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Abstract. The summer of 2018 was an extraordinary season in climatological terms for northern and 43 

central Europe, bringing simultaneous, widespread, and concurrent heat and drought extremes in large 44 

parts of the continent with extensive impacts on agriculture, forests, water supply, and socio-economic 45 

sector. Here, Wwe present a comprehensive, multi-faceted analysis of the 2018 extreme summer in 46 

terms of heat and drought in central and northern Europe, with a particular focus on Germany. The 47 

heatwave first affected Scandinavia by mid-July, shifted towards central Europe in late July, while 48 

Iberia was primarily affected in early August. The atmospheric circulation was characterized by 49 

strongly positive blocking anomalies over Europe, in combination with a positive summer North 50 

Atlantic Oscillation and a double jet stream configuration before the initiation of the heatwave. In terms 51 

of possible precursors common to previous European heatwaves, the Eurasian double jet structure and 52 

a tripolar sea-surface temperature anomaly over the North Atlantic were identified already in spring. 53 

While in the early stages over Scandinavia the air masses at mid- and upper-levels were often of remote, 54 

maritime origin, at later stages over Iberia the air masses had primarily a local- to- regional origin. The 55 

drought affected Germany the most, starting with warmer than average conditions in spring, associated 56 

with enhanced latent heat release that initiated a severe depletion of soil moisture. During summer, a 57 

continued precipitation deficit exacerbated the problem, leading to hydrological and agricultural 58 

drought. A probabilistic attribution assessment of the heatwave in Germany showed that the such events 59 

of prolonged heat haves become more likely due to anthropogenic global warming. Regarding future 60 

projections, an extreme summer such as this of 2018 is expected to occur every two out of three years 61 

in Europe under a 1.5 °C warmer world and virtually every single year under 2 °C of global warming. 62 

With such large-scale and impactful extreme events becoming more frequent and intense under 63 

anthropogenic climate change, comprehensive and multi-faceted studies like the one presented here 64 

quantify the multitude of effects and provide valuable information as basis for adaptation and mitigation 65 

strategies.  66 

1 Introduction 67 

Following an anomalously warm and dry spring, the summer of 2018 was characterized by record 68 

breaking widespread heat and drought across Europe (Kennedy et al., 2019; Toreti et al., 2019) with 69 
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intense heatwaves affecting large parts of Scandinavia (Sinclair et al., 2019) and central Europe (e.g., 70 

Vogel et al. 2019). In Germany, both the months of April-May, as well as the April-July period, and the 71 

entire year, were identified as the warmest in the observational records starting in 1881. Moreover, 72 

Germany faced remarkably prolonged drought from February to November, with 2018 being the fourth 73 

driest year on record (after 1959, 1911, and 1921). A new record was also set for annual sunshine 74 

duration, amounting to 2015 hours (Friedrich and Kaspar, 2019). In Finland, the peak temperature in 75 

summer exceeded 33 °C, which is extremely unusual for a region located near the Arctic Circle, 76 

breaking historical records of the past 40 years (Liu et al., 2020). In the UK, summer 2018 joined 2006 77 

as the hottest on record since 1884. In England itself, this was the warmest on record, while June 2018 78 

was the driest June for England since 1925 (Kendon et al., 2019). Over the Iberian peninsula, a heatwave 79 

developed in early August 2018, with this month being the warmest in the region after 2003 80 

(Barriopedro et al., 2020). The normal eastward propagation of weather systems was hindered in 81 

summer 2018 by the recurrent presence of blocking anticyclones, associated with a particularly 82 

meandering jet stream, which was reflected in the way the heatwave propagated, starting in Scandinavia 83 

(peaking mid of July), then developing in central Europe (end of July) and last in Iberia (beginning of 84 

August). For the European continent, 2018 was the second warmest summer on record (following 2010) 85 

as estimated from the CRUTEM4 dataset (Kennedy et al., 2019), prior to being marginally surpassed 86 

by the 2021 summer (Copernicus Climate Change Service, 2018; 2021).  87 

In terms of amplitude, persistence and spatial extent, the 2018 heatwaves were comparable to the 88 

“mega-heatwaves” of 2003 and 2010 over Europe and Russia (Spensberger et al., 2020; Becker et al., 89 

2022), during which more than one million square kilometers were simultaneously affected by heatwave 90 

conditions (Fink et al., 2004; Barriopedro et al., 2011). But, unlike 2003 and 2010, the exceptionally 91 

extreme heat in 2018 occurred under concurrent exceptionally dry conditions, thus making the events 92 

in 2018 a spatially and temporally compound extreme (Zscheischler et al. 2020; Bastos et al. 2021; 93 

Ionita et al., 2021). These co-occurring hot and dry extremes, not only in central Europe but also in 94 

multiple regions of the northern hemisphere midlatitudes (Vogel et al., 2019), caused vast aggregated 95 

impacts (Bakke et al., 2020), ranging from drought-inflicted forest mortality events of unprecedented 96 

scale (Schuldt et al., 2020; Senf and Seidl, 2021), up to 50 % reduction in agricultural yields (Toreti et 97 

al., 2019; Beillouin et al., 2020) and increased forest fire occurrence (San-Miguel-Ayanz et al., 2019), 98 

to excess heat-related human mortality (Pascal et al., 2021). Compared to previous droughts since 2000, 99 

summer 2018 occupied the largest extent of extreme and severe agriculture drought, centered around 100 

Germany, Poland, most of Scandinavia and the Baltic countries, affecting a larger extent of boreal 101 

forests and high latitude ecosystems (Peters et al., 2020). Further, from a temporal point of view, 102 

compared to other droughts of the past 40 years, 2018 was characterized by the sharpest transition from 103 

average-to-wet conditions in late winter to extremely strong soil-water deficits in summer (Bastos et 104 

al., 2020). 105 



4 
 

Surface heatwaves are typically co-located with the center of the associated blocking system (Kautz 106 

et al., 2022; their Figure 2b). If the blocking is intense and persistent, a heatwave will usually develop. 107 

On the other hand, unsteady weather conditions, like thunderstorms and heavy precipitation, are 108 

frequent on the flanks of the blocking system, which correspond to the air mass boundaries (Kautz et 109 

al., 2022). In fact, summer extremes can be exacerbated by different components of the Earth system, 110 

such as anomalous atmospheric circulation patterns, oceanic conditions, and the state of land surface 111 

(Wehrli et al., 2019; Di Capua et al., 2021). The atmospheric circulation during late spring and summer 112 

2018 was characterized by the frequent presence of atmospheric blocking, and a persistent positive 113 

summer North Atlantic Oscillation (sNAO; Drouard et al., 2019; Li et al., 2020). Among the possible 114 

precursors of European heatwaves, here we analyzed spring sea-surface temperatures (SST) over the 115 

North Atlantic and soil moisture anomalies over Europe. In particular, the tripolar North Atlantic SST 116 

anomaly pattern is known to be influenced by the winter NAO, persisting over spring and affecting 117 

European climate in summer (Herceg-Bulić and Kucharski, 2014). The North Atlantic tripolar pattern 118 

has been associated with the East Atlantic Pattern (Gastineau and Frankignoul, 2015) and Atlantic 119 

Ridges (Ossó et al., 2020), leading to decreased summer precipitation (Saeed et al., 2013; Rousi et al., 120 

2021) and increased summer temperatures over Europe (Chen et al., 2016). Additionally, Duchez et al. 121 

(2016) argues that a cold anomaly over the North Atlantic subpolar gyre (SPG) may be associated with 122 

a stationary position of the jet stream, enhancing European summer heat extremes. Moreover, soil 123 

moisture-temperature feedbacks can amplify heat extremes (Seneviratne et al., 2010). Through a 124 

positive feedback, soil moisture depletion by hot and dry atmospheric conditions leads to a reduction 125 

of evaporative cooling and suppressed convective available potential energy (CAPE) values, 126 

subsequently limiting the rainfall potential and increasing air temperatures further  (Miralles et al., 2014;  127 

2018;  Prodhomme et al., 2021). Further, (Schumacher et al., (2019) highlighted the important role of 128 

upwind land–atmosphere feedbacks in addition to local feedbacks, as they can favor heat advection and 129 

intensify midlatitude mega-heatwaves via soil desiccation. 130 

Hot and dry summers in Europe are expected to occur more frequently under anthropogenic global 131 

warming (Masson-Delmotte et al. IPCC, 2021). McCarthy et al. (2019) conducted an attribution study 132 

for the 2018 summer heatwave in the UK based on CMIP5 models and found that the present-day 133 

likelihood of such extremes is around 11 %, which has been made 30-times higher due to anthropogenic 134 

climate change, while this likelihood increases to 53 % by the 2050s.  Given the increase of hot and dry 135 

extremes in Europe (Manning et al., 2019; Perkins-Kirkpatrick and Lewis, 2020; Markonis et al., 2021) 136 

and their further expected increase under continued unmitigated anthropogenic climate change (Russo 137 

et al., 2014; 2015; Spinoni et al., 2018; 2020), comprehensive weather and climate studies analyzing 138 

regional heatwave and drought characteristics, drivers, and impacts are particularly important.  139 

Within the German research initiative ClimXtreme, about 140 scientists from 35 institutions joined 140 

in 39 projects to further understand climate extremes, focusing on central Europe 141 

(https://climxtreme.net/index.php/en/). Inter-disciplinary task forces were formed, among which one on 142 

https://climxtreme.net/index.php/en/
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heat and drought. This study brings together its members to study the 2018 European heat and drought 143 

from a multi-faceted weather and climate perspective, making it the first comprehensive and spatially 144 

exhaustive study looking at hot and dry summers over Europe using different analyses approaches to 145 

study (a) the extremeness and attribution to anthropogenic climate change (climate perspective), as well 146 

as (b) the synoptic dynamics in concert with the role of slowly varying boundary conditions at the ocean 147 

and continental surfaces (seasonal and weather perspective). In the following, first, the data and methods 148 

are presented (Sect. 2). Different metrics for the detection and description of the 2018 summer extremes 149 

are shown in Sect. 3.1. Then, we present various features of the atmospheric circulation including 150 

blocking, jet stream state, weather regimes, Rossby wave activity and air mass trajectories (see Sect. 151 

3.2). Next, the role of low-frequency precursors, i.e. SSTs and soil moisture in spring, in setting the 152 

scene and eventually shaping those extremes is investigated (see Sect. 3.3). Sect. 3.4. examines the 153 

event from a large-ensemble climate model perspective, accompanied by a tailored attribution analysis 154 

that incorporates the length of the heatwave in Germany based on CMIP6 models. The Discussion and 155 

Conclusions section completes this paper.       156 

2 Data and Methods 157 

2.1 Data 158 

In this paper we use a variety of datasets, including observational, reanalysis and model data. We are 159 

using a common spatial domain for Europe (10° W–50 °E, 30°-70° N) and the reference period 1981–160 

2010 unless otherwise stated.  161 

 162 

2.1.1 Reanalysis and observational datasets 163 

ERA5 (Hersbach et al., 2020) and ERA5-HEAT (Di Napoli et al., 2021) reanalysis datasets were 164 

utilized for the calculation of heatwave metrics (see Sect. 3.1), the dynamical drivers and their evolution, 165 

such as Rossby wave activity, backward trajectories, double jet streams, atmospheric blocking, and 166 

weather regimes (see Sect. 3.2), as well as the precursors, i.e. SSTs and soil moisture (see Sect. 3.3). E-167 

OBS gridded observational datasets (Haylock et al., 2008; Cornes et al., 2018) were used for the 168 

calculation of the drought indices (SPI, SPEI), for the drought detection with climate networks (see 169 

Sect. 3.1), and to estimate the return period of the heatwave and select equivalent extreme events in 170 

CMIP6 model simulations for the attribution study (see Sect. 3.4). Observational datasets from DWD 171 

stations (Kaspar et al., 2013) were used for the thermopluviogram for Germany (see Sect. 3.1).  172 

 173 

The dynamic vegetation model „LPJmL5-tillage“ (Von Bloh et al., 2018); (Schaphoff et al., 2018); Lutz 174 

et al., 2019) was used to simulate soil moisture as forced by climate parameters (i.e. temperature, 175 

precipitation, wind) from the GSWP3-W5E5 dataset, a combination of GSWP3 v1.09 (Kim, 2017) and 176 
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a bias-adjusted version of ERA5 reanalysis data (Lange, 2019). The simulation was run under evolving 177 

CO2 and pre-industrial natural vegetation conditions (see Sect 3.3).  178 

 179 

2.1.2 General Circulation Models 180 

The historical and RCP4.5 simulations of the Max Planck Grand Ensemble (MPI-GE; Maher et al., 181 

2019) were used to calculate the cumulative excess heat under recent climate (1979-2021), and future 182 

1.5˚ C (2020-2049) and 2˚ C (2050-2079) warmer worlds (see Sect. 3.4). The advantage of this dataset 183 

is that, apart from the forced response, it provides an estimate of the internal natural variability.  184 

Historical simulations of several Coupled Model Intercomparison Project Phase 6 models (CMIP6; 185 

Eyring et al., 2016) and pre-industrial type simulations (hist-nat) of the same models from the CMIP6-186 

endorsed Detection and Attribution Model Intercomparison Project (DAMIP; Gillett et al., 2016) were 187 

used for the probabilistic attribution study (see Sect. 3.4). An overview of the analyzed CMIP6 models 188 

is given in Table A1. 189 

2.2 Methods  190 

2.2.1 Heatwave metrics 191 

Despite the fact that heatwaves have been a topic of active climate research for many decades, there is 192 

no universal heatwave definition and there are multiple metrics and criteria depending on the region, 193 

the season, and the purpose of the study (Becker et al., 2022). Here, we define Aa heatwave was defined 194 

here as an event of at least three consecutive days during which the 90th percentile of the daily maximum 195 

temperature based on each calendar day is exceeded (Fischer and Schär, 2010).Here, wWe chose two 196 

different metrics to characterize heatwave intensity, the cumulative heat, which uses temperature only, 197 

and the cumulative Universal Thermal Climate Index (cUTCI) that represents human thermal comfort, 198 

taking into account temperature, humidity, wind, and radiation.  199 

 A heatwave was defined here as an event of at least three consecutive days during which the 90th 200 

percentile of the daily maximum temperature based on each calendar day is exceeded (Fischer and 201 

Schär, 2010). Cumulative heat and cUTCI refers to the integration of heat exceedance over the threshold 202 

for all heatwave days of a season. In the present study, only summer months  (June to August; JJA) 203 

were considered, hence combining the intensity and persistence of heatwaves (Perkins-Kirkpatrick and 204 

Lewis, 2020). The cUTCI was calculated for each day as in Błazejczyk et al. (2013) and the 90th 205 

percentile of the daily time series was defined. The cumulative intensity was then calculated as the 206 

integration of the exceedance above this threshold for the whole season.  207 

2.2.2 Drought indicators 208 

For the characterization and detection of the 2018 drought we used twopresent  widely the Standardized 209 

Precipitation Evapotranspiration Index (SPEI; Vicente-Serrano et al., 2014), a widely used drought 210 
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accepted indicators, the Standardized Precipitation Index (SPI; Mckee et al., 1993) and the Standardized 211 

Precipitation Evapotranspiration Index (SPEI; Vicente-Serrano et al., 2014). , and one alternative 212 

method based on climate networks (Tsonis et al., 2006; Donges et al., 2009). We show  213 

 Ttwo aggregation periods, of three and six months, were selected, so that two types of droughts , 214 

couldcan be considered, meteorological (SPEI3) and agricultural (SPEI6) (Heim, 2002; Zampieri et al., 215 

2017). The SPEI was calculated with the SPEI R Package (Beguería and Vicente-Serrano, 2013), based 216 

on . For the SPI, monthly precipitation sums and were used, while for the SPEI additionally monthly 217 

mean maximum and minimum temperatures that are were needed for the calculation of the potential 218 

evapotranspiration (PET). PET was calculated This was conducted based on the modified Hargreaves 219 

equation (Droogers and Allen, 2002). Th, ae method that corrects the PET calculated by the Hargreaves 220 

equation by using the monthly rainfall amount as a proxy for insolation and based on the hypothesis 221 

that this amount can change the humidity levels (Vicente-Serrano et al., 2014). The values obtained by 222 

this method are similar to those obtained from the Penman-Monteith method (Allen et al., 2006).  223 

 Further, a climate network approach was used (Tsonis et al., 2006; Donges et al., 2009) to detect 224 

drought conditions in Germany. In a climate network, high spatial coherence of weather conditions is 225 

characterized by high values of the node degree measure that accounts for pairwise statistical similarity 226 

(e.g. quantified with the Pearson correlation coefficient; for more details about the construction of the 227 

climate network see Schädler and Breil, 2021). In this context, the node degree of a single grid point is 228 

the number of network nodes (or grid points) connected to it. The higher the node degrees of a climate 229 

network, the higher the spatial coherence of the meteorological time series and thus, the similarity of 230 

the weather conditions. Since droughts are typically extensive and persistent events, high node degrees 231 

can be used as a good drought indicator. 232 

2.2.3 Atmospheric circulation metrics 233 

The large-scale atmospheric circulation patterns and the dynamical evolution of the atmosphere 234 

associated with the 2018 extremes were analyzed using various metrics. First, we looked at the weather 235 

regimes during summer in order to characterize large-scale circulation features. Five summer 236 

circulation regimes were computed with k-means clustering (Crasemann et al., 2017) applied to ERA5 237 

sea-level pressure (SLP) anomalies for the time period 1979-2018 over the North Atlantic/European 238 

region (30-88° N, 90° W - 90° E). Further, blocking frequency anomalies were calculated at a grid point 239 

level based on a slightly modified version ofhybrid, the two-dimensional blocking index. from Scherrer 240 

et al. (2006). Daily blocked grid points were identified based on the inversion of meridional gradients 241 

in the daily 500 hPa geopotential height (gph) field according to a modified version of the index from 242 

Scherrer et al. (2006),. and on areas of strong positive gph anomalies associated with the blocking 243 

detection. Finally, blocking events of a duration of at least 4 days and an area of 1.5 x 106 km2 were 244 

selected by a subsequent tracking algorithm, as described in Schuster et al. (2019).  245 
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Next, we looked at the state of the jet stream. Jet stream states were identified with the use of Self-246 

Organizing Maps (SOMs), a neural network-based clustering algorithm (Kohonen, 2013; Rousi et al., 247 

2015). SOMs were applied on daily ERA5 data of Eurasian (25-80° N, 25° W - 180° E) zonal-mean 248 

zonal wind data on different pressure levels (800 hPa -100 hPa) for the time period 1979-2020 (see 249 

details in Rousi et al., 2022). Moreover, we applied the methodology of Fragkoulidis and Wirth (2020) 250 

to identify Rossby wave packets and their amplitude (E) for the 2018 summer. The method employs the 251 

meridional wind field (v) at 300 hPa at 2x2 degree resolution, which was taken from the ERA5 data. 252 

The visualization of E and v (see Fig. 4) is adaptive to the latitude location of strong Rossby wave 253 

packets and only the latitudinal belt of 40-90° N was taken into account. For each longitude, E and v 254 

are averaged over 10 grid points that exceed the median of all values within that belt.  255 

To analyze the origin of the air masses during the 2018 summer heatwave, we calculated backward 256 

trajectories using Lagrangian analysis and the LAGRANTO tool (Sprenger and Wernli, 2015). In 257 

particular, we calculated 10-day backward trajectories for the levels between 1000 and 500 hPa in steps 258 

of 25 hPa using ERA5 data for three starting locations in Europe on the respective peak heatwave days. 259 

As in Zschenderlein et al. (2020), starting points were also taken within the upper-tropospheric blocking 260 

anticyclone, in this case over Scandinavia. These were defined as the grid points where the anomaly of 261 

the vertically averaged potential vorticity (between 500 and 150 hPa, based on monthly climatology) 262 

was below -0.7 PVU (1 PVU = 10-6 K kg-1 m² s-1). For all grid points that fulfilled this criterion, 263 

trajectories were initialized every 50 hPa between 500 and 150 hPa in the vertical dimension. To exclude 264 

starting points in the stratosphere, only grid points with PV < 1 PVU were considered.  265 

2.2.4 Low-frequency precursors 266 

In order to analyze low-frequency precursors of the summer 2018 extremes, we considered SSTs, total 267 

precipitation and soil moisture in the preceding months. The SST anomalies, compared to the reference 268 

period of 1981-2010, over the North Atlantic and the seas surrounding Europe (Mediterranean, North 269 

Sea, Baltic Sea) were analyzed for the spring (March to May; MAM) and summer (June to August; 270 

JJA) months of 2018 in ERA5 data. Precipitation and soil moisture anomalies over Europe were also 271 

calculated for the same seasons in ERA5, and for soil moisture LPJmL simulations were also used. 272 

Additionally, we derived time series for the soil moisture-latent heat flux correlation in Germany 273 

based on ERA5 reanalysis data and LPJml output with a daily temporal resolution based on centered 274 

92-day running windows. This approach was used because soil moisture limitation depends on various 275 

factors, such as the climatic conditions and vegetation characteristics (rooting depth, Leaf Area Index 276 

(LAI) and stomatal conductance), which vary spatially and can change during the course of a year (Duan 277 

et al., 2020). Therefore, the limitation cannot be easily represented by a unified, fixed value. The time 278 

series were spatially averaged over all land points for Northern Germany and surroundings (51-55° N 279 

and 4-16° E), as well as southern Germany and surroundings (48-51° N and 4-16° E). The German 280 
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Alpine region was not included in the southern German region because the complex topography that 281 

cannot be accounted for in this study, influences the results.  282 

2.2.5 Attribution of the 2018 extreme heat 283 

Extreme event attribution typically addresses the question of whether and to what extent climate change 284 

has affected the severity and/or frequency of a specific extreme weather event (Shepherd, 2016). The 285 

most commonly used approach to extreme event attribution is probabilistic event attribution (Philip et 286 

al., 2020), which compares climate model simulations under different scenarios, i.e. a factual scenario 287 

which simulates the weather under current and past climate conditions, and a counterfactual scenario 288 

which simulates weather under climate conditions excluding anthropogenic influences.  289 

Here we present two kinds of attribution approaches. In the first, we used the MPI-GE to estimate 290 

the probability of exceedance of the 2018 summer heat levels in the whole European domain for present 291 

and future climates, and in the second, we present a tailored extreme event attribution study for 292 

Germany based on CMIP6 simulations to calculate probability ratios for the persistent 2018 heat event 293 

in Germany. 294 

 The MPI-GE (Maher et al., 2019) was used to estimate and compare the probabilities of exceeding 295 

the 2018 summer levels of cumulative heat in the reanalysis data (ERA5, 1979–2021) and under recent 296 

(1979–2021), and future 1.5° C (2020–2049) and 2° C (2050–2079) warmer worlds. The same heatwave 297 

metric and parameters were used to calculate the cumulative heat as the ones described above (Sect. 298 

2.2.1). The ERA5 data were regridded to a coarser resolution to match that of the MPI-GE and the 299 

probabilities were normalized to percentages (i.e. divided by the total number of years in each period).   300 

  Then, to estimate how the occurrence probability of the 2018 heatwave in Germany has been affected 301 

by anthropogenic climate change, a tailored probabilistic attribution study was conducted using CMIP6 302 

simulations. The historical CMIP6 simulations provide the factual scenario while hist-nat simulations 303 

from DAMIP provide the counterfactual scenario. The analysis is based on an attribution system 304 

currently under development at DWD within the ClimXtreme project and involves (1) defining the 305 

extreme event, (2) analyzing observational data and estimating the probability/return period of such an 306 

event based on observations, (3) validating the climate model simulations, (4) preparing and analyzing 307 

the climate model simulations, and (5) calculating a probability ratio between the historical and hist-nat 308 

simulations.  309 

 Based on CMIP/DAMIP data available at the computing facility of the German Climate Computing 310 

Center (DKRZ) the most appropriate climate models were selected for the tailored attribution study by 311 

including the ones that had at least three initializations in the DAMIP archive and passed the validation 312 

tests outlined below for the maximum temperature (Tmax) that is analyzed in the attribution study. The 313 

climatology of Tmax and the spatial pattern of the yearly averaged maximum temperature were visually 314 

compared between the models and the gridded E-OBS dataset to evaluate whether the models are able 315 

to represent the climate conditions over Germany. Additionally, the parameters of a Generalized 316 
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Extreme Value (GEV) distribution fitted to the simulation data were compared with a fit to the E-OBS 317 

data to check whether they agree within their uncertainty bounds. Furthermore, a general consistency 318 

check was performed for each model ensemble. The evaluation procedure is similar to the one used in 319 

World Weather Attribution studies (see e.g. Philip et al., 2020). Simulations of CMIP6 models that 320 

passed the validation were further analyzed (see Table A1 for a list of the models).  321 

 The following steps are required to calculate the risk ratio: CMIP and DAMIP Tmax data from all 322 

available initializations of the model were selected for the German region and for the 30-year timeframe 323 

from 1985-2014. The data were averaged over the region and a 17-day running mean was calculated, 324 

based on the event definition which is further elaborated in Sect. 3.4. The yearly block maxima were 325 

then selected from all initializations and a GEV fit was used to estimate the probability of heatwaves in 326 

the simulation data that are equivalent to the observed event of 2018. To account for offsets between 327 

observed and simulated temperatures, we analyzed a simulated heat event which has – in the historical 328 

simulations - the same probability as the observed heatwave, i.e. while the simulated event may not 329 

reach the same temperature as was observed in 2018, the temperature threshold used to analyze the 330 

simulations has the same return period as the observed event (see also Philip et al., 2020; Tradowsky et 331 

al., 2022). To increase the robustness of the results a 1000-member bootstrap was used and a GEV 332 

distribution was fitted to each of these 1000 alternative time series. The probability ratios (PR) were 333 

then calculated from the probabilities of such heatwaves in the historical and hist-nat simulations using 334 

the GEV fits to the original simulation time series and to the 1000 alternative time series, according to 335 

equation (1): 336 

𝑃𝑃𝑃𝑃 =  𝑃𝑃ℎ𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖
𝑃𝑃ℎ𝑖𝑖𝑖𝑖𝑖𝑖−𝑛𝑛𝑖𝑖𝑖𝑖

           (1) 337 

𝑃𝑃ℎ𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖 is the probability of the event to occur in the historical CMIP scenario and 𝑃𝑃ℎ𝑖𝑖𝑖𝑖𝑖𝑖−𝑛𝑛𝑖𝑖𝑖𝑖 is the 338 

probability in the naturalized DAMIP scenario in which anthropogenic greenhouse gas emissions are 339 

fixed to pre-industrial times.  340 

A probability ratio > 1 indicates an increase in the probability of such an event due to anthropogenic 341 

climate change, a result which is typically found for recent heatwaves (see e.g. Stott et al., 2004; (Philip 342 

et al., 2022)Philip et al., 2021).  343 

3 Results 344 

3.1 Detection and description of the 2018 summer extremes 345 

The 2018 summer was an extreme season from the climatological perspective for many regions in 346 

Europe. An intense heatwave first affected Scandinavia in mid-July and then extended towards central 347 

Europe and later Iberia, spanning a total period of four weeks. The maximum heatwave duration was 348 

seen in Scandinavian regions, reaching 20 consecutive days (Fig. 1a). Cumulative heat reached peak 349 
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values in parts of Norway, Sweden, Germany, France, Ireland and the UK (Fig. 1b). The cUTCI index 350 

showed periods of extreme heat stress in Portugal and southwestern Spain, very strong heat stress in 351 

northern and central Germany, central-western Poland, large parts of France and Iberia, and strong heat 352 

stress in most of eastern Europe, Finland, southern Scandinavia and parts of the British Isles (Fig. 1c). 353 

The high intensities in Turkey and the Caucasian region were not caused by the same weather pattern 354 

as the event described in this paper and are thus not discussed here.   355 

 356 
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 357 

Figure 1: Spatial representation of European heatwave (ERA5) and drought (E-OBS) in the 2018 358 

summer. (a) Maximum heatwave duration in days (grid point-based, exceedance of 90th percentile of 359 

daily maximum temperature). (b) Cumulative heat (in °C). (c) Maximum UTCI in the 2018 summer per 360 

grid point and respective heat stress category. (d) SPEI3 August. (e) SPEI6 August. Only SPEI values 361 
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below -1 are shown, in order to highlight drought conditions. Respective maps for SPI can be found in 362 

the Appendix (Fig. A1). Reference period used in all metrics: 1981-2010. 363 

 364 

In northern and central Europe, the heatwave was preceded and accompanied by intense drought 365 

conditions. As an example, the meteorological drought is depicted in terms of the SPEI3 and SPEI6 366 

values for August (Fig. 1d,e) that were particularly low in central and northern Europe (correspondent 367 

SPI shown in Fig. A1). The cumulative effect of low precipitation and high evapotranspiration lead to 368 

lower values of the SPEI6 index in many European regions compared to SPEI3. The most extreme 369 

values (SPEI6 < -5) are identified for southern Norway and Sweden. For Germany, the drought 370 

conditions can also be seen when using the complementary approach based on climate networks 371 

(Schädler and Breil, 2021). Figure 2a shows the spatial distribution of node degree anomalies, compared 372 

to the reference period 1981-2010, for dry days in Germany for the 2018 summer, as a measure of 373 

drought spatial coherence (connectivity). High anomaly values are identified for large areas in central 374 

and northern Germany highlighting the exceptional drought, while no anomalies are found over south 375 

Germany. The thermopluviogram for Germany depicts temperature and precipitation anomalies for 376 

Germany, and confirms that the extended warm period of April to October 2018 was the most 377 

exceptional in terms of precipitation deficit and heat anomaly compared to the reference period (1981-378 

2010) since 1881 (Fig. 2b). When considering different seasonal periods, such as March to August, or 379 

June to August only, 2018 remains a very extreme season (see Fig. A2A1). In summary, while the 380 

heatwave was most intense in southern Scandinavia, 2018 stood out as the most intense compound heat 381 

and dry event in the observational history for Germany, in agreement with Zscheischler and Fischer 382 

(2020). 383 



14 
 

 384 

385 
Figure 2: Summer 2018 heatwave and drought in Germany. (a) Climate network node degree anomaly 386 

(as a proxy for spatial coherence) for dry days in summer (June to August; JJA) 2018 in Germany (E-387 

OBS data, reference period 1981-2010). (b) Thermopluviogram for the growing season, April to 388 

October, of the years 1881-2021 2022 for Germany showing the temperature and precipitation 389 

anomalies from the climatological mean (DWD observational data, reference period 1981-2010). 2018 390 
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is highlighted with light green color. Thermopluviograms for different periods can be found in the 391 

Appendix (Fig. A2A1). 392 

3.2 Dynamical drivers and evolution 393 

In order to characterize large-scale circulation features for summer 2018, we used a number of different 394 

and complementary metrics to describe the multi-faceted characteristics of the event. First, we analyzed 395 

the blocking conditions for this season, as the occurrence of heatwaves is directly associated with 396 

summer blocking or – for the lower latitudes in Europe – to atmospheric ridges (Woollings et al., 2018; 397 

Sousa et al., 2018; Kautz et al., 2022). Using the blocking detection algorithm, we confirm that for the 398 

2018 summer, blocking is detected over Great Britain from late June into the first ten days of July as 399 

well as over Scandinavian and Ural regions for most days of July (Fig. A3A2). Compared to the 400 

climatological occurrence of blocking frequency, the percentage of blocked days in June/July 2018 was 401 

20-60 % higher in the mentioned areas (Fig. 3a,b), indicating blocking frequency values above the 90th 402 

percentile (Fig. A4A3). This large-scale set up for the summer time (see e.g., Kautz et al., 2022, their 403 

Figure 2b) leads to the development of a heatwave collocated with the center of the blocking, while 404 

unsteady weather conditions may happen on the block edges.  405 

The establishment of a long-lived blocking anticyclone is consistent with the development of a 406 

double jet stream state over Eurasia, with two maxima of the zonal mean zonal wind at the 250 hPa 407 

level, which started as early as mid-May and persisted until 25th of July, with only a few days in between 408 

not characterized by double jets (Fig. 3c). The period 04–25 July was characterized by a continuous 409 

persistent double jet configuration, according to the SOM-based detection scheme of jet stream states. 410 

These 22 consecutive days of double jets make 2018 one of the longest such events in the study period 411 

(1979–2020), the longest being that of 2003 (Rousi et al., 2022; their Figure 4). The initiation of the 412 

heatwave in Europe happened a few days after the initiation of this persistent double jet event (see Fig. 413 

4), highlighting a potential role of the double jet structure in preconditioning the flow and favoring the 414 

onset of a heatwave in the region of weak winds between the two jets, where the blocking anticyclone 415 

lies (Rousi et al., 2022). This large-scale set up typically corresponds to the occurrence of the summer 416 

NAO+ (sNAO+) regime, as confirmed by the circulation regime approach applied on the 2018 summer. 417 

Indeed, most of July 2018 was dominated by a sNAO+ index (Fig. 3d) and a spatial pattern, typically 418 

characterized by a more northerly location and smaller spatial scale than its winter counterpart (Folland 419 

et al., 2009). This is in agreement with previous studies (e.g. Drouard et al., 2019) showing a strong 420 

positive EOF-based NAO anomaly in this time period that is consistent with large parts of the seasonal 421 

anomalies observed during summer 2018.  422 
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423 

 424 
Figure 3: Blocking frequency anomalies for (a) June and (b) July 2018 (shading, contour lines show 425 

mean geopotential height at 500hPa plotted every 50hPa). (c) Eurasian zonal mean zonal wind at 426 

250hPa for May-September 2018 (shading; 5day running means centered on each day from 01.05-427 

30.09.2018). The red lines mark the duration of the longest double jet event (04-25.07.2018). (d) NAO 428 

index for May-September 2018. 429 

 430 
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The analysis of Rossby wave activity permits the evaluation of the development of the blocking, 431 

NAO+ phase and the corresponding double jet structure for the summer 2018. Results show an eastward 432 

propagation of Rossby wave packets from the Pacific towards the Atlantic Ocean, the British Isles, and 433 

finally towards the European continent during the last 10 to 15 days of June and before the initiation of 434 

the heatwave over Scandinavia (Fig. 4). On the other hand, this was not the case for August, when the 435 

peak over Iberia occurred, which highlights the different mechanisms involved in this heatwave, rather 436 

than Rossby wave activity coming from the Pacific. Indeed, heatwaves and precipitation deficits in this 437 

location are primarily associated with amplified subtropical atmospheric ridges rather than midlatitude 438 

blocking situations (see Woollings et al., 2011; Sousa et al., 2017; 2018). 439 

Further, a backward trajectory analysis was conducted to determine the origins of the air masses 440 

that were present during the different heatwave phases and their evolution. Three grid points were 441 

chosen to represent the three affected areas and time segments of the heatwave: one over Scandinavia 442 

(Utsjoki, Finland) initialized on 18 July 2018, one over central Europe (Bernburg, Germany) on 31 July, 443 

and one over Iberia (Alvega, Portugal) on 4 August 2018 (Fig. 5). The backward trajectories showed 444 

the remote origin of the mid-troposphere air masses, especially in the case of Utsjoki (Fig. 5a), where 445 

it primarily originated over the central North Atlantic. This is also true for the mid-troposphere air 446 

masses in the case of Bernburg (Fig. 5b). However, in the last 48 hours, descending air masses were 447 

observed, pointing to an adiabatic warming by compression. Trajectories starting in the lowest 200 hPa 448 

at Bernburg, indicate that air masses stemmed from a region to the south and east close to the starting 449 

location, indicating relatively stagnant air masses as already discussed in Spensberger et al. (2020). In 450 

the case of Alvega (Fig. 5c), air masses starting between 700 and 1000 hPa experienced several rising 451 

and sinking motions on their way from the south and southeast (e.g. Algerian desert, Atlas Mountains, 452 

Mediterranean Sea), towards the Iberian plateau and coastal regions, thus documenting their local -to- 453 

regional origin, in contrast to the remote origin of the air masses seen in central and northern Europe, 454 

and largely stagnant conditions (in line with Santos et al., 2015) and (Sousa et al., 2019).   455 

 456 
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 457 
 458 
Figure 4: Hovmöller diagram for the period of 15.06.–15.08.2018. The longitudinal extent of three core 459 

heatwave regions (Iberia, Central Europe, Scandinavia), as well as their temperature time series at the 460 

850 hPa level as standardized anomalies (T’) on the right, are marked in green, orange and blue, 461 

respectively. Periods when T' was above the respective 95th percentiles are shaded. Both temperature 462 

(T’) and meridional wind at the 300 hPa level (v’) are anomalies with respect to their smoothed annual 463 

cycles. Rossby wave packet amplitude (E) is depicted in contours from 24 to 38 m/s in steps of 4 m/s, 464 

v’ as color shading from -30 to 30 m/s. Both fields are weighted by the cosine of latitude and 465 

meridionally averaged over above-median grid points within the 40-80° N latitude band (self-adjusting, 466 

depending on the location of the largest amplitudes). Days with a dominant positive phase of the 467 

summer North Atlantic Oscillation (sNAO+) pattern, double jet days, and blocking days are marked on 468 

the left. 469 

 470 
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 471 
Figure 5: 10-day backward trajectories in 25 hPa steps between 1000 hPa and 500 hPa for the three 472 

location coordinates. (a) Utsjoki, Finland, initialized 18.07.2018. (b) Bernburg, Germany, initialized 473 

31.07.2018. (c)Alvega, Portugal, initialized 04.08.2018. For every 100 hPa, a different color is used for 474 

the trajectories. Each black dot is representative of a 24-hour time step. (d) Geographical locations of 475 

the three points. 476 

  477 
In order to infer causal hypotheses for the existence of the Scandinavian block, the trajectory 478 

approach was extended to obtain the origins of low potential vorticity (PV) air masses that formed the 479 

upper-tropospheric part of the Scandinavian anticyclone (see Sect. 2.2.3). For the sake of brevity, only 480 

maps of 7-day and 3-day trajectory density on 18 July 18 2018, around the maximum heatwave day in 481 

Scandinavia, are shown in Figure 6, but other days corroborate the inferences below (not shown). Figure 482 

6a shows the density of 7-day backward trajectories, indicating that air masses were steered from the 483 

Western North Atlantic over the British Isles to Scandinavia. This is in line with the propagation of the 484 

corresponding Rossby wave packet discussed above. Moreover, using the method described in 485 

Zschenderlein et al. (2020 , their Fig. 4), the role of a remote warm conveyerconveyor belt is suggested 486 

by ascending, diabatically heated trajectories over the western Atlantic (not shown); PV is lowered in 487 

the warm conveyerconveyor belt and then transported in the upper troposphere into the Scandinavian 488 

anticyclone (termed “remote branch” by Zschenderlein et al., (2020)). Interestingly, high trajectory 489 

densities over central to eastern Europe, which also strongly ascended and were diabatically heated (not 490 

shown), point towards an influence of moist convection observed under an upper-level trough in this 491 

area in feeding low PV air towards the Scandinavian anticyclone. Such a “nearby branch” was also 492 

mentioned by Zschenderlein et al. (2020) to be important for anticyclone persistence over central 493 

Europe. However, in the 2018 case the nearby branch is located to the southeast, not to the southwest 494 
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as for central Europe. Three days before the peak of the heatwave, trajectories almost exclusively stem 495 

from this nearby branch, now located more to the south of the Scandinavian anticyclone (Fig. 6b). 496 

Clearly, determining causal pathways from this analysis is not possible, yet modelling studies with 497 

explicit convection could shed more light on the role of the remote branch (warm conveyerconveyor 498 

belt over the western Atlantic) versus the nearby branch over southeastern Europe for the establishment 499 

and maintenance of the Scandinavian anticyclone. 500 

501 

 502 

Figure 6: Backward trajectories for 7-days (a) and 3-days (b). Backward trajectory density maps ending 503 

on July 18, initiated in 50 hPa steps between 150 hPa and 500 hPa for grid points within the 504 

Scandinavian anticyclone (backward trajectories were initiated from the dotted points inside the red 505 

rectangle; the dotted points are those defined by vertically averaged PV anomaly based on monthly 506 

climatology < -0.7 PVU and PV < 1 PVU).  507 

3.3 Low-frequency precursors 508 
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When addressing possible precursors for European heatwaves, SST anomalies over the North Atlantic 509 

(Dunstone et al., 2019;) (Ossó et al., 2020); (Beobide-Arsuaga et al., 2023) and soil moisture anomalies 510 

over continental Europe (Quesada et al., 2012) are among the primary candidates, as outlined in the 511 

Introduction. A tripolar SST pattern with negative anomalies over the Subpolar Gyre (SPG) was evident 512 

in spring (MAM, northern box of Fig. 7a,b). At the same time, a pronounced precipitation deficit over 513 

Scandinavia in spring 2018 was present (Fig. 7c). The SST tripolar pattern persisted over time, with the 514 

cold SPG anomaly intensifying in summer (JJA, Fig. 7b), and the same is true for the precipitation 515 

deficit, which increased particularly in Germany and central Europe (Fig. 7d), as also discussed in 516 

(Toreti et al., (2019). The soil moisture anomaly for 2018 spring and summer (Fig. 7e,f) shows a pattern 517 

consistent with the precipitation anomaly. LPJmL- simulated soil moisture anomalies for 2018 spring 518 

and summer (Fig. A5a,b) corroborate the spatial pattern seen in the ERA5 analysis.  519 
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  520 
Figure 7: Anomalies of sea surface temperature (SST; a,b), precipitation (c,d) and soil moisture (e, f) 521 

in the ERA5 reanalysis (compared to the reference period 1981–2010) for spring (March to May; MAM; 522 

a, c, e) and summer (June to August; JJA; b, d, f) months. Boxes in (a) and (b) indicate the regions for 523 

the tripolar SST pattern.  524 

 525 
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Having established that the large-scale soil moisture anomaly is consistent with the SST and 526 

precipitation anomalies, we investigated the temporal development of the soil moisture pattern over 527 

Germany. Reduced soil moisture often facilitates the occurrence a of summer drought and heatwaves 528 

(Teuling, 2018), as the soil moisture determinant for evapotranspiration (or lack thereof) directly links 529 

to the surface temperature and relative humidity at the land surface (Stéfanon et al., 2014); (Miralles et 530 

al., 2018). Thus, soil moisture and latent heat flux were used to identify periods of moisture limitation 531 

(denoted by positive correlation coefficients between the two) and wet conditions (negative correlation 532 

coefficients), under which the latent heat flux is primarily controlled by the atmosphere. The derived 533 

(Fig. 8) and simulated (Fig. A5c,d) time series for the soil moisture-latent heat flux correlations are 534 

based on daily data centered on 92-day running periods for Germany (Fig. 8). Additionally, centered 535 

92-day running mean soil moisture is shown. The time series were spatially averaged over all land 536 

points for northern (Fig. 8a,c; Fig. A5c,e) and southern Germany (Fig. 8b,d; Fig. A5d,f). Germany is 537 

usually not in the moisture-limited regime, but extraordinary hydrologic conditions can lead to a shift 538 

from an energy-limited evaporative regime to moisture-limited conditions (Lo et al., 2021), increasing 539 

the surface temperature and enhancing the sensible heat flux. The soil moisture anomaly in March 2018 540 

was low all over Germany (Fig. 8a,b; Fig. A5c,d; note that the LPJmL-simulated soil moisture estimates 541 

are lower in absolute terms compared to ERA5, which is likely the result of lower soil water holding 542 

capacity assumed in this model) and thus did not yet limit evapotranspiration and latent heat flux. Warm 543 

conditions in spring caused a high latent heat flux all over Germany, indicating a strong energy-544 

limitation (Fig. 8c,d; Fig. A5e,f). High latent heat fluxes, in turn, lead to a severe depletion of the soil 545 

moisture up to a depth of 1 m, starting at the end of March and continuing until July in northern Germany 546 

and mid-August in southern Germany. The precipitation deficit (Fig. 7c,d) further exacerbated the 547 

drying of the soils, and shifted the evaporative regime from energy-limited to moisture-limited 548 

conditions. The latter prevailed between June and August 2018, indicating that the anomalously dry 549 

soils during the 2018 summer further augmented the hot surface temperatures (Dirmeyer et al., 2021; 550 

Orth, 2021). 551 

In summary, the observed and modelled spring and early summer SST anomalies over the North 552 

Atlantic and European soil moisture anomaly patterns for 2018 are in line with those identified for other 553 

recent hot summers. Moreover, the dried-out soils and vegetation may have enhanced the maximum 554 

temperatures by leading to anomalous latent heat fluxes locally, but also downwind via advected 555 

sensible heat that can lead to abrupt increases in air temperatures further enhancing local land–556 

atmosphere feedbacks (Schumacher et al., 2022). 557 
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 558 
Figure 8: (a) Time series of centered 92-day running mean soil moisture averaged over all land points 559 

of northern Germany (51° N – 55° N and 4° E – 16° E) for the period March-September of 1981-2020. 560 

The grey lines denote individual years, the black line the average of 1981-2010, and the blue line 2018. 561 

(b) As (a) but for southern Germany (48° N-51° N and 4° E – 16° E). (c) Time series of soil moisture-562 

latent heat flux coefficients based on 92-day running periods for the growing period covering March to 563 

September for the years 1981-2020 for northern Germany. The grey lines denote individual years, the 564 

black line the average of 1981-2010, and the red line 2018. Energy-limited is related to a correlation 565 

coefficient of -1, and moisture-limited to a correlation coefficient of 1. (d) As (c) but for southern 566 

Germany.  567 

3.4 Attribution of the 2018 extreme heat 568 

This section evaluates how anthropogenic climate change has affected the likelihood of similar 569 

heatwaves under present climate conditions and how it will affect their likelihood at global warming 570 

levels of +1.5° C and +2° C compared to pre-industrial times.  571 

As defined by the cumulative heat metric, the 2018 summer was the 2nd warmest summer over 572 

Europe following 2010, surpassed again in 2019 and 2021 (not shown), ranking it 4th warmest by now, 573 

with 2022 being another candidate for warmest summer yet. In the period of 19501979-2021, ERA5 574 

data exhibits a 7 % likelihood of 2018 cumulative heat levels (black PDF in Fig. 9). MPI-GE, which is 575 

shown to adequately represent the variability and forced anthropogenic changes in observed 576 

temperatures (Suarez-Gutierrez et al., 2018; 2021), is also well able to capture cumulative heat (gray 577 

PDF in Fig. 9) as compared to ERA5. Under recent climate (1979-2021) conditions, the 100 members 578 

of MPI-GE simulate a 9 % likelihood of exceeding 2018 levels, making this roughly a 1-in-10-years 579 

event. This is in line with an earlier attribution study by the World Weather Attribution (WWA) team 580 

who found return periods of about 1-in-10-years for Scandinavia and slightly less in the Netherlands 581 

(WWA, 2018). (Vogel et al., ( 2019) also showed that events of this type, exhibiting concurrent hot 582 
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temperature extremes over large parts of the northern hemisphere, were unprecedented before 2010 and 583 

it is virtually certain that the 2018 events would not have occurred without human-induced climate 584 

change. Under stronger global warming, this likelihood reaches 69 % in a +1.5° C world, and 96 % in 585 

a +2° C world (orange and red PDFs in Fig. 9). Thus, conditions as extreme as the summer 2018 are 586 

projected to occur two out of every three summers in a 1.5° C warmer world, while given 2° C of global 587 

warming they occur virtually every single summer. The extreme summer 2018 represents a fairly 588 

average summer in a +1.5° C world. In a 2° C warmer world, the cumulative heat during the average 589 

summer is twice as large as the 2018 levels, while the most extreme 2° C world summers could exhibit 590 

more than four times more excess heat compared to the recent climate conditions.  591 

 592 
Figure 9: European ERA5 (1979-2021; black) cumulative heat versus MPI-GE under recent (1979-593 

2021; gray), future +1.5° C (2020-2049; orange), and +2° C (2050-2079; red) compared to pre-industrial 594 

times warmer worlds. 2018 summer from ERA5 data is marked with white X. Daily maximum 595 

temperatures (Tmax) for summer months (June to August; JJA) over land grid points only. Anomalies 596 

with respect to 1981-2010. ERA5 data regridded to coarser resolution of MPI-GE. Probabilities are 597 

normalized to percentages (divided by total number of years in period). Bin size is 500° C.  598 

 599 
To estimate how much more likely the heat event of 2018 has become in Germany in recent decades 600 

due to anthropogenic climate change, its probability ratio was calculated based on historical and hist-601 

nat (pre-industrial-type) simulations from the CMIP6 archive. In a first step, we defined the extreme 602 

event for which the tailored attribution analysis for Germany was conducted. We analyzed the 603 

maximum daily temperature (Tmax) averaged for a box over Germany (47.5-55° N, 6-15° E) and to 604 

account for the prolonged heat of 2018, we used the Tmax as a spatial average over seventeen days 605 

(Tmax17). This length was defined based on the longest period of consecutive days with Tmax above 606 

30 °C in German weather stations on record. Using this length, resulted in the longest return period. 607 

Thus, annual block maxima of this variable (Tmax17) were constructed within the GEV fit and the 608 
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return periods were calculated. The return period of the 2018 summer Tmax17 (approximately 31° C 609 

in E-OBS) was estimated as 108 years, making it a heatwave that is expected less than once in a lifetime 610 

and can therefore have considerable impacts. It should be acknowledged that such a return period 611 

estimate contains uncertainties as the time series used to calculate it are shorter (about 70 years). 612 

Following the analysis of observation-based data, the following models were analyzed: CanESM5, 613 

CNRM-CM6-1, ACCESS-ESM1-5, IPSL-CM6A-LR, HadGEM3-GC31-LL, and MRI-ESM2-0 (see 614 

Table A1 for further details on the models used).   615 

The probability ratio of the 2018 summer heatwave occurrence in Germany is shown for all 616 

analyzed models in Figure 10. For all models the probability ratio estimated on the original simulation 617 

data is larger than 1, meaning that the probability of such a heatwave has increased due to anthropogenic 618 

climate change. The red bars provide uncertainty ranges bases on the 1000 bootstraps. The best estimate 619 

in all analysed CMIP6 models (black squares) is > 2, again in line with the WWA findings despite a 620 

rather different event definition (WWA, 2018). For readability of the results, the x-axis in Figure 10 is 621 

only extended to a value of 100 with larger values omitted due to the large uncertainties. In fact, the 622 

upper range of probability ratios for some models is invalid as the event had a zero probability of 623 

occurrence in the hist-nat scenario, indicating that such an extended heatwave would have been very 624 

improbable under pre-industrial conditions. 625 

In summary, the analysis of the impact of anthropogenic climate change on the heatwave in summer 626 

2018 shows that such heat events have already become more frequent, i.e. their probability has increased 627 

compared to pre-industrial conditions. Furthermore, it is expected that such heat events will become 628 

even more likely in a warmer world. 629 

 630 

 631 

Figure 10: Probability ratio (PR) of the 2018 summer heatwave occurrence in Germany in the analyzed 632 

CMIP6 models (see Table A1). The black squares show the PR estimated based on the original 633 
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simulation time series and the red bars show the 5th to 95th PR percentiles calculated from a 1000-634 

member bootstrap. The number of available DAMIP ensemble members is given together with the 635 

model name and the originating institution on the y-axis. The vertical thick black line indicates a PR=1, 636 

above which the likelihood of such an event has increased compared to pre-industrial times.   637 

 638 

 639 
 Drought attribution is notoriously difficult due to the fact that global models only crudely reproduce 640 

convective precipitation, which is the main mode of rainfall in summer. While evapotranspiration is 641 

increasing with warming, the question whether or not this can be compensated by stronger downpours 642 

to avoid hydrological (or agricultural) drought cannot be answered with any degree of certainty at the 643 

moment. Drought episodes are expected to increase (Masson-Delmotte et al. IPCC, 2021) across the 644 

world, but the frequency of occurrence and the actual change in risk cannot be quantified yet. 645 

Nevertheless, it is likely that the prolonged 2018 drought, followed by two more below-average rainfall 646 

years in 2019 and 2020 in Germany, is partially attributable to human-induced climate change. Given 647 

that attributable global warming is approximately 1.1° C (2011-2020), corresponding to 100% of the 648 

observed warming, and warming over land is much more rapid, Europe has already warmed 649 

disproportionately by ~2°C compared to pre-industrial times, with summer warming being particularly 650 

amplified due to soil moisture feedbacks with under increased sensible heat fluxes. Together with the 651 

potential dynamic feedback discussed above, the average summer Tmax in Europe may well exceed 3° 652 

C above pre-industrial conditions already. This is corroborated by a recent WWA study, which analyzed 653 

the recent UK heat record during the exceptional 2022 heatwave (18-19 July 2022) and found that 654 

climate change added 4° C to the observed record Tmax. What used to be a 36°C day is now a 40°C 655 

day (World Weather Attribution (WWA), 2022).  656 

4 Discussion and conclusions 657 

The extreme heat and drought of the summer 2018 has been studied from a multi-faceted weather 658 

and climate perspective. We looked at hot and dry summers over Europe using different analysis 659 

approaches to study the extremeness and attribution to anthropogenic climate change (climate 660 

perspective), as well as synoptic dynamics in concert with slowly varying boundary conditions at the 661 

ocean and continental surfaces (seasonal and weather perspective). The 2018 summer is found to be a 662 

unique historical example of persistent heatwave and drought conditions in large parts of Europe. This 663 

is particularly true for northern and central Europe, regions which - unlike the seasonal drought in the 664 

Mediterranean- are historically not so accustomed to this kind of concurrent hot and dry summer 665 

extremes. The 2018 summer is one more case in a cluster of intense heatwaves facing Europe over the 666 

last decades (Russo et al., 2015; Becker et al., 2022). The 2018 drought was an intense, large-scale 667 
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event, promoting strong land-atmosphere coupling that exacerbated the heatwave (Dirmeyer et al., 668 

2021). 669 

Regarding the large-scale atmospheric conditions conducive of the summer 2018 extremes, we 670 

provided detailed evidence on the blocking anticyclones, persistent double jet stream configurations, 671 

sNAO+ phase, Rossby wave activity, and different air mass origins. For example, the persistent double 672 

jet stream event, combined with record high positive sNAO (Drouard et al., 2019), seems to have played 673 

a role in the long duration of the 2018 heatwave.  Additionally, according to Li et al. (2020), the 674 

collaborative (not mutually exclusive) roles of sNAO+ and European blocking could favor the 675 

frequency, persistence, and magnitude of heatwaves over Europe, as the sNAO+ related blocking events 676 

are quasi-stationary and more persistent compared to the non-NAO+ related ones. New Eevidence is 677 

provided regarding the origin of the low PV air masses in the upper-tropospheric blocking anticyclone 678 

over Scandinavia; while in its initiation phase, backward trajectory analyses point to a role of a western 679 

North Atlantic warm conveyor belt, we provide hints that its maintenance could be supported by low 680 

PV air stemming from moist convection in the trough flanking the block to its southeast, i.e. over 681 

Eastern Europe. However, further analysis is needed to address the direction of causality behind this 682 

link. On the other hand, our analysis suggests that the later heatwave phase over Iberia has different 683 

drivers, as the air masses originated locally or were advected from nearby areas (e.g. North Africa) and 684 

are not necessarily directly associated with the propagation and breaking of large-scale Rossby waves 685 

as over Scandinavia (Santos et al., 2015; Sousa et al., 2019).   686 

The dominant oceanic and large-scale conditions of the North Atlantic might have supported the 687 

development of the 2018 heatwave (Dunstone et al., 2019). The physical reasoning on the relationship 688 

between the North Atlantic SST tripole and exceptionally cold North Atlantic ocean, the jet stream set 689 

up and the occurrence of the heat wave was proposed by Duchez et al. (2016) based on the summer 690 

2015 event. Here, we documented that similar anomalies were also observed during the spring of 2018. 691 

While the atmospheric forcing is associated with the anomalous jet stream positions and blocking, they 692 

in turn influence the precipitation patterns over Europe, leading to changes in the soil moisture content. 693 

Although such a process enhances the potential for a heat extreme, the meteorological factors are the 694 

ones that determine the timing and duration of the heatwave. Dedicated modeling experiments and 695 

causal inference algorithms will be key to test the hypothesis of a causal link between spring North 696 

Atlantic SSTs and subsequent summer extremes in Europe. Moreover, the patterns of North Atlantic 697 

SSTs are acting on top of the warming background climate, which may further modify the type or the 698 

magnitude of those relationships (McCarthy et al., 2019).  699 

The severe soil moisture depletion in Germany between April and July of 2018 reflected the 700 

persistently warm and dry conditions and led to anomalously dry soils in summer. The drought 701 

conditions in the soil pushed its state into the transition zone conditions, in which soil wetness plays a 702 

direct role in influencing the climate by reducing the evaporative cooling effect at the land surface and 703 

thus enhancing hot and dry conditions. The moisture-limited conditions that prevailed between June 704 
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and August 2018 indicated that the hot surface temperatures are directly linked to anomalously dry soils 705 

during the 2018 summer period (Dirmeyer et al., 2021; Orth, 2021).   706 

We also showed that summer 2018 was extreme in the observational record for Europe and that 707 

heat anomalies of this magnitude are expected to occur much more often in a warmer world, being 708 

reached up to almost every year with global warming of +2° C. Wehrli et al. (2020) provided evidence 709 

that the anthropogenic background warming was a strong contributor to the 2018 summer heatwave in 710 

the Northern Hemisphere, highlighting that future extremes under similar atmospheric circulation 711 

conditions at higher levels of global warming would reach dangerous levels. Our tailored attribution 712 

study, which analyzed how the maximum temperature, averaged over 17 days over Germany, has been 713 

impacted by anthropogenic climate change, showed that the probability of such a prolonged heat event 714 

has increased in all CMIP6 models analyzed here. This adds to previous Aattribution studies that 715 

analyzed the summer 2018 heatwave in other areas of Europe and also found an increase in its likelihood 716 

under anthropogenic climate change (McCarthy et al., 2019; Vogel et al., 2019; Leach et al., 2020). 717 

Here, Wwe have presented a comprehensive study of the extreme hot and dry 2018 summer in 718 

Europe, investigating its emergence and evolution with a combination of conventional and more 719 

sophisticated metrics and methods, with an emphasis on their synoptic-scale atmospheric drivers and a 720 

reference to their potential precursors in spring. Moreover, by assessing the event from a climate 721 

perspective, we provided evidence that anomalous summers of such extremity have already, and will 722 

further, become much more frequent in a warming world. Overall, this study highlights the added value 723 

of multi-faceted approaches for the analysis of such extreme events, and that collaboration among 724 

different fields is crucial both for the process understanding and the subsequent quantification of 725 

impacts. At the time of writing The summer ofin 2022 was, yet another, potentially more very extreme 726 

hot and dry summer is that affectinged Europe, corroborating the approach of this studywork and, but 727 

also emphasizing the need to carry out multi-disciplinary impact studies. 728 

  729 
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Appendix 730 

 731 
Figure A1: SPI3 and SPI6 August 2018 (E-OBS data, reference period 1981-2010). 732 
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733 

 734 
Figure A21: Thermopluviogram for Germany for the March – August (a) and for June-August 735 

(cb). Values of temperature and precipitation anomalies from the climatological mean shown 736 

for 30-year periods of 1881-2021 2022 (reference period 1981-2010). 2018 is highlighted with 737 

light green color. 738 
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 739 
Figure A3A2: Daily atmospheric blocking occurrence and duration of consecutive blocked 740 

days (colored bars; increasing from orange to red) in different European regions from June to 741 

September 2018 in ERA5 reanalysis data. A day is defined as blocked if an area of at least 1 742 

million km² of the specific region is blocked based on the 2-dimensional blocking index 743 

described in 2.2.3. 744 
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 745 
Figure A4A3: Monthly regional blocking frequency (fraction of blocked days) from June to 746 

September 2018 (colored bars and arrows) compared to climatological blocking frequencies 747 

from 1950 to 2020 in ERA5 reanalysis data. Black horizontal lines indicate the mean, light 748 

(dark) gray bars the minimum and maximum (25% and 75% quantiles) of historical blocking 749 

frequencies. Derived blocking frequencies are based on the definition of blocked days given in 750 

Figure A3A2. 751 
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 752 
 753 
Figure A5: Soil moisture as simulated by LPJmL with bias-adjusted ERA5 climate forcing. Anomalies 754 

of soil moisture for (a) March to May (MAM) and (b) June to August (JJA) as compared to the reference 755 

period of 1981–2010. Time series of centered 92-day running mean soil moisture averaged over all land 756 

points of (c) northern Germany (51 °N – 55 °N and 4 °E – 16 °E) and (d) southern Germany (48 °N-51 757 

°N and 4 °E – 16 °E) for the growing period March-September of 1981-2020. The grey lines denote 758 

individual years, the black line the average of 1981-2010, and the blue line 2018. Time series of soil 759 

moisture-latent heat flux coefficients based on 92-day running periods for the growing period covering 760 

March to September for the years 1981-2020 for (e) northern Germany and (f) southern Germany; the 761 

grey lines denote individual years, the black line the average of 1981-2010, and the red line 2018. 762 

Energy-limited is related to a correlation coefficient of -1, and moisture-limited to a correlation 763 

coefficient of 1. 764 

 765 
Table A1: CMIP6 models used for the heatwave attribution over Germany. CMIP source_id, 766 

institution_id, data versions for the historical and hist-nat simulations, and data citation for the 767 

CMIP6/DAMIP simulations used in the attribution study. Where initializations of the same model were 768 

Formatted: Left
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using more than one model identifying version, all of them are given and the one that was used for most 769 

initializations is marked in bold, where possible.  770 

source_id institution_id Versions 
historical / 

version hist-
nat 

Versions 
hist-nat 

Data citation 
historical 

Data citation 
hist-nat 

MRI-ESM2-0 MRI v20190603  
v20200327, 
v20201029 

v20190603 
v20200415 

Yukimoto et al., 
2019 

Yukimoto et 
al., 2019b 

HadGEM3-
GC31-LL 

MOHC NERC 
2016 

v20190624  
v20190626 

v20190726, 
v20190729, 
v20190730, 
v20190805 

Ridley et al., 
2019 

Jones, 2019 

IPSL-CM6A-LR 
 

IPSL v20190614  
v20190802 

v20190614 Boucher et al., 
2018 

Boucher et al., 
2018b 

ACCESS-
ESM1-5 

CSIRO v20191115, 
v20191128, 
v20191203, 
v20200529, 
v20200601, 
v20200605, 
v20200803 

v20200615 Ziehn et al., 
2019 

Ziehn et al., 
2020 

CNRM-CM6-1 CNRM-
CERFACS 

v20180917,  
v20181126, 
v20190125, 
v20191004, 
v20200529 

v20190308 Voldoire, 2018 Voldoire, 2019 

CanESM5 CCCma v20190429 / 
v20190429 

v20190429 Swart et al., 
2019 

Swart et al., 
2019b 
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