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Abstract. The Pathfinder model was developed to fill a perceived gap within the range of existing simple climate models.

Pathfinder is a compilation of existing formulations describing the climate and carbon cycle systems, chosen for their balance

between mathematical simplicity and physical accuracy. The resulting model is simple enough to be used with Bayesian

inference algorithms for calibration, which enables assimilation of the latest data from complex Earth system models and the

IPCC 6th assessment report, as well as a yearly update based on observations of global temperature and atmospheric CO2.5

The model’s simplicity also enables coupling with integrated assessment models and their optimization algorithms, or running

the model in a backward temperature-driven fashion. In spite of this simplicity, the model accurately reproduces behaviours

and results from complex models – including several uncertainty ranges – when runran following standardized diagnostic

experiments. Pathfinder is open-source, and this is its first comprehensive description.

1 Introduction10

Simple climate models (SCMs) typically simulate global mean temperature change caused by either atmospheric concentration

changes or anthropogenic emissions, of CO2 and other climatically active species. They are most often composed of ad hoc

parametric laws that emulate the behaviour of more complex Earth system models (ESMs). The emulation allows simulating

large ensembles of experiments that would be too costly to compute with ESMs. However, the SCM denomination refers to a

fairly broad range of models whose complexity can go from a couple of boxes that only emulate one part of the climate system15

(e.g. a global temperature impulse response function; Geoffroy et al., 2013b) to hundreds of state variables representing the

different cycles of greenhouse gases and their effect on climate change (e.g. the compact Earth system model OSCAR; Gasser

et al., 2017). Simpler models are easier and faster to solve, but they may not be adequate for all usages. Therefore, finding the

“simplest but not simpler” model depends on a study’s precise goals.

In our recent research, we have perceived a deficiency within the existing offer of SCMs, in spite of their large and growing20

number (Nicholls et al., 2020). We have therefore developed the Pathfinder model to fill this gap: it is a parsimonious CO2-only

model that carefully balances simplicity and accuracy of representation of physical processes. Pathfinder was designed to fulfil

three key requirements: 1. the capacity to be calibrated using Bayesian inference, 2. the capacity to be coupled with integrated
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assessment models (IAMs), and 3. the capacity to explore a very large number of climate scenarios to narrow down those

compatible with limiting climate impacts. The latter motivated the model’s name.25

While these three requirements clearly call for the simplest model possible, as they all need a fast solving model, they also

imply a certain degree of complexity. The Bayesian calibration requires an explicit representation of the processes (i.e. the vari-

ables) that are used to constrain the model. Coupling with IAMs requires accurately embedding the latest advances of climate

sciences to be policy relevant (National Academies of Sciences and Medicine, 2017). And exploring future climate impacts

requires the flexibility to link additional (and potentially regional) impact variables to the core carbon-climate equations.30

The Pathfinder model is essentially an integration of existing formulations, adapted to our modelling framework and goals.

It is calibrated on Earth system models that contributed to the Coupled Model Intercomparison Project phase 6 (CMIP6), on

additional data from the 6th assessment report of the IPCC (AR6), and on observations of global Earth properties up to the year

2021. The calibration philosophy of Pathfinder is to use complex models as prior information, and only real-world observations

and assessments combining many lines of evidence as constraints.35

Compared to other SCMs (Nicholls et al., 2020), Pathfinder is much simpler than models like MAGICC (Meinshausen et al., 2011),

OSCAR (Gasser et al., 2017) or even HECTOR (Hartin et al., 2015). It is comparable in complexity to FaIR (Smith et al., 2018)

or BernSCM (Strassmann and Joos, 2018), although it is closer to the latter as it trades off an explicit representation of

non-CO2 species for one of the carbon cycle’s main components. This choice was made to help calibration, keep the model

invertible, and be compatible with IAMs such as DICE (Nordhaus, 2017). While most SCMs are calibrated using procedures40

that resemble Bayesian inference (Nicholls et al., 2021), Pathfinder relies on an established algorithm whose implementation

is fully tractable, and that allows for an annual update as observations of atmospheric CO2 and global temperature become

available.

Here, we present the first public release of Pathfinder and its source code. We first provide a detailed description of the

model’s equations. We then describe the Bayesian setup used for calibration, the sources of prior information for it, and the45

resulting posterior configuration. We end with a validation of the model using standard diagnostic simulations and quantitative

metrics for the climate system and carbon cycle.

2 Equations

An overview of Pathfinder is presented in Figure 1. The model is composed of a climate module, of three separate modules for

the carbon cycle (ocean, land without land use and land permafrost), and of two additional modules describing global impacts:50

sea level rise (SLR), and surface ocean acidification. We do not emulate cycles of other non-CO2 gases. Mathematically, the

model is driven by prescribing time series of any combination of two of four variables: global mean surface temperature

(GMST) anomaly (noted T ), global atmospheric CO2 concentration (C), global non-CO2 effective radiative forcing (Rx),

and global anthropogenic emissions of CO2 (ECO2). The model can therefore be run in the traditional emission-driven and

concentration-driven modes, but also in a temperature-driven mode (in terms of code, implemented as separate versions of the55

model). This is notably important for the calibration, during which it is driven by observations of GMST and atmospheric CO2.
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The following presents all equations of the models. Variables are noted using Roman letters, and compiled in Tables B1 and

B2. With a few exceptions, parameters are noted using Greek letters, and summarized in Tables B3 and B4. The model has

21 state variables that follow a first-order differential equations in time. The time variable is noted t and kept implicit unless

required.60

2.1 Climate

The GMST change (T ) induced by effective radiative forcing (ERF; R) is represented using a widely used two-box energy

balance model with deep ocean heat uptake efficacy (Geoffroy et al., 2013a; Armour, 2017). The first box represents the Earth

surface’s temperature (including atmosphere, land and surface ocean), and the other one is the deep ocean’s temperature (Td).

Their time-differential equations are:65

Θs
dT

dt
=R− ϕ ln(2)

T2×
T − ϵheat θ (T −Td) (1)

and

Θd
dTd

dt
= θ (T −Td) (2)

where ϕ is the radiative parameter of CO2, T2× is the equilibrium climate sensitivity (ECS) at CO2 doubling, Θs is the heat

capacity of the surface, Θd is the heat capacity of the deep ocean, θ is the heat exchange coefficient, and ϵheat is the deep ocean70

heat uptake efficacy.

The global ERF is simply the sum of the CO2 contribution (RCO2), expressed using the IPCC AR5 formula (Myhre et al.,

2013), and that of non-CO2 climate forcers (Rx):

R=RCO2 +Rx (3)

with75

RCO2 = ϕ ln

(
C

Cpi

)
(4)

where Cpi is the preindustrial atmospheric CO2 concentration.

The above energy balance model naturally provides the ocean heat content (OHC; Uohc) as:

Uohc = αohc (Θs T +Θd Td) (5)

and the ocean heat uptake (OHU) as:80

dUohc

dt
= αohc (Θs

dT

dt
+Θd

dTd

dt
) (6)

where αohc is the fraction of energy used to warm the ocean (i.e. excluding the energy needed to heat up the atmosphere and

land, and to melt ice).
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2.2 Sea level rise

Global SLR has been implemented in Pathfinder as a variable of interest to model climate change impacts. In this version, it is85

firstly a proof of concept, modelled in a simple yet sensible manner. The total sea level rise (Htot) is the sum of contributions

from thermal expansion (Hthx), Greenland ice sheet (GIS; Hgis), Antarctica ice sheet (AIS; Hais), and glaciers (Hgla):

Htot =Hthx +Hgis +Hais +Hgla (7)

The thermal expansion contribution scales linearly with the OHC (Goodwin et al., 2017; Fox-Kemper et al., 2021):

Hthx = Λthx Uohc (8)90

where Λthx is the scaling factor of the thermosteric contribution to SLR. Note, however, that the thermal capacity of the climate

module does not match that of the real-world ocean (Geoffroy et al., 2013b), and so this equation cannot describe equilibrium

SLR over millennial timescales.

To model contributions from ice sheets and glaciers, we followed the general approach of Mengel et al. (2016). The SLR

caused by GIS follows a first-order differential equation with its specific timescale, and the equilibrium SLR from GIS is95

assumed to be a cubic function of GMST:

dHgis

dt
= λgis +

1

τgis

(
Λgis1 T +Λgis3 T

3 −Hgis

)
(9)

where λgis is an offset parameter introduced because GIS was not in a steady state at the end of the preindustrial era, Λgis1

is the linear term of equilibrium of GIS SLR, Λgis3 is the cubic term of equilibrium of GIS SLR, and τgis is the timescale of

the GIS contribution. The motivation for replacing the quadratic term of Mengel et al. (2016) by a cubic one is the oddness of100

the cubic function that leads to negative (and not positive) SLR for negative T (which happens during the earlier years of the

calibration run).

The contribution from glaciers is also a first-order differential equation with an equilibrium inspired by Mengel et al. (2016).

We expanded it with a cubic term to account for the fact that we aggregate all glaciers together and allow more skewness in

the curve describing the equilibrium SLR as a function of T . In addition, we added an exponential sensitivity to speed up the105

convergence to equilibrium under warmer climate:

dHgla

dt
= λgla +

exp(γgla T )

τgla

(
Λgla

(
1− exp

(
−Γgla1 T −Γgla3 T

3
))

−Hgla

)
(10)

where λgla is an offset parameter accounting for the lack of initial steady-state, Λgla is the SLR potential if all glaciers melted,

Γgla1 is the linear sensitivity of glaciers’ equilibrium to climate change, Γgla3 is the cubic sensitivity of glaciers’ equilibrium

to climate change, τgla is the timescale of the glaciers contribution, and γgla is the sensitivity of glaciers’ timescale to climate110

change.

Following Mengel et al. (2016), the contribution from AIS is further divided in two terms, one for surface mass balance

(SMB; Hais,smb) and one for solid ice discharge (SID; Hais,sid), so that Hais =Hais,smb+Hais,sid. It is expected that precipita-

tion will increase over Antarctica under higher GMST, leading to increase in SMB and to a negative sea level rise contribution

4



modeled as:115

dHais,smb

dt
=−Λais,smb T (11)

where Λais,smb is the AIS SMB sensitivity to climate change (expressed in sea level equivalent). At the same time, increasing

surface ocean temperatures will cause more SID through basal melting, which we model using a first-order differential equation

assumed to be independent of the SMB effect, and with a term that speeds up the effect the more SID happened:

dHais,sid

dt
= λais +

1+αais Hais,sid

τais
(Λais T −Hais,sid) (12)120

where λais is an offset parameter accounting for the lack of initial steady-state, Λais is the SLR equilibrium of AIS SID, τais is

the timescale of the AIS SID contribution, and αais is the sensitivity of the timescale to past SID. In the model’s code, however,

we directly solve for the total AIS contribution as:

dHais

dt
=−Λais,smb T +λais +

1+αais (Hais −Hais,smb)

τais
(Λais T − (Hais −Hais,smb)) (13)

2.3 Ocean carbon125

To calculate the ocean carbon sink, we use the classic mixed-layer impulse response function model from Joos et al. (1996),

updated to the equivalent box-model formulation of Strassmann and Joos (2018), and extended in places to introduce parameter

adjustments for calibration. In the model, the mixed layer is split into 5 boxes (subscript j), as represented in Figure 2, so that

the total carbon in the mixed layer pool (Co) is:

Co =
∑
j

Co,j (14)130

This total carbon mass is converted into a molar concentration of dissolved inorganic carbon (DIC; cdic) following:

cdic =
αdic

βdic
Co (15)

where αdic is a fixed conversion factor, and βdic is a scaling factor for the conversion. (The latter can be seen as a factor

multiplying the mixed layer depth: it is 1 if the depth is unchanged from the original Strassmann and Joos (2018) model.)

The non-linear carbonate chemistry in the mixed layer is emulated in two steps. First, the model’s original polynomial135

function is used to determine the partial pressure of CO2 affected by changes in DIC only (pdic):

pdic =(1.5568− 0.013993To) cdic

+(7.4706− 0.20207To) 10
−3 cdic

2

− (1.2748− 0.12015To) 10
−5 cdic

3

+(2.4491− 0.12639To) 10
−7 cdic

4

− (1.5768− 0.15326To) 10
−10 cdic

5 (16)
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where To is the preindustrial surface ocean temperature. Second, the actual partial pressure of CO2 (pCO2) is calculated using

an exponential climate sensitivity (Takahashi et al., 1993; Joos et al., 2001):140

pCO2 = (pdic +Cpi) exp(γdic T ) (17)

where γdic is the sensitivity of pCO2 to climate change.

The flux of carbon between the atmosphere and the ocean (Focean, defined positively if it is a carbon sink) is caused by

the difference in partial pressure of CO2 in the atmosphere and at the oceanic surface, following an exchange rate that varies

linearly with GMST, that is here used as a proxy for wind changes:145

Focean = νgx (1+ γgx T ) (C − pCO2) (18)

where νgx is the preindustrial gas-exchange rate, and γgx is its sensitivity to climate change.

This flux of carbon entering the ocean is split between the mixed layer carbon subpools, and this added carbon is subsequently

transported towards the deep ocean at a rate specific to each subpool. This leads to the following differential equations:

dCo,j

dt
=− Co,j

κτo τo,j
+αo,j Focean, ∀j (19)150

where αo,j are the subpools’ splitting shares (with
∑

j αo,j = 1), τo,j are the subpools’ timescales for transport to the deep

ocean, and κτo is a scaling factor applied to all subpools. Finally, the deep ocean carbon pool (Cd) is obtained through mass

balance:

dCd

dt
=
∑
j

Co,j

κτo τo,j
(20)

2.4 Ocean acidification155

While in the real world, ocean acidification is directly related to the carbonate chemistry and the ocean uptake of anthropogenic

carbonsink, we do not have a simple formulation at our disposal that could link it to our ocean carbon cycle module. We

therefore use a readily available emulation of the surface ocean acidification (pH) that links it directly to the atmospheric

concentration of CO2 (Bernie et al., 2010) with the following polynomial approximation:

pH = κpH (8.5541− 0.00173C +1.3264 10−6 C2 − 4.4943 10−10 C3) (21)160

where κpH is a scaling factor (that defaults to 1). We note that this approach is reasonable for the surface ocean, as it quickly

equilibrates with the atmosphere (but it would not work for the deep ocean).

2.5 Land carbon

The land carbon module of Pathfinder is a simplified version of the one in OSCAR (Gasser et al., 2017, 2020). It is shrunk

down to four global carbon pools: vegetation, litter, active and passive soil (see Figure 3). All terrestrial biomes are lumped165
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together, and there is therefore no accounting of the impact of land use change on the land carbon cycle in this version of

Pathfinder. This is an extreme assumption – although very common in SCMs – motivated by simplicity, and it implies that CO2

emissions from fossil fuel burning and land use change are assumed to behave in the exact same way, in spite of their not doing

so in reality (Gitz and Ciais, 2003; Gasser and Ciais, 2013).

The vegetation carbon pool (Cv) results from the balance between net primary productivity (NPP; Fnpp), emission from170

wildfires (Efire), emission from harvest and grazing (Eharv), and loss of carbon from biomass mortality (Fmort):

dCv

dt
= Fnpp −Efire −Eharv −Fmort (22)

NPP is expressed as its own preindustrial value multiplied by a function of CO2 and of GMST (rnpp). This function thus

embeds the so-called CO2-fertilisation effect, whereby NPP increases with atmospheric CO2, described using a generalised

logarithmic functional form:175

Fnpp = Fnpp0 rnpp (23)

with

rnpp =

(
1+

βnpp

αnpp

(
1−

(
C

Cpi

)−αnpp
))

(1+ γnpp T ) (24)

where Fnpp0 is the preindustrial NPP, βnpp is the CO2-fertilisation sensitivity, αnpp is the CO2-fertilisation shape parameter for

saturation, and γnpp is the sensitivity of NPP to climate change (that can be positive or negative). The generalised logarithmic180

functional form implies that: rnpp → (1+βnpp ln(C/Cpi))(1+ γnppT ) as αnpp → 0+.

Harvesting and mortality fluxes are taken proportional to the carbon pool itself even though in reality the mortality fluxes

are climate dependent. For simplicity we assume a constant mortality following the equations in OSCAR (Gasser et al., 2017):

Eharv = νharv Cv (25)185

and

Fmort = νmort Cv (26)

where νharv is the harvesting/grazing rate, and νmort is the mortality rate.

Wildfires emissions are also assumed proportional to the vegetation carbon pool, but with an additional linear dependency

of the emission rate on CO2 (as a proxy of changes in leaf area index and evapotranspiration) and GMST (rfire):190

Efire = νfire rfire Cv (27)

with

rfire =

(
1+βfire

(
C

Cpi
− 1

))
(1+ γfire T ) (28)
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where νfire is the wildfires rate, βfire is the sensitivity of wildfires to CO2, and γfire is their sensitivity to climate change.

Soil carbon is divided into three pools. The litter carbon pool (Cs1) receives the mortality flux as sole input, it emits part of195

its carbon through heterotrophic respiration (Erh1), and it transfers another part to the next pool through stabilization (Fstab):

dCs1

dt
= Fmort −Fstab −Erh1 (29)

Similarly, the active soil carbon pool (Cs2) receives the stabilization flux, is respired (Erh2), and transfers carbon to the last

pool through passivization (Fpass):

dCs2

dt
= Fstab −Fpass −Erh2 (30)200

The passive carbon pool (Cs3) receives this final input flux and is respired (Erh3):

dCs3

dt
= Fpass −Erh3 (31)

Although information pertaining to this fourth pool is not commonly provided by ESMs, it was introduced in Pathfinder to

adjust the complex models’ turnover time of soil carbon to better match isotopic data (He et al., 2016). For completeness, we

note that the total heterotrophic respiration is Erh = Erh1+Erh2+Erh3, and the total soil carbon pool is Cs = Cs1+Cs2+Cs3.205

All soil-originating fluxes are taken proportional to their pool of origin, and multiplied by a function (rrh) explained hereafter.

For the litter pool, this gives:

Erh1 = νrh1 rrh Cs1 (32)

and

Fstab = νstab rrh Cs1 (33)210

where νrh1 is the litter respiration rate, and νstab is the stabilization rate. For the active soil pool, we have:

Erh2 =
νrh23 − νrh3 αpass

1−αpass
rrh Cs2 (34)

and

Fpass = νrh3
αpass

1−αpass
rrh Cs2 (35)

and for the passive soil pool:215

Erh3 = νrh3 rrh Cs3 (36)

where νrh23 is the soil respiration rate (averaged over active and passive pools), νrh3 is the passive soil respiration rate, and

αpass is the fraction of passive carbon (over active+passive soil carbon). This slightly convoluted formulation is motivated by

the lack of information regarding the active/passive split in ESMs, which we alleviate using additional data during calibration.
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In addition, the function rrh, describing the dependency of respiration (and related fluxes) on temperature and on the avail-220

ability of fresh organic matter to be decomposed, is defined as:

rrh =

(
1+βrh

(
Cs1

Cs1 +Cs2 +Cs3

(
1+

νstab
νrh23

)
− 1

))
︸ ︷︷ ︸(

1+βrh

(
Cs1

Cs

Cs(t0)
Cs1(t0)

− 1
))

exp(γrh T ) (37)

where βrh is the sensitivity of the respiration to fresh organic matter availability (expressed here as the relative change in the

Cs1/Cs ratio with regard to preindustrial times), and γrh is its sensitivity to climate change (equivalent to a "Q10" formulation

with Q10 = exp(10 γrh)).225

Finally, the net carbon flux from the atmosphere to the land (Fland, defined positively if it is a carbon sink) is obtained as the

net budget of all pools combined:

Fland = Fnpp −Efire −Eharv −Erh (38)

and this system of equations leads to the following preindustrial steady-state:

Cv(t0) =
Fnpp0

νfire+νharv+νmort

Cs1(t0) = Cv(t0)
νmort

νrh1+νstab

Cs2(t0) = Cs1(t0)
νstab

νrh23
(1−αpass)

Cs3(t0) = Cs1(t0)
νstab

νrh23
αpass

(39)230

2.6 Permafrost carbon

As the land carbon cycle described in the previous section does not account for permafrost carbon, we implemented this

feedback using the emulator developed by Gasser et al. (2018) but aggregated into a unique global region. Figure 4 gives a

representation of the permafrost module as described in the following. The emulation starts with a theoretical thawed fraction

(ā) that represents the fraction of thawed carbon under steady-state for a certain level of local warming. It is formulated with a235

sigmoid function (that equals 0 at preindustrial and 1 under very high GMST):

ā=−amin +
(1+ amin)(

1+
((

1+ 1
amin

)κa

− 1
)
exp(−γa κa αlst T )

) 1
κa

(40)

where −amin is the minimum thawed fraction (corresponding to 100% frozen soil carbon), κa is a shape parameter determining

the asymmetry of the function, γa is the sensitivity of the theoretical thawed fraction to local climate change, and αlst is the

proportionality factor between local and global climate change.240

The actual thawed fraction (a) then moves towards its theoretical value at a speed that depends on whether it is thawing (i.e.

a < ā) or freezing (i.e. a > ā). This is written as a non-linear differential equation:

da

dt
= 0.5 (νthaw + νfroz) (ā− a)+ 0.5 |(νthaw − νfroz) (ā− a)| (41)
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where νthaw is the rate of thawing, and νfroz is the rate of freezing. Because νthaw > νfroz, the absolute value in the equation

leads to the right-hand side being νthaw(ā−a) if a < ā, or νfroz(ā−a) if a > ā. The change in the pool of frozen carbon (Cfr)245

naturally follows:

dCfr

dt
=−da

dt
Cfr0 (42)

where Cfr0 is the amount of frozen carbon at preindustrial times.

Thawed carbon is not directly emitted to the atmosphere: it is split into three thawed carbon subpools (Cth,j) that have their

own decay time, but are all affected by an additional function (rrt). This leads to the following budget equations:250

dCth,j

dt
=−αth,j

dCfr

dt
− Cth,j

κτth τth,j
rrt, ∀j (43)

where αth,j are the subpools’ splitting shares (with
∑

j αth,j = 1), τth,j are the subpools’ decay times, and κτth is a scaling

factor applied to all subpools. The additional rrt function describes the sensitivity of heterotrophic respiration to climate change

in boreal regions, using a Gaussian formula:

rrt = exp
(
κrt γrt1 αlst T −κrt γrt2 (αlst T )

2
)

(44)255

where κrt is a factor scaling the sensitivity of thawed carbon against that of regular soil carbon, γrt1 is the sensitivity to local

temperature change (i.e. a Q10), and γrt2 is the quadratic term in the latter sensitivity that represents a saturation effect. Noting

that all the emitted carbon is assumed to be CO2, the global emission from permafrost (Epf ) is thus:

Epf =
∑
j

Cth,j

κτth τth,j
rrt (45)

2.7 Atmospheric CO2260

The change in atmospheric concentration of CO2 is the budget of all carbon cycle fluxes to which we add the exogenous

anthropogenic emissions (ECO2):

αC
dC

dt
= ECO2 +Epf −Fland −Focean (46)

where αC is the conversion factor from volume fraction to mass for CO2.

3 Bayesian calibration265

3.1 Principle

Bayesian inference is a powerful tool for assimilating observational data into reduced-complexity models such as Pathfinder

(Ricciuto et al., 2008). The approach consists in deducing joint probability distributions of parameters from a priori knowledge

on those distributions and on distributions of observations of some of the model’s state variables, using Bayes’ theorem (Bayes,
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1763). Summarily, the Bayesian calibration updates the joint distribution of parameters to make it as compatible with the270

constraints as possible given their prior estimates, which increases internal coherence of Pathfinder by excluding combination

of parameters that are unlikely.

Such a Bayesian calibration is vulnerable to the possibility that the priors draw on the same information as the constraints.

However, given that Pathfinder is a patchwork of emulators whose parameters are obtained independently from one another

and following differing experimental setups, we expect that the coherence of information contained within the priors and the275

constraints is very low. Our choice of using only complex models as prior information and only observations and assessments

as constraints also aims at limiting this vulnerability.

Concretely, the posterior probability Ppost of a sample k from the joint parameters distribution ξk, conditional to a set of

observations x, is proportional (symbol ∝) to its own prior probability Ppre and to the likelihood L of the model simulating x

given ξk:280

Ppost(ξk|x)∝ L(x|ξk)Ppre(ξk) (47)

Here, we assume all observations are independently and identically distributed following a normal distribution (with mean

values µx, and standard deviations σx expressed in real physical units), which leads to the following likelihood:

L(x|ξk) =
nx∏
i=1

1

σx,i

√
2π

exp

(
− (Fi(ξk)−µx,i)

2

2σ2
x,i

)
(48)

where Fi(ξk) is the model’s output for the i-th observable (out of nx) with input parameters ξk.285

3.2 Implementation

The Pathfinder model is a set of (discretized) differential equations with a number of input parameters, of which nξ are

calibrated through Bayesian inference, and an additional two input variables provided as time series (i.e. one value per time

step required). While the two input time series can be any combination of two out of four variables (anthropogenic CO2

emissions, non-CO2 ERF, atmospheric CO2 concentration, or GMST), for calibration we use the two most well constrained290

variables that are direct physical observations of the global Earth system: atmospheric CO2 and GMST. These input time series

cover the historical period from 1751 to 20201. Therefore, the ξk vector is:

ξk =
{
{ξj}

nξ

j=1,{C(t)}2021t=1751,{T (t)}2021t=1751

}
k

(49)

However, to ease the computation by reducing the dimension of the system, we do not use annual time series of observations

as inputs, but we assume that each input time series (for variable X being C or T ) follows:295

X(t) =Xµ(t)+ σ̃X Xσ(t)+ ϵX AR1(t;ρX) (50)

where Xµ and Xσ are fixed exogenous annual time series (i.e. structural parameters), σ̃X is the relative standard deviation of

the time series (without noise), ϵX is the noise intensity, and AR1 is an autoregressive process of order 1 and autocorrelation
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parameter ρX . This assumption leads to the final expression of the ξk vector:

ξk =
{
{ξj}

nξ

j=1, σ̃C , ϵC ,ρC , σ̃T , ϵT ,ρT ,
}
k

(51)300

During this Bayesian assimilation, the Pathfinder model is run solely over the historical period (from 1750 to 2021), as the

constraints concern only preindustrial or historical years. For the computation, the time-differential system of Pathfinder is

solved using an implicit-explicit numerical scheme (also called IMEX), with a time step of one quarter of a year. This solving

scheme relies on: first, writing the differential equations of all state variables X as:

dX

dt
=−ν X +R (52)305

where ν is the constant speed of the linear part of the differential equation, and R is its non-linear part; second, discretizing

these equations as:

X(t+ δt)−X(t)

δt
=−ν X(t+ δt)+R(t) (53)

where δt is the solving time step (which is 1
nt

times the annual time step of the model’s inputs and outputs, here nt = 4);

and third, explicitly solving for all X(t+ δt). We note this is also the default solving scheme for regular simulations with the310

model, although the value of nt can be altered and alternative schemes are available.

The Bayesian procedure itself is implemented using the Python computer language, and specifically the PyMC3 package

(Salvatier et al., 2016). The solving of equation 47 and its normalizationdistribution sampling and parameter distributions

estimation are done using the package’sthrough a full-rank Automatic Differentiation Variational Inference (ADVI) algo-

rithm (Kucukelbir et al., 2017), with 100,000 iterations (and default algorithm options). The choice of variational inference315

instead of Markov chain Monte Carlo is motivated by the significant size our model (Blei et al., 2017) and the speed of ADVI.

An additionalA strength of the full-rank version of the ADVI algorithm isis the algorithm’s speed, and its ability to gener-

ate correlated (i.e. joint) posterior distributions even if the prior ones are uncorrelated. Convergence of the algorithm was

controlled through convergence of the ELBO metric (Kucukelbir et al., 2017). All results presented hereafter are obtained

through drawing 2000 sets of parameters – that we call configurations – from the posterior or prior distributions.320

3.3 Constraints

We use a set of 19 constraints related to all aspects of the model that correspond to the set of observations x in the Bayesian

calibration. Many of the constraints are observations, but some are ranges assessed by expert panels such as the Global Carbon

Project or the IPCC. They cover either a recent point in time or an assumed preindustrial equilibrium, and they are typically

taken over a period of at least a few years to reduce the effect of natural variability. During the Bayesian assimilation, the325

Pathfinder model is run solely over the historical period (from 1750 to 2021).

Table 1 summarises these constraints, the periods over which they are considered, and their distributions. The following

subsections provide further details on the constraints, and the constraints distributions are shown in Figure 6.
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3.3.1 Climate system

To constrain the temperature response, we use the same five data sets of observed GMST as in Section 3.4.8, to derive average330

and standard deviation of two constraints: the average GMST change, and the average GMST yearly trend obtained through

second-order accuracy gradient (Fornberg, 1988), both over the latest 20 years of data (2002–2021). Because this data is already

used as input to the Bayesian setup, albeit in a different way, it does not provide much of a constraint, and is used mostly to

ensure the σ̃T and ϵT parameters remain within sensible range.

To further constrain the climate system, we use the mean OHU assessed by the IPCC AR6 over 2006–2018 (Gulev et al.,335

2021, Table 2.7), and the non-CO2 ERF (averaged over 2010-2019) also estimated for the AR6. The central value of the latter

is taken from Dentener et al. (2021, Table AIII.3, and corresponding GitHub repository), and its uncertainty is constructed

using data from Forster et al. (2021, Table 7.8) and assuming the ERF of all species are normally distributed and uncorrelated,

but fully correlated in time for each separate species (which likely overestimates the uncertainty).

To better align with the IPCC AR6, we also constrain the ECS of our model (i.e. the T2× parameters). To do so, because340

the distribution of ECS cannot be assumed normal, we follow the framework of Roe and Baker (2007) who define the climate

feedback factor ff so that T2× = T ∗
2×/(1−ff), where T ∗

2× is the minimal ECS value (roughly corresponding to the Planck

feedback). We assume this feedback factor follows a logit-normal distribution, which implies logit(ff) = ln(ff/(1−ff)) =

ln(T2×/T
∗
2× − 1) follows a normal distribution. We therefore constrain logit(ff), using distribution parameters and a value of

T ∗
2× calibrated to fit the probabilistic ranges of ECS provided by the AR6. This fit of the ECS distribution is illustrated in345

Figure B9.

3.3.2 Carbon cycle

Similarly to what is done with GMST, we constrain the atmospheric CO2 level over the latest 10 years of data (2012-2021)

using the NOAA/ESRL data (Tans and Keeling, 2010). The rest of the global CO2 budget is constrained using the 2021 Global

Carbon Budget (GCB; Friedlingstein et al., 2022). We use namely the net atmospheric CO2 growth and total anthropogenic350

emissions (fossil and land use) over the last 10 years, and the ocean and land carbon sinks accumulated since the beginning of

the instrumental measurement period (1960-2020). Note that our definition of the land carbon sink ignoring land use change is

consistent with that of the GCB.

Given its number of parameters and their inconsistent sources, we further constrain the land carbon module by considering

present-day (mean over 1998-2002) NPP (Ciais et al., 2013; Zhao et al., 2005), and preindustrial vegetation and soil carbon355

pools. These preindustrial pools are taken from the AR6 for the central value (Canadell et al., 2021, Figure 5.12), but their

relative uncertainty is taken from the AR5 (Ciais et al., 2013, Figure 6.1) since it is lacking in the AR6. In addition, the soil

carbon pool constraint is corrected downward by estimates of peatland carbon (Yu et al., 2010, Table 1), since it is an ecosystem

missing in TRENDY models (and in ours) but not in the IPCC assessments.

13



3.3.3 Sea level rise360

To constrain the separate SLR contributions from thermal expansion, GIS, AIS and glaciers, we use the model-based SLR

speed estimates over the recent past (averaged over 2006–2018) reported in the AR6 (Fox-Kemper et al., 2021, Table 9.5). To

constrain the total contribution, we also use the historical (1901–1990) sea level rise inferred from tide gauges from the same

source, although the value is corrected upward for the missed impact of uncharted glaciers (Parkes and Marzeion, 2018).

Contrarily to all other modules, the SLR module is not assumed to start at steady-state in 1750, which is represented through365

the λice (ice ∈ [gla,gis,ais]) parameters. We assume this is entirely due to the so-called little ice age (LIA) relaxation, which we

assume can be simply modeled in Pathfinder through exponential decay of our three ice-related contributions since t0 = 1750.

This gives a net LIA contribution of Hlia =
∑

iceλice τice exp
(
− t−t0

τice

)
. We constrain this diagnostic variable using the global

SLR reported by Slangen et al. (2016) over 1900–2005 for their control experiment.

3.4 Parameters (prior distributions)370

Out of the model’s 77 parameters, 33 are assumed to be fixed (i.e. they are structural parameters), and the remaining nξ

= 44 parameters are estimated through Bayesian inference. Prior distributions of the ξj parameters are assumed log-normal

if the physical parameter must be defined positive, logit-normal if it must be between 0 and 1, and normal otherwise. To

avoid extreme parameter values that could make the model diverge during calibration, the posterior distributions are bound to

µξ,j±5σξ,j , where µξ,j and σξ,j are the mean and standard deviation of the j-th parameter’s prior distribution. These two values375

are taken from the literature, deduced from multi-model ensembles, or in a few instances arbitrarily set, as described in the

following subsections. Note that when parameters are deduced from multi-model ensembles, there are effectively two rounds

of calibration: first, a calibration on individual models using ordinary least square regressions to obtain prior distributions, and

second, the Bayesian calibration itself that leads to the posterior distributions. In addition, the prior distributions of σ̃X , ϵX and

ρX are assumed normal, half-normal and uniform, respectively (see Figure 5). All prior distributions are assumed independent,380

so that the prior joint distribution ξ does not exhibit any covariance.

All parameters are summarised in Tables B5 and B6 along with their properties and values. The following subsections further

explain how the prior distributions of the parameters are established, and these distributions are shown in Figure 5

3.4.1 Climate

All the parameters of the climate module are calibrated. The prior distribution of the radiative parameter ϕ is taken from the385

AR5 (Myhre et al., 2013, Table 8.SM.1). All other prior distributions of the parameters of the climate module (i.e. T2×, Θs,

Θd, θ and ϵheat) are taken from 35 CMIP6 models whose climate responses were derived for the AR6 using the abrupt-4xCO2

experiment (Smith et al., 2021, Section 7.SM.2.1, and corresponding GitHub repository). Here, T2× is simply assumed to be

half the reported equilibrium temperature at quadrupled CO2. In addition, the prior distribution of the ocean warming fraction

αohc is taken from the AR6 (Forster et al., 2021, Table 7.1).390
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3.4.2 Sea level rise

Some parameters from the SLR module are structural: the maximum SLR contribution from glaciers (Λgla) is taken from Fox-

Kemper et al. (2021, Section 9.6.3.2), the equilibrium AIS SLR (Λais ) is from (Church et al., 2013, Figure 13.14), and the τgis,

τgla and τais timescales are the mean values from Mengel et al. (2016, Table S1) (assuming they provide the 90%-range of a

log-normal distribution). All other parameters are calibrated. The prior distribution of the thermosteric parameter Λthx is taken395

from the AR6 (Fox-Kemper et al., 2021, Section 9.2.4.1), as are the prior distributions of the preindustrial offset parameters

λgis, λgla and λais (Fox-Kemper et al., 2021, earliest period of Table 9.5). For the remaining parameters, we derive prior

distributions using SLR projections compiled by Edwards et al. (2021) for a number of ice sheets and glaciers models, over

various RCP and SSP scenarios. Using the models’ outputs, we apply equation 9 to estimate the Λgis1 and Λgis3 parameters,

equation 10 for the Γgla1, Γgla3 and γgla parameters, and equation 12 for the Λais,smb and αais parameters. During these fits,400

all other parameters are assumed to take their default value if structural, and their best-guess value otherwise. Results of this

calibration on the individual models compiled by Edwards et al. (2021) are shown for each SLR contribution in Figures B6,

B7 and B8.

3.4.3 Ocean carbon

The ocean carbon cycle module has a number of structural parameters: αdic, all αo,j and all τo,j are taken from Strassmann and405

Joos (2018, Tables A2 and A3, based on the Princeton model). The prior distribution of the adjustment factor κτo is arbitrarily

taken to applyadd a 20% uncertainty on the oceanic transport timescales. All other prior distributions for this module’s param-

eters are derived from 12 CMIP6 models with interactive carbon cycle that contributed to C4MIP (Arora et al., 2020). To is

taken on average overfrom the piControl simulation. νgx and γgx are calibrated by applying equation 18 to the models’ outputs

for the 1pctCO2, 1pctCO2-rad and 1pctCO2-bgc experiments, while βdic and γdic are calibrated by applying equations 14-17410

and 19. Results of this calibration on the individual CMIP6 models is shown in Figures B1 and B2.

3.4.4 Ocean acidification

In this version of Pathfinder, κpH is a structural parameter set to 1.

3.4.5 Land carbon

Parameters related to the passive soil carbon pool are taken from He et al. (2016, Table S5): νrh3 is structural, while αpass is415

not. All the prior distribution offor the parameters related to the preindustrial steady-state of the land carbon (i.e. Fnpp0, νfire,

νharv, νmort, νstab, νrh1 and νcs) are derived from 11 TRENDYv7 models (Sitch et al., 2015; Le Quéré et al., 2018), exactly as

for OSCAR v3.1 (Gasser et al., 2020) except that all biomes and regions are lumped together. The prior distribution offor the

remaining parameters are derived from 12 CMIP6 models that contributed to C4MIP (Arora et al., 2020). Using the models’

outputs for the 1pctCO2, 1pctCO2-rad and 1pctCO2-bgc experiments, we calibrated βnpp, αnpp and γnpp through equation 24,420
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βfire and γfire through equation 28, and βrh and γrh through equation 37. Results of this calibration on the individual CMIP6

models is shown in Figure B3, B4 and B5.

3.4.6 Permafrost carbon

The permafrost module’s prior and structural parameters are recalibrated using the same algorithm as used by Gasser et al.

(2018), but adapted to the global formulation of Pathfinder. First, the algorithm is run once to obtain a set of parameters425

reproducing the behavior of the multi-model global average of five permafrost models (with data from UVic (MacDougall,

2021) added to the four original models). This gives the values of the structural parameters (i.e. αlst, γrt1, γrt2, κrt, amin,

all αth,j , all τth,j , νthaw and νfroz). Second, the algorithm is run five additional times, for each of the five permafrost models

separately, with the structural parameters established in the first step, to obtain prior distributions offor the remaining parameters

(i.e. Cfr0, κa, γa and κτth ).430

3.4.7 Atmospheric CO2

The conversion factor αC is a structural parameter whose value is taken from the latest GCBs (e.g. Le Quéré et al., 2018).

The prior distribution of preindustrial CO2 concentration (Cpi) is taken from the AR6 (Gulev et al., 2021, Section 2.2.3.2.1),

assuming the difference between minimum and maximum over the 0–1850 period is representative of the 90% uncertainty

range.435

3.4.8 Historical CO2 and GMST

The structural Xµ and Xσ time series are taken from the latest observations, as follows. Tµ and Tσ are taken as the average

and standard deviation of 5 observational GMST data sets: HadCRUT5 (Morice et al., 2021), Berkeley Earth (Rohde et al.,

2013; Rohde, 2013), GISTEMP (Hansen et al., 2010), NOAAGlobalTemp (Huang et al., 2020), and JMA. We use the 1850–

1900 period to define our preindustrial baseline, and GMST change is assumed to be zero before the earliest date available440

in each data set. Regarding atmospheric CO2, Cµ is taken as the global value reported by NOAA/ESRL (Tans and Keeling,

2010) and Cσ as a constant ±1 ppm uncertainty, for 1980 onward (this uncertainty is arbitrarily taken higher than the actual

uncertainty estimated through instrumental measures to increasehave more degrees of freedom in the calibration). Before that

period, Cµ comes from the IPCC AR6 (Dentener et al., 2021, Table AIII.1a), and Cσ is linearly interpolated backwards from

the instrumental uncertainty in 1980 to the preindustrial one (Gulev et al., 2021) in 1750. Finally, the prior distribution of ρX445

is set to Uniform over [0,1], that of σ̃X is a unit Normal distribution, and that of ϵX is set arbitrarily to a Half-Normal of

parameter 0.05 K for GMST and 0.5 ppm for CO2.

3.5 Results (posterior distributions)

The following subsections discuss the adjustments between the prior and posterior parameters that are the results of the

Bayesian calibration, as well as the matching of the constraints. These sections constantly refer to Figure 5 that shows the450
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prior and posterior distributions of the model’s parameters, Figure 6 that shows those of the constrained variables, and Figure

7 that displays the correlation matrix of the posterior parameters. (There is no correlation among the prior parameters.) Prior

and posterior values of the parameters can also be retrieved from Table B6.

3.5.1 Climate system

Our climate-related constraints lead to adjusting all the parameters of the climate module. As explained in Section 3.4.8, the455

constraints for present-day GMST change and its derivative are met by construction.

The ECS (T2×) is the parameter with the strongest adjustment, since it is directly constrained. Its precise value is discussed

hereafter in Section 4.2, but we note that it is unsurprisingly decreased, as the CMIP6 model ensemble tends to overestimate the

ECS compared to the IPCC assessed value. Consequently, our posterior logit(ff) matches well the constraint. The adjustment

of the ECS significantly reduces the gap between our posterior distribution of the non-CO2 ERF and its constraint, although460

the posterior central value remains 41% lower (but well within uncertainty range).

Among the dynamic parameters that are adjusted, we note that the deep ocean heat capacity Θd is somewhat increased

compared to the prior, and the heat exchange coefficient θ is also increased. These dynamic parameters are likely adjusted

through our OHU constraint that is corrected in the posterior so the difference in the central values is lowered from 22% to

14%, which remains well within the uncertainty range.465

In addition, a number of weak but physically meaningful correlations across the climate module’s parameters are found,

such as a positive correlation between T2× and ϵheat (see e.g. Geoffroy et al., 2013a), a positive correlation between T2× and

Θd (that tends to exclude configuration that would warm fast and high), and a negative correlation between T2× and ϕ (to

match the GMST and ERF constraints together).

3.5.2 Carbon cycle470

Similarly to GMST, the posterior distribution of atmospheric CO2 concentration matches the constraint by construction. Its

derivative, however, is (slightly overly) corrected to match the GCB estimate. Global anthropogenic CO2 emissions are sig-

nificantly increased to get closer to the GCB constraint, but their central value remains 9% too low. Since these emissions are

determined through mass balance and the atmospheric CO2 matches observations, this implies that the total carbon sinks (i.e.

Fland + Focean) must be weaker.475

This is confirmed for the ocean sink, as the posterior central value of Focean is 8% lower than the constraint, but still

noticeably corrected if compared to the prior. This correction is explained by small adjustments in some parameters of the

ocean carbon module. The mixed layer depth is slightly increased through βdic. All other parameters remain mostly unaffected

by the calibration, and only minor correlations are found. These results, along with the fact that our prior distribution spans

only about half of the constraint’s distribution, suggest that there is a structural limitation in our ocean carbon module that480

warrants further investigation.

It is also confirmed that the posterior land sink is weaker than the constraint, by 15% for the central value, which is nev-

ertheless a significant reduction of the prior gap of 34%. To explain this adjustment, we observe that the CO2-fertilization
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sensitivities (βnpp and γnpp) are adjusted upwards. However our constraint on present-day NPP prevents these adjustments

from beingto be too important, as the posterior distribution of this variable is similar to the prior and its central value remains485

8–9% higher than its constraint. An increased preindustrial NPP mechanically leads to an increase in preindustrial carbon

pools, but these require further adjustments of the land carbon turnover rates, and most notably the mortality rate νmort and the

passive carbon fraction αpass, to better match their constraints (of which the one on total soil carbon is perfectly met).

The land carbon module exhibits significant correlations among posterior parameters. This is likely a consequence of all

the constraints combined as they dictate both the preindustrial steady-state of the module and it’s transient response over the490

historical period. Eliminated configurations are those, for instance, that would show high initial carbon pools that are very

sensitive to climate change (as these would lead to a very weak land sink), or that would exhibit a weak CO2-fertilization effect

associated with a fast turnover time (that would also lead to a weak sink).

3.5.3 Sea level rise

The prior parameters of the SLR module are the least informed of ourthis Bayesian setup. The model initially underestimates495

the thermal expansion, as well as the GIS and AIS SLR rates. The calibration brings the posterior distributions closer to their

respective constraints but it always remain in the lower end of the uncertainty range. The correction is done by adjusting many

of the module’s parameters (most notably Λgis1, Λais,smb, λais or λgla), and by finding strong correlations among them (thus

excluding physically unrealistic combinations).

The historical SLR is markedly corrected by the constraint: from a 19% gap between the central values of the constraint and500

the prior estimate, to only 7% after calibration. Here, we also note that the sumsome of individual contributions to historical

SLR reported in AR6 do not match that total SLR (Fox-Kemper et al., 2021, Table 9.5), which likely has some impact on the

consistency between our constraints. Finally, although the LIA relaxation contribution is not altered by the calibration, as its

central valueand remains 50% too high, it is the likely source of the strong correlations found among the parameters of this

module, because it straightforwardly links the individual SLR contributions together.505

4 Model diagnosisDiagnostics

4.1 Historical period

Because in the Bayesian setup we do not use annual time series of observations as constraints, the posterior distributions given

in Figure 6 do not inform on the whole dynamic of the model over the historical period. To further diagnose the model’s

behavior, Figure 8 gives the time series from 1900 to 2021 of six key variables. GMST and atmospheric CO2 match very510

well the historical observations, by construction of these input time series. The non-CO2 ERF exhibits a very high variability,

owing to our temperature-driven setup and the natural variability in the GMST input. Beyond that, the ERF time series is

consistent with the AR6 estimates (Smith et al., 2021), albeit somewhat lower on average in the recent past, as seen with the

posterior distribution. Consistently with the interpretation of carbon cycle variables in the calibration results, anthropogenic
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CO2 emissions, and the ocean and land carbon sinks are slightly underestimated compared to the GCB estimates (Friedlingstein515

et al., 2022). Several reasons could explain this discrepancy, from the lack of land use change in Pathfinder to the inconsistency

of the GCB figures (that do not close the budget, while ours do). Nevertheless, the interest of the calibration is clearly illustrated,

as the posterior uncertainty range covers observations much better than the prior one.

4.2 Idealized simulations

To complete the diagnosis of our model with common metrics used with climate and carbon models, we ran a set of standard520

idealized experiments, corresponding to the CMIP6 abrupt-2xCO2, 1pctCO2, 1pctCO2-bgc and 1pctCO2-rad. A summary of

these metrics’ values is given in Table 2, and the resulting time series are shown in Figure 9.

The abrupt-2xCO2 experiment sees an abrupt doubling of atmospheric CO2, and it is used to diagnose the model’s ECS that

is defined as the equilibrium temperature for a doubling of the preindustrial atmospheric concentration of CO2 (we acknowl-

edge that it is superfluous with this version of Pathfinder since it is also a parameter). Using the GMST anomaly at the end of525

1500 years of this experiment leads to an unconstrained estimate of ECS of 4.1 ± 1.3 K and a constrained estimate of 3.3 ±
0.7 K. Consistently, the latter value is between the ECS value extracted from CMIP6 models (Meehl et al., 2020) that is higher

(3.7 ± 1.1 K) and the final value assessed in the AR6 that is lower (3.0 K, with a 67% confidence interval between 2.5 and 4.0

K).

Using the 1pctCO2 experiment that sees a 1% yearly increase in atmospheric CO2, we can estimate the model’s transient530

climate response (TCR) that is defined as the GMST change after 70 years, when atmospheric concentration CO2 has just

doubled. The CMIP6 models have a TCR of 2.0 ± 0.4 K (Meehl et al., 2020). Pathfinder’s unconstrained value is higher, at

2.2 ± 0.5 K, while the constrained one goes down to 1.9 ± 0.3 K. If we divide the TCR by the cumulative anthropogenic CO2

emissions compatible with the atmospheric CO2 increase in this experiment, we obtain an estimate of the transient climate

response to emissions (TCRE). Similarly to the TCR, it is higher in the unconstrained ensemble and lower in the constrained535

one, when compared to CMIP6 models (Arora et al., 2020). Both downward adjustments of the TCR and TCRE are consistent

with that of ECS, with the posterior TCRE matching very well the AR6 assessed range (Canadell et al., 2021).

To look more closely at the carbon cycle, we perform two variants of the latter experiment: in 1pctCO2-rad, atmospheric

CO2 only has a radiative effect, as it is kept at preindustrial level for the carbon cycle; whereas in 1pctCO2-bgc, atmospheric

CO2 only has a biogeochemical effect, as the climate system sees only preindustrial level. These three experiments are used540

to calculate the carbon-concentration (β) and carbon-climate (γ) feedback metrics that measure the carbon sinks’ sensitivities

to changes in atmospheric CO2 and GMST, respectively. We apply the same method as Arora et al. (2020) to calculate these,

which leads to metrics at the time of CO2 doubling that are in line with CMIP6 models (Arora et al., 2020). As both carbon

sinks were adjusted upwards by the Bayesian calibration, the constraints logically increased both βocean and βland, to values

fairly close to those of the complex models. The γocean is not affected by the calibration, and remains 45% too low, which545

again suggests a structural limitation in our formulation of the ocean sink. This is however compensated during calibration by

the γland being 26% higher than in complex models.
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4.3 Scenarios

To further validate Pathfinder, we run the five SSP scenarios (Riahi et al., 2017) for which climate and carbon cycle projections

were reported by a large-enough number of models in the AR6 (namely, ssp119, ssp126, ssp245, ssp370 and ssp585). These550

simulations are run with prescribed CO2 concentration and non-CO2 ERF (the latter is taken from Smith et al. (2021)). Time

series of GMST and cumulative land and ocean sinks are shown on Figure 9. Table 3 shows a comparison of the projected

changes in GMST to the CMIP6 estimates (Lee et al., 2021, Table 4.2), and of carbon pools to Liddicoat et al. (2021) (since

this was not directly reported in the AR6).

Be it on short-, mid- or long-term, Pathfinder’s projections of GMST are very much in line with the one assessed by the555

IPCC in the AR6 based on multiple lines of evidence (Lee et al., 2021, Table 4.5). The only significant difference is a smaller

uncertainty range in our projections for the longer-term periods. Although this is the result of the efficiency of the Bayesian

calibration, one might wonder whether the climate module is over-constrained (or equivalently, too limited in its number of

parameters).

The ocean carbon storage appears overestimated by 5% to 20% by Pathfinder across SSP scenarios. This is consistent with560

the upward adjustment of the ocean carbon sink stemming from our Bayesian calibration. To compare the land carbon storage

with CMIP6 models, because our land carbon module does not include land use change processes, we correct the value reported

by complex models by the cumulative land use change emissions of each scenario (Riahi et al., 2017; Gidden et al., 2019).

While the land carbon storage of Pathfinder is well in line under ssp126 (a scenario consistent with the 2 ◦C target), it is

underestimated in ssp119 (consistent with the 1.5 ◦C target), and increasingly overestimated in higher warming scenarios. A565

likely explanation is that the climate-carbon feedback on land is underestimated in Pathfinder, as suggested by the γ metric

seen in Section 4.2. Alternatively (or concurrently), the absence of loss of sink capacity caused by land cover change (Gasser

and Ciais, 2013; Gasser et al., 2020) can explain the overestimation of the land sink under high CO2. The Pathfinder model’s

estimates of both sinks remain nonetheless well within the CMIP6 models’ uncertainty ranges.

Our SLR emulator gives estimates (Table 4) that are always on the lower of the range reported in the AR6 (Fox-Kemper570

et al., 2021, Table 9.9). This can be explained by the fact that our individual SLR rate estimates are on the lower end of

their respective constraints (see Section 3.5.3). This discrepancy also highlights potential structural limitations in the SLR

module (e.g. too few separate contributions), and the difficulty of calibrating the module given the short time period of data

available, both from complex models (that cover the 21st century only) and observations, compared to the long time scale of

the SLR processes. Nevertheless, our estimates remain within uncertainty range of the IPCC assessment, especially as we do575

not account for contribution from land water storage that causes an additional 0.03 [0.01, 0.04] m of SLR in all scenarios in

2100 (Fox-Kemper et al., 2021).

5 Concluding remarks

In this paper, we have presented the Pathfinder model: a simple global carbon-climate model with selected impact variables,

carefully designed to balance accuracy of representation and simplicity of formulation, and calibrated through Bayesian in-580
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ference on the latest data from Earth system models and observations. Pathfinder has been shown to perform very well in

comparison to complex models, although there remains room for further improvement of the model and its calibration setup.

We identify four main avenues to improve the model.

First, some parts of the model may well lean too much on the complexity side of the simplicity–accuracy balance we aimed

to strike, owing to the creation process of Pathfinder that mostly compiled existing formulations. Future development should585

therefore strive to reduce complexity wherever possible. The ocean carbon sub-pools and perhaps the land carbon pools are

potential leads in this respect.

SecondFirst, the ocean carbon module alone appears to be limited by its structure inherited from a 25-year-old (yet seminal)

article (Joos et al., 1996). Although it is undoubtedly a significant undertaking, developing an alternative formulation of the

ocean carbon dynamic, calibrated on state-of-the-art ocean models and properly connected to ocean pH andinteracting with the590

ocean of the climate module, would benefit more than just the SCM community.

ThirdSecond, integration of land use and land cover change in such a model appears warranted, despite the difficulty of

doing so in a physically sensible yet simple manner. Given our expertise with the OSCAR model and its bookkeeping module

(Gasser et al., 2020), we are confident that this can be done, although it will demand extra care to keep the model compatible

with the IAMs it is also meant to be linked to.595

FourthThird, the Bayesian setup can be extended, notably by including more time periods for the existing constraints,

but also by introducing and constraining entirely new variables such as isotopic ratios (Hellevang and Aagaard, 2015) or

inter-hemispheric gradients (Ciais et al., 2019); although a balance must be struckstricken with respect to the calibration’s

computation time. Here, we caution against including complex models’ results as constraints in the Bayesian calibration, as

was done for the IPCC AR6 (Smith et al., 2021; Nicholls et al., 2021), as it goes against the philosophy of Pathfinder that is to600

use complex models’ results as prior information onlyand only real world observations (or assessment combining many lines

of evidence) as constraints.

FifthFourth, although our model is restricted to CO2 by design because of how IAMs like DICE (Nordhaus, 2017) are also

limited to CO2 emissions, we can imagine many reasons why one would want to add non-CO2 climate forcers into Pathfinder.

We would suggest doing so by following the model’s philosophy: that is, by taking existing reduced-complexity formulations605

such as something between FaIR (Leach et al., 2020) and OSCAR (Gasser et al., 2017), and adding the new parameters into

the Bayesian setup with the relevant observational constraints.

In spite of these few shortcomings and potential development leads, Pathfinder v1.0.1 is a powerful tool that fits perfectly

the niche it has been created for. We will further demonstrate the strengths and flexibility of Pathfinder in other publications.

Meanwhile, we invite the community to seize this open source model, and use it in any study that could benefit from a simple,610

fast and accurate carbon-climate model, aligned with the latest climate science.
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Figure 1. Pathfinder in a nutshell: Green blocks represent the carbon cycle, and red blocks the climate response. Blue blocks with dotted

arrows are impacts that can be derived with the model. Grey blocks are variables that are directly related to anthropogenic activity. Possible

inputs of the model are distinguishable through the bold contours of the blocks. In this scheme, arrows correspond to a forward mode where

inputs would be ECO2 and Rx
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Figure 2. The ocean sink model in Pathfinder follows the structure of the mixed-layer pulse response function introduced by Joos et al.

(1996). The mix-layer is represented through five subpools which each has a different timescale for transport to the deep ocean carbon pool
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Figure 3. The land sink model in Pathfinder is derived from OSCAR (Gasser et al., 2017) and represents the biosphere as a set of four carbon

pools: vegetation, litter , active soil and passive soil. These pools exchange carbon through fluxes whose direction is given by the arrows.
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Figure 4. The permafrost carbon model in Pathfinder is taken from Gasser et al. (2018). The frozen pool dynamic lags behind a theoretical

value that is determined by the temperature anomaly. Thawed carbon is then split between three pools that are emitted to the atmosphere at

different rates.
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Figure 5. Parameters distributions before (black lines) and after (blue lines) the Bayesian calibration. Parameters are noted under their text

notation, and Tables B3 and B4 provide the corresponding notation in code.
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Figure 6. Distributions of the constrained variables. Dashed lines give the distributions used to constrain. Black lines give the distribution

before calibration while blue lines give the distribution posterior to calibration. Under a variable’s name, we give the period over which the

constraint is estimated, and the data processing method: mean over the period, difference between last and first year, or sum of all the years

over the period. (1750 is the preindustrial.) Variables are noted under their text notation, and Tables B1 and B2 provide the corresponding

notation in code.
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Figure 7. Correlation matrix of Pathfinder’s parameters after the Bayesian calibration. Parameters are classified according to the equations

they are related to: climate system, sea level, ocean carbon, land carbon and permafrost carbon. Parameters are noted under their text notation,

and Tables B3 and B4 provide the corresponding notation in code.
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Figure 8. Historical time series of key variables from Pathfinder. Red lines are observations, black lines are the model’s outputs before

calibration, and blue lines are the same after calibration. Shaded areas and vertical bars correspond to the 1σ uncertainty range. Temperature

observations are taken from HadCRUT5 (Morice et al., 2021), Cowtan and Way (2014), Berkeley Earth (Rohde et al., 2013; Rohde, 2013),

GISTEMP (Hansen et al., 2010), and NOAA/MLOST (Vose et al., 2012). Other sources are NOAA/ESRL (Tans and Keeling, 2010), GCB

2021 (Friedlingstein et al., 2022), and AR6 (Smith et al., 2021).
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Figure 9. Time series of GMST change, integrated land carbon uptake and integrated ocean carbon uptake for idealized experiments (abrupt-

2xCO2, 1pctCO2, 1pctCO2-bgc and 1pctCO2-rad), and projections according to SSP scenarios in Pathfinder. Shaded areas give the 1σ

uncertainty range.

36



Variable Period Method Prior Posterior Constraints Unit

ECO2 2011-2020 Mean 9.1 ± 1.3 10.0 ± 0.7 11.0 ± 0.9 PgC yr−1

dC
ct

2011-2020 Mean 2.41 ± 0.06 2.40 ± 0.01 2.40 ± 0.01 ppm yr−1

Fland 1960-2020 Sum 95 ± 52 123 ± 26 145 ± 35 PgC

Focean 1960-2020 Sum 89± 12 97 ± 13 105 ± 20 PgC

Cv 1750 Mean 407 ± 54 407 ± 37 450 ± 50 PgC

Cs 1750 Mean 1181 ± 735 1086 ± 284 1088 ± 249 PgC

FNPP 1998-2002 Mean 60.0 ± 7.9 59.5 ± 3.9 55.0 ± 5.0 PgC yr−1

C 2012-2021 Mean 403.6 ± 0.3 403.6 ± 0.1 401.2 ± 0.1 ppm

Rx 2010-2019 Mean 0.01 ± 0.47 0.33 ± 0.37 0.56± 0.53 W m−2

T 2001-2020 Mean 0.96 ± 0.08 0.97 ± 0.06 1.00 ± 0.07 K
dT
dt

2000-2019 Mean 0.028 ± 0.003 0.028 ± 0.002 0.029 ± 0.002 K yr−1

dUohc
dt

2006-2018 Mean 0.56 ± 0.10 0.62 ± 0.09 0.72 ± 0.17 W m−2

dHthx
dt

2006-2018 Mean 1.02 ± 0.22 1.14 ± 0.21 1.39 ± 0.40 mm yr−1

dHgla

dt
2006-2018 Mean 0.63 ± 0.24 0.62 ± 0.04 0.62 ± 0.03 mm yr−1

dHais
dt

2006-2018 Mean -0.02 ± 0.23 0.30 ± 0.10 0.37 ± 0.08 mm yr−1

dHgis

dt
2006-2018 Mean 0.36 ± 0.12 0.57 ± 0.10 0.63 ± 0.07 mm yr−1

Htot 1901-1990 Difference 72 ± 17 83 ± 10 89 ± 32 mm

Hlia 1750 Mean 45 ± 17 45 ± 11 30 ± 13 mm

logit(ff) 1750 Mean 1.69 ± 0.38 1.47 ± 0.28 1.38 ± 0.37 1

Table 1. Constrained variables in Pathfinder, with values before and after calibration. Variables are noted under their text notation, and Tables

B1 and B2 provide the corresponding notation in code. The uncertainty correspond to the 1 σ uncertainty range.

2× CO2 Pathfinder unconstrained Pathfinder constrained CMIP6 AR6

ECS (K) 4.1 ± 1.3 3.3 ± 0.7 3.7 ± 1.1 3.0 (2.0, 4.5)

TCR (K) 2.2 ± 0.5 1.9 ± 0.3 2.0 ± 0.4 1.8 (1.4, 2.2)

TCRE (K EgC−1) 2.20 ± 0.63 1.65 ± 0.32 1.77 ± 0.37 1.65 (1.0, 2.3)

βocean (PgC ppm−1) 0.81 ± 0.10 0.87 ± 0.11 0.91 ± 0.09

γocean (PgC K−1) -12.9 ± 5.4 -12.5 ± 6.0 -8.6 ± 2.9

βland (PgC ppm−1) 1.05 ± 0.5 1.26 ± 0.30 1.22 ± 0.40

γland (PgC K−1) -33.2 ± 26.6 -25.3 ± 24.2 -34.1 ± 38.4

Table 2. Diagnostics of climate and carbon-cycle responses in Pathfinder before and after Bayesian calibration. Comparison with AR6

(Forster et al., 2021; Canadell et al., 2021) and CMIP6 data (Arora et al., 2020; Meehl et al., 2020) is shown. For AR6 data we give the

median and the 90% confidence interval while for every other values we give the mean ± 1 σ
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Experiment Model GMST (K) GMST (K) GMST (K) Ocean Carbon

Storage (PgC)

Land Carbon Storage (PgC)

2021–2040 2041–2060 2081–2100 2015–2100 2015–2100

ssp119 Pathfinder 1.5 (1.3, 1.8) 1.6 (1.4, 1.9) 1.5 (1.2, 1.7) 132 ± 21 49 ± 33

ssp119 AR6 or CMIP6 1.5 (1.2, 1.7) 1.6 (1.2, 2.0) 1.4 (1.0, 1.8) 111 ± 11 73 ± 33

ssp126 Pathfinder 1.5 (1.3, 1.8) 1.8 (1.6, 2.1) 1.9 (1.6, 2.2) 179 ± 28 109 ± 45

ssp126 AR6 or CMIP6 1.5 (1.2, 1.8) 1.7 (1.3, 2.2) 1.8 (1.3, 2.4) 162 ± 8 120 ± 50

ssp245 Pathfinder 1.6 (1.4, 1.8) 2.1 (1.8, 2.4) 2.8 (2.4, 3.3) 265 ± 41 225 ± 76

ssp245 AR6 or CMIP6 1.5 (1.2, 1.8) 2.0 (1.6, 2.5) 2.7 (2.1, 3.5) 252 ± 11 178 ± 76

ssp370 Pathfinder 1.6 (1.4, 1.8) 2.2 (1.9, 2.6) 3.7 (3.2, 4.3) 354 ± 53 330 ± 112

ssp370 AR6 or CMIP6 1.5 (1.2, 1.8) 2.1 (1.7, 2.6) 3.6 (2.8, 4.6) 338 ± 15 269 ± 124

ssp585 Pathfinder 1.7 (1.5, 1.9) 2.5 (2.2, 2.9) 4.4 (3.8, 5.2) 420 ± 63 409 ± 148

ssp585 AR6 or CMIP6 1.6 (1.3, 1.9) 2.4 (1.9, 3.0) 4.4 (3.3, 5.7) 398 ± 17 311 ± 162

Table 3. Comparison of SSP scenarios for GMST change projections (w.r.t. 1850–1900) to AR6 (Lee et al., 2021, Table 4.5), and for ocean

and land carbon storage projections to CMIP6 (Liddicoat et al., 2021). Land carbon storage projections were corrected using the land use

change emissions data from SSPs (Riahi et al., 2017; Gidden et al., 2019). For GMST data we give the median and the 90% confidence

interval while for every other values we give the mean ± 1 σ
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Experiment Model SLR (m) SLR (m) SLR rate (mm yr−1) SLR rate (mm yr−1)

2050 2100 2040–2060 2080–2100

ssp119 Pathfinder 0.15 (0.13, 0.18) 0.30 (0.25, 0.36) 3.5 (2.9, 4.2) 2.7 (2.2, 3.4)

ssp119 AR6 0.18 (0.15, 0.23) 0.38 (0.28, 0.55) 4.1 (2.8, 6.0) 4.2 (2.4, 6.6)

ssp126 Pathfinder 0.16 (0.14, 0.19) 0.35 (0.30, 0.43) 4.1 (3.5, 5.0) 3.6 (2.9, 4.5)

ssp126 AR6 0.19 (0.16, 0.25) 0.44 (0.32, 0.62) 4.8 (3.5, 6.8) 5.2 (3.2, 8.0)

ssp245 Pathfinder 0.17 (0.15, 0.20) 0.46 (0.39, 0.56) 5.0 (4.2, 6.0) 6.2 (5.1, 8.0)

ssp245 AR6 0.20 (0.17, 0.26) 0.56 (0.44, 0.76) 5.8 (4.4, 8.0) 7.7 (5.2, 11.6)

ssp370 Pathfinder 0.18 (0.15, 0.21) 0.56 (0.47, 0.69) 5.5 (4.7, 6.7) 9.1 (7.4, 11.7)

ssp370 AR6 0.22 (0.18, 0.27) 0.68 (0.55, 0.90) 6.4 (5.0, 8.7) 10.4 (7.4, 14.8)

ssp585 Pathfinder 0.19 (0.17, 0.23) 0.67 (0.56, 0.82) 6.4 (5.4, 7.8) 11.4 (9.1, 15.0)

ssp585 AR6 0.23 (0.20, 0.29) 0.77 (0.63, 1.01) 7.2 (5.6, 9.7) 12.1 (8.6, 17.6)

Table 4. Comparison of SSP scenarios between Pathfinder and AR6 for SLR (w.r.t. 1995–2014) and SLR speed projections (Fox-Kemper

et al., 2021, Table 9.9). We give the median value and the 90% confidence interval in parentheses
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Appendix A: Additional information on the model800

A1 Technical requirements

Pathfinder has been developed and run in Python (v3.7.6) (Van Rossum and Drake, 2009), preferentially using IPython

(v7.19.0) (Pérez and Granger, 2007). Currently, packages required to run it are NumPy (v1.19.2) (Harris et al., 2020), SciPy

(v1.5.2) (Virtanen et al., 2020) and Xarray (v0.16.0) (Hoyer and Hamman, 2017), and it has hard-coded dependencies on

PyMC3 (v3.8) (Salvatier et al., 2016) and Theano (v1.0.4) (Theano Development Team, 2016) that are in fact used only for805

calibration. Other versions of Python or these packages were not tested.

The calibration procedure takes about 9 hours to run on a desktop computer (with a base speed of 3.4 GHz). Simple use

of the model is much faster: the idealized experiments and SSP scenarios for this description paper, which represent 2984

simulated years, were run in about 20 minutes for all 2000 configurations and on a single core. A single simulated year takes

a few tenth of a second, although a number of options in the model can drastically alter this performance. Note also that this810

scales sub-linearly with the amount of configurations or scenarios because of the internal workings of the Xarray package,

albeit at the cost of increased demand in random-access memory.

A2 Known issues

Two relatively benign issues that have been identified during development remain unsolved. First, the model requires a high

number of sub-time steps (i.e. high nt) to remain stable under high CO2, because of the ocean carbon cycle. Second, the version815

of the model that is driven by T and Rx time series is extremely sensitive to its inputs, because mathematically it requires the

first two derivatives of T and the first derivative of Rx.

A3 Changelog

Brief description of the successive versions of Pathfinder:

v1.0.1. Exact same physical equations and numerical values as v1.0. Added best-guess parameters calculated as the average820

of the posterior distribution, and corresponding historical outputs, for single-configuration runs. Improved README and

MANUAL files.

v1.0. First release. Exact model described in the preprint version of this very paper (Bossy et al., 2022).

Appendix B: Additional figures and tables
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Figure B1. Calibration to estimate prior νgx and γgx from CMIP6 time series of Focean. We fit our equation on the results of the +1% CO2

(1pctCO2) experiment (in blue) and its variants 1pctCO2-rad (in green) and 1pctCO2-bgc (in orange). Coloured markers are CMIP6 models

data while the solid black lines show the fit from Pathfinder. Panels without black line indicate that at least one of the required variables was

not reported by the complex model.
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Figure B2. Calibration to estimate prior βdic and γdic from CMIP6 time series of pCO2 . We fit our equation on the results of the +1% CO2

(1pctCO2) experiment (in blue) and its variants 1pctCO2-rad (in green) and 1pctCO2-bgc (in orange). Coloured markers are CMIP6 models

data while the solid black lines show the fit from Pathfinder. Panels without black line indicate that at least one of the required variables was

not reported by the complex model.
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Figure B3. Calibration to estimate prior βef and γef from CMIP6 time series of rfire, shown as a ratio over its preindustrial value. We fit

our equation on the results of the +1% CO2 (1pctCO2) experiment (in blue) and its variants 1pctCO2-rad (in green) and 1pctCO2-bgc (in

orange). Coloured markers are CMIP6 models data while the solid black lines show the fit from Pathfinder. Panels without black line indicate

that at least one of the required variables was not reported by the complex model.
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Figure B4. Calibration to estimate prior βrh and γrh from CMIP6 time series of rrh, shown as a ratio over its preindustrial value. We fit

our equation on the results of the +1% CO2 (1pctCO2) experiment (in blue) and its variants 1pctCO2-rad (in green) and 1pctCO2-bgc (in

orange). Coloured markers are CMIP6 models data while the solid black lines show the fit from Pathfinder. Panels without black line indicate

that at least one of the required variables was not reported by the complex model.
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Figure B5. Calibration to estimate prior βnpp, αnpp and γnpp from CMIP6 time series of rnpp, shown as a ratio over its preindustrial value.

We fit our equation on the results of the +1% CO2 (1pctCO2) experiment (in blue) and its variants 1pctCO2-rad (in green) and 1pctCO2-bgc

(in orange). Coloured markers are CMIP6 models data while the solid black lines show the fit from Pathfinder. Panels without black line

indicate that at least one of the required variables was not reported by the complex model.
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Figure B6. Calibration to estimate the prior of GIS SLR module parameters (Λgis1, Λgis3 and λgis0). We fit our equation on the compiled

outputs from Edwards et al. (2021) for which there is more than one scenario available. Each panel’s title displays the name of the institute,

model and configuration used. Coloured markers are the models data while the solid black lines show the fit from Pathfinder.
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Figure B7. Calibration to estimate the prior of Glaciers SLR module parameters (Γgla1, Γgla3, γgla and λgla0). We fit our equation on the

compiled outputs from Edwards et al. (2021) for which there is more than one scenario available. Each panel’s title displays the name of the

model or study used. Coloured markers are the models data while the solid black lines show the fit from Pathfinder.
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Figure B8. Calibration to estimate the prior of AIS SLR module parameters (Λais,smb, αais and λais0). We fit our equation on the compiled

outputs from Edwards et al. (2021) for which there is more than one scenario available. Each panel’s title displays the name of the institute,

model and configuration used. Coloured markers are the models data while the solid black lines show the fit from Pathfinder.
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Figure B9. Distribution of the logit of the ECS (T2×) inferred from AR6. Blue points are the assessments from AR6, the plain line is the

CDF fitted on those assessment and the dashed line is the PDF associated with the CDF (arbitrary scale). The value of the fitted parameters

is given above the plot.
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In manual In code Description Units

Rc RFco2 CO2 (effective) radiative forcing W m−2

Rx ERFx Non-CO2 effective radiative forcing W m−2

R ERF Effective radiative forcing W m−2

T T Global surface temperature anomaly K

Td Td Deep ocean temperature anomaly K

logit(ff) logit_ff Logit of the climate feedback factor (for calib.) 1

Uohc OHC Ocean heat content (anomaly) W yr m−2

Hthx Hthx Thermosteric sea level rise mm

Hgla Hgla Glaciers’ contribution to sea level rise mm

Hgis Hgis Grenland ice sheet’s contribution to sea level rise mm

Hais,smb Hais_smb Surface mass balance component of Hais mm

Hais Hais Antartica ice sheet’s contribution to sea level rise mm

Htot Htot Total sea level rise mm

Hlia Hlia Sea level rise from relaxation after LIA between 1900 and 2005 (for calib.) mm

Co,j Co_j Change in surface ocean carbon subpools PgC j ∈ [[1,5]]

Co Co Change in surface ocean carbon pool PgC

Cd Cd Change in deep ocean carbon pool

cdic dic Change in surface DIC µmol kg−1

pdic pdic Subcomponent of pCO2 ppm

pCO2 pCO2 CO2 partial pressure at the ocean surface ppm

Focean Focean Ocean carbon sink PgC yr−1

Table B1. Summary of PathFinder’s equation variables in climate, sea level and ocean carbon modules. Prog? is for prognostic variables
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In manual In code Description Units

rnpp r_npp Relative change in NPP 1

rfire r_fire Relative change in wildfire intensity 1

rrh r_rh Relative change in heterotrophic respiration rate 1

Fnpp NPP Net primary productivity PgC yr−1

Efire Efire Emissions from wildfire PgC yr−1

Eharv Eharv Emissions from harvest and grazing PgC yr−1

Fmort Fmort Mortality flux PgC yr−1

Erh1 RH1 Litter heterotrophic respiration PgC yr−1

Fstab Fstab Stabilization flux PgC yr−1

Erh2 RH2 Active soil heterotrophic respiration PgC yr−1

Fpass Fpass Passivization flux PgC yr−1

Erh3 RH3 Passive soil heterotrophic respiration PgC yr−1

Fland Fland Land carbon sink PgC yr−1

Erh RH Heterotrophic respiration PgC yr−1

Cv Cv Vegetation carbon pool PgC

Cs1 Cs1 Litter carbon pool PgC

Cs2 Cs2 Active soil carbon pool PgC

Cs3 Cs3 Passive soil carbon pool PgC

Cs Cs Total soil carbon pool PgC

rrt r_rt Relative change in permafrost respiration rate 1

ā abar Theoretical thawed fraction 1

a a Actual thawed fraction 1

Epf Epf Emissions from permafrost PgC yr−1

Cth,j Cth_j Thawed permafrost carbon subpools PgC j ∈ [[1,3]]

Cfr Cfr Frozen permafrost carbon pool PgC

ECO2 Eco2 Anthropogenic CO2 emissions PgC yr−1

C CO2 Atmospheric CO2 concentration ppm

pH pH Surface ocean pH 1

Table B2. Summary of PathFinder’s equation variables for land carbon, permafrost and atmospheric modules.
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In manual In code Description Units

ϕ phi Radiative parameter of CO2 W m−2

T2× T2x Equilibrium climate sensitivity K

Θs THs Heat capacity of the surface W yr m−2 K−1

Θd THd Heat capacity of the deep ocean W yr m−2 K−1

θ th Heat exchange coefficient W m−2 K−1

ϵheat eheat Deep ocean heat uptake efficacy 1

T ∗
2× T2x0 Minimal value of the ECS distribution (for calib.) K

αohc aOHC Fraction of energy warming the ocean 1

Λthx Lthx Proportionality factor of thermosteric SLR mm m2 W−1 yr−1

λgla lgla0 Initial imbalance in SLR from Glaciers mm yr−1

Λgla Lgla Maximum contribution to SLR from Glaciers mm

Γgla1 Ggla1 Linear sensitivity of steady-state Glaciers SLR to climate K−1

Γgla3 Ggla3 Cubic sensitivity of steady-state Glaciers SLR to climate K−3

τgla tgla Timescale of Glaciers’ contribution to SLR yr

γgla ggla Sensitivity of Glaciers’ timescale to climate K−1

λgis lgis0 Initial imbalance in SLR from GIS mm yr−1

Λgis1 Lgis1 Linear sensitivity of steady-state GIS SLR to climate mm K−1

Λgis3 Lgis3 Cubic sensitivity of steady-state GIS SLR to climate mm K−3

τgis tgis Timescale of GIS contribution to SLR yr

Λais,smb Lais_smb Sensitivity of AIS SMB increase due to climate mm yr−1 K−1

λais lais Initial imbalance in SLR from AIS mm yr−1

Λais Lais Sensitivity of steady-state AIS SLR to climate mm K−1

τais tais Timescale of AIS contribution to SLR yr

αais aais Sensitivity of AIS timescale to AIS SLR mm−1

αdic adic Conversion factor for DIC µmol kg−1 PgC−1

βdic bdic Inverse-scaling factor for DIC 1

γdic gdic Sensitivity of pCO2 to climate K−1

To To Preindustrial surface ocean temperature °C

νgx vgx Surface ocean gas exchange rate yr−1

γgx ggx Sensitivity of gas exchange to climate K−1

αo,j aoc_j Surface ocean subpools fractions 1 j ∈ [[1,5]]

τo,j toc_j Timescales of surface ocean subpools yr j ∈ [[1,5]]

κτo k_toc Scaling factor for timescales of surface ocean subpools 1

Table B3. Parameters used in the climate, ocean carbon and sea level modules.
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In manual In code Description Units

βnpp bnpp Sensitivity of NPP to CO2 (= fertilization effect) 1

αnpp anpp Shape parameter for fertilization effect 1

γnpp gnpp Sensitivity of NPP to climate K−1

βfire bfire Sensitivity of wildfire intensity to CO2 1

γfire gfire Sensitivity of wildfire intensity to climate K−1

βrh brh Sensitivity of heterotrophic respiration to fresh organic matter 1

γrh grh Sensitivity of heterotrophic respiration to climate K−1

Fnpp,0 npp0 Preindustrial NPP PgC yr−1

νfire vfire Wildfire intensity yr−1

νharv vharv Harvest and grazing rate yr−1

νmort vmort Mortality rate yr−1

νstab vstab Stabilization rate yr−1

νrh1 vrh1 Litter heterotrophic respiration rate yr−1

νrh23 vrh23 Soil (active and passive) respiration rate yr−1

νrh3 vrh3 Passive soil respiration rate yr−1

αpass apass Fraction of passive soil 1

αlst aLST Climate scaling factor over permafrost regions 1

γrt1 grt1 Sensitivity of (boreal) heterotrophic respiration to climate K−1

γrt2 grt2 Sensitivity of (boreal) heterotrophic respiration to climate (quadratic) K−2

κrt krt Scaling factor for sensitivity of permafrost respiration to climate 1

amin amin Minimal thawed fraction 1

κa ka Shape parameter for theoretical thawed fraction 1

γa ga Sensitivity of theoretical thawed fraction to climate K−1

νthaw vthaw Thawing rate yr−1

νfroz vfroz Freezing rate yr−1

αth,j ath_j Thawed permafrost carbon subpools fractions 1 j ∈ [[1,3]]

τth,j tth_j Timescales of thawed permafrost carbon subpools yr j ∈ [[1,3]]

κτth k_tth Scaling factor for timescales of surface ocean subpools 1

Cfr,0 Cfr0 Preindustrial frozen permafrost carbon pool PgC

αC aCO2 Conversion factor for atmospheric CO2 PgC ppm−1

Cpi CO2pi Preindustrial CO2 concentration ppm

κpH k_pH Scaling factor for surface ocean pH 1

σ̃C std_CO2 Relative standard deviation of the historical CO2 time series (for calib.) 1

ϵC ampl_CO2 Noise amplitude of the historical CO2 time series (for calib.) ppm

ρC corr_CO2 Autocorrelation of the historical CO2 time series (for calib.) 1

σ̃T std_T Relative standard deviation of the historical T time series (for calib.) 1

ϵT ampl_T Noise amplitude of the historical T time series (for calib.) K

ρT corr_T Autocorrelation of the historical T time series (for calib.) 1
Table B4. Parameters used in the permafrost, land carbon modules and for calibration.53



Parameters Prior Unit

Lgla 380 mm

Lais 1200 mm

tgla 190 yr

tgis 481 yr

tais 2093 yr

T2x0 0.61 K

adic 4.49 µmol kg−1 PgC−1

aoc_1 0.87 1

aoc_2 0.06 1

aoc_3 0.04 1

aoc_4 0.02 1

aoc_5 0.01 1

toc_1 1.3 yr

toc_2 16.7 yr

toc_3 65 yr

toc_4 348 yr

toc_5 109 yr

vrh3 8.27 10−5 yr−1

aLST 1.87 1

grt1 0.12 K−1

grt2 0.0029 K−2

krt 1.34 1

amin 0.98 1

vthaw 0.14 yr−1

vfroz 0.011 yr−1

ath_1 0.05 1

ath_2 0.12 1

ath_3 0.83 1

tth_1 18.2 yr

tth_2 252 yr

tth_3 3490 yr

aCO2 2.12 PgC ppm−1

k_pH 1 1

Table B5. Structural parameters values. Parameters are noted under their code notation, and Tables B3 and B4 provide the corresponding

notation in text.
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Parameters Prior Posterior Unit Parameters Prior Posterior Unit

phi 5.35 ± 0.54 5.29 ± 0.54 W m−2 T2x 4.13 ± 1.37 3.37 ± 0.77 K

THs 8.14 ± 0.99 8.21 ± 1.06 W yr m−2 K−1 THd 108.6 ± 61.8 123.8 ± 57.8 W yr m−2 K−1

th 0.61 ± 0.13 0.67 ± 0.12 W m−2 K−1 eheat 1.35 ± 0.40 1.41 ± 0.43 1

aOHC 0.91 ± 0.02 0.91 ± 0.02 1 Lthx 1.82 ± 0.21 1.85 ± 0.23 mm m2 W−1 yr−1

lgla0 0.59 ± 0.24 0.40 ± 0.21 mm yr−1 Ggla1 0.34 ± 0.18 0.34 ± 0.05 mm K−1

Ggla3 0.022 ± 0.013 0.022 ± 0.013 mm K−3 ggla 0.12 ± 0.09 0.11 ± 0.07 K−1

Lgis1 82 ± 45 189 ± 55 mm K−1 Lgis3 5.7 ± 1.4 5.8 ± 1.5 mm K−3

Lais_smb 0.61 ± 0.19 0.40 ± 0.10 mm K−1 yr−1 lais0 0.00 ± 0.11 0.07 ± 0.08 mm yr−1

aais 0.002 ± 0.003 0.004 ± 0.003 mm−1 lgis0 0.33 ± 0.14 0.35 ± 0.14 mm yr−1

k_toc 1.00 ± 0.20 0.91 ± 0.18 1 vgx 0.19 ± 0.06 0.20 ± 0.07 PgC ppm−1 yr−1

ggx 0.018 ± 0.029 0.019 ± 0.033 K−1 To 18.0 ± 0.5 18.0 ± 0.5 K

bdic 0.87 ± 0.08 0.90 ± 0.09 1 gdic 0.04 ± 0.02 0.04 ± 0.02 K−1

npp0 48.2 ± 5.1 46.5 ± 3.3 PgC yr−1 vfire 0.006 ± 0.003 0.006 ± 0.002 yr−1

vharv 0.003 ± 0.003 0.003 ± 0.002 yr−1 vmort 0.11 ± 0.01 0.11 ± 0.01 yr−1

vstab 0.32 ± 0.28 0.30 ± 0.22 yr−1 vrh1 0.33 ± 0.29 0.27 ± 0.20 yr−1

vrh23 0.024 ± 0.009 0.024 ± 0.008 yr−1 bnpp 0.93 ± 0.37 1.09 ± 0.25 1

anpp 0.48 ± 0.57 0.36 ± 0.38 1 gnpp -0.014 ± 0.023 -0.005 ± 0.024 K−1

bfire -0.05 ± 0.12 -0.06 ± 0.14 1 gfire 0.052 ± 0.072 0.044 ± 0.088 K−1

brh 1.06 ± 0.43 1.01 ± 0.41 1 grh 0.056 ± 0.053 0.042 ± 0.035 K−1

apass 0.69 ± 0.19 0.63 ± 0.20 1 ga 0.13 ± 0.04 0.13 ± 0.04 K−1

ka 2.6 ± 2.0 2.4 ± 1.8 1 k_tth 0.96 ± 0.93 1.00 ± 0.87 1

Cfr0 546 ± 120 538 ± 122 PgC CO2pi 278 ± 3 279 ± 3 ppm

Table B6. Calibrated parameters values before and after Bayesian calibration. Parameters are noted under their code notation, and Tables B3

and B4 provide the corresponding notation in text. The uncertainty correspond to the 1 σ uncertainty range.
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