

1 **Review - Elucidating the role of soil hydraulic properties on the aspect-
2 dependent landslide initiation, by Yanglin Guo and Chao Ma (Special
3 Issue: Experiments in Hydrology and Hydraulics)**

5 Preliminary remark: this is a review of the revised version of the manuscript. I was not
6 involved with the reviews of the original version.

7 This paper analyses soil properties within an area of shallow landslides in China using field
8 evidence and lab measurements. It concludes that differences in landslide occurrence
9 observed on north-facing vs. south-facing slopes are explained by differences in soil hydraulic
10 properties.

11 The manuscript is mostly well written and documented; the revisions clearly have improved
12 the paper. Since the editor invited a revised version I take it that the manuscript is within the
13 particular scope of this Special Issue. However, I would like to draw the attention to some
14 major and minor points of the study that need clarification. These are detailed in the general
15 and specific comments below. Finally, some technical corrections are listed.

16 **General comments**

17 *Interpretation of lab results, seepage model and stability analysis*

18 The authors present different analyses to underpin their reasoning how the soil properties
19 favor landslides on south-facing slopes (S-slopes) compared to north-facing slopes (N-
20 slopes). They use soil physical properties determined in the lab, field observations of soil
21 moisture, modelled water storage and drainage, and stability analysis. The results for the
22 hydraulical properties appear to support the conclusions, in particular Table 1 and Fig. 6. The
23 uncertainty of these estimates, however, is not reported or discussed. Given the rather small
24 sample size, which admittedly is also attributed to the efforts of the extensive testing as done
25 here, the uncertainty and its implications should be discussed.

26 For the soil moisture observations (Fig. 9), I think it is arguable whether the differences are
27 significant and representative for the N-slopes and S-slopes. Field monitoring of soil moisture
28 as done here is also very much influenced by the local conditions and particular installation,
29 and interpretation of absolute values need to consider sensor calibration. The maximum value
30 is observed for the sensor in layer 1, S-slope (Fig. 9), whereas all three layers reach a (little
31 lower) maximum at the N-slope. This could also hint at a higher susceptibility for deeper
32 infiltration, and thus higher pore pressure that triggers land sliding, at N-slopes.

33 The seepage and stability models (Figs. 10 and 11) appear to contradict the notion that S-
34 slopes are more prone to failure, as the N-slope both reach higher soil water storage (Fig. 10),
35 and lower safety factors (Fig. 11). The authors admit that in line 411 (“the south-facing slope
36 has a relatively high stability”), but contradict that in lines 414-416 (“Considering the soil
37 parameters of the soil moisture curve, the results of the infinite slope model have shown that
38 the north-facing slope showed a higher level of stability”). Please explain this apparent
39 contradiction better, and explain in more detail how the SMC is supposed to turn the results of
40 the stability analysis upside down.

41 One aspect that I found missing from the discussion are the different depths of the slip layer at
42 N-slopes and S-slopes (lines 211-213). At S-slopes, different material are reported above and

43 below the slip layer at ~ 0.85 m, while the material appears to change more gradually over the
44 slip layer at 1.05 m at N-slopes (Fig. 4). How do you think the layering influences slope
45 stability, or slope hydrology? In turn, it would also be interesting to discuss how the interplay
46 of rainfall, topography, and hydraulic and mechanical soil properties could be determining the
47 depth of the slip layer.

48 *The role of vegetation*

49 The authors start with the hypothesis that effects of plant roots, which was found for aspect-
50 dependent landslide initiation in other studies, are not relevant in their case. They report that
51 the roots of the main plant species, *Larix kaempferi*, do not extend to depths greater than 0.4
52 m (lines 112-114), and are thus above the depths of failure of the observed landslides (line
53 470). They use this as a reason to investigate other possible causes for the observed
54 differences in landslide occurrence. Unfortunately, the authors do not provide a source for the
55 estimated root depths, and only provide very little additional information about the vegetation,
56 which makes it hard to judge their argumentation. Further information would be needed to
57 support the claim that vegetation cannot be an important factor.

58 For example, is the distribution of rooting depths different on N- and S-slopes? If north and
59 south slopes have different rainfall, weather, and soil conditions, this could also affect plants
60 and their root characteristics. Plants are individuals, so even when they are from the same
61 species, their root systems might be influenced by age, microclimate, and soil conditions as
62 well.

63 How is the distribution of plant heights? I am not a botanist, but some quick info on *Larix*
64 *kaempferi* seems to suggest that the tree can grow rather tall (up to 30 m), and the minimum
65 rooting depth is around 0.5 m¹. I would expect that taller trees tend to develop a root system
66 towards greater depths. Is the root system similar to the European Larch, which has both a
67 shallow (for nutrient uptake) and a deep-reaching central part (for tree stability)?

68 Were root depths observed in the landslide scars? The photos in Fig. 4 show a number of
69 roots, at these pits at least. Unfortunately, the depth cannot be read clearly.

70 The authors write in section 2 that the landslides in the area mainly occurred on south-facing
71 slopes where vegetation was “sparse” (line 107). Did landslides occur in clear terrain, or
72 were trees affected as well? How different are the stand densities on N- and S-slope (cf. lines
73 61/62: “different types and densities of vegetation and soils develop on north-facing versus
74 south-facing convergent slopes”)? Are there other relevant plant species on either N- or S-
75 slopes, which could contribute to soil strength by their (deeper) root systems?

¹ <https://plants.sc.egov.usda.gov/home/plantProfile?symbol=LAKA2>; 2023-02-11

Specific comments

81 Lines 99-100: Are the soils made of Loess, or is it just situated in the larger area of the Loess
 82 Plateau? What are the soil types on the N and S slopes?

83 Lines 160-162: Eq (2) - I fail to find the part where this is used or discussed in the paper.

84 Lines 189-192: How was c_l parameterized? Which value were chosen for root cohesion? S_{sr}
 85 and τ are not defined.

86 Lines 201-202: Why is the definition of south-facing slopes not symmetrical around 180° , as
 87 is the definition for north-facing slopes around 0° ? How does this definition affect the results?

88 Lines 218-220: The lines in Fig 3b, which is where you base this statement on, are
 89 questionable and should be checked (also see comment on Fig 3). The difference in upslope
 90 contributing area is not easily visible in the data points in the figure, and the regression lines
 91 seem to be far away from the data points. Is the statement thus actually supported by the data?
 92 And, you are looking at the upslope contributing area above the head scar. The landslides on
 93 the S slopes have a longer stretch, and the initiation does not necessarily have to be at the
 94 uppermost point; more likely, it will start further downslope. Is the contributing area still
 95 smaller for the south-facing slopes, if you determine it from the lower end of the landslides?

96 Line 239, Fig 3b: The regression lines neither fit the mean values nor the individual data
 97 points?

98 Line 250, Fig 4: The photos show a number of roots. Unfortunately, the depth cannot be read.
 99 Please indicate a scale. Weights/Porosity diagrams: The (non-linear!) interpolation of the
 100 point measurements is misleading. It is not known if there is gradual or abrupt change in these
 101 values over the profile. The porosity diagram does not match the numbers in Table 1.

102 Line 363, Table 2: The difference between K_s^d and K_s^w is strikingly high. What is the
 103 uncertainty of the estimate, and is that not the opposite from what would be expected? In the
 104 paper of Wayllace and Lu (2012; reference cited in manuscript), the reported Ks of all
 105 samples were lower in the wetting, not in the drying phase. Also, it should be discussed how
 106 the values compare to K_s in Table 1.

107 Lines 369-370: In comparison with the porosities in Table 1, soil moisture also almost reaches
 108 saturation on N-slope in all layers. It could also slightly exceed porosity in layer 1 on S-slope,
 109 but the other layers remain below saturation in Fig. 9.

110 Line 418-419: "change in soil stress was more sensitive to slope stability than the change in
 111 root soil cohesion": A bit unclear, which results for soil stress you refer to, the stability
 112 analysis? And change in root soil cohesion was not investigated or discussed, just excluded a
 113 priori.

114 Lines 439-444: This discussion of the higher cohesion observed at S-slopes is a bit confusing,
 115 because you first cite literature that would support greater depth of the slip layer and smaller
 116 sizes, but the opposite was observed. I think you want to argue why cohesion is not the crucial
 117 parameter here, but this should be made clearer.

118 Line 441: "some statistical results": Please specify.

119 Lines 451-453: This appears to be the opposite of what Fig. 11 shows: Failure potential
120 reaches higher peak and is more fluctuating at N-slopes.

121 Line 476: “Rich in clay content”: Clay content appear to be below 5 % in all samples (Fig. 5).
122 I am not sure if this already considered rich in clay. Is the silt content significant in this
123 context?

124

125 **Technical comments**

126 Lines 13-15: “Remote sensing information … shallower depth” – Was landslide depth
127 assessed with remote sensing or field observations?

128 Lines 108-109: Check sentence “The strong root network may promote [...] the landslide
129 initiation condition of the upslope contributing area–slope gradient,”

130 Line 189, Eq (8): g and z are not italicized in the numerator

131 Lines 189 & 195: F_s is used in both equations, which might be misleading

132 Lines 236-237: Different definitions of the whiskers exist, please provide complete
133 information.

134 Line 250, Fig 4: “Gain” should be “Grain”

135 Lines 283-284: “The results … were taken here” – Check sentence

136 Line 292, Fig. 6: The units of the X-axis are unclear. Does the graph start at $10^0 = 10$ s, or at
137 $10^0 = 1$ s? Please give unambiguous units (seconds); scale the numbers if needed.

138 Line 309: “south” would rather be “north”? At least the higher permeability and lower pore
139 pressure were observed at the N-slopes.

140 Line 327, Fig. 7: The units of the X-axis are unclear. Does the graph start at $10^0 = 10$ min, or
141 at $10^0 = 1$ min? Please give unambiguous units (seconds); scale the numbers if needed.

142 Line 335: Check sentence structure, and give a reference for the TRIM method.

143 Line 470: “These observations cannot be attributed to plant roots” Unclear, which
144 observations “these” are. Check this, and the previous sentences.