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Abstract. Amazon forest dieback is seen as a potential tipping point under climate change. These concerns are partly based-

on an early coupled climate-carbon cycle simulation, that produced unusually strong drying and warming in Amazonia. In

contrast, the 5th generation Earth System Models (CMIP5) produced few examples of Amazon dieback under climate change.

Here we examine results from seven 6th generation models (CMIP6) which include vegetation dynamics, and in some cases

interactive forest fires. Although these models typically project increases in area-mean forest carbon across Amazonia under5

CO2-induced climate change, five of the seven models also produce abrupt reductions in vegetation carbon which indicate

localised dieback events. The Northern South America region (NSA), which contains most of the rainforest, is especially

vulnerable in the models. These dieback events, some of which are mediated by fire, are preceded by an increase in the

amplitude of the seasonal cycle in near surface temperature, which is consistent with more extreme dry seasons. Based on the

ensemble mean of the detected dieback events we estimate that 7+/-5% of the NSA region will experience abrupt downward10

shifts in vegetation carbon for every degree of global warming past 1.5°C.

1 Introduction

A ‘tipping point’ commonly refers to small changes to input levels causing a system to abruptly transition to some alternative

(often less desirable) stable state (Lenton et al., 2008). Future tipping points pose a risk to both natural ecosystems and, by

extension, human activities, as they produce abrupt system wide changes that are often difficult or even impossible to reverse15

(Lenton et al., 2013). The Amazon rainforest is one example in the climate system that is at risk of experiencing a tipping event,

with the possibility of abrupt forest dieback in response to rising global temperatures (Cox et al., 2004). Amazon dieback has

the potential to accelerate global warming through reducing the Amazon’s ability to act as a carbon sink, and releasing carbon

dioxide that would lead to additional global warming (Cox et al., 2000). Tipping points may play an important role in the future

of our changing climate (Jørgensen et al., 2014; Lenton et al., 2013), with previous analysis of CMIP5 models suggesting that20

multiple regional abrupt transitions could occur for global warming levels less than 2 degree Celsius (Drijfhout et al., 2015).

There are several factors which could contribute to a decline in vegetation in the Amazon, including a lengthened dry season,

increased fire frequency, and reduced precipitation (Malhi et al., 2009). The number of extreme hot and dry days in the Amazon

is predicted to increase with global warming (Vogel et al., 2020) and the length and intensity of the dry season expected to

intensify (Malhi et al., 2009). Further drying in the Amazon is anticipated from the slowdown of the Atlantic Meridional25

Overturning circulation due to ice melt causing an influx of fresh water into the North Atlantic (Lenton et al., 2019). Moisture
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stress resulting from severe droughts in the Amazon is likely to result in a degree of tree mortality (Phillips et al., 2009). As

the rainforest dries it becomes more vulnerable to fire which, coupled with the increased frequency of fires seen in the Amazon

over recent years, could lead the rainforest to pass a tipping point and result in vegetation dieback (Malhi et al., 2009; Aragão

et al., 2018). Anthropogenic deforestation also contributes to this by reducing dry season rainfall and decreasing the resilience30

of the forest to climate change, potentially leading to permanent forest loss in some regions of the Amazon (Zemp et al., 2017).

Mechanisms which result in the drying of the Amazon rainforest can therefore be considered to be the main cause of vegetation

dieback.

Dieback tipping events are primarily thought of as bifurcation type tipping points (Ritchie et al., 2021), which occur when

external climatic factors reduce the resilience of a state (e.g. forest) and ultimately cause the system to tip into a new contrasting35

state (e.g. savannah) (Scheffer et al., 2009). For some bifurcation type tipping points there are generic features of a system that

can be detected to indicate the approach of a tipping point (Scheffer et al., 2009; Dakos et al., 2008). The most common example

is ‘critical slowing down’, where a system becomes increasingly slow at recovering from small perturbations as negative

feedbacks become overwhelmed by positive ones. Critical slowing down can be observed by increases to the autocorrelation

and variance in a state variable (Scheffer et al., 2009; Dakos et al., 2008). A recent study which looked at such signals in40

satellite-retrieved vegetation greenness, reports evidence of reducing resilience of the Amazon rainforest since 2005 (Boulton

et al., 2022).

However, previous research into projections of Amazonian vegetation dieback has also suggested that generic early warning

signals (EWS) such as these fail in the Amazon, but that more system specific indicators may be found (Boulton et al., 2013).

For example, the interannual variability of the atmospheric CO2 concentration, as a function of tropical temperature variability,45

has been shown to be connected to the sensitivity of tropical carbon to climate change (Cox et al., 2013; Wenzel et al., 2014).

This metric shows trends which are also consistent with reducing resilience of tropical forests (Wang et al., 2014; Luo and

Keenan, 2022).

Recent studies (Boulton et al., 2022; Luo and Keenan, 2022) focus on fairly short observational records of less than 60

years. One recent study, using CMIP5 models, determined that Amazon dieback, under the high emissions scenario RCP8.5, is50

not likely to occur in the 21st century but recognises that an increase in anthropogenic deforestation could bring the Amazon

closer to a dieback event (Chai et al., 2021). Meanwhile, other studies predict the Amazon rainforest to have a low resilience

to climate change, coinciding with human pressures such as deforestation (Hirota et al., 2011). There is remaining uncertainty

associated with the likelihood of a dieback event occurring, stemming largely from uncertainty in the effects of important

factors such as the extent of CO2 fertilization and soil nutrient limitations (Rammig et al., 2010; Hirota et al., 2021). In this55

paper we look at the projections from the latest CMIP6 Earth System Models for evidence of Amazon dieback and identify an

indicator which is based on longer-term temperature records.
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Table 1. CMIP6 models used within this study (Nijsse et al., 2020; Döscher et al., 2022; Arora et al., 2020; Tokarska et al., 2020; Wang

et al., 2021).

Model Institution Land Surface

Model

Transient Climate

Response (TCR)

(°C)

Precipitation

change to a dou-

bling of CO2

(mm/year)

Fire Simulated

EC-Earth3-Veg EC-Earth-

Consortium

HTESSEL 2.6 -139 yes

GFDL-ESM4 NOAA-GFDL LM4.1 1.6 -60 yes

MPI-ESM1-2-LR Max-Planck-Institut

für Meteorologie

JSBACH 3.2 1.6 -57 yes

NorCPM1 EarthClim CLM4.0 1.6 -76 yes

TaiESM1 AS-RCEC CLM4.0 2.3 -60 no

SAM0-UNICON Seoul National Uni-

versity

CLM4.0 2.3 -282 no

UKESM1-0-LL Met Office Hadley

Centre

JULES-ES-1.0 2.7 -1.6 no

2 Methods

2.1 CMIP6 models, experiment runs and data used.

Climate models that incorporate dynamic vegetation from the 6th Phase of the Coupled Model Intercomparison Project CMIP660

were utilised in this study (Meehl et al., 2014). See Table 1 for the corresponding seven CMIP6 climate models. For the purpose

of this study we focus on the climatic drivers alone impacting vegetation and therefore make use of the 1pctCO2 runs where

CO2 is increased by 1% per year (Eyring et al., 2016). Data from the unforced PIControl runs (a control run with a fixed pre-

industrial CO2 concentration) were also used to determine each model’s internal variability. Primarily, we use model output

data of the vegetation carbon and surface temperature for the seven climate models in the NSA region. The amplitude of65

the temperature seasonal cycle in this study is defined as the difference between the maximum and minimum monthly mean

for each year. All anomalies presented correspond to the yearly mean relative to the mean of the first ten years, aside from

temperature anomalies which correspond to the ten year running mean relative to the mean of the first ten years.
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2.2 Abrupt shift detection algorithm.70

The algorithm used to detect abrupt shifts is relatively simple by design. Three criteria must be be fulfilled for a grid point to

be identified as containing an abrupt shift in the vegetation carbon. Namely, the vegetation carbon must change by at least 2

kgC m−2 over a 15-year period and that this must contribute to at least 25% of the overall change in vegetation carbon. Finally,

to remove detected abrupt shifts that might be due to a model’s high internal variability the mean annual rate of change of the

abrupt shift must be at least three times larger than the variability of the rates of change in the unforced control run. The left75

column of Supplementary Fig. S2 provides an example of a grid point that correctly gets rejected based on this final criterion

that would otherwise be classified as an abrupt shift. Whereas, the right column shows an example of a clear abrupt shift that

successfully satisfies the final criterion.

Grid points where abrupt shifts were detected are subsequently sorted based on the direction of the abrupt shift (positive or

negative) and the direction of overall trend (positive or negative). This results in four classifications of abrupt shifts, however,80

for our analysis we will solely focus on dieback abrupt shifts corresponding to the overall trend and direction of the abrupt shift

being negative. This type of abrupt shift can be used as an analogy for a tipping event where a region changes equilibrium state

from rainforest to savannah. We also checked whether generic EWS were present in detected grid points of the models anlaysed

during this study, but found no clear indication that critical slowing down could be used as a reliable EWS (see Supplementary

Fig. S1).85

2.3 Risk associated with for Amazon dieback.

Our system specific assessment of risk for Amazon dieback is to observe high sensitivities of the amplitude of the temperature

seasonal cycle to global warming. This is defined as the gradient of a linear regression fit to the amplitude of the temperature

seasonal cycle against global warming. For a comparison between grid points with abrupt shifts and those that do not, the

regression is fitted against the first 73 years of data corresponding to when CO2 has doubled from pre-industrial levels (noting90

that 91% of detected abrupt shifts occur after a doubling of CO2). To assess the risk of an abrupt dieback shift occurring the

percentage of grid points that experience abrupt dieback out of all grid points with sensitivities within a specified range is

calculated. This gives a measure of how likely it is for a grid point with a given sensitivity to feature a dieback event before the

end of the simulation run.

3 Results95

3.1 Detection of abrupt shifts

We focus our analysis on detecting Amazon dieback abrupt shifts in seven state-of-the-art climate models, which all enable

dynamic vegetation, from the 6th Phase of the Climate Model Intercomparison Project (CMIP6). Specifically, we are interested

in climate change induced dieback (rather than direct deforestation) and therefore consider the idealised scenario of CO2

increasing 1% per year starting from pre-industrial levels.100
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Figure 1. Abrupt shifts detected in the Amazon by the described algorithm and example time series for dieback shifts. (a-h) Maps of

detected abrupt shifts. Grid points coloured red indicate detected abrupt dieback shifts where the direction of the overall trend and the abrupt

shift are both negative. (h) Example time series for detected dieback shifts in each model, corresponding to grid points highlighted by black

crosses.

Figure 1a–g depicts spatially (grid points coloured red) abrupt Amazon dieback shifts, which indicate a move towards a

savannah state. Three models; NorCPM1, TaiESM1 and SAM0-UNICON all show a clustering of dieback abrupt shifts in the

north of the Amazon. GFDL-EMS4 also presents a coherent structure with abrupt shifts clustered in central-west Amazonia.

Compared to GFDL-ESM4, EC-Earth3-Veg has approximately 10% fewer abrupt shifts which are more scattered across the

Amazon basin. This is due to the high natural variability that is inherent in this model and is therefore highly sensitive to the105

threshold chosen for the final criterion (see Supplementary Fig. S3). Interestingly, UKESM1-0-LL display no dieback events,

despite showing large scale dieback in previous CMIP generations (Cox et al., 2004). Similarly, very few abrupt shifts are

detected in the MPI-ESM1-2-LR model.

Some sample time series of detected dieback abrupt shifts across the models are shown in Fig. 1h. Between the models there

is some variation in the general shape of abrupt shift time series, however, most exhibit a change of state from one equilibrium110

to another that would be expected of a tipping event.

3.2 Evolution and impact of abrupt shifts in the NSA region

Henceforth, we restrict our analysis to the IPCC AR6 defined North South America (NSA) region, which contains the majority

of the Amazon basin (see Fig. 2a), and features many of the detected abrupt dieback shifts (red points in Fig. 1). Figure 2b
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Figure 2. Plots showing the evolution of abrupt dieback shifts and vegetation carbon with global warming. (a) IPCC AR6 defined

regions of the Amazon. (b) Plot showing the evolution of the percentage of the NSA region that has experienced an abrupt shift with

increasing global warming. (c) Plot showing how the vegetation carbon anomaly relative to the mean of the first ten years evolves with global

warming. The plumes in (b) and (c) indicate the error in the averaged compiled models line (black).

shows how the fractional area of the NSA region to experience an abrupt dieback shift evolves for increasing global warming.115

Some models show clear abrupt shifts in the NSA area to experience an abrupt shift reflecting multiple gird points featuring

an abrupt shift at a similar level of warming. Strikingly, TaiESM1 shows about 20% of the NSA region suffering an abrupt

dieback event at about 1.7oC warming and by 3oC global warming about 40% of the NSA region would experience an abrupt

shift. The bold black line represents the mean behaviour and the plume gives the variability of all seven models. Although

some of the large abrupt shifts from individual models can still be identified, the model mean shows a smoother increase in120

fractional NSA area to undergo an abrupt shift under global warming. There is not a singular temperature threshold, instead

the risk of tipping increases (approximately linearly) between 1.3oC and 3oC of warming and reaches approximately 20% of

the NSA region to undergo an abrupt dieback shift.

Interestingly, when inspecting the NSA regional average abrupt changes are not obvious, despite a significant number of

local abrupt shifts (see Fig. 2c). Only the cluster of abrupt shifts at approximately 1.3oC warming for GFDL-ESM4 appear in125

the total vegetation carbon anomaly for the NSA region. Furthermore, the CMIP6 models do not even agree on the sign change

in vegetation carbon.

3.3 Risk of Amazon dieback

Three identified abrupt shifts, which all occur around a doubling of CO2 in different models, are shown in Fig. 3a–c and all

show a change of equilibrium state after the abrupt shift. Initially, vegetation carbon may increase due to the CO2 fertilization130

effect (c.f. Fig. 3a,b), however there exists a threshold in the CO2 concentration at which increased temperature and drying

overwhelm the positive effect of CO2 and results in an abrupt dieback shift. Fig. 3d–f show the trend in the temperature

6



Figure 3. Time series showing how the temperature seasonal cycle amplitude evolves over time for grid points which experience

abrupt dieback shifts. (a-c) Example time series of identified dieback shifts for three models at grid points 5◦S 65◦W, 0◦ 60◦W and 0◦

60◦W respectively. The red dotted line indicates the midpoint of the 15 year period where the abrupt shift is detected by the algorithm. (d-f)

The change in the amplitude of the temperature seasonal cycle with time and CO2 for these dieback shifts in each model. The solid lines

represents the 10 year running average of the seasonal cycle amplitude, while the dotted lines are the yearly data.

seasonal cycle associated with these three grid points. An increasing trend is observed in the amplitude of the temperature

seasonal cycle in the lead up to the abrupt shift (indicated by red dashed line) for the three examples. This suggests that an

increase in variability may be used to assess the risk of Amazon vegetation dieback occurring. This behaviour can be expected135

in the lead up to a vegetation dieback shift because the length and intensity of the dry season has been shown to increase due

to drying in the Amazon (Vogel et al., 2020; Malhi et al., 2009). The results shown in Fig. 3 provide motivation for further

investigation into whether this behaviour is observable in all grid points or only ones which eventually experience an abrupt

shift.

Figure 4 investigates the robustness of using the temperature seasonal cycle amplitude as a risk assessment for an impending140

dieback event. Specifically, we compare the distributions of grid points possessing an abrupt shift and those without for the
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temperature seasonal cycle amplitude sensitivity to global warming. The sensitivity is calculated up to a doubling of CO2

(91% of abrupt shifts are detected after a doubling of CO2) for all grid points and models (Fig. 4a-g). The histogram bars

are coloured according to the number of grid points featuring an abrupt shift (red) and not (purple) for the given sensitivity

intervals. Four of the five models that contain abrupt shifts within the NSA region (GFDL-ESM4, NorCPM1, SAM0-UNICON,145

TaiESM1; Fig. 4b,d,e,f) display clear thresholds in the sensitivity, such that above the thresholds only grid points with an abrupt

shift feature. EC-Earth3-Veg (Fig. 4a) provides an exception, however due to the high stochasticity of the model most of the

detected abrupt shifts are due to natural variability. Promisingly, MPI-ESM1-2-LR and UKESM1-0-LL (Fig. 4c,g) do not

possess grid points with high sensitivities and could therefore offer an explanation for not exhibiting any abrupt shifts in the

NSA region.150

Taking an ensemble mean of all the models, shows that grid points without an abrupt shift tend to have sensitivities centred

around zero, whereas abrupt shift grid points are positively skewed to higher sensitivities (see Fig. 4h). This means that the risk

of a grid point having an abrupt shift (defined as the ratio of gird points with an abrupt dieback shift to all grid points for each

sensitivity) generally increases for grid points with higher sensitivities to global warming as shown in Fig. 4i. The minimum

risk of a grid point experiencing an abrupt shift is for a sensitivity close to 0, where the temperature seasonal cycle amplitude is155

unaffected by global warming. As the sensitivity increases from 0.5 to 1.0K K−1 the risk of a grid point containing an abrupt

shift increases approximately linearly from 10% to 60%. For sensitivities greater than 1.0K K−1 the risk remains between

60% and 80%.The risk also increases to 35% for negative sensitivities, however this is largely from the EC-Earth3-Veg model

in which it is not clear how many of the detected shifts are indeed abrupt.

4 Discussion160

The effects of abrupt shifts observed in the NSA region may be limited if anthropogenic climate change is restricted to below

1.5 degrees, as set out in the aims of the Paris Agreement (UNFCCC, 2015). Exceeding 1.5oC warming is likely to result

in sharp increases in the areas experiencing abrupt shifts. Despite large areas of the Amazon experiencing tipping events

with warming, the abrupt shifts observed in Fig. 2 may be considered localised events. These are largely balanced out by the

increase in vegetation carbon seen elsewhere in the NSA region, likely resulting from CO2 fertilization, where an increase in165

photosynthesis rate results in an increase in biomass (Cox et al., 2004; Huntingford et al., 2013). This appears to indicate that

large scale regional dieback, as observed in previous generations of models, are not present in CMIP6 and the impacts will be

more localised. Thus, despite the CMIP6 models failing to agree on the overall impact of vegetation carbon in the Amazon,

abrupt shifts remain a threat to local communities and ecosystems.

Differences between modelled vegetation dieback arise for multiple reasons. Although there is a reduced spread in the170

CMIP6 model generation, ESMs continue to project different regional climate changes over Amazonia (Parsons, 2020). Even

for the same climate change, models produce a range of tropical forest responses, such as different sensitivities to drying (which

is affected by assumptions concerning the root depth of tropical trees), different responses to warming (controlled through
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Figure 4. Plots demonstrating the efficacy of the temperature seasonal cycle amplitude as method of assessing the risk of an oncoming

abrupt dieback shift. (a-g) Histograms with bins of width 0.2 showing the percentage area of the NSA region that have different sensitivities

of the temperature seasonal cycle amplitude to global warming, calculated up to a doubling of CO2 . The bar colors correspond to the type of

abrupt shift detected at the grid point with a specific sensitivity, as in Fig. 1, where purple bars indicate grid points where no abrupt shifts are

detected. (h) The mean of histograms a-g. (i) A bar chart showing how the percentage risk of a grid point, in any of the 7 analysed models,

experiencing a dieback shift changes with increasing sensitivity of the seasonal cycle amplitude to global warming

different optimum photosynthesis temperatures), and different representations of climate sensitive disturbance processes (e.g.

fires (Table 1)).175
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The assumed optimum temperature for photosynthesis has been highlighted as a particularly important factor in mediating

the response of tropical forests to climate change (Booth et al., 2012). The vegetation components of ESMs often also have

different responses to a given increase in atmospheric CO2 (Wenzel et al., 2016). The direct physiological effects of CO2 on

the rate of plant photosynthesis and on plant water use efficiency typically counteract the negative impact of climate change on

tropical forests (Betts et al., 2004). As a result, the extent of CO2 fertilization is another important difference across the models180

(Rammig et al., 2010).

Abrupt shifts are driven by stochastic variations in each model, which can be either interannually-generated climate variabil-

ity or the randomness of disturbance events (such as fire), which is assumed in some vegetation models. Where this stochastic

forcing is relatively small, the detected abrupt shifts will tend to be spatially coherent and determined by the underlying large-

scale patterns of climate change. However, in models where this stochastic forcing is more significant (e.g. EC-Earth3-Veg),185

detected abrupt shifts tend to be much less spatially coherent. Under these circumstances the detection of an abrupt shift is

more dependent on the threshold chosen (see supplementary material Fig. S3.

Some models have fire present, such as EC-Earth3-Veg, GFDL-ESM4, MPI-ESM1-2-LR and NorCPM1, while others do

not (e.g., UKESM1-0-LL, TaiESM1 and SAM0-UNICON) (see Table 1). It is interesting to note that UKESM1-0-LL, which

experiences no dieback shifts, also has no fires simulated within the model. However, the role that fire plays in inducing190

vegetation dieback in these models requires further experimentation and work.

Our analysis shows that typically the sensitivity of the amplitude of the temperature seasonal cycle to global warming

is higher for grid points subsequently featuring an abrupt dieback shift, compared with grid points with no abrupt dieback

(Fig. 4). Furthermore, the result remains robust for removing any single model from the analysis (see Supplementary Fig. S4).

This therefore offers the possibility of using this sensitivity as a system specific early-warning signal for future dieback in the195

Amazon. The increase in risk observed for negative sensitivities also could mean that any changes in moisture and temperature

cycles in the Amazon suggest an increased risk of an abrupt shift occurring.

We find evidence of clustered localised abrupt dieback shifts in over half the CMIP6 models analysed, however, this analysis

is limited by the number of CMIP6 models containing dynamic vegetation. Additionally, we use the idealised 1% per year

increase of CO2 run to focus on abrupt dieback shifts caused solely by anthropogenic climate change, though abrupt dieback200

can also be caused through land use changes such as deforestation.

5 Conclusions

Anthropogenic climate change could result in localised tipping events occurring in the Amazon rainforest, as observed in

several CMIP6 models. The dieback events detected would have severe consequences for local communities and ecosystems.

This study suggests that 7+/-5 % of the Northern South America region would experience abrupt downward shifts in vegetation205

carbon per degree of global warming above 1.5oC.
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Further research is needed to assess the risk of tipping events under climate change and to identify forewarning methods

that can be applied to observational data. However, our results indicate that the sensitivity of the amplitude of the temperature

seasonal cycle to global warming is a promising indicator of risk for local Amazon forest dieback.
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