 
limited regions in high latitudes may present low productivity and enhanced nutrients during winter but 75 
it responds to a transient situation that does not correspond to the generally accepted HNLC paradigm. 76 
Similarly, high nutrients and low Chl have been observed at the end of the spring bloom in some 77 
productive systems (Nielsdóttir et al., 2009; Birchill et al., 2019) and some areas located in coastal 78 
upwelling regions (Hutchins et al., 1998, 2002; Firme et al., 2003; Eldridge et al., 2004). While complying 79 
with the necessary conditions of high nutrient and low Chl, it is uncertain whether these ephemeral 80 
systems share structural and functional similarities with the large HNLC regions. 81 

At a time when understanding biogeochemical responses to large-scale forcings, including climate 82 
change, has become a scientific priority, it seems appropriate to revisit some concepts of the functioning 83 
of HNLC regions. Their extent and variability are indicative of the dynamic changes in the bidirectional 84 
interrelationships of phytoplankton with the environment and with other organisms at large scales. Most 85 
of the information on the long-term variations of HNLC regions is depicted from global studies suggesting 86 
that their productivity is varying as a consequence of global warming and that they experience prominent 87 
interannual to decadal fluctuations superimposed on these long-term trends (i.e. Boyce et al., 2014; 88 
Martinez et al., 2020). Available evidence suggests that some HNLC regions may be decreasing in size 89 
as a result of increased ocean stratification (Ono et al., 2008). More recently, Yasunaka et al., (2016), 90 
determined that surface trends of phosphate and silicate in the North Pacific are associated with the 91 
shoaling of the mixed layer, reporting that surface nutrient concentration was correlated with the North 92 
Pacific Gyre Oscillation (NPGO). Some studies have shown that oligotrophic areas in the northern 93 
hemisphere are expanding (e.g. Polovina et al., 2008); however, with some exceptions (i.e. Radenac et 94 
al., 2012; Yasunaka et al., 2014), specific long-term studies on HNLC regions are scarce and knowledge 95 
of their variability on the global ocean scale and their responses to climate change remain uncertain. 96 

The objective of the present study is to provide a quantitative assessment of the large-scale patterns of 97 
variability of the three major HNLC regions (SNP, EEP, and SO) and their relationship with the main 98 
modes of climate variability. Systematically determining the boundaries of these HNLC regions has 99 
remained elusive since it requires coherent information on nutrients and Chl fields. The present study is 100 
based on the analysis of 20-year time series of monthly global ocean color data and nutrient concentrations 101 
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from a biogeochemical model using machine learning techniques and wavelets analysis. First, based on 102 
the statistical analysis of global NO3:Chl ratios, we determine a robust quantitative criterion to objectively 103 
define HNLC regions. Then we characterize the temporal variability patterns of HNLC regions based on 104 
their NO3 and Chl concentrations by using the Self-Organizing Map (SOM) technique. We use the herein-105 
established statistical criterion to assess the spatial variations of HNLC regions over the study period 106 
unveiled from the SOM analysis in the spatial domain of NO3:Chl ratios. Finally, through a combined 107 
SOM-wavelet coherence analysis (WCA), we quantify the spectral power and the dynamic relationship 108 
between the observed Chl variability and two main global-scale forcings; El Niño Southern Oscillation 109 
(ENSO); and Meridional Overturning Circulation (MOC). We show that the combination of WCA with 110 
SOM-derived characteristic time-series is an especially suitable tool for the analysis of driver-response 111 
relationships in the ocean. 112 

2 Materials and Methods 113 

2.1 Ocean color data 114 

We employ 20 years of monthly global composites of satellite Chl Level-3 products, derived from 115 
merging SeaWiFS, MERIS, MODIS AQUA, and VIIRS sensors using a GSM algorithm (Maritorena and 116 
Siegel, 2005), obtained from GlobColour data set (www.globcolour.info). The chlorophyll product is 117 
spatially gridded, and the weighted average of the different merged Level-2 products is then calculated. 118 
The composite consists of a rectangular regular map product in degrees with a spatial resolution of 0.25º 119 
(i.e. around 28 km at the equator) and covers the period from January 1998 to December 2017. We 120 
excluded results in the Arctic Ocean and the coastal Southern Ocean due to the interference of ice cover 121 
and prolonged gaps in the data. A total of 654395 pixels were considered in the analysis. We are aware 122 
that the consistency of merged multi-mission ocean color satellite series may suffer from some limitations 123 
influencing long trend analysis (Mélin et al., 2017). However, no significant increase or decrease is 124 
observed in the first-order trends of GlobColour data in more recent studies (e.g. Moradi, 2021). 125 
Therefore, while recognizing that some differences in regional and seasonal biases may occur in unified 126 
data products and, acknowledging that discontinuities and trends of the median with time should be 127 
interpreted carefully according to the sensors used (Garnesson et al., 2019), merged Chl can be generally 128 
considered a good indicator of the magnitude of the overall phytoplankton trends. 129 
 130 

2.2 Nitrate data 131 

Since nutrient observations are still too scarce to allow obtaining time-resolved global‐scale fields, we 132 
used global NO3 obtained from the biogeochemical hindcast model provided by Mercator-ocean 133 
(http://marine.copernicus.eu, see Fig. S1). It consists of monthly mean fields of several biogeochemical 134 
variables at 0.25o horizontal resolution over the global ocean obtained using the PISCES model (Aumont 135 
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et al., 2015). The model is forced by daily mean fields of ocean, sea ice, and atmospheric conditions. 136 
Ocean and sea ice forcings are obtained from the numerical simulation FREEGLORYS2V4 produced at 137 
Mercator-Ocean and the source of atmospheric forcings is the ERA-Interim reanalysis produced at 138 
ECMWF. Initial conditions are set from the World Ocean Atlas 2013 climatology. A complete model 139 
description can be found at (http://cmems-resources.cls.fr/documents/). We compared available 140 
observational nutrient data (NO3) from the sea surface (mean 0-20 m), obtained by merging bottle cast 141 
data from the World Ocean Database (WOD18, Boyer et al., 2018; https://www.nodc.noaa.gov/), with 142 
model results. Generally, we found good agreement between nitrate in situ data and model results 143 
(r=0.98). Main deviations occur in the Southern Ocean where NO3 concentrations are overestimated (up 144 
to 7.2 mmol m-3). 145 

 146 

2.3 Climatological data 147 

Data on climate indices were obtained from available databases. Bi-monthly Multivariate El Niño 148 
Southern Oscillation Index (MEI.v2), hereafter ENSO index, was obtained from the National Oceanic 149 
and Atmospheric Administration National Center for Environmental Prediction website 150 
(https://www.esrl.noaa.gov/psd/enso/mei/). MOC data (Moat et al., 2022; Smeed et al., 2019) for the 151 
period (2004-2018) was obtained from the RAPID-WATCH MOC monitoring project 152 
(www.rapid.ac.uk/rapidmoc).  153 

 154 

2.4 Identification of HNLC regions 155 

Presently, the best approximation to define the global distribution of HNLC regions in the world ocean is 156 
the use of NODC maps of surface nutrients (https://www.nodc.noaa.gov/). However, excess nutrient 157 
availability by itself does not necessarily reflect HNLC conditions. In situ experiments are capable to 158 
discern Fe limitation conditions but a more manageable metric to assess the limits on the spatial extent of 159 
HNLC regions is required, in particular for remote sensing applications, as well as for allowing objective 160 
comparison between different environmental scenarios and studies. 161 

To obtain a quantitative criterion for the definition of HNLC regions, we analyze the values of NO3:Chl 162 
ratios (mmol/mg) obtained from the SOM analysis on the time domain over the global ocean throughout 163 
the 20 years of data to identify a common statistical behavior representing HNLC conditions. In particular, 164 
we use the probability density function (pdf) of the extracted SOM NO3:Chl temporal patterns to identify 165 
a threshold for defining HNLC conditions (PHNLC). Changes in the trend of the standard deviation 166 
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calculated for each bin of the pdf function are employed to set a threshold ratio. To calculate the total 167 
extent of each region (km2) the spatial area of each pixel was calculated, by considering its latitude. 168 

2.5 Time and space domain SOM analyses 169 

We use SOM (Kohonen, 1982) to elucidate spatial and temporal patterns in the complex relationship 170 
between nutrients and phytoplankton. SOM is a subtype of artificial neural network that uses an 171 
unsupervised machine learning algorithm to process and extract hidden structures in large datasets. The 172 
SOM algorithm is mainly based on a training process through which an initial neural network is 173 
transformed by iteratively presenting the input data. In this study, the architecture of the neural network 174 
is set in a sheet hexagonal map lattice of neurons, or units, to have equidistant neurons, and to avoid 175 
anisotropy artifacts. Each neuron is represented by a weight vector with a number of components that is 176 
equal to the dimension of the input data vector, i.e. number of rows or columns in the Chl and NO3 177 
matrices, depending on whether the analysis is performed either in the temporal or in the spatial domain. 178 
We use an initial network composed of units of random values (random initialization). In each successive 179 
iteration during the training process, the neuron with the greatest similarity (excited neuron), called Best 180 
Matching Unit (BMU), is updated by replacing their values with the Chl and NO3 values of the input 181 
sample data. The similarity is estimated by computing the Euclidean distance between the components of 182 
the input sample and the components of the weight vector of the unit. The unit most similar to the input 183 
sample is the one with the minimum distance. In the learning process, Chl and NO3 values of the 184 
topological neighboring neurons of the excited neuron (BMU) are also updated replacing their values 185 
with values determined by a Gaussian neighborhood function.  In these computations, we use the 186 
imputation batch training algorithm (Vatanen et al., 2015) where the SOM assumes that a single sample 187 
of data (input vector) contributes to the creation of more than one pattern, as the whole neighborhood 188 
around the best-matching pattern is also updated in each step of training. This yields a more detailed 189 
assimilation of particular features appearing on neighboring patterns. A final neural network with the 190 
NO3:Chl patterns is obtained after repeating the training process until a stable convergence of the map is 191 
obtained. 192 

For typical satellite datasets, the SOM can be applied to both space and time domains. By applying the 193 
SOM in the spatial domain, one can extract characteristic spatial patterns of the input data. If transposing 194 
the input data matrix and applying the SOM in the time domain, one can extract characteristic temporal 195 
patterns, i.e., the characteristic time series. Since each of these time series represents the temporal 196 
variability of a particular region, this method can be used to identify regions of differentiated variability 197 
on a map. The SOM, when applied to both space and time domains of the same data (called "dual SOM" 198 
analysis by Liu et al., 2016), provides a powerful tool for diagnosing ocean processes from these different 199 
perspectives. In this study, we focus on the second type. We have addressed the analysis separately in the 200 
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time and space domains of the log-transformed NO3 and Chl datasets. In the time domain, we implement 201 
a [4x3] joint-SOM analysis of NO3 and Chl using as input weight vectors concatenating the time-series 202 
of NO3 and Chl at each pixel, so each neuron corresponds to a characteristic joint NO3 and Chl temporal 203 
pattern over the total period of data. Since each pixel has an associated characteristic time series, we can 204 
obtain the location of a particular temporal pattern by computing the BMU for each pixel, providing a 205 
map of regions of differentiated NO3:Chl temporal variability. For the analysis herein presented only the 206 
regions with NO3:Chl>PHNLC are considered (regions R1 to R5). 207 

An obstacle to the temporal domain analysis on a global scale is the opposed seasonality in both earth's 208 
hemispheres. The algorithm classifies the time series at each grid point attending to the period of the 209 
signal but does not consider time lags between the time series. Hence, pixels located either in the northern 210 
or in the southern hemisphere displaying a similar significant period in the NO3 and Chl temporal 211 
variability are classified in the same regional pattern even if they are in antiphase when the signals are 212 
seasonally lagged (6 months delayed). Regionalization is spatially coherent but the seasonal variation in 213 
the characteristic pattern that represents the neuron mixes the phenological patterns of both hemispheres. 214 
Therefore, to properly analyze the properties and trends of each of the classified regions, we have 215 
calculated the mean features of the regions by segregating the grid points corresponding to each pattern 216 
obtained from the SOM analysis into the northern, equator, and southern hemispheres (see scheme in 217 
Fig.1). Linear trends of NO3 and Chl concentrations in each region are estimated by decomposing the 218 
NO3:Chl time series in a seasonal signal plus a residual component and applying Theil-Sen slope 219 
adjustment (Sen, 1968) of the residuals of the deseasonalized series. Correlation analyses were performed 220 
using the Pearson Product Moment correlation computing best-fit linear trends using regression analysis. 221 

The SOM analysis in the spatial domain [3x3] array, is addressed by using as input data weighted vectors 222 
consisting of spatial distributions over the global ocean of NO3:Chl ratios at a particular time. The 223 
selection of the number of neurons depends on the complexity of the data, on the features to be examined 224 
in the dataset, and on the minimization of the errors. In this case, the resulting neurons after the training 225 
loop unveil the characteristic patterns describing the spatial variability of the HNLC regions on a global 226 
scale. Then, when computing the BMU for each time we designate the extracted characteristic spatial 227 
pattern that better describes the spatial distribution of NO3:Chl ratios (P1 to P9) at each time, obtaining 228 
the time evolution of the characteristic spatial patterns throughout the considered period.  229 

Because the SOM is based on the similarity computed from the Euclidean distance between samples, the 230 
input vectors of the different variables are normalized to the same range, before initializing the SOM 231 
computations. This guarantees a consistent comparison of the weights of the components when computing 232 
the distance of two vectors. 233 
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The size of the neural network (number of neurons) depends on the number of samples and the complexity 234 
of the patterns. An optimal choice is important to maximize the quality of the SOM. In the present study, 235 
the map size is set to be [4 x 3] with 12 neurons for the time domain analysis, and a [3 x 3] neural network 236 
is used in the spatial domain. Using larger map sizes, the patterns are slightly more detailed, and more 237 
regions of a particular variability emerge, but the occurrence of the probability of the patterns decreases, 238 
without affecting the results noticeably (Basterretxea et al., 2018; Hernández‐Carrasco and Orfila, 2018). 239 
If a reduced neural map, such as [2 x 2] is used, patterns are concentrated together with the occurrence 240 
probability in a few rough patterns but increasing, in this case, the topological error. 241 

SOM computations have been performed using the MATLAB© toolbox of SOM v.2.0 (Vesanto et al., 242 
1999) provided by the Helsinki University of Technology (http://www.cis.hut.fi/somtoolbox/). Further 243 
information on SOM analysis is provided in the supplementary materials. 244 

 245 

2.6 Combined SOM - wavelet coherence analysis 246 

Joint SOM-wavelet power spectral analysis was demonstrated by Liu et al. (2016) in the study of 247 
characteristic time series of sea level variations in different regions of the Gulf of Mexico. Here, we 248 
expand it further to combined SOM-wavelet coherence analysis to assess the response of HNLC regions 249 
to global forcings we use an approach based on the wavelet coherence analysis (WCA) between two time-250 
series (Grinsted et al., 2004; see Supplementary Material for further details). WCA characterizes cross-251 
correlations by identifying the main frequencies, phase differences, and time intervals over which the 252 
relationship between the variability of HNLC regions and the main global forcings considered in this 253 
study, ENSO and MOC indexes, is strong. To do so, we first analyze the variability in both frequency and 254 
time of the characteristic time series of NO3:Chl in the different HNLC regions extracted by the time 255 
domain SOM computations and the time series of the global forcings using the continuous wavelet 256 
transform (CWT).  257 

Cross-wavelet transform (XWT) characterizes the association between the CWT of two signals, providing 258 
information on the common power and relative phase in the frequency-time domain of two time-series. 259 
By applying the XWT to the NO3:Chl ratios and climate forcings, we determine the cyclic changes in 260 
each of the HNLC regions and their relationship with the global forcings mentioned above. Finally, we 261 
quantify the correlation between the continuous wavelet transform of two signals using the wavelet 262 
coherence analysis (WCA), In the time-frequency space the wavelet coherence coefficient R2 is calculated 263 
as the squared absolute value of the smoothed cross-wavelet spectrum normalized by the product of the 264 
smoothed wavelet individual spectra for each scale (Torrence and Compo, 1998; Torrence and Webster, 265 
1999; Grinsted et al., 2004). R2 is interpreted as a localized correlation coefficient in the frequency-time 266 
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domain and it takes values between 0 (no correlation) and 1 (perfect correlation). The statistical 267 
significance level of the wavelet coherence is estimated using Monte Carlo methods as described in 268 
Grinsted et al. (2004). We use the MATLAB software package (Grinsted et al., 2004) for wavelet 269 
coherence analysis. It should be noted that cross-wavelet analysis does not establish causative 270 
relationships but only allows identifying possible linkages between variables through the synchrony of 271 
their time series.   272 

 273 

3 Results 274 

3.1 Global characterization of HNLC regions 275 

The mean pattern of global ocean color data for the 20 years analyzed reveals the well-known contrast in 276 
phytoplankton biomass between the highly productive areas located in high latitudes and coastal 277 
upwelling regions and the low-latitude oceanic waters, where mean values are <0.1 mg m-3 (Fig. 2). Low 278 
Chl regions generally correspond with low surface NO3 concentrations whereas the opposite relationship 279 
(high nitrate and high chlorophyll) is more exceptional. Indeed, nutrient-rich productive waters are mainly 280 
restricted to shelf regions (coastal upwelling regions and shelf seas) or to the vicinity of islands (i.e. 281 
Falkland Islands) and other topographical features where multiple and overlapping sources of other 282 
elements, such as trace metals, are abundant (e.g. Pollard et al., 2009; Boyd and Ellwood, 2010). As 283 
shown in figure 2, only in the North Atlantic, the Bering Sea, and the eastern region of the Antarctic 284 
Peninsula, Chl is enhanced. Conversely, a large part of surface ocean waters, particularly in the Southern 285 
Ocean and in the Equatorial Pacific, correspond to regions of relatively low Chl concentrations but with 286 
excess nitrate (i.e. >4 mmol m-3).   287 

The analysis of the normalized pdf of the NO3:Chl extracted from the temporal SOM analysis provides a 288 
good discrimination criterion to define HNLC regions (shown in Fig. S2). As shown in figure 2b, the 289 
normalized pdf of the NO3:Chl ratio displays a marked bimodal distribution with the main mode centered 290 
at low NO3:Chl (~5 mmol mg-1). The second mode, which corresponds to high nutrient-low chlorophyll 291 
regions, is characterized by mean and standard deviation values of μ=24.1 and σ=6.7 mmol mg-1, 292 
respectively. A critical NO3:Chl ratio bounds the lower limit of this distribution and can be estimated as 293 
μ−σ=17.4 mmol mg-1. Consistently, the pdf bulk analysis of its associated standard deviation (std) 294 
function also reveals a clear critical value located where the value of the slope varies (Fig. 2c). Both 295 
analyses allow establishing a solid statistical criterion to infer a minimum value of PHNLC =17 mmol mg-296 
1 for delimiting HNLC regions from other ocean regions. It is worth mentioning that while the pdf of the 297 
NO3:Chl values obtained from the SOM analysis shows a bimodal mode, the bulk pdf of the raw NO3:Chl 298 
values (i.e. without performing a SOM analysis) is unimodal.  299 
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From the 12 characteristics time patterns of NO3:Chl variability obtained in the [4 x 3] SOM analysis, 300 
five display NO3:Chl exceeding PHNLC all the times (not partially) throughout the entire study period  (Fig. 301 
3a). These associated subregions (R1 to R5) match with the three traditionally reported HNLC regions 302 
(Fig.3b). In these regions surface chlorophyll rarely exceeds 0.8 mg m-3 and the mean values range 303 
between 0.21 mg m-3 and 0.5 mg m-3 (Table 1). The global extent of these 5 SOM-identified HNLC 304 
subregions encompasses 25% of the ocean, being the SO by far the broadest region (18% of the ocean), 305 
whereas SNP and EEP respectively occupy some 4% and 3% of the ocean. Besides the obvious absence 306 
of HNLC regions in the northern and central Atlantic, some latitudinal asymmetries are observed in the 307 
distribution of these regions. For example, the SO region extends to lower latitudes than the SNP (i.e. 308 
~40o S), loosely coinciding with the South Antarctic Zone limit (SAZ; Orsi et al., 1995). Likewise, 309 
consistent with previous studies of this region (Radenac et al., 2012), the EEP displays a larger extent in 310 
the Southern Hemisphere (Fig. 3b).  311 

The global pattern obtained from the SOM analysis reflects a clear latitudinal zonation which is mainly 312 
due to latitudinal variations in nutrient availability; while chlorophyll concentration doubles along the 313 
latitudinal gradient (R1 to R5), NO3 increases up to 7-fold (see Table 1). It is noteworthy that nutrient 314 
concentrations are generally lower in the SNP (i.e. <17 mmol m-3) than in the SO, while Chl is 315 
comparatively higher (see Table 1). Indeed, R1 in SNP only achieves the NO3:Chl criterion for HNLC 316 
regions during some periods. This region exhibits distinctive eastern and western provinces, which are 317 
consistent with previous studies describing the western region as more productive and variable (Imai et 318 
al., 2002; Harrison et al., 2004). 319 

Major differences among the characteristic NO3:Chl patterns in the defined subregions are not only 320 
indebted to variations in mean values but, also, to the intensified seasonal variability in higher latitudes. 321 
For example, seasonality in Chl is particularly evident in R5 and, less so, in other polar subregions (Fig. 322 
3b). Conversely, the seasonal component of variability in the EEP is masked by the intense short-term 323 
variability. 324 

An interesting feature depicted from the temporal SOM analysis is the positive trend in Chl experienced 325 
in the HNLC regions located in polar areas, suggesting an increase in their productivity. Decadal 326 
tendencies are in the range of 0.04 to 0.06 mg m-3 decade-1 in the most productive subregions (R2 to R5 327 
in SO and R3 in SNP) but become negligible at the equator (Table 1). A regional average indicates a Chl 328 
increase of 0.6% yr-1 in the SNP and a 1.9% yr-1 in the SO. Nevertheless, in the case of the SO positive 329 
trends are highly influenced by a positive Chl shift occurring at the end of 2010 where mean Chl increased 330 
by 24% (see next section). 331 

 332 
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3.2 Spatial variability of HNLC regions 333 

The set of 9 coherent spatial patterns resulting from the SOM analysis in the space domain and their 334 
respective probabilities of occurrence are shown in figure 4. The organization of the maps in the figure 335 
reveals a hierarchical classification of the maps or spatial patterns. The most differentiated patterns, also 336 
displaying the highest probability of occurrence (the probability of finding a pattern similar to the input 337 
data), are located in the corners of the neural network and transitional stages connecting these patterns fill 338 
the center. For example, along the top and left side patterns (P1, P2, P3, and P4), generally occurring 339 
during winter (see Fig. 4 and 5b), the SNP extends over a larger region compared to P7, P8, and P9, which 340 
display a 3% decrease from the mean extent. Conversely, Fe limitation in the SO, as inferred from high 341 
NO3:Chl ratios, is markedly enhanced towards the top and right side of the figure (P4, P5, P7, P8, and 342 
P9). The extent of the EEP region displays little variation. It should be noted that HNLC spatial extent 343 
and NO3 concentrations are not necessarily coupled since the boundaries also depend on Chl 344 
concentration values. In addition, patterns in the proximity of the Antarctic continent are, in some cases, 345 
not well-defined during winter due to ice cover in this region. 346 

Figure 5 displays the time-series of the BMUs and the monthly frequency of occurrence for each pattern. 347 
The main feature observed is the marked seasonality in the patterns shown in figure 4. The patterns with 348 
the highest probability of occurrence, P3 and P9 (100% in April and 70% in July respectively), represent 349 
spring, and summer situations in the northern hemisphere. P4 and P8 characterize transitions toward these 350 
patterns. Other patterns such as P6 and P2 (mostly occurring in winter and summer) are rarer but become 351 
more frequent after 2010 (Fig. 5a). As discussed below, this variation in HNLC regional patterns (i.e. P1 352 
is not longer observed) suggests an abrupt and major transition towards more productive HNLC regions 353 
(higher Chl is observed).  354 

From the nine spatial patterns shown in figure 4, we estimated the seasonal and interannual variation in 355 
the extent of the HNLC regions (Fig. 6). Note that this regional partitioning is made on a global scale 356 
with global criteria and therefore leads to a large-scale smoothing, which could impact the values of the 357 
variation of the areas. However, as this signal smoothing is common to all the areas, this should not have 358 
any effect on the regional comparison of the area variation. The magnitude of these variations remarkably 359 
contrasts between the equatorial and polar regions. While the extent of the EEP only varies by 8.9% 360 
seasonally, changes in SNP extent can exceed 100% (Figure 6). The peak in extent for the SNP 361 
corresponds to the boreal spring (63% of the mean value in April). In the case of the SO, seasonality is 362 
mainly driven by changes related to the ice limit in high latitudes. Indeed, the extent of the HNLC region 363 
in the austral winter is <20% of the mean annual extent. 364 
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A remarkably good inverse correlation (r=-0.97, n=20) is observed between the interannual variations in 365 
the extent of EEP and the SO, and a weaker though significant relationship exists between the SNP and 366 
the EEP (r= -0.50, n=20). Therefore, as the extent of HNLC in polar regions contracts, the equatorial 367 
region expands and vice versa. All three regions exhibit a shift in their annual extent after 2010 (Fig. 6). 368 
Both the SNP and the SO decrease after this year (5% and 2.6%) whereas the extent of the EEP slightly 369 
increases (0.4%). 370 

 371 

3.3 Climate drivers of HNLC region temporal variations 372 

During the period considered here, 1997/98 2009/10, and 2015/16 were particularly strong El Niño events 373 
whereas weaker episodes occurred in 2002/03, 2004/05, and 2006/07 (E1, E2, and E3 in Fig. 7a). The 374 
1997/98 and 2009/10 El Niño events were followed by fast transitions to La Niña phase (L1, L2 in Fig. 375 
7a).  376 

The WCA between NO3:Chl ratio in each HNLC region and ENSO are shown in figures 7b to 7d. 377 
Generally, small coherence structures are observed at semiannual periods, in particular, in the SO. 378 
However, the main coherence pattern corresponds to a band extending in the 2 to 4 years in the SNP and 379 
> 2yr in the EEP. This coherence between NO3:Chl and ENSO in the 2-4 year period is particularly clear 380 
after 2005 (Fig. 7b). In the EEP, the coherence between both series expands to periods >4 years but, 381 
unlike in the SNP region where the NO3:Chl ratio is in-phase with ENSO signal, the signals are strongly 382 
anticorrelated in this case (anti-phase: relative phase of 180º between both signals). 383 

Figure 7e shows the MOC transport index (hereafter MOI) measured at 26.5°N (Smeed et al., 2019). MOI 384 
displays intense interannual variability however, a clear long-term variation is observed. Transport 385 
exceeds 17Sv until 2009, but it weakens during 2010, stabilizing thereafter. As shown in figures 7f to 7h 386 
coherence with NO3:Chl ratios is strongest at interannual time scales (1-1.5 yr) when MOC is debilitated. 387 

 388 

4 Discussion 389 

4.1 Global characterization of HNLC regions   390 

In the present study, we have addressed the extent of the HNLC regions, their long-term variability, and 391 
the potential drivers of these variations. Despite the relevance of precise characterization of the extent of 392 
this biome for the understanding of physical ocean processes (i.e. upwelling), and the estimation of the 393 
amount of carbon drawn into the ocean by phytoplankton, objectively determining the boundaries of 394 
HNLC regions has remained elusive as it requires coherent information from both nutrient and Chl. We 395 
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demonstrate that a statistical approach, based on a threshold in the distribution of the global NO3:Chl 396 
ratios, can robustly delineate these regions (PHNLC). This is also evidenced in Table 1 where the 397 
characteristics of each cluster obtained with SOM analysis are remarkably constant (i.e. low std).  398 

As in precedent studies (e.g. Moore et al., 2013), we assume that excess NO3 in surface oceanic areas is 399 
indicative of Fe limitation. This avoids relying on the scarce information available on Fe-stress or in more 400 
complex ecosystem modeling approaches. Inference of phytoplankton Fe-stress from satellite ocean color 401 
data has been attempted but it is a methodology that still presents large uncertainties (Browning et al., 402 
2014). Furthermore, while bioavailable Fe is known to be the primary limiting factor in this biome, the 403 
establishment of HNLC conditions is influenced by various other factors such as light availability, grazing 404 
pressure, rate of Fe-remineralization, and community structure, highlighting the diverse interrelations 405 
among these factors. Despite these drawbacks, the herein-developed method provides results consistent 406 
with previous descriptions of the large-scale spatial patterns of HNLC regions, mostly based on NO3 407 
fields (i.e. Archer and Johnson, 2000; Ono et al., 2008; Fu and Wang, 2022). Also, the proposed method 408 
for biome definition may introduce a bias in that the resulting spatial fields are smoother compared to 409 
those based on Fe-limitation, which is due to the greater variability of Fe concentrations compared to 410 
NO3 fields. 411 

The PHNLC obtained from the pdf distribution of the NO3:Chl ratios represents a statistical threshold that 412 
integrates complex biological processes, including competition for resources, grazing, changes in species 413 
composition, nutrient uptake rates, Fe-regulated algal photochemistry, etc. Unlike Redfield or C:Chl 414 
ratios which respond to physiological factors within phytoplankton cells, PHNLC can be considered an 415 
environmental indicator of changes in the structure and functioning of marine phytoplankton.  416 

According to our analysis, some 25% of the ocean (18% of the Earth’s surface) corresponds to 417 
unproductive HNLC waters. With 83% of the global HNLC biome extent, the SO is the largest region 418 
and it is the only one presenting clear latitudinal variation in the characteristic Chl patterns (Table 2 and 419 
Fig. 3). This is consistent with available descriptions of the physical and chemical properties of the SO 420 
which tend to be across latitude due to the meridional structure of the MOC and because of the rapid zonal 421 
redistribution imposed by circumpolar currents (Orsi et al., 1995). The SNP and the EEP each constitute 422 
~8% of the total HNLC. However, while the EEP remains relatively stable (cv=5; Table 2) the SNP can 423 
change up to 2-fold (Fig. 4 and Table 2).  424 

Our analysis reveals marked decadal tendencies in Chl in the most productive subregions, ranging 425 
between 0.04 to 0.06 mgChl m-3 decade-1, and negligible trends in the EEP (Table 1). Positive Chl trends 426 
in high latitudes and no significant tendencies in the equator at the 95% interval have been previously 427 
reported by Hammond et al., (2017). Indeed, climate change projections for the 21st century predict 428 
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declines in global marine net primary production but increasing Southern Ocean productivity (Hauck et 429 
al., 2015; Moore et al., 2018). Nevertheless, it is noteworthy that our analysis shows that trends in some 430 
regions of the southern hemisphere are influenced by a Chl shift occurring in 2009-2010 (particularly R4 431 
and R5). The possible source of this shift in phytoplankton biomass is more extensively discussed below. 432 
However, it is unlikely to be related to satellite data merging. SeaWiFS ended operations in 2010 and 433 
MERIS sensor ceased in April 2012; however, a decrease in biomass would be expected from these 434 
changes (Garnesson et al., 2019).  435 

 436 

4.2 Spatial variability of HNLC regions 437 

SOM analysis allowed the characterization of the seasonal and interannual variability of HNLC regions 438 
(Fig 5 and 6). The SO and the SNP are regions of seasonal extremes in productivity as a consequence of 439 
the large fluctuations in the environment that they experience. Important seasonal variability is observed 440 
in the SO, which is attributed to light limitation during winter and to variations in iron stocks occurring 441 
in surface waters (Tagliabue et al., 2014). Therefore, while presenting HNLC characteristics for most of 442 
the year, the SO exhibits distinct Chl variability patterns that are well captured in the SOM regionalization 443 
and the characteristic patterns of each subregion. In the case of the SO, the changes in the extent are 444 
reduced (20% from mean values) which we attribute to the large-scale nature of the physical processes 445 
regulating the productivity of this region. Mid-depth and deep ocean waters communicate with the ocean 446 
surface after following long a circuit route driven by ocean overturning circulation (Lumpkin and Speer, 447 
2007). As reported by Smeed et al. (2018), the variability of the MOC flow system has an important 448 
decadal component associated with thermohaline forcing. This long-term component of variability could 449 
dominate over higher frequency variability but the length of the observational record of the AMOC is still 450 
insufficient to resolve variations at this scale. 451 

Variability patterns in the SNP, are attributed both to marked seasonality in the local forcings and 452 
fluctuations in the regional circulation patterns. Nishioka et al. (2021) discuss in detail the sources of 453 
phytoplankton variability in this region, distinguishing three cases of biological response to Fe in this 454 
region. The annual bloom in open waters would be controlled by the sedimentary Fe supplied from the 455 
continental marginal regions and circulated laterally through the intermediate layer (e.g. Lam et al., 2006; 456 
Cummins and Freeland, 2007; Takeda, 2011). These nutrients are upwelled to the surface by several 457 
mixing processes (winter mixing and eddy diffusive mixing), including interactions of tidal currents with 458 
the rough topography (Nishioka et al., 2007, 2020). Massive spring phytoplankton blooms that occur 459 
around the coastal boundary current would be the result of the large amounts of Fe originating from 460 
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coastal shelf areas (Cullen et al., 2009). Finally, intense sporadic and patchy phytoplankton production is 461 
occasionally observed in both spring and summer in response to the atmospheric dust Fe supply.  462 

Marked differences in variability are observed between the subpolar regions and the EEP, where 463 
seasonality is weak. Nevertheless, it should be noted that the EEP is a peculiar region that integrates 464 
subregions with 6-month out-phased seasonal variations (north and south of the equator). On average, the 465 
south-equatorial region contributes more (62% of the total extent) to the mean extent of the EEP whereas 466 
the Northern subregion determines most of the observed variability (Fig. S3). 467 

At interannual scales, variations in the extent of HNLC regions are more modest (up to 5%; Figure 6) but 468 
all three regions are notably correlated, suggesting that their interannual variations are driven by global-469 
scale processes. In particular, the SO and the EEP are highly correlated (r=0.97). A coupling between 470 
Southern Ocean productivity, and equatorial productivity, was suggested by Dugdale et al. (2002) based 471 
on the observed nutrient ratios. They proposed that both regions were connected, out of phase, by the 472 
meridian SubArctic Mode Water. Nevertheless, the seaways in the Pacific circulation pathways are 473 
complex, and determining the overturning signature is challenging. Some studies have suggested that 474 
temperature anomalies subducted into the pycnocline at subtropical latitudes may not reach the Equator 475 
with any appreciable amplitude (Schneider et al., 1999). However, mass water balances in the equatorial 476 
Pacific reveal that the strength of the equatorial upwelling is related to variations in the Pacific overturning 477 
(PMOC; McPhaden and Zhang, 2002), and therefore, an influence on EEP extent could be presumed. 478 
Nevertheless, it should be reminded that the extent of the HNLC regions is not necessarily solely dictated 479 
by upwelling intensity but it is also defined by the interaction with adjacent circulation patterns (i.e. the 480 
subtropical gyres in this case).  481 

The pathways of PMOC in the North Pacific are structured in a multicell configuration. The SNP does 482 
not ventilate the deep ocean at significant rates, and the PMOC cell at this latitude rather corresponds to 483 
an independently functioning intermediate water cell (Warren, 1983). PMOC in this region is reportedly 484 
weak (1-4 Sv) and extends no further than 50oN (Ishizaki, 1994; Yaremchuk et al., 2001). However, there 485 
is evidence showing the response of the SNP to changes in PMOC (Burls et al., 2017; Holzer et al., 2021). 486 
For example, it has been observed in TOPEX altimeter data that meridional overturn transport influences 487 
the basin-scale baroclinic circulation in the SNP. This would explain the lower, yet significant, correlation 488 
with the variations exhibited by SO and EEP at interannual scales (Fig. 6). Indeed, the shift observed in 489 
2009-2010 is common to all three regions (albeit with a different sign).  490 

The causes of the drastic 2009-2010 variation in the extent of HNLC regions are uncertain. Several ocean 491 
scale changes have been reported in the period 2009-2011. For example, rapid warming, salinification, 492 
and a concurrent dissolved oxygen decline have been observed at BATS during the 2010s (Bates and 493 
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Johnson, 2020). There is also evidence indicating that a decadal intensification of Pacific trade winds 494 
weakened in 2011(Bordbar et al., 2019). Trade wind intensity variability in the equatorial Pacific region 495 
is associated with SST anomalies, weakening of the equatorial divergence, and changes in upper-ocean 496 
thermal structure (England et al., 2014; Bordbar et al., 2017). The relationship between the equatorial 497 
wind intensity and the equatorial undercurrent strength is well established (McPhaden, 1993). These 498 
atmospheric changes, affecting the upwelling of Fe in the EEP (and indirectly to other oceanic regions), 499 
agree with the hypothesis of Winckler et al.( 2016) suggesting that ocean dynamics, not dust deposition, 500 
control the equatorial Pacific productivity. In the EEP the period of strongest seasonal upwelling is in the 501 
boreal summer (e.g. Philander and Chao, 1991), which is associated with an expansion of the HNLC in 502 
Figure 6a. We also observe an expansion of the extent of the HNLC region in the EEP after 2021 (Fig. 503 
6). Changes in these forcings could explain variations in the seasonal variability but the long-term changes 504 
in HNLC extent would require more a permament variation in the steichiometrich equilibria or in the 505 
functioning of the marine woodwebs.  506 

 507 

4.3 Drivers of HNLC region variability 508 

ENSO is the primary source of the interannual variability in the EEP and its occurrence is related to the 509 
decline in nutrient supply. For example, the deepening of the thermocline during ENSO is associated with 510 
the depression of the EUC that transports Fe across the basin from the western Pacific (Gordon et al., 511 
1997) also reducing nutrient supply and phytoplankton productivity (Chavez et al., 1999; Strutton and 512 
Chavez, 2000). Sub-decadal fluctuations in Chl in the EEP region displaying a good correlation with the 513 
ENSO index have been reported before (Oliver and Irwin, 2008; Boyce et al., 2010). By contrast, the SO 514 
only shows weak evidence of this relationship which suggests that ENSO is not a major forcing driving 515 
the variability of NO3:Chl in this region. This is consistent with reports from Ayers and Strutton (2013) 516 
who did not find a significant relationship between nutrients in this region and ENSO.  517 

It can be argued that differences in the response to ENSO are due to the different nature of the forcings 518 
driving nutrient supply in each region. While the EEP and the SNP seem to respond to ENSO-related 519 
changes, NO3:Chl ratios in the SO are more stable and respond to annual and semi-annual variations. The 520 
coupling between the EEP and the SNP dynamics has been reported before. Qiu (2002) observed 521 
progressive shoaling of the Alaska gyre caused by a strengthening of the cyclonic circulation. The 522 
interannual variability of this gyre was connected to ENSO-related sea surface height anomalies 523 
originating in the tropics. Several large-scale climate pattern indexes are invoked to explain physical and 524 
biological fluctuations in the SNP. For example, Di Lorenzo et al. (2008) defined the North Pacific Gyre 525 
Oscillation (NPGO), which explains strongly correlated fluctuations of salinity, nutrients, and chlorophyll 526 
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related to the circulation in the North Pacific gyre. It is beyond the scope of the present work to assess the 527 
relationships of all these indexes with the variability in the extent of HNLC regions. Nevertheless, the 528 
proposed climate indexes for the Pacific present a high relationship among them, which highlights the 529 
strong dynamical linkages between tropical and extratropical modes of climate variability in the Pacific 530 
basin, and the important role played by ENSO (Di Lorenzo et al., 2013). 531 

The interpretation of the influence of MOC on global ocean productivity is more challenging.  A stronger 532 
MOC should result in faster upwelling of macronutrients and Fe at high latitudes as well as in increased 533 
Ekman transport of nutrients equatorward and subsequent subduction (Ayers and Strutton, 2013). 534 
Consequently, a weakened MOC should plausibly favor Fe recycling rates, as reported by Rafter et al., 535 
(2017).  536 

At high latitudes, the weakening of the AMOC, is coherent with a decrease in the extent of the SNP and 537 
the SO (Fig. 5). This anomaly, starting in 2009-2010, is a global feature also reflected in the intertropical 538 
convergence zone (ITCZ) time series (see, Green et al., 2017; Ibánhez et al., 2017), suggesting a strong 539 
atmosphere-ocean coupling with impact on ocean productivity. It is not clear how a reduced flow would 540 
favor the increase in biomass in high latitudes. It has been proposed that a reduced AMOC from increased 541 
precipitation and melting sea ice, could contribute to reduced vertical mixing which may increase 542 
productivity in polar regions (Riebesell et al., 2009). Other studies (Martínez‐Garcia et al., 2009), showed 543 
a relationship between AMOC and Chl variations, mainly due to the interaction of the main pycnocline 544 
and the upper ocean seasonal mixed layer. In addition, some paleoclimatic studies have demonstrated that 545 
AMOC weakening can increase the productivity north from the Polar Front, but only if an increase in the 546 
atmospheric soluble Fe flux occurs (Muglia et al., 2018). Paleoceanographical records showing a strong 547 
correlation between proxies of aeolian Fe flux and productivity have been reported in this region (Kumar 548 
et al., 1995; Martínez‐Garcia et al., 2009) but, in present times, dust deposition in this area is notably 549 
different (i.e. McConnell et al., 2007) and this effect is unlikely to be important at the time scales 550 
considered here. Complex ecosystem processes including competition for Fe with bacteria, Fe 551 
remineralization rates, and organic complexation processes could determine the phytoplankton response 552 
under future scenarios. Further, biomass building up is not only driven by nutrient availability. Changes 553 
in biomass can be produced by variations in the thermocline depth affecting the vertical distribution of 554 
phytoplankton. Nevertheless, variations in phytoplankton composition, physiological adjustments in 555 
cellular pigmentation, and grazing could also modulate Chl variability. Indeed, the prevailing foodweb 556 
structure may play an important role in Fe fertilization (Schmidt et al., 2016). At larger scales, there are 557 
still unresolved questions about the couplings occurring at different temporal scales. For example, MOC 558 
variations are known to interact with ENSO influencing its amplitude and variance (Dong et al., 2006; 559 
Dong and Sutton, 2007; Timmermann et al., 2007).  560 
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 561 

5. Conclusions 562 

Variations in the boundaries of the HNLC regions can provide an integrative view of how climate scale 563 
ocean variations influence ocean productivity. We established a statistical criterion to identify HNLC 564 
regions from global Chl and NO3 data that sets the basis for systematic analyses of HNLC regions and 565 
their response to climate variations. 566 

Our results suggest that while local-scale processes can determine certain aspects of the productivity of 567 
HNLC regions, their long-term patterns are strongly influenced by variations in global atmospheric and 568 
oceanic circulation. We observed significant interannual variations in the extent of HNLC (up to 5% in 569 
Fig. 6), which are associated with anomalies in global ocean circulation patterns (i.e Fig. 7e). Accordingly, 570 
our findings suggest a scenario in which HNLC regions are vulnerable to interbasin teleconnections rather 571 
than local forcings. These general patterns may be modulated by feedback between different forcing 572 
mechanisms. Furthermore, our analysis reveals a shift in phytoplankton biomass and HNLC variation 573 
patterns occurring at the end of 2010, which evidences the occurrence of fast transitions in ocean 574 
biogeochemistry. The underlying drivers of these regime shifts and the resulting biological responses to 575 
these ocean-scale changes require further investigation since they are a fundamental aspect of long-term 576 
variations in marine ecosystem functioning. 577 

Finally, the present study highlights the importance of maintaining long and coherent datasets beyond 578 
satellite-borne information to be able to disentangle the different components of variability, particularly 579 
at long timescales, and to evaluate the impact of climate change on marine ecosystems. Most of the 580 
geochemical information at this scale (i.e. nutrient and Fe fields) will probably require further global 581 
sampling programs and refined modeling. 582 
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 901 

Tables 902 

 903 

Table 1. Mean±std characteristics of each of the SOM-defined HNLC subregions (R1 to R5). NO3 (mmol 904 
m-3    ) and Chl (mg m-3) values are respectively from model and satellite data. Decadal chlorophyll trends 905 
(ΔChl, mgChl m-3 decade-1) are calculated from the mean time-series of monthly deseasonalized 906 
chlorophyll. 907 

 908 
Region Subregion NO3  

(µM) 
Chl  

(mg m-3) 
NO3:Chl 

(mmol NO3 mg Chl-1) 
ΔChl 

(mg m3 decade-1) 

SNP      

 R1 4.51 ± 1.02 0.31 ±  0.07 15± 3 +0.05 

 R2 8.05 ± 0.88 0.36 ± 0.07 23± 6 +0.26 

 R3 15.52 ± 2.27 0.49 ± 0.16 35 ± 15 +0.43 

EEP      

 R1 4.04 ± 0.77 0.22 ± 0.02 18 ± 3 +0.01 

 R2 6.63 ± 1.42 0.39 ± 0.05 20 ± 4 +0.08 

SO      

 R1 4.13 ± 1.05 0.22 ± 0.06 20 ±  4 +0.24 

 R2 9.11 ± 1.23 0.31 ± 0.06 31 ±  9 +0.42 

 R3 15.73 ± 1.07 0.32 ± 0.10 55 ±  17 +0.47 

 R4 23.26 ±1.06 0.26 ± 0.16 104 ± 32 +0.62 

 R5 29.18 ± 1.57 0.43 ± 0.92 103 ± 54 +0.46 
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 909 

 910 

Table 2. Basic statistics of the annual extent of each of the SOM-defined HNLC subregions during the 911 
analyzed period (1998-2017). Maximum variation (Max. Variation) is calculated as the difference 912 
between the maximum and the minimum extent. 913 

 914 

Region Mean extent±S.D. 
(x106 km2) 

% of total 
extent 

Min-Max 
(x106 km2) 

Max. Variation 
(x106 km2) 

C.V.% 

SNP 7.7±3.6 8.4 3.8-15.9 12.1 47 
EEP 7.8±0.4 8.4 7.3-8.4 1.1 5 
SO 76.5±0.9 83.2 61.3-86.8 25.5 12 

 915 
  916 
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Figures 917 

 918 

Figure 1. Scheme of a characteristic pattern and its distribution map obtained from SOM time-domain 919 
analysis, and global and regional mean series calculated for each of the HNLC regions. 920 
 921 

  922 
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 923 

 924 

Figure 2. a) Global mean satellite Chl concentrations (mg m-3) for the period 1998-2018 and superimposed 925 
mean surface NO3 contour lines from modeling data. b) Normalized probability density function of the 926 
values of the NO3:Chl ratio obtained from the SOM temporal patterns. Green and blue lines show the fit 927 
to a normal distribution for the first and second pdf modes, respectively. c) Standard deviation of the 928 
probability density function (pdf) of the NO3:Chl (mmol/mg) monthly ratios obtained for the 20 years 929 
analyzed. Note that the y-axis scale is logarithmic. The critical point ratio PHNLC =17 mmolNO3 mgChl-1 930 
delimits HNLC regions from macronutrient limited regions. 931 

 932 
 933 
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 934 

 935 

Figure 3. a) Characteristic temporal variability patterns of NO3:Chl ratios (N1-N12) as unveiled by the 936 
4x3 SOM analysis in the time domain. Red dashed lines indicate the PHNLC  value  b) Coherent regions of 937 
HNLC variability (SNP, EEP, and SO) and corresponding subregions (R1 to R5)  associated with the 938 
SOM temporal patterns exhibiting only NO3:Chl values larger than PHNLC  all the times throughout the 939 
entire analyzed period (i.e. identified with N9, N6, N2, N5 and N1) . Patterns corresponding to a subregion 940 
in the northern and southern hemispheres present a similar pattern although seasonally lagged (6-month 941 
delay). Insets show the time series of the averaged Chl over the corresponding subregion (complete map 942 
of regions of NO3:Chl variability and corresponding temporal variability patterns  are shown in Fig. S1). 943 
The red line represents the 24-month filtered series and the blue line indicates the trend (values shown in 944 
Table 1).945 
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 946 

 947 

Figure 4. Characteristic spatial patterns (P1 to P9) of HNLC regions as defined by NO3:Chl ratios > PHNLC 948 
obtained from monthly data. The value on top of each pattern indicates its probability of occurrence over 949 
the 20-year period analyzed. To preserve the topology, the SOM algorithm introduces some patterns with 950 
zero probability of occurrence, such as P5. The colorbar indicates the different NO3:Chl ranges 951 
represented. 952 

 953 

 954 

 955 

 956 

 957 

 958 
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 959 
 960 

Figure 5. a) Time evolution of the spatial patterns as defined by the Best Matching Units (BMUs) for the 961 
period of 1998-2018. The blue dashed line indicates the regime shift occurring after 2010. b) Monthly 962 
frequency of occurrence of the spatial patterns identified in Figure 4.  963 
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 964 

Figure 6. Seasonal (left) and interannual variations (right) in the spatial extent of the three HNLC regions, 965 
represented as a percentage of variation from the mean extent of each region. Variations are referred to 966 
the mean extent of each region. Dark and light-colored bars indicated positive and negative values, 967 
respectively. The blue dashed lines indicate the regime shift occurring after 2010.           968 

 969 
 970 
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 971 

Figure 7. a) ENSO (MEI v2) index. E1-E3 indicate intense El Niño episodes and L1 and L2 mark strong 972 
La Niña periods. b, c, d display the cross-wavelet coherence between NO3:Chl ratio and ENSO for each 973 
of the HNLC regions. e) Meridional overturning (AMOC) volume transport for the period (2004-2017) 974 
measured at 26.5°N (Smeed et al., 2016). The red line shows interannual component is obtained by 975 
filtering the data with a 540-day low-pass filter after the removal of the mean seasonal cycle. f, g, and h 976 
display the cross-wavelet coherence between NO3:Chl ratio and AMOC for each of the HNLC regions. 977 
The thick black contours in the cross-wavelet coherence figures designate the 95% confidence levels and 978 
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the cone of influence where edge effects are not negligible is shown as a lighter shade. The arrows indicate 979 
the phase relationship between the signals with the horizontal component indicating in-phase (rightward) 980 
or out-of-phase (leftward) and the vertical component indicating a 90º phase difference lagging (upward) 981 
or leading (downward). Period units are months. 982 

 983 


