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Abstract 20	
Records from ocean bottom seismometers (OBS) are highly contaminated by noise, which is much higher 21	
compared to data from most land stations, especially on the horizontal components. The high energy of the 22	
oceanic noise at frequencies below 1 Hz complicates the analysis of the teleseismic earthquake signals 23	
recorded by OBSs.  24	
Previous studies suggested different approaches to remove low frequency noises from the data, but mainly 25	
focused on the vertical component. The records of horizontal components, crucial for the application of 26	
many methods in passive seismological analysis of body and surface waves could not be much improved in 27	
the teleseismic frequency band. Here we introduce a noise reduction method, which is derived from the 28	
harmonic-percussive separation algorithms used in Zali et al., (2021) in order to separate long-lasting 29	
narrowband signals from broadband transients in the OBS signal. This leads to significant noise reduction 30	
of OBS records on both the vertical and horizontal components and increases the earthquake signal to noise 31	
ratio without distortion of the broadband earthquake waveforms. This is proved through synthetic tests by 32	
measuring SNR and cross-correlation coefficient where both showed significant improvement for different 33	
realistic noise realizations. The application of denoised signals in surface wave analysis and receiver 34	
function is discussed through synthetic and real tests.  35	
 36	
1 Introduction 37	
Data from ocean bottom recordings are commonly difficult to analyze, due to the high noise level being 38	
typically much higher compared to land stations. At frequencies below 1 Hz, the effect of the ocean noise is 39	
often dominating the data and hinders the seismological analysis (e.g. Webb et al., 1991; Crawford, 1994). 40	
Signals of interest, i.e. transient signals, especially from teleseismic events can be masked by the oceanic 41	
noise.  Here, the horizontal components are most strongly contaminated by low frequency noise. To 42	
illustrate the noise on OBS data, we exemplary show the records of the station D10 of the DOCTAR array 43	
(see Fig. 1 and Fig. S1). Various studies tried to identify and characterize the different sources of noise 44	
recorded at the ocean bottom  (e.g. Webb, 1998; Crawford & Webb, 2000; Corela, 2014; Stähler et al., 45	
2018; Essing et al., 2021; An et al., 2021). We focus on noise sources that especially affect teleseismic 46	
horizontal recordings in the frequency band of 0.02–2 Hz. Generally, the dominant natural noise signals in 47	
the oceanic environment are secondary oceanic microseisms (Rayleigh/Scholte waves at the ocean bottom) 48	
caused by interaction of wind generated water waves, infragravity waves (compliance noise) as well as tilt 49	
noise; the latter is originating from the turbulent interaction between currents and the instrument (e.g. 50	
Crawford et al., 1998; Corela, 2014). Primary oceanic microseism is originating from the interaction of 51	
water waves incident at steep coastlines and/or rough seafloor (Hasselmann, 1963; Webb, 1998; Bell et al., 52	
2015) and its spectrum peak is around 0.07 Hz (Friedrich et al. 1998) in the Northern Atlantic. The 53	
secondary microseism, in contrast shows signal frequencies above 0.1–0.25 Hz, with a maximum spectral 54	
peak around 0.14 Hz (Friedrich et al., 1998, Fig. 1) and is in general much stronger in amplitude than the 55	
primary microseism. The secondary microseism is caused by wind or swell waves propagating in opposite 56	
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directions. The periods of such generated Rayleigh/Scholte-waves are half the period of the water waves 57	
generating them (e.g. Longuet-Higgins, 1950; Bell et al., 2015) and strongly affect the seismological 58	
analysis. Whereas the primary and secondary microseisms affect both the vertical and horizontal 59	
seismometer components, the compliance noise is solely observed on the vertical component and the 60	
hydrophone. Compliance noise, dominant in the frequency band of 0.01–0.04 Hz, is only significant if the 61	
wavelength exceeds the water depth (Crawford et al., 1998; Crawford & Webb, 2000; Bell et al., 2015). 62	
Below frequencies of 0.01 Hz and 0.1 Hz, the vertical and especially the horizontal components, are highly 63	
contaminated by tilt noise generated by ocean bottom currents (Webb, 1998; Crawford& Webb, 2000; 64	
Stähler et al., 2018, Fig. 1). The tilt noise level increases with signal period (see Fig. 1).  The ocean bottom 65	
currents in many regions of the oceans are mostly driven by tidal force and often create a signal with 66	
strongest amplitudes below 1 Hz appearing every 6–12 hours (e.g. Brink, 1995; Crawford & Webb, 2000; 67	
Ramakrushana Reddy et al., 2020; Essing et al., 2021). The ocean bottom currents passing the instrument 68	
create local eddy currents, deform the seafloor beneath the sensor and tilt the whole instrument frame, to 69	
which the seismometer is fixed (e.g. Duennebier & Sutton, 1995; Webb, 1998; Romanowicz et al., 1998; 70	
Crawford & Webb, 2000; Corela, 2014; Stähler et al., 2018).  If the seismometer mass is not perfectly 71	
leveled, the high tilt noise on the horizontal components is partially projected onto the vertical component 72	
(e.g. Crawford, 1994; Corela, 2014; Bell et al., 2015). Since the noise sources often act at frequencies of 73	
teleseismic earthquakes, it is crucial to improve the Signal-to-Noise Ratio (SNR) on OBS recordings for the 74	
analysis of the earth’s crustal and mantle structure. Various studies discussed the improvement of OBS 75	
recordings through different approaches, either by suggesting a better OBS instrument design (Stähler et 76	
al., 2018, Corela, 2014, Essing et al., 2021), or by removing significant amounts of the noise from the 77	
contaminated data by signal processing (Crawford & Webb, 2000, Bell et al., 2015, Janiszewski et al., 78	
2019). Our study follows the latter approach. 79	
Crawford and Webb (2000) developed a method to remove noise from the vertical OBS component. 80	
Calculating the linear transfer function between the horizontal and the vertical component allows to 81	
estimate the tilt noise which can be subtracted from the vertical component. Hydrophone data measured in 82	
parallel to the seismometer recordings allow to reduce the influence of infragravity waves on the vertical 83	
seismometer component recordings. For better results Bell et al. (2015) propose to first rotate the horizontal 84	
components in direction of the highest coherence between the horizontal and vertical component before 85	
calculating the linear transfer functions. The mentioned methods solely improve the SNR on the vertical 86	
component whereas the noise contamination on horizontal components is often larger. Other recent studies 87	
attempted to reduce noise also on the horizontal components (Mousavi and Langston, 2017; Zhu et al., 88	
2019; An et al., 2021; Negi et al., 2021). An et al. (2021) tried to reduce the noise on the horizontal 89	
components by applying the reversed procedure of Bell et al. (2015). Rotation of one horizontal component 90	
into the direction of the principle noise indeed results in an improvement of the orthogonal horizontal 91	
component, but the other horizontal component became noisier (An et al., 2021). Results of a recent study 92	
applying a polarization filter to reduce the noise on all components show strong changes of the broadband 93	
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waveforms (Negi et al., 2021). The automatic noise-attenuation method developed by Mousavi and 94	
Langston (2017) is a time-frequency denoising algorithm using the wavelet transform and 95	
synchrosqueezing. It can be either used to keep the signal and remove the noise or vice versa. The 96	
decomposition method DeepDenoiser from Zhu et al. (2019) is based on a deep neural network. 97	
DeepDenoise decomposes the waveform into signal and noise in the time-frequency domain. The latter 98	
methods, both improve the SNR, but mainly focus on local and regional earthquake detection and result in 99	
changes in the waveform shape if the noise amplitude directly ahead of the signal is significant in 100	
comparison to the signal amplitude in a specific frequency. However, the analysis of undistorted broadband 101	
waveforms on the horizontal components is crucial for many passive seismological structure analysis 102	
methods, e.g. receiver functions or surface wave dispersion and polarization analysis.  103	
Here we introduce a method, inspired from the music information retrieval (MIR), which is adapted to 104	
seismological data and is used for noise reduction on both, the vertical and the horizontal components. 105	
Seismic waveform and acoustic signals generated by musical instruments are similar in some aspects 106	
(Schlindwein et al., 1995; Johnson and Watson, 2019). The extensive research in the field of music 107	
information retrieval has resulted in advances (e.g., Müller, 2015) that may be useful in seismic signal 108	
processing as well. Exploiting the idea of harmonic-percussive separation (HPS) in MIR, Zali et al. (2021) 109	
developed an algorithm to separate harmonic volcanic tremor from earthquakes in seismic waveforms. In 110	
this study we use this algorithm after some modifications in order to separate ‘harmonic’ (long-lasting 111	
narrowband signals) and ‘percussive’ (broadband transients) components of an OBS data set aiming at 112	
noise reduction and retrieval of clearer broadband earthquake waveforms. Throughout this study we will 113	
make use of the term noise for any signal other than earthquake signal in the data set. In the context of OBS 114	
noise reduction using HPS algorithms, percussive components correspond to earthquake signals and 115	
harmonic components correspond to noise signals. The long-duration OBS noise signals that last a few 116	
hours to days (depending on the noise type) with a restricted frequency range contrasts with transient 117	
seismic signals such as earthquakes with a wider range of frequencies. 118	
The algorithm introduced in Zali et al., (2021) is a combination of two HPS approaches that leads to the 119	
desired signal separation. Here we also use the two approaches in order to separate different type of noise 120	
signals from the earthquake signals. In the first step we adopt HPS using a similarity matrix (Rafii and 121	
Pardo, 2012; Rafii et al., 2014) to separate monochromatic and harmonic noises. In the second step we 122	
adopt HPS using median filtering (FitzGerald, 2012) in order to separate the remaining narrow-band 123	
signals. With this two-step approach we can separate and remove much of the OBS noise contamination 124	
from the earthquake signals.  125	
 126	

2 Data  127	

In this study we discuss the noise recorded by a LOBSTER (Longterm OBS for Tsunami and Earthquake 128	
Research) OBS instrument from the DEPAS pool, which is equipped with a Güralp CMG-40T 129	
seismometer, a MCS (Marine compact seismic) recorder and loose cables (for technical specification see 130	
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the DEPAS Pool web page and Alfred-Wegener-Institute, Helmholtz-Zentrum für Polar- und 131	
Meeresforschung et al., 2017).  We show data recorded during the DOCTAR deployment, using DEPAS-132	
LOBSTERs, located around the Gloria Fault in the Northern Atlantic. Twelve DEPAS-LOBSTERs form 133	
the array. They were deployed between 2011-2012 and recorded the data with a sampling frequency of 100 134	
Hz (Hannemann et al., 2016; Hannemann et al., 2017).  135	

Until 2019 the DEPAS LOBSTER OBS was built with an OBS-specific version of the Güralp CMG-136	
40T/MCS recorder, where the seismometer had a corner frequency of 60 s and has been modified to last 137	
long on the seafloor (Stähler et al., 2018). However, the development of less power consumption lead to a 138	
higher noise level of the instrument itself (Stähler et al., 2018).  At low frequencies (<0.1 Hz) the self-noise 139	
of the sensor is highly affecting the records, especially on the vertical component. However, the design of 140	
the DEPAS-LOBSTERs has been improved for deployments after 2019 (e.g. Essing et al., 2021).  141	

We observed a continuous harmonic signal at a frequency of 0.04 Hz, partially with one or two overtones 142	
on a subset of the array (see Fig. 1). This signal was observed on 30% of the stations from the DOCTAR 143	
project (e.g., Hannemann et al, 2016, Hannemann et al., 2017) and on 43% of the stations from the 144	
KNIPAS project (Schlindwein et al., 2018), both using the mentioned DEPAS-LOBSTER design. We 145	
cannot identify the source of this signal yet, but based on its continuity, we assume an electronic source 146	
from the instrument itself. 147	

The hydrophone and especially the horizontal components are highly affected by the strumming of the 148	
head-buoy, which is attached to the DEPAS-LOBSTER frame causing a ’current induced harmonic tremor 149	
signal’ (Stähler et al., 2018; Essing et al., 2021, Fig. 1).  These ‘tremor events’ last over up to 4 hours and 150	
appear every 6–12 hours.  These presumably tidal-driven tremor events are harmonic signals with a 151	
fundamental period of 0.4–1 s and various overtones (1–10 Hz) (Stähler et al., 2018; Essing et al., 2021, 152	
Fig. 1). Regarding the frequency band, ‘tremor events’ mainly affect the analysis of teleseismic body 153	
waves, especially on the horizontal component (Fig. 1).  154	

 155	

3 Noise reduction methodology 156	
 157	
3.1 Harmonic-percussive separation (HPS) 158	
 159	
Harmonic-percussive separation refers to the problem of decomposing a signal into its harmonic and 160	
percussive components. This topic has received much attention in recent years (Rafii et al., 2018) and has 161	
numerous applications in the field of MIR and musical signal processing.  162	
 163	
Within a general context harmonic signals show an overtone structure in the spectral domain. We call 164	
overtones one or more clear narrow-banded frequency peaks being integer multiples of the fundamental 165	
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frequency (the first frequency peak in the spectrum). Harmonic signals have a relatively stable behavior 166	
over time and can be identified in a Short Time Fourier Transform (STFT) spectrogram by horizontal 167	
structures referred to constant frequencies along the time axis.  168	
In contrast percussive signals form vertical structures in a STFT spectrogram that contain energy in a wide 169	
range of frequencies. Therefore it is a straightforward strategy in most HPS algorithms to try to separate the 170	
horizontal structure from the vertical structure in the spectrogram corresponding to harmonic and 171	
percussive components, respectively. The horizontal lines in the spectrogram could correspond to either 172	
harmonic signals or monochromatic signals.  173	
 174	
OBS noise forms narrowband horizontal structures in the STFT spectrogram while earthquake signals have 175	
vertical exhibition in the STFT spectrogram. 176	
 177	
3.2 HPS using median filtering (MED) 178	
 179	
In the context of HPS one of the simplest and fastest approaches is median filtering (FitzGerald, 2010). For 180	
simplification we name this algorithm as MED in this study. Median filters are usually used to remove 181	
noise from an image or a signal. Using median filter a sample will be replaced by the median of 182	
neighboring samples within a window of a specific length (The specific length is the kernel size of the 183	
median filter). The entire signal is processed using a sliding window analysis. Within the HPS, two median 184	
filters are applied to the amplitude of the STFT spectrogram of a signal. A median filter is performed along 185	
the time axis of the spectrogram to suppress percussive events and enhance harmonic components. Another 186	
median filter is applied along the frequency axis in order to enhance percussive events and suppress 187	
harmonic components. The two resulting spectrograms are then subsequently used to create two masks, 188	
which are applied to the original signal spectrogram separately to generate two spectrograms of harmonic 189	
and percussive components. For creating the harmonic and percussive signals in time domain the phase of 190	
the original signal is added to each spectrogram and the time domain signals are reconstructed using the 191	
inverse STFT. 192	
 193	
3.3 HPS using the similarity matrix (SIM) 194	
 195	
Another powerful approach in HPS proposed by Rafii & Pardo (2012) is based on calculating a similarity 196	
matrix. We name this algorithm as SIM here. This approach is a repetition-based separation, which 197	
identifies the repeating elements by looking for similarities by means of a similarity matrix. Within the SIM 198	
algorithm, first similar time frames in the spectrogram are identified through a similarity matrix. Then a 199	
median filter is applied only to the frames identified as similar to constitute the repeating spectrogram 200	
model that corresponds to harmonic components. The non-repeating spectrogram that corresponds to the 201	
percussive component of the data is obtained by subtracting the repeating spectrogram from the original 202	
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spectrogram. For creating the repeating and nonrepeating signals in time domain the phase of the original 203	
signal is added to each spectrogram and the time domain signals are reconstructed using the inverse STFT. 204	
Details of this approach are discussed in the following section.  205	
 206	
3.4 HPS noise reduction algorithm for OBS data 207	
 208	
The motivation of using HPS for noise reduction of OBS data is originated from different characteristic of 209	
earthquake and OBS noise signals as described in Sect. 2. Earthquakes are broadband transient signals, 210	
while most of OBS noises are dominantly narrow-band signals and can be considered to have a 211	
monochromatic or harmonic appearance in the spectrogram. We combine two modified HPS algorithms to 212	
separate those signals in a two-step procedure. We divide the frequency content of the signal into two 213	
ranges; one is between 0.1 to 1 Hz and the other is everywhere out of this frequency range. In the first step 214	
we use the SIM algorithm and separate only harmonic or monochromatic signals from the original records 215	
everywhere out of the mentioned frequency range. In the second step we target the specified frequency 216	
range containing harmonic (or monochromatic) as well as narrow-band signals with gliding frequencies 217	
named as current induced harmonic tremor signal in the Sect. 2 previously. The overall schematic diagram 218	
of our HPS noise reduction algorithm along with an example is shown in Fig. 2.  219	
The SIM algorithm is explained in the following: From the original OBS record SO (SO represents the 220	
original restituted OBS signal) we derive the STFT named X being a complex-valued spectrogram. 221	
The complex-valued spectrogram X is separated into its amplitude and phase components using Eq. 1. 222	
	223	

 𝑋 = 𝑉 ∗ 𝑒𝑥𝑝 1𝑗 ∗ 𝜑 , (1) 

	224	
where 𝜑 is the phase of X, V = |X| is the amplitude of X and j is the imaginary unit.  225	
All of the spectrogram modifications will be done on the amplitude spectrogram V. The cosine similarity 226	
(the similarity between two vectors of an inner product space) between the STFT time frames is calculated 227	
through the multiplication of the transposed V by V with normalization of the V. This is shown in Eq. 2. 228	
	229	

 𝑆 𝑘! ,k! =
𝑉 i,k! 𝑉 i,k!!

i=!

𝑉 i,k! !!
i=! 𝑉 i,k! !!

i=!
,	 (2) 

	230	
where S is the similarity matrix. Each point (𝑘! , 𝑘!) in S is the cosine similarity between time frame 𝑘! and 231	
𝑘! of V, ∀𝑘!,! ∈ 1,m , where m is the number of time frames and n is the number of frequency channels 232	
for each time frame. Once the similarity matrix is calculated we use it to determine the most similar time 233	
frames to each single time frame. For time frame 𝑘! we compare all the values in 𝐒 k!, k!  for i∈ [1,m]. 234	
2% of the all time frames, which have the highest S values, are identified as similar frames for time frame 235	
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𝑘!.  236	
Finally, all similar time frames to any frame k in V are stored in a temporary array K. Those similar time 237	
frames are used to create a repeating spectrogram model W. The corresponding frame in W is obtained by 238	
taking the median of K for each frequency at each time frame k. Those time-frequency bins, which are 239	
similar with little deviations between repeating frames, are captured by the median and constitute the 240	
repeating spectrogram model. This spectrogram contains only similar and repeating patterns. The time-241	
frequency bins with large deviations between repeating frames would constitute nonrepeating transient 242	
patterns and would be suppressed by the median filtering. 243	
 244	
The nonnegative spectrogram V is the sum of two nonnegative spectrograms of repeating and nonrepeating 245	
patterns, hence, W (the repeating spectrogram model) should always have smaller values or at most be 246	
equal compared to V. To ensure this a repeating spectrogram model 𝐖 is defined by taking the minimum 247	
between W and V. The nonrepeating spectrogram model is derived by subtracting 𝐖 from V. 248	
 249	
We use these two (the repeating and the nonrepeating) spectrogram models to create two time-frequency 250	
masks for repeating and nonrepeating patterns. Instead of the binary mask, which is used in Rafii & Pardo 251	
(2012), we use soft masks via Wiener filtering (Vaseghi, 1996). The calculation of the soft masks is shown 252	
in the following equations:	253	
	254	

 
𝑀1 =

𝑊!

𝑊! + 𝑉 −𝑊
!, 

(3) 

 
𝑀2 =

𝑉 −𝑊
!

𝑉 −𝑊
!
+𝑊!

, 
(4) 

	255	

	256	
in which M1 and M2 are repeating and nonrepeating masks respectively. We multiply the masks with the 257	
input amplitude spectrogram V to separate the repeating and nonrepeating components. The element-wise 258	
multiplication of the masks by the input amplitude spectrogram V is shown in the following equations: 259	
	260	

 R=M1⊗V,	 (5) 

 NR=M2⊗V,	 (6) 

	261	
in which R and NR denote repeating and nonrepeating amplitude spectrograms respectively.  262	
 263	
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The resulting R and NR spectrograms are shown in Fig. 2a for a specific/typical example of an OBS 264	
recording. As can be observed in the R spectrogram, in particular the low frequency harmonic or 265	
monochromatic signals below 0.1 Hz are well captured. We applied the SIM algorithm only to the 266	
frequency band below 0.1 Hz and above 1 Hz.  In the frequency band from 0.1 Hz to 1 Hz the signals 267	
remains unchanged by this procedure. This is the first constraint we consider for the SIM algorithm. The 268	
reason is related to the frequency content of the noise and earthquake signals and how the SIM algorithm 269	
separates them. In the field of noise reduction using signal processing techniques, a very important point is 270	
to not modify the signals of interest for analysis. P and S waveforms in the teleseismic earthquake signals 271	
have often frequency content in the range of 0.1 Hz to 1 Hz with a dominant frequency around 0.3 Hz. 272	
Oceanic microseism noise, which is usually present in the OBS data, has a dominant frequency around 0.1 273	
Hz to 0.3 Hz. As P and S phases have similar dominant frequency as the microseism noise wavefield, 274	
superposition of both wavefields could happen in this frequency range. They could interfere constructively 275	
or destructively so the resulting amplitude could be higher or lower compared to the original P or S phase 276	
amplitudes. Considering these interferences, using the SIM algorithm, may result in creating fake higher 277	
amplitude for these phases or losing part of their amplitude in the noise reduced signal. But this could be 278	
problematic only when the amplitude of the noise is changing over the time. For a noise signal with almost 279	
constant amplitude, the SIM algorithm can extract the true amplitude of the noise even in the interference 280	
moments. However, the microseism noise has slightly varying amplitude over time. 281	
 282	
Before moving to the second step we introduce a second constraint parameter, which we use in the SIM 283	
algorithm. Surface waves of teleseismic events show usually a dispersed narrow-band signal and 284	
correspond to (on a daily scale) short duration mainly horizontal patterns in the spectrogram. Given the way 285	
the HPS is separating harmonic from transient signals, the surface wavetrain may be erroneously 286	
recognized as harmonic component and thus be separated as noise signal. In order to prevent this and 287	
preserve the whole frequency content of the earthquake, we define a so-called waiting factor for the 288	
similarity calculation introducing a minimum time distance between two consecutive similar frames. For 289	
the problem of retaining teleseismic surface waves we found that a waiting time of at least two hours 290	
prevents the algorithm to prune surface waves from the transient signal part. The rationale is that the 291	
duration of a teleseismic event is usually less than two hours whereas the noise components have longer 292	
duration. Using this waiting factor prevents separating any harmonic component of the earthquake signal as 293	
noise component. As a side effect this constraint causes that short duration harmonic/monochromatic noise 294	
signals won’t be well captured, too. However, these types of signals are not common in OBS data (see the 295	
Sect. 2). 296	
 297	
In the second step of our algorithm, to target noise signals in the frequency range of 0.1 Hz to 1 Hz, we use 298	
MED as it is described in the Sect. 3.2. We apply this second part of the noise removal procedure only to a 299	
restricted frequency band of 0.1 Hz to 1 Hz.  We don’t apply MED for the frequency range below 0.1 Hz to 300	
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avoid an interference with the surface wave signals of teleseismic events that shall be retained. The 301	
dominant noise in the mentioned frequency range is the current induced harmonic tremor signal (see the 302	
Sect. 2). 303	
First we create X′ spectrogram which is equal to X in the mentioned frequency range and is equal to zero 304	
out of this band. Then a horizontal median filter is applied to X′ in order to separate harmonic components. 305	
Near horizontal patterns will be captured by the median filter and will be separated in the harmonic 306	
spectrogram H.  307	
Now we have two separated spectrograms for noise signals: R, which is derived from the first step, and H, 308	
which is derived from the second step. Summing these two spectrograms will build the noise spectrogram 309	
N. Subtracting N from the input amplitude spectrogram V will construct the transient spectrogram T.  310	
As can be seen in Fig. 2a in step 2, the dominant energy of the narrow-band signals with gliding 311	
frequencies in the range of 0.1 Hz to 1 Hz (the current induced harmonic tremor noise as introduced in the 312	
Sect. 2) is captured in the noise spectrogram N, but part of that is still remained in the transient spectrogram 313	
T. The signals with changing frequency that don’t form complete horizontal lines in the spectrogram are 314	
difficult to be captured by our HPS algorithm so part of their energy remains in the final spectrogram.  315	
 316	
3.5 Reconstruct the denoised signal 317	
In order to reconstruct the noise-removed signal in time domain we must add phase information to the 318	
spectrogram. We had separated the complex-valued spectrogram X into its amplitude V and its phase 319	
component using Eq. 1 and all the further modifications have been applied to the amplitude spectrogram V. 320	
The phase of input signal SO is mostly affected by the phase of noise signals as they have the dominant 321	
energy in the signal. Therefore we use phase information of SO in order to reconstruct the noise signal. We 322	
add this phase to the noise spectrogram N using the following equation: 323	
	324	

 𝑁′ = 𝑁 ∗ 𝑒𝑥𝑝 1𝑗 ∗ 𝜑 , (7) 

	325	
where 𝐍′ is the complex-valued noise spectrogram. We reconstruct the noise signal NS from the complex 326	
spectrogram 𝐍′, using the inverse STFT. Finally the OBS denoised signal HPS (HPS here represents the 327	
SO signal after the HPS processing) is obtained by subtracting the noise signal from the input OBS signal 328	
SO using the following equation: 329	
	330	

 𝐻𝑃𝑆 = 𝑆𝑂 − 𝑁𝑆,	 (8) 

	331	

3.6 Parameters selection 332	
 333	
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Many typical noise signals observed at OBSs are harmonic, monochromatic or narrow-band signals with 334	
gliding frequencies (see the Sect. 2). In order to extract the expected narrowband noise signals from the 335	
STFT we require a high frequency resolution in the spectral domain therefore making it necessary to use 336	
sufficiently long time windows for the spectral analysis. Here we use an FFT window length of 163.84 337	
seconds with an overlap of 75%, corresponding to an FFT size of 16384 at a sampling frequency of 100 Hz, 338	
which corresponds to a frequency resolution of 0.006 Hz. 339	
We use a standard kernel size of 80 for the median filter in the MED algorithm. The larger the kernel size, 340	
the more noise signal would be captured. Our tests show that a kernel size of 80 is the largest size, which 341	
leads to a safe separation without capturing any energy of the earthquake signal. 342	
 343	
4 Results and Discussion 344	
 345	
4.1 General Results  346	
 347	
In this section we aim to prove the reliability of our HPS noise reduction algorithm and evaluate the 348	
improvement of the OBS data. We applied the method to synthetic and real teleseismic earthquake data 349	
recorded by the OBS station D10 of the DOCTAR array (e.g., Hannemann et al, 2016, Hannemann et al., 350	
2017). The synthetics were calculated for a source-receiver epicentral distance of 40° (focal depth: 45 km, 351	
focal mechanism: double couple, source duration: 4 s) by using the full wavefield software qseis (Wang, 352	
1999) and a modified average ak135 velocity model including a water layer (Kennett et al, 1995). The 353	
crustal structure of the velocity model is adapted to the 11.5 km deep oceanic crust in that area and the 354	
water depth is fixed to 5 km. Real oceanic noise of the ZRT components recorded by the station D10 is 355	
added to the corresponding components of the synthetic teleseismic signal. We created synthetics for three 356	
different noise scenarios at the beginning (N1), during (N2) and after (N3) tidal currents (Fig. 3) each with 357	
theoretical SNR of 1–10 between noise and P-onset on pure synthetic Z. Throughout the whole paper the 358	
SNR is defined as root mean square (RMS) of the signal divided by RMS of the noise. For further details of 359	
synthetic data creation see Fig. S2. For the comparison with real data, we selected in total 46 teleseismic 360	
events with Magnitudes Mw >5.6 and epicentral distances of 30–160° (see Fig. S1).  Here only those 361	
events were used, where a P onset could be visually identified. The pre-selection of the events is taken from 362	
Hannemann et al. (2017) and expanded by some events with low magnitudes (see Table S1).  In the 363	
following, we will discuss the improvement of the records by comparing the seismograms and 364	
spectrograms of synthetic data and confirm it with real data. We also verify the improvement for two 365	
seismological applications (teleseismic surface wave group velocity analysis and receiver function 366	
analysis). For some observations, e.g. checking the phase arrival of the teleseismic body waves, we rotated 367	
the arbitrary orientated horizontal components of the real data into the ZRT system. The orientation angles 368	
are taken from the previous study on the DOCTAR array (Hannemann et al., 2016). 369	
 370	
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Comparing the spectrograms and waveforms of the synthetic example a significant improvement of the 371	
SNR is seen in the HPS processed data set on all components  (e.g. Fig. 3 and Fig. S3–5 for the real data). 372	
The continuous spectral lines of the assumed electronic noise are removed from the data, as well as most of 373	
the spectral lines related to tremor episodes of head-buoy strumming. During the tides, we observe a 374	
reduction of the spectral amplitudes for the tilt noise, as well as for the general background noise (Fig. 3 375	
and Fig. S3–5) on the horizontal components. The results concluded from the spectrograms are confirmed 376	
by the spectra (Fig. 2b), which show the removal of the spectral peaks of the electronic noise (0.05, 0.1, 377	
0.15 Hz) and the tremor episodes (0.5–1 Hz). The amplitudes of the frequencies corresponding to the 378	
teleseismic event and its waveforms are maintained (see Fig. 3). 379	
To quantify the improvements of the method, we calculated the cross-correlation of the teleseismic 380	
waveform, the SNR of the teleseismic body-wave phases and the RMS of the teleseismic waveform before 381	
and after denoising. Because most of the oceanic noise ranges at frequencies below 1 Hz, which is also the 382	
most interested frequency range of the OBS analysis, a 1 Hz low pass filter is applied to the signals before 383	
all result calculations.  384	
We calculated the correlation coefficient for synthetic SO and HPS compared with the synthetic earthquake 385	
signal for different SNR and noise realizations and plotted it in Fig. 4a. The high correlation coefficients for 386	
HPS and synthetic compared with SO and synthetic in all cases demonstrate that HPS denoising preserves 387	
the earthquake signal and doesn’t introduce waveform distortion. 388	
For the SNR calculation we used a signal window of 30 s starting from the theoretical onset (direct P on Z 389	
component, direct S on R and T component and Love wave on the T component) and a noise window of 60 390	
s starting 70 s before the theoretical onset. For the Love wave, the SV phase (R component) and P phase (Z 391	
component) the SNR increased significantly (Fig. 4b). For SH phase on T component we observe a few 392	
apparent SNR decreases comparing SO with HPS traces (Fig. 4b). The SNR is calculated on the noise 393	
contaminated SO traces, it hence compares noise with noise contaminated synthetic signal. Because of this 394	
and because we added the synthetics amplified according to SNR for P-arrival on Z component to the real 395	
noise, in a few cases we observe apparent SNRs slightly below 1 for a few SH phases (see Fig. 4b).   396	
The RMS amplitudes of a noise free R component synthetic, SO and HPS signals are estimated over 8 397	
seconds windows with 80% overlap and plotted in Fig. 4c. Comparing the RMS amplitude of the synthetic, 398	
SO and HPS we see that the synthetic and HPS have similar amplitude ranges while SO has a much higher 399	
amplitude. This shows a significant noise reduction in HPS along with preserving the earthquake energy. 400	
As there is some noise remaining after denoising we see some differences in the overall shapes of the RMS 401	
amplitude of the synthetic and HPS (especially after minute 24 which is almost at the end of the energy of 402	
the synthetic signal), however HPS shows peaks on the arrival times of seismic phases of the synthetic 403	
which means that the energy of seismic phases is preserved after denoising. The minor changes in seismic 404	
phase shapes of the synthetic and HPS is also due to remaining noise. The seismograms and spectrograms 405	
related to this example are presented in Fig. 3. Figure 4d shows a comparison of RMS amplitude of the 406	
original noise in SO (blue curve), the remaining noise in HPS after denoising (red curve) and the synthetic 407	
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earthquake (green curve) signals. Besides a high noise reduction in HPS, the plot shows that the remaining 408	
noise is independent from the pattern of the synthetic earthquake, which confirms that denoising process 409	
doesn't affect the earthquake energy in the HPS signal. 410	
 411	
4.2 Applications 412	
By applying our HPS noise reduction algorithm, we aim to improve seismological analysis, especially 413	
those involving the analysis of teleseismic body and surface waves. Valuable constraints of the Earth’s 414	
structure in oceanic regions can be taken from the analysis of the SH-wavefield like Love-waves, which are 415	
not influenced by the water column, but often cannot be analyzed due to strong noise on the horizontal 416	
components. SV waves are also often masked by noise, but are for instance important for tomography 417	
studies or S and SKS shear wave splitting analysis (e.g. Silver and Chan, 1991). Other techniques using the 418	
SV-wavefield like the Z/R ratio of the teleseismic Rayleigh waves (Tanimoto & Rivera, 2008), or receiver 419	
functions (RF) (Langston, 1979) also rely on clear radial component readings.  In the following we will 420	
show the improvement which was achieved for the SH arrivals and for the group velocity analysis of 421	
teleseismic Rayleigh- and Love waves, as well as for the receiver function analysis.  422	
 423	
4.2.1 SH-waves  424	
Since SH-waves are weak in energy and displayed on the noise-contaminated transversal horizontal 425	
component (T), they are sparsely observable on OBS data and mostly disappeared behind the high noise 426	
level. However, on the HPS processed data we see an improvement of the SNR on the T-component (see 427	
Fig. 4b). In many cases the SH-phase is clearly identifiable on the HPS T-component (see Fig. 3d for a 428	
synthetic data and Fig. S6 for a real data example). 429	
 430	
4.2.2 Surface waves  431	
Rayleigh waves in deep oceanic domains are strongly influenced by the water column, because most of the 432	
wave energy is traveling in the water. This poses a problem, if the water depth changes along the travel 433	
path. Love waves are not influenced by the water column but are recorded only on horizontal components 434	
and their recordings on OBS systems are therefore more disturbed by strong noise sources like tilt inducing 435	
tidal currents. To test the performance of the HPS noise reduction algorithm in the long period range, we 436	
performed a measurement of group velocities of Love and Rayleigh waves with the Multiple Filter 437	
Technique (MFT) (Dziewonski et al., 1969). Group velocity curves are for instance used as input data for 438	
tomographic studies to reveal the 3D structure of the lithosphere and upper mantle. Figure 5 shows group 439	
velocity curves for the synthetic Love wavetrain for the three noise situations N1-N3. For the MFT analysis 440	
we used the software mft96 (Herrmann, 2013). The unfiltered seismograms in the top panels (Fig. 5a–c) 441	
correspond to the P-wave SNR = 1 scenario. In all three cases the clarity of the dispersion curve is greatly 442	
enhanced in the images resulting from the HPS processed traces (Fig. 5e–g) in comparison to the noise free 443	
image (Fig. 5d). Also the seismogram traces improved greatly. The dispersion maps show that also noise 444	
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energy in the range of the signal frequencies is removed successfully in the frequency range 0.05 to 0.2 Hz. 445	
Longer signal periods which are weakly visible in the noise-free image (Fig. 5d) can not be recovered. The 446	
corresponding results for the Rayleigh wavetrain on the radial component are shown in Fig. S7. For the N3 447	
case here also longer periods down to 40 s can be successfully denoised. 448	
For an evaluation of the HPS denoising technique on real surface wave data we selected 23 events with 449	
magnitudes larger than Mw 6.0 in the distance range between 47.5° and 159.6° and added one event with 450	
Mw= 5.6 at a distance of 37.9° (see Fig. S1). Figure S8 shows seismograms and MFT analysis examples 451	
for three events with different magnitudes and in different distances. The resulting group velocity 452	
dispersion curves for all 24 events for the original and processed data are shown in Fig. S9. For all 453	
components we find that the improved signal to noise ratio of the processed data allows the analysis of 454	
more events and of a broader period range than in the original data. 455	
 456	
4.2.3 Receiver Functions  457	
Receiver functions have been proven to be a valuable tool to observe the Earth’s structure using teleseismic 458	
events (e.g., Langston, 1979, Ammon et al., 1995, Kind et al., 1995; Rondenay, 2009). Separating the 459	
source site from the receiver site by deconvolution allows to estimate the Earth’s structure beneath the 460	
station. Here, we compare the receiver functions calculated from the synthetic examples and from real data 461	
before and after denoising (Fig. 6). The synthetics used for the receiver function calculation are pure 462	
synthetic signals contaminated by real noise (N1, N2, N3). On the synthetics, the SNR for P ranges 463	
between 1–10 (for detailed description of the synthetic creation, see Sect. 4.1, Fig. 3 and S2). Receiver 464	
function analysis and the observation of the Earth’s structure beneath the DOCTAR array was already 465	
calculated by Hannemann et al. (2017). Here, we don’t aim to estimate the crustal and mantle structures, 466	
instead we aim to compare the P-receiver Functions of the radial component calculated from the original 467	
synthetic and real data (SO R-RF) with receiver functions of the radial component from the HPS processed 468	
synthetic and real data (HPS R-RF). To calculate the receiver functions, we applied the iterative 469	
deconvolution in the time domain (Ligorría & Ammon, 1999). We corrected the data for the Ps-phase, 470	
quality controlled (e.g. P-onset at 0 s on Z of HPS R-RF), stacked and low-pass filtered the synthetic data at 471	
2 Hz and bandpass filtered the traces between 0.05–0.5 Hz for the real data with a zero-phase Butterworth 472	
filter. For both synthetic and real receiver function, the noise level strongly decreased and we observe a 473	
significant decrease in variance on the HPS traces compared to the SO traces (Fig. 6). 474	
Our result shows that determination of the crustal- and mantle-phases is more reliable on the HPS R-RF 475	
stack than on the SO R-RF stack for both synthetic and real data (Fig. 6).  We observe more distinct Ps-476	
phase arrivals on the HPS R-RF than on the SO R-RF stack. The Ps-phases are caused by the P-to-S 477	
conversion at the Mohorovičić-, 410-km and 660-km discontinuity (hereafter referred to as Moho, 410, and 478	
660, respectively; e.g. Deuss, 2009). For the synthetic example, we expect the P-to-s conversion at the 479	
Moho at depths of 11.5 km to arrive at 0.8s, which is better resolved in the synthetic HPS R-RF than in the 480	
synthetic SO R-RF, same for it’s multiple (PMsPp) and the water multiples every 6.5s (MWATER, Fig. 6a).  481	
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 Assuming ak135 velocities we would expect the P410s-phase (Ps conversion at the 410) to arrive at around 482	
43 s and the P660s-phase (Ps conversion at the 660) at around 66.8 s delayed to the direct P-arrival (see Fig. 483	
6 a & b).  484	
 485	
Instead of a rather weak peak on the SO-R-RF real data stack we observe a strong peak at around 43 s, with 486	
a good SNR on the HPS R-RF stack, indicating the sharp velocity contrast at the 410 (Fig. 6b).  Comparing 487	
the SO-RF and the HPS-RF real data stacks, the amplitudes of the P660s-phase decreased and became a 488	
broader peak, which we would expect from a conversion at a more gradual velocity contrast at the 660 (Fig. 489	
6b). These results are in line with the analysis of the crustal and mantle structure beneath the DOCTAR 490	
array presented by Hannemann et al. (2017). The negative phase (X1 in Fig. 6b) arriving at around 5 s is 491	
stronger on the HPS-R-RF real data stack than on the SO-R-RF real data stack and might either indicate the 492	
PpSs multiple of the Ps-phase at the Moho, or the direct P-to-s conversion at the LAB.  On the HPS-R-RF 493	
real data stack we observe a strong positive phase (X2) arriving at 12 s (Fig. 6b). This phase has not been 494	
identified by Hannemann et al. (2017) and a detailed analysis of its origin is beyond the scope of this study, 495	
but it might be related to the water multiples. 496	
In general, receiver functions of OBS data are difficult to analyze and although the SNR of the HPS 497	
processed data has been improved, the analysis of the real data is still difficult, especially compared to 498	
receiver functions from land stations. 499	
 500	
5 Conclusions 501	
 502	
In this work we have developed a method to separate the signals of teleseismic earthquakes from other 503	
signals in the OBS data resulted in noise reduction of OBS data. Our method is a combination of two HPS 504	
algorithms from the field of MIR to separate harmonic and percussive components of an OBS data. 505	
Earthquake signals as percussive components are separated from noise signals as harmonic components. 506	
The noise signal is reconstructed using the phase information of the original signal. Subtracting the noise 507	
signal from the original signal derives the noise-reduced signal. We discussed the motivation of using a two 508	
step HPS approach, that results in a clean noise-reduced signal where the teleseismic broadband earthquake 509	
waveforms are preserved with their whole frequency content. We also discussed the type of noise signals, 510	
which are eligible for our noise reduction algorithm that contains most of the OBS noise energy.  511	
The extracted noise signal contains some different signals where each can be derived by applying a band 512	
pass filter to the extracted noise signal in a proper frequency band. The derived signal may be used in 513	
researches related to that signal. For example the microseism signal can be extracted and used for 514	
investigation of the source generation area of microseisms.  515	
 516	
The comparison of original and HPS noise reduced synthetic signals shows how significantly the SNR has 517	
improved after applying our method (Fig. 4b). However, the apparent SNR improvement highly depends on 518	
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the noise type characteristics. For Noise type 1 (N1), it seems like there is no SNR improvement on the T-519	
component (Fig. 4b, the second panel). N1 is taken from the beginning of the tidal current event, where we 520	
have a considerable time dependent change in noise-frequencies. In this example, the noise has similar 521	
frequencies with the signal. The visual inspection of the corresponding trace indicates a clear improvement 522	
of the waveform for SH-wave on T component, even though the SNR shows no improvement. The results 523	
from the cross-correlation (Fig. 4a), confirm the improvement and preservation of the waveform. Since we 524	
are focusing on the preservation of the waveform and the SNR comparison highly depends on the noise 525	
situation, the SNR should not solely be used to evaluate the improvement by HPS noise reduction method. 526	
Even if the SNR is not improving in a few cases, the analysis of the cross-correlation, RMS and the pure 527	
waveforms, verify the improvement of the traces by the HPS noise reduction method. From our analysis of 528	
the broadband seismograms, we find out that the improvement is significant and may allow a broader and 529	
more reliable analysis of teleseismic earthquake data. Applications like the receiver function technique and 530	
SH-wave and Love wave analysis are considerably improved after applying the HPS noise reduction 531	
algorithm. For the receiver function, we could observe a more distinct phase for the P-to-S conversion at 532	
the Moho for the synthetic case and at the 410 km discontinuity for the real data. Group velocity analysis of 533	
teleseismic surface wavetrains showed that application of the HPS noise reduction technique allows to 534	
analyze more events and to analyze them in a broader frequency range. Especially more and wider Love 535	
wave dispersion curves could be recovered. The noise reduction algorithm improves the horizontal 536	
components significantly, which allows the OBS community to apply a broader range of seismological 537	
methodologies, including the horizontal components, to the OBS-data. 538	
In conclusion, the presented method is a powerful algorithm for separation and extraction of different 539	
signals from OBS data and has especially application in noise reduction of OBS signals. 540	

Code and data availability 541	

The Python code related to the proposed method along with an example of real data is freely available from 542	
https://github.com/ZahraZali/NoiseCut. A Jupyter notebook with all the Python codes and parameters relat-543	
ed to the proposed method is available as an electronic supplement. The sea floor seismological data were 544	
archived by Alfred Wegener Institute (AWI), Helmholtz Centre for Polar Research, Bremerhaven, Germa-545	
ny, and are available upon request. The supplementary material related to this article contains list of all 546	
earthquakes used in this study and a map showing their location. The illustrations of the semi-synthetic data 547	
generation are presented in the supplementary material as well. An example of three components seismo-548	
gram and spectrogram before and after applying HPS noise reduction algorithm to real data, Rayleigh wave 549	
group velocity analysis for a synthetic example, MFT analysis for three real events and group velocity 550	
curves for some real events are also presented through figures in the supplementary material. 551	
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 777	
 778	
Figure 1: Spectrogram of an one-day OBS signal shows ocean bottom noise on Z (a), H1 (b) and H2 (c) 779	
components. The data was recorded by the station D10 of the DOCTAR array with a sampling frequency of 100 780	
Hz. The spectrogram were calculated using a window length of 𝟐𝟏𝟔 sample and an overlap of 75%. The signal of 781	
an earthquake (Mw=7.3) on 20.3.2012 at around 18:00 at the station D10 is shown in (a).  The tidal cycle of the 782	
current-induced noise is clearly visible during the high tilt noise episodes (grey box in b). The white box in (b) 783	
highlights the tremor episodes caused by the head buoy strumming. On H2 (c) we see an instrument-related, 784	
presumably electronic noise (black boxes). The high energy of the secondary microseism band at around 0.2 Hz 785	
is visible on all components. 786	
 787	
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 788	
 789	
Figure 2: Method flowchart (a) Illustration of the processing steps with a real data example. Left panel shows 790	
the first step of the method where using the similarity matrix (SIM) in the frequency range below 0.1 Hz and 791	
above 1 Hz, we divide the spectrogram of the signal into two spectrograms of repeating (R) and non-repeating 792	
(NR) patterns. Right panel shows the second step of the method where we apply a median filter (MED) to the 793	
frequency range of 0.1 to 1 Hz in order to remove noises from this frequency range. As the interested frequency 794	
range for OBS signals is below 1 Hz, the spectrograms show only this frequency range. Finally the noise 795	
spectrogram (N) is created by summing the separated noises derived from two steps and the noise signal (NS) is 796	
derived using ISTFT. We obtain the noise reduced signal (HPS) by subtracting the NS from the input OBS 797	
signal (SO). STFT, short time Fourier transform. HPS, harmonic-percussive separation. SIM, similarity matrix. 798	
MED, median filtering. ISTFT, Inverse Short Time Fourier Transform. (b) Spectrum of the original signal (SO) 799	
and the HPS noise reduced signal. 800	
 801	

 802	

 803	
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 804	
 805	
Figure 3: Comparison of the synthetic seismograms and spectrograms of the original signal SO and the HPS 806	
noise reduced signal on the R and T components for a synthetic signal with SNR= 1.5 before denoising (SNR is 807	
defined as RMS of the signal divided by RMS of the noise). (a) & (c) Show one day seismograms and 808	
spectrograms for R and T components, respectively. The spectrograms clearly show the reduced noise level on 809	
the HPS signal. Squares show the earthquake section. The arrows in (a) show three noise situations (N1-N3). (b) 810	
& (d)  Show seismograms of the earthquake section on SO and HPS signals, with detailed view of the P-arrival 811	
(on component R in subfigure b) and SH-arrival (on component T in subfigure d). The whole amplitude and the 812	
phase information of the synthetic earthquake are preserved in the HPS signal but it’s very less noisy compared 813	
with SO. Red lines show P-arrivals in (b) and SH-arrival in (d). 814	
 815	
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 816	
 817	
Figure 4: Comparison of the synthetic SO and HPS signals (both are lowpass filtered at 1Hz). (a) Correlation 818	
coefficients (for the whole trace) for different SNRs and 3 realistic noise realizations for Z, R and T components 819	
(Component is abbreviated as Comp.). (b) Improvement of SNR for direct body wave phases and the Love wave. 820	
We see significant improvement in both correlation coefficient and SNR for all the realizations after denoising. 821	
The gray dotted lines in (b) mark the line with gradient 1 (no improvement of SNR). (c) Comparison of the root 822	
mean square (RMS) amplitude of one example of the SO, HPS and synthetic earthquake signals. The HPS signal 823	
has significantly lower energy compared with SO due to noise reduction, but has almost similar energy 824	
compared with the synthetic earthquake which shows the energy of the earthquakes and all the phase arrivals 825	
are well preserved during the denoising process. This signal is the same example shown in Fig. 3 (R component, 826	
SNR= 1.5 before denoising). (d) The RMS of the original noise (blue trace: |SO - Synthetic|) and the remained 827	
noise after denoising (red trace: |HPS- Synthetic|) compared to the synthetic earthquake signal. A high noise 828	
reduction is seen in the red trace compared with the blue one and the remained noise has an inconsistent pattern 829	
compared to the synthetic earthquake that confirms denoising process doesn’t modify the earthquake energy 830	
and its phase arrivals. 831	
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 832	
 833	
Figure 5: Love wave group velocity analysis for unfiltered and HPS processed synthetic Love wavetrains 834	
contaminated by three real world OBS noise signals (noise signals N1-N3, station D10, DOCTAR experiment, 835	
see Sect. 2 for more details). (a)–(c): Lower panels: Unfiltered synthetic signal (SO) MFT analysis results. Top 836	
panels: seismogram time windows corresponding to the range of group velocities shown on the y-axis. (d) Noise 837	
free synthetic case. (e)–(g): HPS processed input traces for noise situations N1-N3 (lower panel: MFT analysis 838	
result, top panel: HPS processed seismogram). 839	
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 840	
 841	
Figure 6: R-receiver function comparison of synthetic and real data examples. (a) Comparison of the synthetic 842	
data examples, lowpass filtered at 2 Hz. The pure synthetic R-RF is shown in the uppermost panel, followed by 843	
the synthetic SO and the synthetic HPS R-RFs. The black lines show the summed individual R-RFs (blue 844	
waveforms). The theoretical onset times for this specific model are marked. Red line: Ps-arrival of the Moho 845	
(PMs) and its multiple (PMsPp), violet line: Ps arrival of the 410 (P410s), green line: Ps-arrival of the 660 (P660s), 846	
dark-blue arrows: Multiples in the watercolumn of 4.9 km (MWATER), repetitive every 6.5s. (b) Comparison of 847	
the real data, bandpass filtered at 0.05–0.5 Hz. The upper panel shows the R-RFs of the real SO traces and the 848	
lowermost panel the R-RFS of the real HPS traces. The individual traces (blue) are shown as stack (black line) 849	
and the theoretical onset times based on the average ak135 velocity model are shown as violet line (P410s) and 850	
green line (P660s).  The origin of the phases X1 and X2 (grey) remain unclarified, since their interpretation is 851	
beyond the scope of this study. 852	
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