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Abstract. Geoscientific models are simplified representations of complex earth and environmental systems (EESs). Compared

with physics-based numerical models, data-driven modeling has gained popularity due mainly to data proliferation in EESs

and the ability to perform prediction without requiring explicit mathematical representation of complex biophysical processes.

However, because of the black-box nature of data-driven models, their performance cannot be guaranteed. To address this

issue, we developed a generalizable framework for the improvement of the efficiency and effectiveness of model training and5

the reduction of model overfitting. This framework consists of two parts: hyperparameter selection based on Sobol global

sensitivity analysis, and hyperparameter tuning using a Bayesian optimization approach. We demonstrated the framework

efficacy through a case study of daily edge-of-field (EOF) runoff predictions by a tree-based data-driven model using eXtreme

Gradient Boosting (XGBoost) algorithm in the Maumee domain, U.S. This framework contributes towards improving the

performance of a variety of data-driven models and can thus help promote their applications in EESs.10

1 Introduction

Geoscientific models are simplified representations of complex earth and environmental systems (EESs), where predictive

models can have a wide range of applications. For example, they can incorporate and advance the state of scientific knowledge

of EESs, and assess how they react to the changing conditions (Fleming et al., 2021; Reichstein et al., 2019). Furthermore,

evidence-based decisions and policies on EESs can be made through effectively evaluating their influences using these models15

(Fleming et al., 2021; Prinn, 2013), which would otherwise be impossible, or too costly and time-consuming to implement in

practice (Hu et al., 2015; Sohl and Claggett, 2013).

Two broad classes of models are often used to predict target environmental phenomena in EESs, physics-based numerical

models and data-driven machine learning models. Conventionally, the modeling of EESs relies heavily on physics-based mod-

els, developed based on the first principles of physics (Bergen et al., 2019), which require comprehensive understanding of20

the target EES and proper mathematical representations of all processes relevant to the target phenomena. As such, the long

development time, insufficient representations of system components, and difficulties in access and use set barriers for the
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wide application of such models. In contrast, data-driven models do not require explicit mathematical formulation of all under-

lying complex processes to perform predictive analysis. Thus, the development of data-driven models is often less involved.

Moreover, the proliferation of data further leads to the rise of data-driven modeling in EESs (Willard et al., 2020).25

For data-driven modeling, model performance relies heavily on the capability of the underlying machine learning (ML) algo-

rithms to retrieve information from data; this capability is controlled by the complexity of ML algorithms and their associated

parameters, that is, hyperparameters (Yang and Shami, 2020; Hutter et al., 2015). When the underlying ML algorithm is too

simple to learn complex patterns from data, we see large biases in the training phase (i.e., underfitting; Jabbar and Khan, 2015;

Koehrsen, 2018). In contrast, model overfitting occurs when the ML algorithm is overcomplicated to capture all random noises30

in the training data; the resulting model performs very well in training but poorly on the test (i.e., variance error). As such, to

improve model performance, we need to determine appropriate ML algorithms that can balance model bias and variance error

(Koehrsen, 2018).

There are various rules of thumb to choose an appropriate ML algorithm for data-driven modeling. When the model is

underfitting, we can choose more complex ML algorithms (e.g., from linear regression models to tree-based regression models).35

However, it can be more challenging in practice to reduce overfitting; model overfitting is often associated with long training

time and poor performance on test sets. Because of the black-box nature of data-driven models, only a handful of approaches are

available to deal with overfitting. One such approach is random sampling with or without replacement (Gimenez-Nadal et al.,

2019) in which data points are randomly selected for training and test. This approach attempts to ensure that the data samples

are uniformly distributed: both the training and test sets have data points to represent the entire domain space. Combined40

with this approach, other approaches like early stopping (Yao et al., 2007), cross validation (Fushiki, 2011) and regularization

techniques (Zhu et al., 2018) are used to address overfitting by tuning hyperparameters to balance the model performance on

training and test sets.

Hyperparameters affect the model performance through ML algorithms during model training, although they are external

parameters to data-driven models. However, not all hyperparameters have the same level of impact on model performance,45

as they affect different aspects of the ML algorithms to retrieve data patterns. For example, some hyperparameters control

the algorithm complexity, while some are used to reduce overfitting as mentioned above. By tuning these hyperparameters,

we want to identify optimal hyperparameter values for the ML algorithm. We can then apply the optimized ML algorithm to

maximize the model performance during training.

Tuning hyperparameters manually becomes unfeasible as the number of hyperparameters associated with the ML algorithm50

increases. Hyperparameter optimization algorithms are developed to automatically identify the optimal hyperparameters to

maximize model performance by minimizing a predefined objective function (i.e., loss function) of a data-driven model. A

variety of optimization approaches are available and categorized based on the mechanisms used to search the optimal hyper-

parameter values: 1) exhaustive search using grid or random search (Liashchynskyi and Liashchynskyi, 2019; Bergstra et al.,

2011) and 2) surrogate models using sequential model-based optimization (SMBO) methods (Bergstra et al., 2011). The choice55

of tuning approaches is affected by several factors, such as the number of hyperparameters, different ranges of their values and
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the complexity of ML algorithms. Overall, compared with category I approaches, category II approaches are more suitable for

data-driven models with complex ML algorithms (Bergstra et al., 2011).

Rather than tuning all hyperparameters, it is expected to be more efficient and effective if we only need to tune a subset of

them to achieve similar or better model performance. Similar to assessing the overall impact of model parameters on model60

prediction for physics-based models, we can use global sensitivity analysis approaches to identify the hyperparameters critical

for model performance based on sensitivity scores (Sobol, 2001); hyperparameters with high sensitivity scores are considered

influential, while the rest with low sensitivity scores are considered to have no or negligible influence on model performance. In

addition, as fewer influential hyperparameters are involved in model training, less training time is required to achieve maximum

model performance. It is thus particularly useful if the data-driven models need to be trained with streaming data for predictions65

in real time (Gomes et al., 2017).

With data proliferation in EESs, we expect to have more EES applications using data-driven models. In this study, we

present a new framework for data-driven modeling that combines hyperparameter selection and tuning to minimize training

time, reduce overfitting and maximize the overall model performance. As such, the fundamental contribution of our work is a

framework, which can 1) identify a subset of hyperparameters critical for model performance through hyperparameter selection70

using a variance-based sensitivity analysis approach, and 2) provide optimal values for the selected hyperparameters through

an optimization-based hyperparameter tuning approach. As such, we can improve the overall efficiency and effectiveness of

model training, leading to better model performance. In turn, this can further promote the use of data-driven models in EESs.

The efficacy of the framework is evaluated using data-driven models developed to predict the magnitudes of daily surface

runoff at a farm scale in the Maumee domain, U.S.75

2 Method

In this study, we developed a framework to improve the performance of data-driven models by reducing their training time

and overfitting (Figure 1). The framework comprises two modules, hyperparameter selection (HS) and hyperparameter tuning

(HT). In the following sections, we will discuss the use of a global sensitivity analysis approach to select the hyperparameters

critical for model performance. We then applied an optimization approach for hyperparameter tuning to identify the optimum80

of these critical hyperparameters for model training. A data-driven model using the eXtreme Gradient Boosting (XGBoost)

algorithm (Chen and Guestrin, 2016) is used to demonstrate the efficacy of the proposed framework.

2.1 Hyperparameter Selection

To understand the impact of individual hyperparameters and their interactions on the performance of a given data-driven model,

we used a global sensitivity analysis (GSA) approach based on Sobol decomposition (Sobol, 2001), a variance decomposition85

technique. Through this GSA approach, the model output variance is decomposed into the summation of the variances from

input parameters per se and their interactions. Let us assume a data-driven model is of the form Y =M(X;H), where X is a

vector of features and H = {h1, . . . ,hi, . . . ,hn}, a vector of hyperparameters and hi is the ith hyperparameter. We use O(Y )
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Figure 1. The methodological framework for improving the performance of data-driven models with two modules: hyperparameter selection

(HS) and hyperparameter tuning (HT)

to define the scores of the objective function, O (Y) of the data-driven model, M. By fixing the values of the features, X and

changing the values of the hyperparameters, H, the total variance of the score, denoted as V (O(Y )) can be represented as the90

sum of the variance imposed by the individual hyperparameter, hi and its interactions with the other hyperparameters.

V (O(Y )) =
n∑

i=1

Vi +
n∑

i≤j≤n

Vij + ... + V1,...,n, (1)

where Vi is the first order contribution of hi to V (O(Y )), and Vij denotes the variance arising from the interactions between

two hyperparameters, hi and hj . We can then measure the influence of a hyperparameter by its contribution to V (O(Y )) using

the sensitivity score of first (S) and total order (ST ) indices as follows:95

Si = Vi/V (O(Y )) (2)

STi = 1−V∼i/V (O(Y )), (3)

where V∼i indicates the contribution to V (O (Y )) by all hyperparameters except hi; Si measures the direct contribution to

V (O (Y )) by hi; STi measures the contribution by hi and its interactions, of any order, with all other hyperparameters.

To estimate S and ST , we first generated sufficient samples of the hyperparameters that can well represent the sample space.100

We chose the Quasi-Monte Carlo sampling method (Owen, 2020), which uses quasi-random numbers (i.e., low discrepancy

sequences) to sample points far away from the existing sample points. As such, the sample points can cover the sample space

more evenly and quickly with the faster convergence rate of O((logN)kN−1) where N and k are the number and dimension of

samples (Campolongo et al., 2011). In total, we generated m samples for n hyperparameters. We then fed the samples into the
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data-driven model,M to obtain the correspondingO (Y ). Next, we estimated the variance components, Vi, V∼i, and V (O (Y ))105

in Eq. (1) with m(2n + 2) model evaluations, and derived the scores of Si and STi using Equations (2) - (3) (Saltelli, 2002).

Finally, we selected the hyperparameters with high scores of total order index as influential hyperparameters.

2.2 Hyperparameter Tuning

After hyperparameter selection, we expect to tune fewer hyperparameters through hyperparameter optimization, which involves

the process to maximize or minimize the score of the objective function, O (Y) of a data-driven model, M over the sample110

space of its hyperparameters, H. As such, we can identify the optimal values of the hyperparameters, which are then used for

the training of data-driven models.

Rather than tuning these hyperparameters manually, we chose to use an automated optimization approach, Bayesian hy-

perparameter optimization (Bergstra et al., 2011). This approach creates a surrogate model of the objective function using a

probabilistic model. The surrogate model avoids solely relying upon local gradient and Hessian approximations by tracking the115

paired values of the hyperparameters and the corresponding scores of the objective function from previous trials, and proposes

new hyperparameters that can improve the score based on the Bayes rules. This automated approach requires far less time to

identify the optimum of the hyperparameters, as the objective function can converge to a better score faster.

To describe the Bayesian optimization approach in more detail, let us assume we have evaluated the objective function,

O (Y) for n sets of hyperparameters, {h(1), . . . ,h(n)}. Based on the pairs of a set of hyperparameters and the corresponding120

score (h,O(y)) from n evaluations, we applied a sequential Model-Based Optimization (SMBO) method, a Tree-structured

Parzen Estimator (TPE) (Bergstra et al., 2011) to develop a surrogate model for O (Y). The TPE defines the conditional

probability, p(h|O(y)) using two densities:

p(h|O (y)) =





l(h) if O (y) <O (y∗)

g(h) if O (y)≥O (y∗),
(4)

where l(h) and g(h) can be modeled using different probability density or mass functions for continuous or discrete hyperpa-125

rameters. For example, l(h) and g(h) can be a uniform, a Gaussian or a log-uniform distribution for continuous hyperparam-

eters. To define l(h), we use part of n sets of hyperparameters, {h(i)} that result in the score, O (y) less than the threshold,

O (y∗) which is chosen to be some quantile γ of all scores, p(O (y) <O (y∗)) = γ; g(h) is defined using the remaining hyper-

parameters (Bergstra et al., 2011).

The following step is to decide the next hyperparameter values that possibly give a better score, O (y) given the corre-130

sponding uncertainty measured by the surrogate model (Frazier, 2018). To do so, a selection function is defined based on the
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Figure 2. Study area of the Maumee domain in the Great Lakes region, U.S.

Expected Improvement (EI):

EIO(y∗)(h) :=

O(y∗)∫

−∞

(O(y∗)−O(y))p(O(y)|h)dO(y) (5)

=

O(y∗)∫

−∞

(O(y∗)−O(y))
p(h|O(y))p(O(y))

p(h)
dO(y), (6)

where p(O (y)|h) is parameterized as p(h|O (y))p(O (y)). It is set to zero when O(y) <O(y∗) in order to neglect all hy-135

perparameters that yield no improvements in the score. Through maximizing EI, a better set of hyperparameters is identified.

Together with the corresponding score, they are used to update the TPE, l(h) and g(h) for the maximization of EI. The iterative

process continues until the maximum allowed number of iterations is reached.

2.3 Case Study

High nutrient loading carried by the edge-of-field (EOF) runoff from the agricultural fields in the Maumee River watershed140

(Figure 2; U.S. Geological Survey (2014)) has had detrimental effects on aquatic ecosystems, such as harmful algal blooms
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and hypoxia in Lake Erie (Scavia et al., 2019; Stackpoole et al., 2019). The occurrence and magnitude of EOF runoff can be

influenced by many factors, but mainly driven by precipitation and snowmelt (Hamlin et al., 2020). An early warning system

to forecast runoff risk can assist agriculture producers in the timing of fertilizer application to retain more nutrients in the land;

this also reduces nutrient transport carried by runoff to nearby water bodies. To design such an early warning system, in the145

previous study (Hu et al., 2021), we developed a hybrid model to predict the magnitude of daily EOF runoff for all EOF sites

in the domain (Figure 2); the model combines National Oceanic and Atmospheric Administration’s National Water Model

(NWM) with a data-driven model based on eXtreme Gradient Boosting algorithm (XGBoost; Chen and Guestrin, 2016). In

this study, we demonstrate the efficiency and effectiveness to train XGBoost models using the proposed framework (Figure 1).

2.4 Implementation150

The eXtreme Gradient Boosting (XGBoost) is a tree-based ensemble machine learning algorithm, which is mainly designed for

its overall high speed of convergence through the optimal usage of memory resources, as well as good predictability through

the ensemble learning that leverages the combined predictive power of multiple tree models (Chen and Guestrin, 2016). Using

the gradient boosting technique, XGBoost incorporates a new tree model (i.e., weak learner) into the tree ensemble models

obtained from previous iterations in a repetitive manner. At the tth iteration, an objective function, J is defined as:155

J (t) =
n∑

i=1

L(yi, ŷi) +
t∑

m=1

R(fm), (7)

where n is the number of samples and L is the training loss function; ŷi is the prediction from the tree ensemble models

F ; ŷi =
∑m

i=1 fm(xi), fm ∈ F and m is the number of tree models; R is the regularization function used to penalize the

complexity of the tree ensemble models to reduce model overfitting. All these functions are characterized by as a set of

hyperparameters, e.g., learning rate (LR) and maximum tree depth (MD). Through optimizing J , an XGBoost model is obtained160

with locally optimal hyperparameter values that gives the best predictive performance at the ith iteration. The process iterates

for a defined number of repetitions to train the XGBoost model that can balance model bias and variance error.

In this study, we used XGBoost models to predict the magnitudes of daily EOF runoff in the Maumee domain (Figure 2).

We considered nine hyperparameters associated with the XGBoost algorithm (Figure 3). Daily EOF measurements within the

watershed (Hu, 2022) were used for hyperparameter selection, and the score O (y) of the objective function was measured165

by the mean absolute error (MAE; Section 2.4.1). We then modified the Python SALib package (Herman and Usher, 2017),

which was developed for Sobol-based global sensitivity analysis only with model features and parameters; such modification

allows the calculation of sensitivity scores for hyperparameters (i.e., the HS approach). Given the number and range of the

hyperparameter values, and the complexity of the XGBoost model, we generated 4,000 samples of hyperparameters (Figure

3(a)) to calculate the S and ST values for all nine hyperparameters, and selected the influential ones given their ST values.170

After the influential hyperparameters were identified, the next step was to search the optimal values for these hyperparameters

through hyperparameter tuning (i.e., the HT approach). To do so, we first randomly selected 70% of the EOF data sets within

the domain. Based on the selected data, we then used the Bayesian optimization (BO) approach implemented via the Python

Hyperopt library (Bergstra et al., 2013) to identify the optimal hyperparameter values. Given these optimal values, we trained
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and evaluated XGBoost models in predicting the magnitude of daily EOF runoff at the EOF sites in the domain (Hu et al.,175

2021). Additionally, to evaluate the impact of hyperparameter selection on model performance, we trained and evaluated the

performance of XGBoost models without hyperparameter selection, that is, using only hyperparameter tuning on the initial set

of hyperparameters.

2.4.1 Evaluation Metrics

In this study, we used mean absolute error (MAE) to measure the score of the objective function, O (Y), and R-Squared(R2)180

to measure the level of agreement between the predictions from the XGBoost models and observations of daily EOF runoff.

MAE =
1
n

n∑

i=1

|yi− ŷi| where MAE ∈ [0,+∞], (8)

R2 =
(
∑n

i=1 ŷiyi−n
¯̂
Y Ȳ )

2

(
∑n

i=1 ŷi
2−n

¯̂
Y

2
)(

∑n
i=1 yi

2−nȲ
2)

where R2 ∈ [−∞,1], (9)

where n is the sample size; yi and ŷi are the observed and predicted value of daily EOF runoff for a specific EOF site,

respectively; Ȳ and
¯̂
Y are the mean value of yi and ŷi, respectively. The MAE value equal to zero is the perfect score,185

whereas the R2 value closer to one is considered to be the perfect agreement between predictions and observations.

2.5 Results

The ability to represent the search space of all nine hyperparameters by the selected samples is critical to the estimation of their

influence on the model performance through the sensitivity analysis approach. In our case, we have selected 4,000 samples

in total. As shown by the histogram plots on the diagonal in Figure 3(a), the entire range of values for each hyperparameter190

is well represented by uniformly distributed intervals of values. Additionally, the well-scattered sample points on the off-

diagonal plots indicate no correlation among each other, confirming the independence between these hyperparameters and the

appropriate samples to use for hyperparameter selection.

Through hyperparameter selection, the influence of hyperparameters is ranked by their contributions to the variance of the

objective function, characterized by the sensitivity score of the total order index, ST (Figure 3(b)). The higher the score, the195

more influential is the hyperparameter. Among all nine hyperparameters for the XGBoost model, the subsample ratio of the

training data, SS is the most influential hyperparameter with the highest sensitivity score for both S and ST , followed by the

maximum tree depth, MD and the learning rate LR (Figure 3(b)). We noticed small differences in sensitivity score between

S and ST for the first two most influential hyperparameters, SS and MD, indicating that the contributions to their ST scores

are made by the variation of the hyperparameters per se. In contrast, for the hyperparameter, LR, a large portion of its high200

ST score is contributed through the interaction between LR and the other hyperparameters. As a result, instead of tuning all

hyperparameters, we only need to search the optimal values of these three influential hyperparameters through hyperparameter

tuning.
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We trained XGBoost models for the prediction of daily EOF runoff events in the study domain (Figure 2) with a fixed number

of iterations (i.e., 8,000 in our case). We noticed that the training of XGBoost models preceded by our proposed framework,205

the combination of hyperparameter selection and tuning (i.e., the HS-HT approach), took the least time (0.7s; Figure 4(c))

compared with the training of models preceded by either the HS or HT approach (1.4s and 61.6s; Figure 4(a) and (b)). Similar

to the case with only the HS approach, the performance of the XGBoost model steadily improved during training when the

HS-HT approach was used, i.e., R2 increased from 0.52 to 0.68. In contrast, when only the HT approach is used, the model

quickly achieved almost perfect performance (i.e., close to R2 = 1) but gained small improvements over the rest of training.210

In this regard, the training process after the HT approach was not as effective compared with that using the HS-HT approach,

although the former achieved a better training performance.

However, better training performance cannot guarantee a better test performance due to the risk of overfitting. For the

Maumee domain (Figure 2), the XGBoost model achieved almost perfect agreement with the observations (R2 = 1.0) when

preceded by the HT approach, while having the relatively poor performance in test with R2 = 0.31 (Figure 5(a)), representing a215

69.0% reduction in performance. In contrast, the XGBoost model performed worse in training when preceded by the proposed

framework (i.e., the HS-HT approach) with R2 = 0.67, but produced a better test performance (R2 = 0.40), resulting in a

smaller reduction in performance, 40.3%.

Similarly, we also evaluated the overfitting of the resulting XGBoost models by directly measuring the gaps between the

model performances in training at different number of iterations and their test performances (Figure 5(b)). Please note that once220

XGBoost models are trained, their test performances become irrelevant to the number of iterations during the training process

and thus stay constant (Figure 5(b)). We noticed that the model preceded by the HT approach was more prone to overfitting, as

the gaps measured by the differences in R2 values were always larger than the gaps for the case with the proposed framework.

As such, it demonstrated that the proposed framework can help reduce model overfitting.

As shown by Figure 6(a), using the proposed framework (i.e., the HS-HT approach), the resulting XGBoost model achieved225

a better agreement with the observations (R2 = 0.40) than the corresponding XGBoost models preceded by other approaches

(R2 = 0.36 for the HS approach, R2 = 0.31 for the HT approach). We noticed the relative difference in model performance for

the HS and HS-HT approaches (in terms of R2 value) is smaller than the difference for the HT and HS-HT approaches. In this

regard, the XGBoost model had the worst performance if only the HT approach was used to search the optimal values for all

hyperparameters. This is further demonstrated by the comparison of residual errors between the observations and predictions230

by the XGBoost models preceded by different approaches (Figure 6(b)): for the HS-HT approach, the residual errors are

more concentrated around the zero value compared with the wider scatter of errors as the result of using only the HS or

HT approach, respectively. As such, the XGBoost models can often achieve better test performances when preceded by the

proposed framework.
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Figure 5. (a) Comparison of the performance of the XGBoost models in prediction of daily EOF runoff for the Maumee domain with

respect to the observed runoff preceded by the HT approach and the proposed framework (i.e., the HS-HT approach) for a given period.

The upper x-axis shows the rainfall intensity [mm/d] over the training (07/2012 - 12/2013) and test (01/2014 - 01/2016) period, respectively.

(b) Comparison of the performance of the XGBoost models preceded by the two approaches, HS-HT and HT with respect to the number of

iterations. The double-headed arrows indicate the differences in R2 values between the training and test for each approach.
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Figure 6. (a) Comparison of the observations with the predictions of daily EOF runoff for the Maumee domain by the XGBoost models

trained using the HS, HT and HS-HT approach, respectively. (b) Comparison of residual errors between the observations and the predictions

of daily EOF runoff for the Maumee domain by the XGBoost models trained using the HS-HT, HS and HT approach, respectively.

2.5.1 Discussion235

In this section, we will discuss the effects of the proposed framework using hyperparameter selection and tuning on model

training and the overall performance of the XGBoost models. Through the discussion below, we aim to demonstrate that the

results gained from this study are generally applicable to other data-driven models.

2.6 Influence of hyperparameters

In this study, we conducted the Sobol-based global sensitivity analysis (i.e., the HS approach) to identify the influential hy-240

perparameters of XGBoost models. We identified three influential hyperparameters for the XGBoost model based on their

sensitivity scores of the total order index (i.e., ST ) and their relative differences from the first order index (i.e., S). Among

them, the maximum tree depth, MD and the learning rate, LR are often considered important hyperparameters for XGBoost

models since LR is associated with model convergence and MD controls the depth of the tree model. As tree depth increases,
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the tree model contains more inner layers, enabling it to better learn complex, nonlinear patterns from data. However, tree245

models with greater depth are also more prone to overfitting.

For the learning rate (LR), higher learning rate often leads to faster training, but the resulting tree models are more likely

to reach sub-optimal solutions. In contrast, models with a low learning rate converge slowly, but are likely to have a good

performance with optimal hyperparameter values. Additionally, around half of its influence measured by ST is the result of

interactions with other hyperparameters (Figure 3). For such a hyperparameter, we need to investigate if other hyperparameters250

with low ST score should be also considered influential due to their interactions with the target hyperparameter. In our case,

we decided not to consider others, mainly because the S score of the learning rate is already much higher than the ST score of

the next one in the rank, i.e., the number of tree estimators, ET .

Although these two hyperparameters are considered influential in the current study, the most influential hyperparameter is

the sub-sample ratio (SS) of the training data, which determines the sample size used to grow a new tree model in each boosting255

iteration. This is possibly due to the imbalanced data of the target variable, the daily EOF runoff, which is often zero-inflated

with sparsely distributed runoff events over a long time horizon. The number of non-zero EOF runoffs in the training set,

determined by the sub-sample ratio, can affect the model performance. With more zero values included in the data set, fewer

non-zero EOF runoffs are available to support model training, and vice versa. As such, the sub-sample ratio appears to be the

most critical hyperparameter for the performance of the XGBoost model in the study. Similar to the sensitivity analysis of260

physics-based models, analysis outcomes depend on the characteristics of the target variable (e.g., the daily EOF runoff in our

case). As such, for applications involving data-driven models, we can first rely on our experience to select the hyperparameters

and then refine the list of influential hyperparameters using the proposed HS approach.

2.7 Algorithm complexity and model training

Data-driven models perform differently in training with and without hyperparameter selection. In general, models with more265

hyperparameters are more capable of learning complex, nonlinear relationships from data. In our case study, XGBoost models

were initially set up with nine hyperparameters (Figure 3) to account for the complexity of daily EOF runoff prediction (Hu

et al., 2021). This explains why the XGBoost model without hyperparameter selection can often achieve very good training

performance (Figure 4). However, fast convergence to good training performance indicates that data patterns can be too easy

for the model to learn. Additionally, after the initially significant improvement, the performance of the XGBoost model levels270

off for the majority of the training time. In this regard, the whole training is not effective, using additional training time on

almost negligible improvements.

After hyperparameter selection, three out of nine hyperparameters are considered influential to the prediction of daily EOF

runoff, which allows model training with a less complex XGBoost algorithm for the search of optimal model parameter values.

For this reason, given the same number of iterations for training, it is thus more efficient to train the model after hyperparameter275

selection in terms of training time (Figure 4). Meanwhile, guaranteed by the HS approach, the removal of non-influential

hyperparameters will have no or limited impact on model performance in the EOF runoff prediction. The training can be

also more effective as demonstrated by the steady improvement of the XGBoost model over the training period. As such,
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through hyperparameter selection, the resulting XGBoost model, equipped with less but influential hyperparameters, can be

more efficiently and effectively trained to predict the target variable, e.g., the daily EOF runoff over the Maumee domain.280

Meanwhile, XGBoost models also perform differently in training with and without hyperparameter tuning. When training a

XGBoost model without the HT approach, we assign values to the hyperparameters by trial and error. The resulting XGBoost

algorithm is likely not to be optimal, and thus can take longer time to search the optimal values for the model parameters

compared with the case using hyperparameter optimization; this is demonstrated by the faster convergence to better perfor-

mance when training is preceded by the HS-HT approach compared with that by the HS approach alone (Figure 4(a) and (c)).285

Nevertheless, model training preceded by the HS approach is still more effective compared with that using the HT approach

alone (Figure 4(a) and (b)). This can be because the XGBoost algorithm with more hyperparameters (without hyperparameter

selection) can more easily learn the pattern from data, resulting in no improvement in training for the majority of the training

time. As such, the combination of the HS and HT approach as proposed by the framework can most effectively improve search

efficiency.290

2.8 Model overfitting and performance

The complexity of the underlying machine learning algorithm can be characterized by the number of hyperparameters and

their values, which are critical to the model performance. High algorithm complexity can often result in overfitted models,

as demonstrated by the large model performance gap in training and test (Figure 5(a) and (b)). Through the identification

of influential hyperparameters, the HS approach helps reduce the algorithm complexity by using an appropriate number of295

hyperparameters that can balance the prediction errors and variance in the data set. As a result, reduction of algorithm com-

plexity through the removal of non-influential hyperparameters can effectively reduce model overfitting without compromising

model performance, which is further guaranteed by the use of the HT approach, searching optimal values for these influential

hyperparameters.

2.9 Limitation and Outlook300

The framework is designed to reduce model training time and improve model performance, which is done through the identifi-

cation of influential hyperparameters and their optimal values. Please note that the specific results for hyperparameter selection

and tuning are data and domain specific, and the impact of data size, quality and location is not yet fully explored in this study.

Additionally, the previous work (Hu et al., 2018) has demonstrated the importance of feature selection for model performance

regarding model training time and overfitting. It is thus worth investigating the performance of data-driven models when the305

framework is combined with feature selection.

3 Conclusions

In this paper, we developed a framework composed of hyperparameter selection and tuning, which can effectively improve

the performance of data-driven models by reducing both model training time and model overfitting. We demonstrated the
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framework efficacy using a case study of daily EOF runoff prediction by XGBoost models in the Maumee domain, U.S.310

Through the use of Sobol-based global sensitivity analysis, hyperparameter selection enables the reduction in complexity of the

XGBoost algorithm without compromising its performance in model training. This further allows hyperparameter tuning using

a Bayesian optimization approach to be more effective in searching the optimal values only for the influential hyperparameters.

The resulting optimized XGBoost algorithm can effectively reduce model overfitting and improve the overall performance

of XGBoost models in prediction of daily EOF runoff. This framework can thus serve as a useful tool for the application of315

data-driven models in EESs.
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