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Abstract. We examine 20- years of monthly global ocean color data and modellingmodeling outputs of 
nutrients using self-organizing map (SOM) analysis (SOM) to identify characteristic spatial and temporal 
patterns of High Nutrient Low Chlorophyll (HNLC) regions and their association with different climate 
modes. Analyzing the properties of the probability distribution function of theThe global nitrate to 
chlorophyll ratio (NO3:Chl), we estimate that threshold of NO3:Chl>17 (mmol NO3/mg Chl) is estimated 
to be a good indicator of the distribution limit of this unproductive biome that extends over ~, on average, 
covers 92x106 km2 (~25% of the ocean. Trends). The trends in satellite-derived surface chlorophyll 
(0.6±0.4 to 2±0.4% yr-1) suggest that HNLC regions in polar and subpolar areas have experienced an 
increase in phytoplankton biomass over the last decades. However, but much of this variation is produced 
by a foremost climate-driven transition occurring afterin 2009-2010. Indeed, since 2010, the year 2010, 
which resulted in a reduction in the extensionextent of polarthe HNLC regionszones has decreased at the 
poles (up to 8%) and an increase in their productivity. slightly increased at the equator (<0.5%). Our study 
finds that chlorophyll variations in HNLC regions respond to major climate variability signals 
Chlorophyll variations atin HNLC regions respond to all three major climate variability signals (Sea 
Surface Temperature, SST;such as El Niño Southern Oscillation,  (ENSO;) and Meridional Overturning 
Circulation,  (MOC) and their annual and semiannual variabilities are coherent with seasonal temperature 
variations. At larger scales, ENSO driven variability at both short (2-4 yryears) and long (decadal-scale 
processes of heat uptake and redistribution by ocean circulation influence the HNLC extension. Our ) 
timescales. These results are indicative of the long-term changes in phytoplankton biomass and 
productivity in the ocean and suggest global coupling in the functioning of distant biogeochemical 
regions.  
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1 Introduction 

High nutrient low chlorophyll (HNLC) areas are ocean regions where primary production should be 
potentially high but phytoplankton biomass remains relatively low and constant despite the perennial 
nutrient availability for growth (Martin and Fitzwater, 1988; Chisholm and Morel, 1991). They are 
interesting regions because they challenge the accepted paradigm of a positive relation between 
macronutrient concentrations and phytoplankton biomass in open waters but, most importantly, because 
they represent an important fraction of the global ocean carbon budgets and, therefore, oftheir extent 
influences the potential withdrawal of atmospheric CO2 (Boydto the deep ocean (Martin et al., 20051990; 
de Baar et al., 1995; MartinBoyd et al., 19902005). It is estimated that HNLC biomes roughly cover 
between 20 and 30% of the world’s oceans (Pitchford and Brintley, 1999; Tyrrel et al., 2005) comprising 
three major ocean areas; the Subarctic North Pacific (SNP), the Eastern Equatorial Pacific (EEP) and 
most of the Southern Ocean (SO) (Martin, 1990; Coale et al., 1996; Martin, 1990; Parekh et al., 2005).  

Because nitrogen is the mineral nutrient needed in greatest abundance by phytoplankton and owing to its 
generalized depletion in surface waters over much of the oceans, it is considered a key limiting nutrient 
for ocean production. In HNLC regions, where nitrogen is in excess, other non-exclusive factors such as 
rapid top-down control by zooplankton grazing, low irradiance, limitations by silicic acid availability, 
and/or iron (Fe) limitation, have been hypothesized to explain the persistently low chlorophyll (Chl). 
While these factors may contribute in different degrees to the observed low Chl and determine the 
phytoplankton dynamics in HNLC regions (see Chavez et al., 1991; Cullen, 1995; Coale et al., 1996; 
Cullen, 1995; Dugdale and Wilkerson, 1998; Landry et al., 2011), it is generally acknowledged that Fe 
availability is central to the productivity of HNLC regions (Boyd et al., 2007). All HNLC regions share a 
chronic Fe-depletion in surface waters and experimental results show highly positive productivity 
responses to Fe addition (Martin et al., 1994; Boyd et al., 2000, 2004; Tsuda et al., 2003;  Coale et al., 
2004; Martin et al., 1994; Tsuda et al., 2003).). Indeed, iron is required in the largest amounts than any of 
the trace metals for several metabolic processes, and not surprisingly, it has been considered as the 
ultimate limiting nutrient (Moore and Doney, 2007). This has led to propose a conceptual model of 
phytoplankton nutrient limitation in the modern ocean based on two functioning regimes,: one in which 
the supply of nutrients is relatively slow and nitrogen availability limits productivity, and a 
complementary regime, with enhanced nutrient supply, where Fe often limits productivity (Moore et al., 
2013).  

Iron limitation influences the uptake of nitrogen thereby explaining the unused nitrate concentrations in 
HNLC regions. Indeed, it has been proposed that a delicate balance between nitrogen and Fe availability 
modulates phytoplankton growth and that co-limitation is rather ubiquitous in the sea (Bryant, 2003; 
Browning et al., 2017; Bryant, 2003). Other oligoelementselements and compounds such as B-vitamins, 
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which are also scarce in Fe -limited areas, can as wellalso be co-limiting factors for phytoplankton growth 
at HNLCin these regions (e.g. Koch et al., 2011; Bertrand et al., 2012; ).Koch et al., 2011). For example, 
it has been experimentally observedshown that the addition of Fe and B12 to Antarctic phytoplankton 
assemblages can synergistically increase phytoplankton growth (Bertrand et al., 2011; Cohen et al., 2017).  

Despite their relevance for global ocean productivity and carbon fluxes, HNLC regions remain loosely 
defined and knowledge onof their temporal and spatial variability and trends is limited. Moreover, their 
behaviorresponse in a global warming scenario is uncertain and may critically depend on coarsely known. 
Only general aspects such as expected shifts in phytoplankton community composition shifts or changes 
in Fe-cycling rates have been addressed to date (Fu et al., 2016; Lauderdale et al., 2020). The original 
description of HNLC systems by Minas et al. (1986) referred to a slowly growing phytoplankton standing 
stock despite the presence of high nutrient concentrations. However, there isare no rigid criteria accurately 
defining the functioning of these ecosystems. Several ecosystem characteristics such as species 
composition, biological structure, carbon utilization pathways, and response to climate change also differ 
between the HNLC and other ecosystems, reflecting differences in the limiting factor (e.g. Falkowski et 
al., 1998; Ono et al., 2008).  

Of particular interest are the aspects related to the reduced variability and high permanence (i.e. temporal 
persistence) typically characterizing large HNLC regions. These features are distinctive from those of 
highly variable systems, which may temporarily present HNLC conditions. For example, some light -
limited regions in high latitudes may present low productivity and enhanced nutrients during winter but 
it responds to a transient situation that does not correspond to the generally accepted HNLC paradigm. 
Similarly, high nutrients and low Chl have been observed at the end of the spring bloom in some 
productive systems (Nielsdóttir et al., 2009) and in some areas located in coastal upwelling regions 
(Eldridge et al., 2004; Firme et al., 2003; Hutchins et al., 1998, 2002).; Firme et al., 2003; Eldridge et al., 
2004). While complying with the necessary conditions of high nutrient and low Chl, it is arguable 
ifuncertain whether these ephemeral systems share structural and functioning similitudes with the large 
HNLC regions. 

At a time when understanding biogeochemical responses to large-scale forcings, including climate 
change, has become a scientific priority, it seems appropriate to revisit some concepts of the functioning 
of HNLC regions. Their extensionextent and variability are indicative of the dynamic changes in the 
bidirectional interrelationships of phytoplankton with the environment and with other organisms at large 
scales. Most of the information on the long-term variations of HNLC regions is depicted from global 
studies suggesting that their productivity is declining and that they experience prominent interannual to 
decadal fluctuations superimposed on these long-term trends (i.e. Boyce et al., 2010). Available evidence 
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suggests that some HNLC regions may be decreasing in size as a result of increased ocean stratification 
(Ono et al., 2008). More recently, Yasunaka et al., (2016), determined that surface trends of phosphate 
and silicate in the North Pacific are associated with the shoaling of the mixed layer, reporting a 
positivethat surface nutrient concentration was correlated with the North Pacific Gyre Oscillation (NPGO) 
and nutrient correlation.).  Some studies have shown that oligotrophic areas in the northern hemisphere 
are expanding between 0.8 and 4% per year, with a faster increase in winter months (Polovina et al., 
2008).  However, with some exceptions (e.g. Radenac et al., 2012; Yasunaka et al., 2014), specific long-
term studies on HNLC regions are scarce and knowledge on their variability atin the global ocean scale 
and their response to climate change remain uncertain. 

The objective of this paperthe present study is to provide a quantitative assessment of the large-scale 
patterns of variability of the three major HNLC regions (SNP, EEP, and SO) and their relationship with 
the main modes of climate variability. TheSystematically determining the boundaries of these HNLC 
regions has remained elusive since it requires coherent information on nutrients and Chl fields. The 
present study is based on the analysis of 20-year time series of monthly global ocean color data and 
nutrient outputsconcentrations from a biogeochemical model using machine learning techniques and 
wavelets analysis. First, based on the statistical analysis of global NO3:CHLChl ratios, we determine a 
robust quantitative criterion to objectively define HNLC regions. Then we characterize the temporal 
variability patterns of HNLC regions based on their NO3 and Chl concentrations by using the Self-
Organizing Map (SOM) technique. We use the herein -established statistical criterion to assess the spatial 
variations of HNLC regions over the study period unveiled from the SOM analysis in the spatial domain 
of NO3:Chl ratios. Finally, through a combined SOM-wavelet coherence analysis (WCA), we quantify 
the spectral power and the dynamic relationship between the observed Chl variability and threetwo main 
global-scale forcings; Sea Surface Temperature (SST); El Niño Southern Oscillation (ENSO); and 
Meridional Overturning Circulation (MOC) indices.). We show that the combination of WCA with SOM 
-derived characteristic time-series is an especially suitable tool for the analysis of driver-response 
relationships in the ocean.  

2 Materials and Methods 

2.1 Ocean color data 

We employ 20 years of monthly global composites of satellite Chl Level-3 products, derived from 
merging SeaWiFS, MERIS, MODIS AQUA, and VIIRS sensors using a GSM algorithm (Maritorena and 
Siegel, 2005), obtained from GlobColour data set (www.globcolour.info). The chlorophyll product is 
spatially gridded, and the weighted average of the different merged Level-2 products is then calculated. 
The composites havecomposite consists of a 0.25º rectangular regular map product in degrees with a spatial 
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resolution of 0.25º (i.e. around 28 km at the equator that varies with the latitude) and covercovers the 
period from January 1998 to December 2017. We excluded results atin the Arctic Ocean and in the coastal 
Southern Ocean due to the interference of ice cover and prolonged gaps in the data. A total of 654395 
pixels were considered in the analysis. We are aware that the consistency of merged multi-mission ocean 
color satellite series may suffer from some limitations influencing long trend analysis (Mèlin, 2016; Mèlin 
et al., 2017). However, no significant increase or decrease is observed in the first -order trends of 
GlobColour data in more recent studies (e.g. Moradi 2020; 2021). Therefore, while recognizing that some 
differences in regional and seasonal biases may occur in unified data products and, acknowledging that 
discontinuities and trends of the median with time should be interpreted carefully according to the sensors 
used (Garnesson et al., 2019), merged Chl can be generally considered a good indicator to describeof the 
valuemagnitude of the overall phytoplankton trend. trends. 
 

2.2 Nitrate data 

Since nutrient observations are still too scarce to allow obtaining time-resolved global‐scale fields, we 
used global NO3 obtained from the biogeochemical hindcast model provided by Mercator-ocean 
(http://marine.copernicus.eu, see Fig. S1). (http://marine.copernicus.eu). It consists of monthly mean 
fields of several biogeochemical variables at 0.25o horizontal resolution over the global oceanData on 
climate indices were obtained from available databases. Bi-monthly Multivariate El Niño Southern 
Oscillation Index (MEI.v2), hereafter ENSO index, was obtained from the National Oceanic and 
Atmospheric Administration National Center for Environmental Prediction website 
(https://www.esrl.noaa.gov/psd/enso/mei/). MOC data (Smeed et al., 2019; Moat et al., 2022) for the 
period (2004-2018) was obtained from the RAPID-WATCH MOC monitoring project 
(www.rapid.ac.uk/rapidmoc).obtained using the PISCES model (Aumont, et al.,, 2015). The model is 
forced by daily mean fields of ocean, sea ice, and atmospheric conditions. Ocean and sea ice forcings are 
obtained from the numerical simulation FREEGLORYS2V4 produced at Mercator-Ocean and the source 
of atmospheric forcings is the ERA-Interim reanalysis produced at ECMWF. Initial conditions are set 
from the World Ocean Atlas 2013 climatology. CompleteA complete model description can be found at 
(http://cmems-resources.cls.fr/documents/http://cmems-resources.cls.fr/documents/).  

 

2.3 Climatological data 

We compared available observational nutrient data (NO3) from the upper 20 m of the water column, 
obtained by merging bottle cast data from the World Ocean databaseDatabase (WOD18, Boyer et al., 
2018; https://www.nodc.noaa.gov/),https://www.nodc.noaa.gov/), with model results. Generally, we 
found good agreement between nitrate in situ data and model results (r2=0.98). Main deviations occur in 



 

6 
6 

 

the Southern Ocean and in some coastal areas affected by river runoff. Inference of phytoplankton Fe-
stress from satellite ocean color data has been attempted but it is a methodology still presenting r=0.98). 
Main deviations occur in the Southern Ocean where NO3 concentrations are slightly overestimated (up 
to 7.2 mmol m-3) and in some coastal areas affected by river runoff.     large uncertainties (Browning et 
al., 2014). Therefore, since Fe global fields are not reliable, we assume that excess of NO3 in surface 
oceanic areas is indicative of Fe limitation for the purpose of this study. We are aware that while iron 
generally limits productivity where subsurface nutrient supply is enhanced (e.g. Moore et al. 2013), Fe 
concentrations are more variable than NO3. Consequently, the definition of HNLC regions based on NO3 
fields should be more smoothed than those based on Fe-limitation.  

2.3 Climatological data 
Data of SST and climatological indices were obtained from available databases.  The SST series at each region was obtained 

from global observed ocean physics data ARMOR3D (merging satellite and in situ observations) provided by Copernicus 

Marine Service (http://marine.copernicus.eu). Bi-monthly Multivariate El Niño Southern Oscillation Index (MEI.v2), hereafter 

ENSO index, was obtained from the National Oceanic and Atmospheric Administration National Center for Environmental 

Prediction website (https://www.esrl.noaa.gov/psd/enso/mei/). MOC data (Smeed et al., 2019) for the period (2001-2018) was 

obtained from the RAPID-WATCH MOC monitoring project (www.rapid.ac.uk/rapidmoc). 

2.4 Identification of HNLC regions 

Presently, the best approximation to define the global distribution of HNLC regions in the world ocean is 
the use of NODC maps of surface nutrients (https://www.nodc.noaa.gov/). However, excess 
nutrientsnutrient availability by itself does not necessarily reflect HNLC conditions. In situ experiments 
are capable to discern Fe limitation conditions but a more manageable metric to assess the limits on the 
spatial extent of HNLC regions is required, in particular for remote sensing applications, as well as for 
allowing objective comparison between different environmental scenarios and studies. 

To obtain a quantitative criterion for the definition of HNLC regions, we analyze the values of NO3:Chl 
ratios (mmol/mg) obtained from the SOM analysis on the time domain over the global ocean throughout 
the 20 years of data to identify a common statistical behavior representing  HNLC conditions.  In 
particular, we analyze the probability density function (pdf) of the extracted SOM NO3:Chl temporal 
patterns to identify a threshold for defining HNLC conditions. (PHNLC). We use the changes in the trend 
of the standard deviation calculated for each bin of the pdf function set the threshold ratio. To calculate 
the total extent of each region (km2) the spatial area of each pixel was calculated, by considering its 
latitude. 

2.5 Time and space domain SOM analyses 
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We use SOM (Kohonen, 1982) to elucidate spatial and temporal patterns in the complex relationship 
between nutrients and phytoplankton. SOM is a subtype of artificial neural network that uses an 
unsupervised machine learning algorithm to process and extract hidden structures in large amount of 
data.datasets. The SOM algorithm is mainly based inon a training process through which an initial neural 
network is transformed by iteratively presenting the input data. In this study, the initialarchitecture of the 
neural network is composed of a set in a sheet hexagonal map lattice of neurons, or units, to have 
equidistant neurons, and to avoid anisotropy artifacts. Each neuron is represented by a weight vector with 
a number of components equal to the dimension of the input data vector, i.e. number of rows or columns 
in the Chl and NO3 matrices, depending on whether the analysis is performed in the temporal or in the 
spatial domain. We use an initial network composed of units of random values (random initialization). In 
each successive iteration during the training process, the neuron with the greatest similarity (excited 
neuron), called Best Matching Unit (BMU), is updated by replacing their values with the Chl and NO3 
values of the input sample data. The similarity is estimated by computing the Euclidean distance between 
the components of the input sample and the components of the weight vector of the unit. The unit most 
similar to the input sample is the one with the minimum distance. In the learning process, Chl and NO3 
values of the topological neighboring neurons of the excited neuron (BMU) are also updated replacing 
their values with values determined by a Gaussian neighborhood function.  In this studythese 
computations, we use the imputation batch training algorithm (Vatanen et al., 2015) where the SOM 
assumes that a single sample of data (input vector) contributes to the creation of more than one pattern, 
as the whole neighborhood around the best-matching pattern is also updated in each step of training. This 
yields a more detailed assimilation of particular features appearing on neighboring patterns. A final neural 
network with the NO3:Chl patterns is obtained after repeating the training process a number of times until 
a stable convergence of the map is obtained. 

For typical satellite datasets, the SOM can be applied to both space and time domains. Here, weBy 
applying the SOM in the spatial domain, one can extract characteristic spatial patterns of the input data. 
If transposing the input data matrix and applying the SOM in the time domain, one can extract 
characteristic temporal patterns, i.e., the characteristic time series. Since each of these time series 
represents the temporal variability of a particular region, this method can be used to identify regions of 
differentiated variability on a map. The SOM, when applied to both space and time domains of the same 
data (called "dual SOM" analysis by Liu et al. 2016), provides a powerful tool for diagnosing ocean 
processes from such different perspectives. In this study we focus on the second type. We have addressed 
the analysis separately in the time and space domains of the log-transformed NO3 and Chl datasets. In 
the time domain, we implement a [4x3] joint-SOM analysis of NO3 and Chl using as input weight vectors 
concatenating the time-series of NO3 and Chl at each pixel, so each neuron corresponds to a characteristic 
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joint NO3 and Chl temporal pattern over the total period of data. Since each pixel has an associated a 
characteristic time series, we can obtain the location of a particular temporal pattern by computing the 
BMU for each pixel, providing a map of regions of differentiated NO3:Chl temporal variability. For the 
analysis herein presented only the regions with NO3:Chl>PHNLC are considered (patternsregions R1 to 
R5). 

An obstacle to the temporal domain analysis aton a global scale is the opposed seasonality atin both 
earthearth's hemispheres. The algorithm classifies the time- series at each grid point attending to the 
period of the signal but does not consider time lags between the time- series. Hence, pixels located either 
in the northern andor in the southern hemispheres withhemisphere displaying a similar significant period 
in the NO3 and Chl temporal variability are classified in the same regional pattern even if they are in 
antiphase when the signals are seasonally lagged (6 months delayed). Regionalization is spatially coherent 
but the seasonal variation in the characteristic pattern that represents the neuron mixes the phenological 
patterns of both hemispheres. Therefore, to properly analyze the properties and trends of each of the 
classified regions, we have calculated the mean features of the regions by segregating the grid points 
corresponding to each pattern obtained from the SOM analysis into the northern, equator, and southern 
hemispherehemispheres (see scheme in Fig.1). Linear trends of NO3 and Chl concentrations in  S1). 
Trends at each region are assessedestimated by decomposing the NO3:Chl time series in a seasonal signal 
plus a residual component, and and applying Theil-Sen slope adjustment (Sen, 1968) of the residuals of 
the deseasonalized series. Correlation analyses were performed using the Pearson Product Moment 
correlation computing best-fit linear trends using regression analysis. Statistically significant trends were 
considered those exceeding the 95% confidence level.      

The SOM analysis in the spatial domain [3x3] array, is addressed by using as input data weighted vectors 
consisting of spatial distributions over the global ocean of NO3:Chl ratios at a particular time. The 
selection of the number of neurons depends on the complexity of the data, on the features to be examined 
in the dataset, and inon the minimization of the errors. In this case, the resulting neurons after the training 
loop unveil the characteristic patterns describing the spatial variability of the HNLC regions aton a global 
scale. Then, when computing the BMU for each time we designate the extracted characteristic spatial 
pattern that better describes the spatial distribution of NO3:Chl ratios (P1 to P9)  at each time (P1 to P9),, 
obtaining the time evolution of the characteristic spatial patterns overthroughout the considered period of 
study.  

Because the SOM is based on the similarity computed from the Euclidean distance between samples, the 
input vectors of the different variables are normalized to the same range, before initializing the SOM 
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computations. This guarantees a consistent comparison of the weights of the components when computing 
the distance of two vectors. 

The size of the neural network (number of neurons) depends on the number of samples and on the 
complexity of the patterns and an optimal choice is important to maximize the quality of the SOM. In the 
present study, the map size is set to be [4 x 3] with 12 neurons for the time domain analysis, and a [3 x 3] 
neural network is used in the spatial domain. Using larger map sizes, the patterns are slightly more 
detailed, and more regions of a particular variability emerge, but the occurrence of the probability of the 
patterns decreases, without affecting the results noticeably (Basterretxea et al., 2018; Hernandez-Carrasco 
and Orfila, 2018). If a reduced neural map, such as [2 x 2] is used, patterns are concentrated together with 
the occurrence probability in a few rough patterns but increasing, in this case, the topological error. 

SOM computations have been performed using the MATLAB© toolbox of SOM v.2.0 (Vensanto et al., 
1999) provided by the Helsinki University of Technology 
(http://www.cis.hut.fi/somtoolbox/).(http://www.cis.hut.fi/somtoolbox/). Further information on SOM 
analysis is provided in the supplementary materials. 

 

2.6 Combined SOM - wavelet coherence analysis 

ToJoint SOM-wavelet power spectral analysis was demonstrated by Liu et al. (2016) in the study of 
characteristic time series of sea level variations in different regions of Gulf of Mexico. Here in this study, 
we expand it further to combined SOM-wavelet coherence analysis to assess the response of HNLC 
regions to global forcings we use an approach based on the wavelet coherence analysis (WCA) between 
two time-series (Grinsted et al., 2004).2004; see Supplementary Material for further details). WCA 
characterizes cross-correlations by identifying the main frequencies, phase differences, and time intervals 
over which the relationship between the variability of HNLC regions and the main global forcings 
considered in this study, SST variations, ENSO, and MOC indexes, is strong. To do so, we first analyze 
the variability in both frequency and time of the characteristic time series of NO3:Chl in the different 
HNLC regions extracted by the time domain SOM computations and the time series of the global forcings 
using the continuous wavelet transform (CWT).  

Cross-wavelet transform (XWT) providescharacterizes the association between the CWT of two signals, 
providing information on the common power and relative phase in the frequency-time domain of two 
time-series. UsingBy applying the XWT to the NO3:Chl ratios and climate forcings, we determine the 
cyclic changes atin each of the HNLC regions and their relationship with the global forcings mentioned 
above. Finally, we quantify the degree of coherence of crosscorrelation between the continuous wavelet 
transform in the time-frequency space of two signals using the wavelet coherence analysis (WCA), In the 
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time-frequency space the wavelet coherence coefficient R2 that is calculated as the squared absolute value 
of the smoothed cross-wavelet spectrum normalized by the product of the smoothed wavelet individual 
spectra for each scale (Torrence and Compo, 1998; Torrence and Webster, 1999; Grinsted et al. 2004). 
R2 is interpreted as a localized correlation coefficient in the frequency-time domain and it takes values 
between 0 (no correlation) and 1 (perfect correlation).  
The statistical significance level of the wavelet coherence is estimated using Monte Carlo methods as 
described in Grinsted et al. (2004).  We use the MATLAB software package (Grinsted et al., 2004) for 
wavelet coherence analysis. It should be noted that cross-wavelet analysis does not establish causative 
relationships but only allows identifying possible linkages between variables through the synchrony of 
their time series.   

 

3 Results and discussion 
 

3.1 Global characterization of HNLC definition criterion regions 

The mean pattern of global ocean color data for the 20 years analyzed reveals the well-known contrast in 
phytoplankton biomass between the highly productive areas atlocated in high latitudes and coastal 
upwelling regions, and the pauperized subtropical gyreslow-latitude oceanic waters where mean values 
are <0.1 mg m-3 (Fig. 12). Low Chl regions generally correspond with low surface NO3 concentrations 
whereas the opposite relationship (high nitrate and high chlorophyll) is not that common.more 
exceptional. Indeed, it isnutrient-rich productive waters are mainly restricted to shelf waters (i.e. regions 
(coastal upwelling regions and shelf seas), or to the vicinity of islands (i.e. Falkland Islands) and other 
topographical features where multiple and overlapping sources of other elements, such as trace metals, 
are abundant (e.g. Boyd and Ellwood, 2010). OnlyAs shown in figure 2, only in the North Atlantic, the 
Bering Sea, and inthe eastern regionsregion of the Antarctic Peninsula, Chl is enhanced, at least 
transiently during the productive season.. Conversely, a large part of surface ocean waters, particularly in 
the Southern Ocean, corresponds and in the Equatorial Pacific, correspond to regions of relatively low 
Chl concentrations but with excess nitrate (i.e. >4 mmol m-3).   

Variations in the boundaries The analysis of the HNLC regions could provide an integrative view of how 
changes in the global atmosphere-ocean system influence ocean productivity. However, systematically 
determining the boundaries of HNLC regions has remained elusive since it requires coherent information 
of nutrients and Chl fields. The normalized pdf of the NO3:Chl values normalized pdf of the NO3:Chl 
extracted from the temporal SOM analysis (shown in Fig. S2) S2) provides a good discrimination criterion 
to define HNLC regions. As shown in figure 2b, the normalized pdf of the NO3:Chl ratio displays a 
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marked bimodal distribution (see, Fig 1c). This suggests two different scenarios in the nitrate-
phytoplankton biomass relationships.with the main mode centered at low NO3:Chl (~5 mmol mg-1). The 
normal distribution fitting of the second mode, which corresponds to high nutrient -low chlorophyll 
regions, is characterized withby mean and standard deviation values of µ=μ=24.1 and s=σ=6.7 mmol m-

3mg-1, respectively. A critical NO3:Chl ratio value, separating both modes, bounds the lower limit of this 
distribution and can be therefore estimated as µ- s=μ− σ=17.4 mmol mg-1. Consistently, the pdf bulk 
analysis of its associated standard deviation (std) function also reveals a clear critical value located where 
the value of the slope clearly varies (Fig. 1b2c). Both analyses allow establishing a solid statistical 
criterion to infer a minimum value of NO3:Chl=17 mmol mg-1 for delimiting HNLC regions from other 
ocean regions, henceforth referred to as PHNLC. While it is tempting to assume some sort of 
physiological explanation for this critical value, similarly to Redfield or C:Chla ratios, the NO3:Chl ratio 
is, in fact, revealing an uncoupling between phytoplankton biomass and resource availability, rather than 
an algal internal equilibrium.. It is worth mentioning that while the pdf of the NO3:Chl values obtained 
from the SOM analysis isshows a bimodal (Fig. 1c),distribution, the bulk pdf of the raw NO3:Chl values 
(i.e. without performing a SOM analysis) is unimodal. This suggests that the SOM technique is able to 
unravel relevant structures in the data that cannot be identified using classical approaches. 

3.2 Spatial boundaries and characteristic patterns of HNLC regions 

Systematically determining the boundaries of HNLC regions has remained elusive since requires coherent 
information of nutrients and Chl fields. Variations in the boundaries of the HNLC regions could provide 
an integrative view of how climate scale ocean variations influence ocean productivity. From the 12 
subregions characteristics time patterns of NO3:Chl variability obtained in the [4 x 3] SOM analysis, five 
display NO3:Chl exceeding PHNLC all the times (not partially) throughout the entire study period  (Fig. 
S2a), five correspond to regions with NO3:Chl>PHNLC,  and corresponding3a). These associated 
subregions (R1 to R5) match with the three traditionally reported HNLC regions (Fig. 2 and Table 13b). 
In these subregions (R1 to R5),regions surface chlorophyll rarely exceeds 0.8 mg m-3 and the mean values 
range between 0.21 mg m-3 and 0.5 mg m-3. (Table 1). The global extensionextent of these 5 SOM-
identified HNLC subregions encompassencompasses 25% of the ocean, being the SO (18%) by far the 
broadest region, (18% of the ocean), whereas SNP and EEP respectively occupy some 4% and 3% of the 
ocean. 
The  Besides the obvious absence of HNLC regions in the northern and central Atlantic, some latitudinal 
asymmetries are observed in the distribution of these regions. For example, the SO region is the most 
complex region both due to its extension and because of the oceanographic processes occurring therein. 
Physical and chemical properties of the SO tend to be across latitude because of the meridional structure 
of the MOC and due to the rapid zonal redistribution imposed by circumpolar currents (extends to lower 
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latitudes than the SNP (i.e. ~40o S), loosely coinciding with the South Antarctic Zone limit (SAZ; Orsi, 
et al., 1995). Likewise, consistent with previous studies of this region (Radenac et al., 2012), the EEP 
displays a larger extent in the Southern Hemisphere (Fig. 3b).  

The global pattern obtained from the coupled SOM analysis reflects this latitudinal variation. Mean Chl 
in the SO varies from 0.43±0.92 mg m-3 in the proximity of the Antarctic continent (R5) to 0.22±0.06 mg 
m-3 at lower latitudes a clear latitudinal zonation which is mainly due to latitudinal variations in nutrient 
availability since while chlorophyll concentration duplicates along the latitudinal gradient (R1 to R5), 
NO3 increases up to 7-fold (see Table 1). It is noteworthy that nutrient concentrations are generally lower 
in the SNP (i.e. <17 mmol m-3) than in the SO while biomass is comparatively higher (see Table 1). 
Indeed, R1 in SNP only achieves the NO3:Chl criterion for HNLC regions during some periods. This 
region exhibits distinctive eastern and western provinces, which are consistent with previous studies 
describing the western region as more productive and variable (Imai et al., 2002). 

Major differences among the characteristic NO3:Chl patterns in the defined subregions are not only 
dueindebted to Chlvariations in mean values but, also, to the intensified seasonal variability atin higher 
latitudes. For example, seasonality in Chl is particularly evident in R5 and, less so, in other polar 
subregions. Iron stocks in surface waters of the SO are sustained by deep winter mixing (Tagliabue et al., 
2014) and, therefore, are influenced by seasonal patterns. Nevertheless, biological processes such as 
variations in grazing pressure -which may be an important phytoplankton biomass regulator in the SO 
(Moreau et al. 2020), changes in species composition affecting biomass:Chl ratios or physiological 
adjustments in cellular pigmentation (Behrenfeld, 2015; Lozier et al., 2011) may also influence the 
observed seasonality. Moreover, in subregions such as R5, satellite-derived chlorophyll concentration 
variability is critically affected by the seasonal ice sheet growth and decay, and by other processes such 
as ice margin blooms that occur as the ice retreats during austral summer (e.g. Arrigo and van Dijken, 
2004). Therefore, the subregion bounding the Antarctic continent, while presenting HNLC characteristics 
for most of the year, exhibits a differentiated dynamic in terms of Chl variability. (Fig. 3b). Conversely, 
the seasonal component of variability in the EEP is masked by the intense short-term variability.       

In the SNP nutrient concentrations are generally lower (i.e. <17 mmol m-3) than in the SO and biomass is 
comparatively higher (see Table 1). Indeed, R1 at SNP only achieves the NO3:Chl criterion for HNLC 
regions during some periods. In addition, a marked seasonal pattern is observed but phenological 
variations are often masked by the intense short-term variability. This region is also subjected to zonal 
variations, which are consistent with previous studies describing the western region as more productive 
and variable (Imai et al., 2002). Although processes that control biological production in this region are 
still under debate, atmospheric dust deposition and supply from marginal seas through intermediate waters 
and subsequent vertical turbulent diapycnal mixing caused have been identified as major Fe sources 
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(Nishioka et al., 2020; Serno et al., 2014). A difference between the SNP and the latitudinally 
corresponding North Atlantic region has been attributed to river discharges. It is estimated that 20–50% 
of the annual river discharge to the Arctic Ocean is exported to the Atlantic Ocean through the East 
Greenland current. In contrast, the SNP is a more enclosed basin in which ocean productivity importance 
of advection of Fe from the surrounding marginal regions in the North Pacific (Takeda, 2011), but the 
process of transformation between particulate and dissolved phases could explain some aspects of the 
observed productivity (Lauderdale et al., 2020).  
Finally, the EEP defined by the SOM analysis is consistent with previous studies of this region (Radenac 
et al., 2012). The seasonal component of variability is almost absent in the EEP. Patterns between R1 and 
R2 in EEP are highly coupled and differences are mainly due to biomass and available nitrate 
concentrations. 
An interesting feature depicted from the temporal SOM analysis areis the positive trendstrend in Chl 
experienced atin the HNLC regions located in polar areas, suggesting an increase in their productivity. 
Decadal tendencies are in the range of 0.04 to 0.06 mg m-3 decade-1 in the most productive subregions 
(R2 to R5 in SO and R3 in SNP) but become negligible at the equator (Table 1). This agrees with 
estimations by Hammond et al. (2017) that, using a model with a spatial correlation that improves the 
accuracy of Chl trend estimates, reported positive trends at high latitudes and not significant tendencies 
at the equator at the 95% interval. In our case, trend robustness is provided by the coherence in the time 
series obtained using SOM that uses a classification method based on the similarities in the temporal 
variability patterns. Therefore, it clusters regions with similar trends and variability. A regional average 
indicates a Chl increase of 0.6% yr-1 in the SNP and a 1.9% yr-1 in the SO. In the case of the SO, positive 
trends are highly influenced by a shift occurring at the end of 2010. This Chl increase, mainly affecting 
some regions of the southern hemisphere, is not exclusive of oceanic Fe-limited waters, since it has been 
also observed in the highly productive Patagonian shelf (Marrari et al., 2017). It is arguable to what extent 
this shift yielding higher Chl after 2010 is related with satellite data merging. SeaWiFS ended operations 
in 2010 and MERIS sensor ceased in in April 2012; however, decreases in biomass could be expected 
from these changes (Grarnesson et al., 2019).  positive Chl shift occurring at the end of 2010 (see Fig. 3). 

Climate            

3.2 change projections for the 21st century predict declines in global marine net primary production but 
increasing Southern Ocean productivity (Hauck et al. 2015; Moore et al., 2018). To what extent the 
observed trends anticipate these changes is dubious since, within the relatively short length of the satellite 
ocean color time-series, trends are highly influenced by decadal variability, as reported by Henson et al. 
(2010). Indeed, global biomass shifts like the one observed in 2010, suggest complex non-linear responses 
of marine ecosystems to global change.    

3.3 Spatial variability of HNLC regions 
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The set of 9 coherent spatial patterns resulting from the SOM analysis in the space domain and their 
respective probabilities of occurrence are shown in Fig. 3figure 4. The organization of the maps in the 
figure reveals a hierarchical classification of the maps or scenarios. Most differentiated patterns, also 
displaying the highest probability of occurrence (the probability to find a pattern similar to the input data), 
are located in the corners of the neural network and transitional stages connecting these scenarios fill the 
center. For example, along the top and left side scenarios (P1, P2, P3, and P4), generally occurring during 
winter (see Fig. 34 and 4b5b), the SNP extends over a larger region whereas it is highly reduced in the 
right patterns (compared to P7, P8, and P9;, which display a 3% decrease from the mean extension).extent. 
Conversely, Fe limitation in the SO, as inferred from high NO3:Chl ratios, is markedly enhanced towards 
the top and right side of the figure (P4, P5, P7 , P8, and P9). The extensionextent of the EEP region 
displays weak seasonallittle variation. It should be noted that HNLC area extensionspatial extent and NO3 
concentrations are not necessarily coupled since limitsthe boundaries also depend on Chl 
levels.concentration values. In addition, it should be noted that the patterns in the proximity of the 
Antarctic continent are, in some cases, not well-defined during winter due to ice cover in this region. 

The BMU Figure 5 displays the time-series of the BMUs and the monthly frequency of occurrence offor 
each pattern are shown in Figure 4a and b, respectively.. The main feature observed is athe marked 
seasonality in the patterns shown in Figure. 3figure 4. The patterns with the highest probability of 
occurrence, P3 and P9 (100% in April and 70% in July respectively), represent winter and summer 
situations in the northern hemisphere. P4 and P8 characterize transitions towardstoward these patterns. 
Other patterns such as P6 and P2 (mostly occurring in winter and summer) are rarer but arebecome more 
frequent after 2010 (Fig. 5a). As discussed below, this variation in HNLC regional patterns (i.e. P3 
substitutes P1) suggests an abrupt and major transition towards more productive HNLC regions (higher 
Figure 4a). As discussed below, this variation in HNLC regional patterns (i.e. P3 substitutes P1) suggests 
an abrupt and major transition towards more productive HNLC regions (higher chlChl is observed).  

From the nine spatial patterns shown in Figure 3figure 4, we estimated the seasonal and interannual 
variation in the extensionextent of the HNLC regions (Fig. 6). Note that this regional partitioning is made 
on a global scale with global criteria and therefore leads to a large-scale smoothing, which could impact 
the values of the variation of the areas. However, as this signal smoothing is common to all the areas, this 
should not have any effect on the regional comparison of the area variation. The magnitude of these 
variations remarkably contrasts between the equatorial and polar regions. . The magnitude of these 
variations remarkably contrasts between the equatorial and polar regions. While the extensionextent of 
the EEP varies by 8.9% seasonally, the SNP changes in up to SNP extent can exceed 100% (Figure 56). 
The peak in extensionextent for the SNP corresponds to the boreal spring (63% fromof the mean value in 
March). In the case of the SO, seasonality is mainly driven by changes related withto the ice limit atin 
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high latitudes. The extensionIndeed, the extent of the HNLC region in the boreal winter is the boreal 
winter is 25% lower than the mean extensionannual extent. 

The relationship observed in interannual variations in HNLC areas suggest a global scale coupling 
between the equator and the poles. GoodA remarkably good inverse correlation (r=-0.9997, n=20) is 
observed between the interannual variations in the extensionextent of EEP and the SO, and a weaker 
thoughtthough significant relationship exists between the SNP and the EEP (r= -0.7550, n=20). Therefore, 
as the extensionextent of HNLC in polar regions contracts (biomass increases), the equatorial region 
expands and vice versa. All three regions exhibit a shift in their extensionextent after 2010 (Fig. 56). Both 
the SNP and the SO decrease after this year (5% and 2.6%) whereas the extent of the EEP slightly 
increases (0.4%). 

 

     3.3 Climate drivers of HNLC region temporal variations      

The WCA between NO3:Chl ratio in each HNLC region and ENSO are shown in figures 7a1 to a3. 
Generally, small coherence structures are observed at semiannual periods; however, the main coherence 
pattern corresponds to a band extending in the 2 to 4 years in the SNP and > 2yr in the EEP. This coherence 
between NO3:Chl and ENSO in the 2-4 year period is particularly clear after the year 2005 when ENSO 
variability intensified. In the EEP, the coherence between both series expands to periods >4 years but, 
unlike in the SNP region where the NO3:Chl ratio is in-phase with ENSO signal, the signals are strongly 
anticorrelated in this case (anti-phase: relative phase of 180º between both signals).           

As in the case of ENSO, the MOC presents strong seasonal and interannual variations but it is also 
expected to play a more active role at longer timescales (i.e. decadal and multidecadal; Buckley and 
Marshall, 2016). Figure 7b shows the MOC transport index (hereafter MOI) measured at 26.5°N (Smeed 
et al., 2019). Transport exceeds 17 Sv until 2009, but it weakens during 2010, stabilizing thereafter. 
Generally, the MOI displays intense interannual variability, and coherence with NO3:Chl ratios is 
strongest at interannual time scales (1-1.5 yr; Fig. 7b1 to b3). At this timescale, it influences NO3:Chl 
ratios in the three HNLC regions yet it is more intense in the SO.     

 

4 Discussion 

4.1 Global characterization of HNLC regions   

In the present study, we have addressed the analysis of the extent of the HNLC regions, their long-term 
variability, and the potential drivers of these variations. Despite the relevance of precise characterization 
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of the extent of this biome for the estimation of the amount of carbon drawn into the ocean by 
phytoplankton, objectively determining the boundaries of HNLC regions has remained elusive as it 
requires coherent information from both nutrient and Chl fields. We demonstrate that a statistical 
approach, based on a threshold in the distribution of the global NO3:Chl ratios (PHNLC), can robustly 
discriminate these regions. As in precedent studies (e.g. Moore et al. 2013), we assume that excess NO3 
in surface oceanic areas is indicative of Fe limitation. This avoids relying on the scarce information 
available on Fe-stress or in more complex ecosystem modeling approaches. Inference of phytoplankton 
Fe-stress from satellite ocean color data has been attempted but it is a methodology that still presents large 
uncertainties (Browning et al., 2014).  This interrelatedFurthermore, while bioavailable Fe is known to 
be the primary limiting factor in this relatively unproductive biome, the establishment of HNLC 
conditions is influenced by various other factors such as light availability, grazing pressure, rate of Fe-
remineralization, and community structure, highlighting the complex interrelations among these factors. 
Despite these drawbacks, the herein-developed method provides results consistent with previous 
descriptions of the large-scale spatial patterns of HNLC regions, mostly based on NO3 fields (i.e. Archer 
and Johnson, 2000; Ono et al., 2008; Fu and Wang, 2022). Also, the proposed method for biome definition 
may introduce a bias in that the resulting spatial fields are smoother compared to those based on Fe-
limitation, which is due to the greater variability of Fe concentrations compared to NO3 fields. 

The PHNLC obtained from the pdf distribution of the NO3:Chl ratios represents a statistical threshold that 
integrates complex biological processes, including competition for resources, grazing, changes in species 
composition, nutrient uptake rates, Fe-regulated algal photochemistry, etc. Unlike Redfield or C:Chl 
ratios which respond to physiological factors within phytoplankton cells, PHNLC can be considered an 
environmental indicator of changes in the structure and functioning of marine phytoplankton.  

According to our analysis, some 25% of the ocean (18% of the Earth’s surface) corresponds to 
unproductive HNLC waters.  With 83% of the global HNLC biome extent (Table 2), the SO is the largest 
region presenting clear latitudinal variation in the characteristic Chl patterns, as obtained from SOM 
analysis (Fig. 3). This is consistent with available descriptions of the physical and chemical properties of 
the SO which tend to be across latitude due to the meridional structure of the MOC and because of the 
rapid zonal redistribution imposed by circumpolar currents (Orsi et al., 1995). Both the SNP and the EEP 
respectively constitute 8% of the total HNLC extent. However, while the EEP remains relatively stable 
(cv=5; Table 2) the SNP can change up to 2-fold (Fig, 4 and Table 2).  

Our analysis reveals marked decadal tendencies in Chl in the most productive subregions, ranging 
between 0.04 to 0.06 mgChl m-3 decade-1, and negligible trends in the EEP (Table 1). Positive 
phytoplankton trends in high latitudes and no significant tendencies in the equator at the 95% interval 
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have been previously reported by Hammond et al. (2017). Indeed, climate change projections for the 21st 
century predict declines in global marine net primary production but increasing Southern Ocean 
productivity (Hauck et al. 2015; Moore et al., 2018). HNLC extension particularly that in the SO, could 
produceNevertheless, it is noteworthy that our analysis shows that trends in some regions of the southern 
hemisphere are influenced by a Chl shift occurring in 2019-2010 (particularly R4 and R5). This non-
linear enhancement in phytoplankton, which is not exclusive to oceanic Fe-limited waters (see for 
example Marrari et al., 2017), positively biases the Chl increase rate in these subregions. It is unlikely 
that this change in overall phytoplankton biomass is related to satellite data merging. SeaWiFS ended 
operations in 2010 and MERIS sensor ceased in April 2012; however, a decrease in biomass would be 
expected from these changes (Garnesson et al., 2019). The possible source of this shift in phytoplankton 
biomass is more extensively discussed below. 

 

4.2 Spatial variability of HNLC regions    

SOM analysis allowed the characterization of the seasonal and interannual variability of HNLC regions 
(Fig 5 and 6). The SO and the SNP are regions of seasonal extremes in productivity as a consequence of 
the large fluctuations in the environment that they experience. Important seasonal variability is observed 
in the SO, which is attributed to light limitation during winter and to variations in iron stocks occurring 
in surface waters (Tagliabue et al., 2014). Therefore, while presenting HNLC characteristics for most of 
the year, the SO exhibits distinct Chl variability patterns that are well captured in the SOM regionalization 
and the characteristic patterns of each subregion. In the case of the SO, the changes in the extent are 
reduced (20% from mean values) which is attributed to the large-scale nature of the physical processes 
regulating the productivity of this region (Cullen, 1991). Mid-depth and deep ocean waters communicate 
with the ocean surface after following long a circuit route driven by ocean overturning circulation 
(Lumpkin and Speer, 2007). As reported by Smeed et al. (2018), the variability of the MOC flow system 
has an important consequences in terms of CO2 withdrawal from the atmospheredecadal component 
associated with thermohaline forcing. This long-term component of variability could dominate over 
higher frequency variability but the length of the observational record of the AMOC is still insufficient 
to resolve variations at this scale. 

Variability patterns in the SNP, are attributed both to marked seasonality in the local forcings and to 
fluctuations in the regional circulation patterns and the consequent advective Fe enrichment processes 
from river discharges of the surrounding marginal regions in the North Pacific (Cummins and Freeland 
2007; Takeda, 2011; Lauderdale et al., 2020; Nishioka et al., 2020). In the Northern Pacific, surface Fe 
availability is driven by vertical mixing processes which closely relate to seasonal variations in weather 
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conditions (Nishioka et al., 2007; 2020). Upwelling is triggered by severe winter cyclones that generate 
enough Ekman pumping to maintain high nutrient concentrations in the near-surface waters (Gargett, 
1991; Harrison et al., 2004).  

Marked differences in variability are observed between the subpolar regions and the EEP, where 
seasonality is marginal. Nevertheless, it should be noted that the EEP is a peculiar region that integrates 
subregions with 6-month out-phased seasonal variations (north and south of the equator). On average, the 
south-equatorial region contributes more (62% of the total extent) to the mean extent of the EEP whereas 
the Northern subregion determines most of the observed variability (Fig. S3). 

At interannual scales, the extent of HNLC regions is more modest (up to 5%; Figure 6) but all three 
regions are notably correlated, suggesting that their interannual variations are driven by global-scale 
processes. In particular, the SO and the EEP are highly correlated (r=0.97). This coupling between 
Southern Ocean productivity, and equatorial productivity, was suggested by Dugdale et al. (2002) based 
on the observed nutrient ratios. They proposed that both regions were connected, out of phase, by the 
meridian SubArctic Mode Water. Nevertheless, the seaways in the Pacific are complex, and determining 
the overturning signature is challenging. Some studies have suggested that temperature anomalies 
subducted into the pycnocline at subtropical latitudes may not reach the Equator with any appreciable 
amplitude (Schneider et al., 1999a). However, mass water balances in the equatorial pacific reveal that 
the strength of the equatorial upwelling is related to variations in the Pacific overturning (PMOC) 
(McPhaden and Zhang, 2002), and therefore, an influence on EEP extent is expected. Likewise, 
meridional circulation extends to the North Pacific; however, the SNP does not ventilate the deep ocean 
at significant rates and the PMOC cell at this latitude corresponds to a rather independently functioning 
intermediate water cell (Warren et al., 1983) . MOC in this region is reportedly weak (1-4 Sv) and extends 
no further than 50oN (Ishizaki, 1994; Yaremchuk, 2001). However, there is evidence showing the 
response of this region to changes in PMOC (Burls et al, 2017, Holzer et al, 2021). For example, it has 
been observed in TOPEX altimeter data that MOC influences the basin-scale baroclinic circulation in the 
SNP (Kuragano and Kamachi, 2004). This would explain the lower, yet significant, correlation with the 
variations at the SO and EEP. Indeed, the shift observed in 2009-2010 is common to all three regions 
(albeit with a different sign).  

The causes of the drastic 2009-2010 variation in the extent of HNLC regions are uncertain but they can 
plausibly be related to changes in the strength of meridional circulation and the consequent atmospheric 
and oceanic variations. For example, Moat et al. (2020) suggest a previously unsuspected role for the 
AMOC in climate variability during the 2010 event which coincided with a cold winter in Europe. Several 
ocean scale changes occurred in 2010, whichthat may be related to the observed changes in the HNLC 
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region extensionextent have been reported in the period 2009-2011. For example, rapid warming, 
salinification, and a concurrent dissolved oxygen decline have been observed at BATS during the 2010s 
(Bates and Johnson, 2020). There is also evidence indicating that a decadal intensification of Pacific trade 
winds weakened in 2011 (Bordbar et al., 2019). Trade wind intensity variations in the equatorial pacific 
region are associated with SST anomalies, weakening of the equatorial divergence, and changes in upper-
ocean thermal structure (England et al., 2014; Bordbar, et al., 2017; England et al., 2014). The relationship 
between the equatorial wind intensity and the equatorial undercurrent strength is also well established 
(McPhaden, 1993). These atmospheric changes, affecting the upwelling of Fe atin the EEP (and indirectly 
to other oceanic regions), agree with the hypothesis of Winckler et al. (2016) suggesting that ocean 
dynamics, not dust deposition, control the equatorial Pacific productivity. In our case, we observe a 
reduction of the extensionextent of the HNLC region atin the EEP during an enhanced wind intensity 
period (before 2011) and an expansion thereafter (Fig. 56). Connections of this mechanism to high latitude 
HNLC regions reveal large-scale adjustments with consequences in global ocean productivity.   

   

4.3.4 Drivers of HNLC region variability 

3.4.1 Influence of SST variations  

As shown in Figures 6 a and b, the temporal variability of both the characteristic NO3:Chl ratios and SST 
at each region peaks at 12-month periodicity, being this seasonal modulation more intense and temporally 
consistent in the case of temperature at high latitudes and weaker in the equator. In fact, during 2002-
2004, seasonality in the NO3:Chl ratio in the EEP was non-significant. NO3:Chl ratios in the SO also 
display a semiannual mode and a transference from annual to semiannual periods since 2010. This spectral 
shift is consistent with the variation observed in the spatial SOM analysis and compatible with reports of 
decreasing carbon uptake in the SO after 2011 that are related to variations in local wind strength which 
are known to vary Fe concentrations due to their effect in upwelling strength (Keppler and Landschützer, 
2019; Parekh et al., 2005). 
The WCA analysis between NO3:Chl ratios and SST reveals the synchrony between these variables (Fig 
6c). Here, the intensity of the coherence at the 12-month period is further evidenced. At this temporal 
scale, both variables are highly anti-correlated (high wavelet coherence but with opposite phase -arrows 
pointing left-) indicating that NO3:Chl ratios are highest when the temperature is at its lowest value 
(winter) and when phytoplankton uptake declines due to light limitation. A steady 6 month cross-
coherence period is also observed at SO but this signal is irregular at the SNP and at the EEP. Semiannual 
cycles generally occur in regions where warming and cooling cycles show different durations. In the case 
of the SO, the semiannual component has been linked to the cyclonic activity with a greater number of 
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cyclones occurring in spring and fall (Howarth, 1983). Finally, a 4-year periodicity in the coherence signal 
is also suggested at SNP and EEP; however, the coherence is weak and restricted to a few years (after 
2010 at the SNP and the EEP, and from 2002 and 2006 at the SO).   

3.4.2 Influence of ENSO 

The WCA between NO3:Chl ratio at each HNLC region and ENSO are shown in Figure 7a1 to a3. 
Generally, small coherence structures are observed at semiannual periods; however, the main coherence 
pattern corresponds to a band extending in the 2 to 4 years in the SNP and > 2yr in the EEP. This coherence 
between NO3:Chl and ENSO in the 2-4 year period is particularly clear after the year 2005 when ENSO 
variability intensified. At the EEP, the coherence between both series expands to periods >4 years but, 
unlike in the SNP region where NO3:Chl ratio is in-phase with ENSO signal, the signals are strongly 
anticorrelated in this case (anti-phase: relative phase of 180º between both signals). ENSO is the primary 
source of the interannual variability in this region and its occurrence is related to the decline in NO3 
supply. Sub-decadal fluctuations in Chl in the EEP region displaying a good correlation with the ENSO 
index have been reported before (Oliver and Irwin, 2008; Boyce et al., 2010). ContrastinglyBy contrast, 
the SO only shows weak evidence of this relationship which suggests that ENSO is not a major forcing 
driving the variability of NO3:Chl in this region. This is consistent with reports from Ayers and Strutton 
(2013) who did not foundfind a significant relationship between nutrients in this region and ENSO events. 
Similarly, Racault et al. (2017) reported evidence indicating that during Eastern Pacific and Central 
Pacific types of El Niño events, impacts on phytoplankton were widespread, but tended to be greatest in 
the tropics and subtropics, encompassing up to 67% of the total ocean affected areas.  

It can be argued that differences in the response to ENSO are due to the different nature of the forcings 
driving nutrient supply atin each region. While the EEP and the SNP seem to respond to ENSO-related 
changes in wind forcing, NO3:Chl ratios in the SO are more stable and respond to annual and semi-annual 
variations. CouplingThe coupling between the EEP and the SNP dynamics has been reported before. 
QuiQiu (2002) observed progressive shoaling of the Alaska gyre caused by a strengthening of the cyclonic 
circulation. The interannual variability of this gyre was connected to ENSO-related equator-originated 
sea surface height anomalies. Several large-scale climate pattern indexes are invoked to explain physical 
and biological fluctuations in the SNP. For example, Di Lorenzo et al., (2008) defined the North Pacific 
Gyre Oscillation (NPGO), which nicely explains the fluctuations of salinity, nutrients, and chlorophyll 
related to the circulation in the North Pacific gyre. It is beyond the scope of the present work to assess the 
relationships of all these indexes with the variability in the extensionextent of HNLC regions. 
Nevertheless, the proposed climate indexes for the Pacific present a high relationship among them, which 
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highlights the strong dynamical linkages between tropical and extratropical modes of climate variability 
in the Pacific basin, and the important role played by ENSO (Di Lorenzo et al., 2013). 

 

3.4.3 Influence of MOC 

As in the case of ENSO, the MOC presents strong seasonal and interannual variations but it is also 
expected to play a more active role at longer timescales (i.e. decadal and multidecadal; Buckley and 
Marshall, 2016). Figure 7b shows the MOC transport index (hereafter MOI) measured at 26.5°N (Smeed 
et al., 2019). Generally, the MOI displays intense interannual variability and, in fact, coherence with 
NO3:Chl ratios is strongest at interannual time scales (1-1.5 yr; Figures 7b1 to b3). At this timescale, it 
clearly influences NO3:Chl ratios in the three HNLC regions yet it is more intense in the SO. A stronger 
MOC should result in the upwelling of macronutrients and Fe at faster rates as well as in increased Ekman 
transport of nutrients equatorward and subsequent subduction (Ayers and Strutton, 2013). This is 
observed in the high positive cross-wavelet correlation at 1-1.5 yr in the EEP region. In addition, a clear 
variation in the coherence phase is observed, being 90º (3-4 months) in the SNP, in phase for the EEP, 
and 270º (9-11 months) out of phase out atin the SO, suggesting a meridional propagation of the MOC 
effect.  
 Figure 7b8b also reveals a decline of the MOC until 2010 that has remained ~ 15% below its pre-2010 
level since then (~17 Sv; Ayala-Solares et al., 2018; Caesar et al., 2018). This trend has been attributed 
to climate warming and the consequent changes in the hydrological cycle, including sea-ice loss and 
accelerated melting of the Greenland Ice Sheet, causing further freshening of the northern Atlantic 
(Bakker et al., 2016; Böning et al., 2016). It has been proposed that AMOC weakening will affect large 
regions of the world's upper oceans that are currently supplied with nutrients by the South Antarctic Mode 
Water (Schmittner, 2005).  

Weakened MOC after 2010 and, the particularly low value during that year (Fig. 7b), is coincident with 
the shift in the extensionextent of the HNLC regions shown in Figure 5, suggesting that weaker MOC is 
related to increases in the extensionextent of the EEP and contraction of the SNP and the SO HNLC 
regions. In the case of the EEP, it could be proposed that a larger equatorial area with Fe deficiency would 
be associated with a decline in upwelling intensity. It is estimated that the slowing down of the overturning 
circulation in the Pacific Ocean since the 1970s has generated a decrease in upwelling of about 25% in 
an equatorial strip between 9° N and 9° S (McPhaden and Zhang, 2002). Nevertheless, the larger HNLC 
region atin the EEP could also be explained by the depletion of Fe in the source waters feeding the EUC, 
as reported by Kaupp et al. (2011).  
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At high latitudes, the weakening of the AMOC, is coherent with a decrease ofin the extensionextent of 
the SNP and the SO (Fig. 5). This anomaly, starting in 2009-2010, is a global feature also reflected in the 
intertropical convergence zone (ITCZ) time series, an atmosphere's energy balance indicator (see Green 
et al., 2017; Ibanhez et al., 2017), suggesting a strong atmosphere-ocean coupling with impact on ocean 
productivity. It is not clear how a reduced flow would favor the increase in biomass atin high latitudes. 
While it is plausible that in the case of abrupt and/or permanent variations of AMOC primary production, 
and hence phytoplankton biomass, will be reduced, it is more unclearless clear how present-day variations 
influence phytoplankton biomass. It has been proposed that a reduced AMOC from increased 
precipitation and melting sea ice, could contribute to reduce vertical mixing which may increase 
productivity in polar regions (Riebesell et al., 2009). Other studies (e.g., Martinez-García et al., 2009), 
also based on remotely sensed Chl, showed a relationship between AMOC and Chl variations, mainly 
due to the interaction of the main pycnocline and the upper ocean seasonal mixed layer. In addition, some 
paleoclimatic studies have demonstrated that AMOC weakening can increase the productivity north from 
the Polar Front, but only if an increase in the atmospheric soluble Fe flux is considered (Muglia et al., 
2018). Paleoceanographical records reveal a strong correlation between proxies of aeolian Fe flux and 
productivity has been reported in this region (Kumar et al., 1995; Martínez-García et al., 2009) but, in 
present times, dust deposition in this area has notably varied and this effect is unlikely. to be important at 
the time scales considered here. Complex ecosystem processes including competition for Fe with bacteria, 
Fe remineralization rates, and organic complexation processes could determine the phytoplankton 
response under future scenarios. Further, biomass building up is not only driven by nutrient availability. 
Changes in biomass can be produced by variations in the thermocline depth affecting the vertical 
distribution of phytoplankton. ChangesNevertheless, variations in phytoplankton composition, 
physiological adjustments in cellular pigmentation, and grazing could also modulate Chl variability. 
Indeed, the prevailing foodweb structure may play an important role in Fe fertilization (Schmidt et al., 
2016). At larger scales, there are still unresolved questions about the couplings occurring at different 
temporal scales. For example, MOC variations are known to interact with ENSO variability (Dong et al., 
2006; Dong and Sutton, 2007; Timmermann et al., 2007). These connections provide further evidence of 
the global scale coupling and feedbacksfeedback between the atmosphere, the ocean, and global 
productivity cyclesvariations. 

 

5. Conclusions 

In Variations in the present study, we have addressed the analysis of the extensionboundaries of the HNLC 
regions, their long-term variability, and the potential drivers of these  can provide an integrative view of 
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how climate scale ocean variations. We have regionalized the global ocean on the basis of the joint NO3 
availability and satellite retrieved Chl abundance variability patterns. We also influence ocean 
productivity. We established a statistical criterion to identify HNLC regions from global Chl and NO3 
data. While this regionalization is subject to variations depending on the approach considered, it  that sets 
the basis for systematic analyses of theseHNLC regions and their response to climate variations. More 
generally, our study shows that the combination of time-domain SOM and wavelet coherence analysis 
provides a powerful framework to identify regional biological responses to global forcings. Indeed, the 
proposed methodology is especially suited for the assessment of climate-related change of essential ocean 
variables retrieved from the increasingly improved and longer and longer time series of remote sensing 
observations.      

As depicted in ourOur results, variations of oceanic phytoplankton are closely connected to suggest that 
while local-scale processes can determine certain aspects of the productivity of HNLC regions, their long-
term patterns are strongly influenced by variations in global patterns of atmospheric and oceanic 
circulation through complex processes. We found important . We observed significant interannual 
variations in the extensionextent of the HNLC regions (up to 5%,% in Fig. 5) that6), which are related to 
the intensity ofassociated with anomalies in global forcing anomalies. This provides further evidence that 
long-term projections of ocean productivity should consider these interlinked relationsintensity. 
Accordingly, our findings suggest a scenario in which HNLC regions are vulnerable to interbasin 
teleconnections rather than local forcings. These general patterns may be modulated by feedback between 
the atmosphere, the ocean physics, and its influence on nutrient availability. We show that these 
interactions have different forcing mechanisms. For instance, there is a global dimension (i.e. 
relationpositive correlation between processes at high and low latitudes) and significant decadal-scale 
variability. In particularPMOC variability and El Niño-Southern Oscillation (Tandon et al. 2020). 
Furthermore, our analysis reveals a shift in phytoplankton biomass and HNLC variation patterns 
occurring at the end of 2010, which evidences the occurrence of fast transitions in ocean biogeochemistry. 
The underlying drivers of these regime shifts deserveand the resulting biological responses to these ocean-
scale changes require further attentioninvestigation since they representare a fundamental partaspect of 
the long-term variations in themarine ecosystem functioning of marine ecosystems. 

Finally, the present study highlights the importance of maintaining long and coherent datasets beyond 
satellite-borne information to be able to disentangle the different components of variability, particularly 
at long timescales, and to evaluate the impact of climate change on marine ecosystems. Most of the 
geochemical information at this scale (i.e. nutrient and Fe fields) will probably require further global 
sampling programs and refined modeling. 
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Tables 

 

Table 1. Mean±std characteristics of each of the SOM-defined HNLC subregions. (R1 to R5). NO3 (mmol 
m-3    ) and Chl (mg m-3) values are respectively from model and satellite data. Decadal chlorophyll trends 
(DChl(ΔChl, mgChl m-3 decade-1) are calculated from the mean time-series of monthly deseasonalized 
chlorophyll.  

 
Region Subregion NO3  

(µM) 
Chl  

(mg m-3) 
NO3:Chl 

(mmol NO3 mg Chl-1) 
DChl 
ΔChl 

(mg m3 decade-1) 

SNP      

 R1 4.51 ± 1.0

24.51 ± 1.02 

0.31 ±  0.070.31 

±  0.07 

15± 315± 3 +0.05+0.05 

 R2 8.05 ± 0.8

88.05 ± 0.88 

0.36 ± 0.070.36 ± 

0.07 

23± 623± 6 +0.26+0.26 

 R3 15.52 ± 2.

2715.52 ± 

2.27 

0.49 ± 0.160.49 ± 

0.16 

35 ± 1535 ± 15 +0.43+0.43 

EEP      

 R1 4.04 ± 0.7

74.04 ± 0.77 

0.22 ± 0.020.22 ± 

0.02 

18 ± 318 ± 3 +0.01+0.01 

 R2 6.63 ± 1.4

26.63 ± 1.42 

0.39 ± 0.050.39 ± 

0.05 

20 ± 420 ± 4 +0.08+0.08 

SO      

 R1 4.13 ± 1.0

54.13 ± 1.05 

0.22 ± 0.060.22 ± 

0.06 

20 ±  420 ±  4 +0.24+0.24 

 R2 9.11 ± 1.2

39.11 ± 1.23 

0.31 ± 0.060.31 ± 

0.06 

31 ±  931 ±  9 +0.42+0.42 

 R3 15.73 ± 1.

0715.73 ± 

1.07 

0.32 ± 0.100.32 ± 

0.10 

55 ±  1755 ±  17 +0.47+0.47 
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 R4 23.26 ±1.

0623.26 

±1.06 

0.26 ± 0.160.26 ± 

0.16 

104 ± 32104 ± 32 +0.62+0.62 

 R5 29.18 ± 1.

5729.18 ± 

1.57 

0.43 ± 0.920.43 ± 

0.92 

103 ± 54103 ± 54 +0.46+0.46 

 

 

Table 2. Basic statistics of the extent of each of the SOM-defined HNLC subregions during the 
analyzed period (1998-2017). 

 

Region Mean extent±S.D. 
(x106 km2) 

% of total 
extent 

Min-Max 
(x106 km2) 

Max. Variation 
(x106 km2) 

C.V.% 

SNP 7.7±3.6 8.4 3.8-15.9 12.1 47 
EEP 7.8±0.4 8.4 7.3-8.4 1.1 5 
SO 76.5±0.9 83.2 61.3-86.8 25.5 12 
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Figure 11. Scheme of a characteristic pattern and its distribution map obtained from SOM time-domain 
analysis at global and regional means calculated for each of the HNLC regions. 
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Figure 2. a) Global mean satellite Chl concentrations (mg m-3) for the period 1998-2018 and superimposed 
surface NO3 contour lines (white) from modeling data (isolines are drawn at 4mmol4 mmol m-3 intervals). 
b) Standard deviation of the probability density function (PDF) of the NO3:Chl monthly ratios obtained 
for the 20 years analyzed. Note that the y-axis scale is logarithmic.  c) Normalized probability density 
function of the values of the NO3:Chl ratio obtained from the SOM temporal patterns. Green and blue 
lines show the fit to a normal distribution for the first and second pdf modes, respectively. c) Standard 
deviation of the probability density function (pdf) of the NO3:Chl (mmol/mg) monthly ratios obtained for 
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the 20 years analyzed. Note that the y-axis scale is logarithmic. The critical point ratio PHNLC =17 
mmolNO3 mgChl-1 delimits HNLC regions from macronutrient limited regions. 
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Figure 2 HNLC 3. a) Characteristic temporal variability patterns of NO3:Chl ratios (N1-N12) as unveiled 
by the 4x3 SOM analysis in the time domain. Red dashed lines indicate the PHNLC  value  b) Coherent 
regions of HNLC variability (SNP, EEP, and SO) and corresponding subregions (R1 to R5) obtained from 
coupled NO3-Chl temporal-SOM analysis. associated with the SOM temporal patterns exhibiting only 
NO3:Chl values larger than PHNLC  all the times throughout the entire analyzed period (i.e. identified with 
N9, N6, N2, N5 and N1) . Patterns corresponding to a subregion in the northern and southern 
hemisphere,hemispheres present a similar pattern although seasonally lagged (6-month delay). Insets 
show the time series of the averaged Chl over the corresponding subregion (complete map and of regions 
of NO3:Chl ratiosvariability and corresponding temporal variability patterns  are shown in Fig. S2S1). 
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The blackred line represents the 24-month filtered series and the redblue line indicates the trend (values 
shown in Table 1).
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Figure 34. Characteristic spatial patterns (P1 to P9) of HNLC regions as defined by NO3:Chl  ratios > 
PHNLC. The value on top of each pattern indicates theits probability of occurrence of each pattern over the 
20-year period analyzed. To preserve the topology, the SOM algorithm introduces some patterns with 
zero probability of occurrence, such as P5. The colorbar indicates the different NO3:Chl ranges 
represented. 
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Figure 45. a) Time evolution of the spatial patterns as defined by the Best Matching Units (BMUs) for 
the period of 1998-2018. The blue dashed line indicates the regime shift occurring after 2010. b) Monthly 
frequency of occurrence of the spatial patterns identified in Figure 3.4.  
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Figure 5.  

Figure 6. Seasonal (left) and interannual variations (right) in the spatial extensionextent of the three 
HNLC regions. , represented as a percentage of variation from the mean extent of each region. Variations 
are referred to the mean extension of each region. Dark and light-colored bars indicated positive and 
negative values, respectively. The blue dashed lines indicate the regime shift occurring after 2010.           
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Figure 6. Continuous wavelet spectra (CWT) of a) the NO3:Chl ratio and b) SST,  and c) cross-wavelet coherence (CWA) between 
both series for each of the HNLC regions (SNP, EEP and SO). The thick black contour designates the 95% confidence level and the 
cone of influence where edge effects are not negligible is shown as a lighter shade. The arrows in (c) indicate the phase relationship 
between the signals. Arrows pointing right:  both signals are in phase; pointing left:  in anti-phase; upward:  Y leading X by 90º and 
downward: X leading Y 90º. Period units are months. Note that a lead of 90º can be also interpreted as a lag of 270º or a lag of 90º 
relative to the anti-phase. 
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Figure. 
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Figure 7. a) ENSO (MEI v2) index. E1-E3 indicate intense El Niño episodes and L1 and L2 mark strong 
La Niña periods. a1, a2, a3 display the cross-wavelet coherence between NO3:ChlaChl ratio and ENSO 
for each of the HNLC regions. b) Monthly b) Meridional overturning (AMOC) volume transport index 
for the period (2004-2017) measured at 26.5°N (Smeed et al., 2016). The red line shows interannual 
component is obtained by filtering the decadal variation.data with a 540-day low-pass filter after the 
removal of the mean seasonal cycle. b1, b2, and b3 display the cross-wavelet coherence between 
NO3:ChlaChl ratio and AMOC for each of the HNLC regions. The thick black contours in the cross-
wavelet coherence figures designate the 95% confidence levels and the cone of influence where edge 
effects are not negligible is shown as a lighter shade. The arrows indicate the phase relationship between 
the signals with the horizontal component indicating in-phase (rightward) or out -of -phase (leftward) and 
the vertical component indicating a 90º phase difference lagging (upward) or leading (downward). Period 
units are months. 
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