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Response to Anonymous Referee #1: 
 
In this paper, the authors extensively tested the multifidelity Monte Carlo (MFMC) method for 
accurately catching some quantities of interest in climate-related modeling. Compared to the 
widely used Monte Carlo (MC) method, they demonstrated that MFMC has superior 
properties over MC on this subject via three benchmark problems in the ocean, atmosphere, 
and ice sheet modeling. Since uncertainties exist almost everywhere in climate modeling and 
prediction, I think MFMC would greatly impact this area, especially in reducing the number 
of costly large-scale simulations in very fine resolutions. Hence, I would highly recommend 
the publication of this manuscript in GMD after the authors address the following minor 
issues. 

Thank you for your helpful comments and for your interest in our work.  Below are 
responses to your specific comments 

1. In line 67 on page 3, the statement is somehow confusing. The authors declare that 
they don't consider any possible alternate sampling schemes at the beginning. But 
their goal is to use a nontraditional MC sampling strategy. Doesn't the sampling 
strategy belong to the "alternate sampling schemes"? 

By “alternate sampling strategies” we mean that a user might be using (or may want to 
use) some other sampling scheme besides traditional MC for the truth model, e.g., 
Latin hypercube sampling, quasi-MC sampling, or sparse grid sampling, as doing so 
often results in lower costs for a given accuracy tolerance.  Therefore, the choice of 
sampling scheme is determined by how we want to sample the truth model and its 
surrogates.  While we use MC sampling in this work, other choices are possible and 
would produce analogues to the MFMC method, e.g., MFLH, MFQMC, or MFSG. 

2. In Algorithm A, it mentions that Fk is removed from the list of surrogates if the 
second requirement is not satisfied. Will there be such a case all Fk will be 
removed from the estimation? Secondly, will it obtain less accuracy compared to 
the MC method with all Fk included? 

Note that all Fk will never be removed according to our criterion; in the most extreme 
case, at least the high-fidelity model F1 will remain.  On the other hand, if this occurs, 
we obtain the useful information that none of the surrogates F2, …, Fk are effective at 
increasing estimation accuracy or reducing computational costs, i.e., we are stuck using 
MC on its own and should look for other, more informative, surrogates.  To address the 
other question, there should never be a loss of accuracy relative to MC regardless of 
the model set. The worst-case scenario is if all the surrogates fail the second test, in 
which case we are left with traditional MC using F1.  Hence, there is no loss of accuracy 



in MFMC; its worst-case accuracy is simply equal to that of MC using the truth 
model.   However, if at least one surrogate survives the second test, then the MFMC 
method guarantees that costs are reduced without compromising accuracy. 

3. For Figures 3 and 6, it is better to point out that the blue shading is the standard 
deviation of the MC prediction and the melon for MFMC. Moreover, being 
included in the blue shading indicates a smaller standard deviation. 

We agree that it is a good idea to mention this explicitly.  Any future versions of the 
manuscript will include this change. 

This change has been reflected in the new manuscript in the captions of Figures 3 and 
6. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



Response to Anonymous Referee #2: 
 
The authors describe a "multi-fidelity" Monte Carlo method for expected value estimation 
that is shown to improve convergence/efficiency compared to traditional Monte Carlo 
methods. This multi-fidelity approach is different to existing techniques in that expected 
values are computed using simulations run at differing resolutions and/or incorporating 
various levels of dynamical approximation. The test cases presented here employ hierarchies 
of progressively coarsened meshes to provide low-cost estimators, as well as an 
interpolation-based approach. The authors present results for two shallow-water 
benchmarks and one ice-sheet test-case, and demonstrate significant speed-ups compared 
to the traditional MC scheme for various maximum-value estimation problems. The speed-
ups demonstrated for the MFMC method are very attractive, especially in the context of 
climate-model estimators which are often extremely expensive to obtain. There are a 
number of questions I have relating MFMC performance to problem nonlinearity though, in 
addition to various minor corrections. 

Thank you for your helpful comments and for your interest in our work.  Below are 
responses to your specific comments. 
 
- The three test-cases analysed appear to involve estimators evaluated after relatively short 
integration periods, and, rather than fully nonlinear flows/dynamics, the response of the 
system may be relatively linear over these short horizons as a result --- is this expected to 
influence the effectiveness of the MFMC results presented? For example, TC5 from 
Williamson does not become strongly nonlinear until approx. 20-days, with 50-days being 
the typical analysis window at which turbulence is fully developed. The SOMA case described 
in Wolfram (2015) is typically spun-up over several years, and then analysed over 30-day 
windows. In this work, it appears the TC5 case is analysed after 10 days, and the barotropic-
gyre-version-of-SOMA after 3-days (restarted from a 15-day spin-up). Are the MFMC results 
robust when the duration/nonlinearity of the test-cases is increased? 
 
Based on our experience with prior work on MC-based estimation, we do not expect 
the linearity (or lack thereof) of the model solution to affect the performance of the 
MFMC estimation procedure.  
 
- Is it possible to estimate the relative "multi-fidelity" contributions to the accuracy of the 
MFMC estimator? For example, is the overall accuracy governed more by the small number 
of high resolution runs, the large number of low resolution runs, or something in-between? 
Considering the more linear (or at least non-turbulent) nature of solutions studied, how 
would a conventional MC estimator compare if run only using lower-resolution simulations? 
In other words, is the good performance of the MFMC method due to the solution being well-
resolved even on the coarser meshes, or is the multi-resolution hierarchy effective in 



estimating behaviour resolvable only at high-resolution? If it is the former, I wonder whether 
the problems studied are sufficiently nonlinear at the grid-scale. If it is the latter, this may be 
a nice result to highlight further.  
 
A goal of MFMC estimation is to achieve (using very few samples of the high-fidelity 
mode) the same accuracy as obtained by an MC estimator (that exclusively uses many 
samples of that model).  Certainly, at least one high-fidelity model evaluation is 
necessary to eliminate bias in the MFMC estimator.  Moreover, we find practically that 
the high-fidelity samples used to “steer” this estimator in an accurate direction, while 
the low-fidelity samples are used to shrink its variance around the true solution.  Note 
that the dynamics of the example systems are not particularly well resolved by the low-
fidelity models relative to the high-fidelity ones; particularly in the case of the 
barotropic gyre (SOMA) case, there is a noticeable visual difference between the 32km 
solution and the 8km solution. 
 
- I believe the gradient terms in the shallow-water system (12) should be grad(1/2*|u|^2) + 
g*grad(h + h_b) rather than the grad(rho) included currently. Here p = rho_0*g*h is used to 
simplify the linear 1/rho_0 * grad(p) shallow-water pressure gradient, consistent with e.g. 
Ringler et al (2010). 
 
This has now been corrected.  Thank you for your attention. 
 
This change is reflected in equation (12) in the new manuscript. 
 
- The SWE runtimes noted in 3.1.1 and 3.2.1 appear to be quite slow --- requiring 100's of 
seconds to advance a single time-step using relatively small O(<= 100,000) cell meshes? Are 
these runtimes for the full multi-day simulations instead, or for all ensemble members 
perhaps? 

These were the wall-clock times observed when the relevant system was implemented 
in MATLAB and run on a 2015 MacBook laptop.  Therefore, neither the implementation 
nor the hardware was optimized for computational efficiency. 

- While the MFMC methods presented here are clearly different in that they leverage varying 
resolution simulations, is it fair to compare against only the "historical" MC method, which is 
known to be uncompetitive in terms of efficiency? Significant work on alternative MC 
methods has been conducted by various authors in which a variety of accelerated 
techniques have been proposed. Are the large gains reported for MFMC expected to be 
replicated compared to e.g. MCMC (Markov Chain Monte Carlo) approaches more frequently 
used in climate model estimation? 



A primary benefit of MFMC over other modern estimation methods such as MCMC is its 
ability to leverage low-fidelity information to effect cost-savings without sacrificing 
estimator accuracy.  In our experience with MFMC in other settings, this benefit 
translates to much larger cost savings for a given accuracy tolerance when compared 
to MCMC as well as other MC-related sampling schemes (e.g., variance reduction MC, 
importance sampling). 

Minor comments: 

- The SOMA test case (Simulating Ocean Mesoscale Activity) typically refers to simulations 
using the multi-layer primitive equations, in which mesoscale eddies form due to 3d 
interactions between the momentum, density and forcing tendencies. In this shallow-water 
configuration with rho = const., it appears to be a wind-driven barotropic gyre that's studied 
instead, which is typically less turbulent, as per the smooth flow features in fig. 2. If so, it's 
suggested to label this test case as a wind-driven gyre. 

We agree with this reasoning and have changed the name globally throughout the 
manuscript. 

This change is reflected throughout Section 3.1 in the new manuscript. 

- Wallis (2012) reference appears to be missing. 

This has been fixed, thank you for your attention. 

This change is reflected in lines 185, 200-205, and 554 in the new manuscript. 

- ln 76: Is saying "no guesswork involved" too strong a statement? The systematic nature of 
the MFMC approach is attractive, but is it *the* provably optimal sampling strategy, or more 
of an effective heuristic? 

It can be shown that the MFMC method presented here is the provably optimal 
solution (up to rounding) to a particular constrained optimization problem (see Gruber 
et al 2022, “A multifidelity Monte Carlo method for realistic computational budgets”, for 
a formal statement).  Therefore, we do not think it is a stretch to say there is “no 
guesswork involved” in this context. 

- ln 72: ...also uses cheaper to obtain... 

- fig. 3 labelling: left-right vs top-bottom. 

These have been fixed, thank you for your attention. 



These changes are reflected in (resp.) line 73 and the caption to Figure 3. 

- ln 308: Is this an expression for the free surface height or the layer thickness --- h appears 
to be thickness in the shallow-water system (12). 

This is an expression for the fluid thickness.  We have clarified this globally throughout 
the manuscript. 

This change is reflected in Sections 3.1 and 3.2 of the new manuscript. 

- The Gruber (2022) paper referenced here appears to be an arXiv preprint, that in-turn 
references this GMD submission?? 

This is true.  The referenced preprint (to appear in J. Sci. Comput.) establishes the 
particular MFMC algorithm which has been applied to climate-related examples in this 
paper.  Therefore, we refer interested readers to that manuscript for a more detailed 
description of the MFMC method.  Conversely, we write in that preprint that 
“Forthcoming work will investigate applications of the present MFMC method to 
complex systems governed by partial differential equations, particularly in the context 
of climate modeling.”, and provide an empty citation with title and relevant authors.  
The mentioned work has since become this GMD submission.   

Since this has caused confusion, we intend to remove the offending citation from the J. 
Sci. Comput. paper during the proofing stage. 
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Abstract. Uncertainties in an output of interest that depends on the solution of a complex system (e.g., of partial differential

equations with random inputs) are often, if not nearly ubiquitously, determined in practice using Monte Carlo (MC) estima-

tion. While simple to implement, MC estimation fails to provide reliable information about statistical quantities (such as the

expected value of the output of interest) in application settings such as climate modeling for which obtaining a single realiza-

tion of the output of interest is a costly endeavor. Specifically, the dilemma encountered is that many samples of the output of5

interest have to be collected in order to obtain an MC estimator having sufficient accuracy; so many, in fact, that the available

computational budget is not large enough to effect the number of samples needed. To circumvent this dilemma, we consider

using multifidelity Monte Carlo (MFMC) estimation which leverages the use of less costly and less accurate surrogate models

(such as coarser grids, reduced-order models, simplified physics, interpolants, etc.) to achieve, for the same computational bud-

get, higher accuracy compared to that obtained by an MC estimator or, looking at it another way, an MFMC estimator obtains10

the same accuracy as the MC estimator at lower computational cost. The key to the efficacy of MFMC estimation is the fact that

most of the required computational budget is loaded onto the less costly surrogate models, so that very few samples are taken

of the more expensive model of interest. We first provide a more detailed discussion about the need to consider an alternate to

MC estimation for uncertainty quantification. Subsequently, we present a review, in an abstract setting, of the MFMC approach

along with its application to three climate-related benchmark problems as a proof-of-concept exercise.15

1 Introduction

In many application settings — climate modeling being a prominent one — large computational costs are incurred when

solutions to a given model are approximated to within an acceptable accuracy tolerance. In fact, this cost can be prohibitively

large when one has to obtain the results of multiple simulations, as is the case for, e.g., uncertainty quantification, control and

optimization, to name a few. Thus, there is often a need for compromise between the accuracy of simulation algorithms and20

the number of simulations needed to obtain, say, in the uncertainty quantification setting, accurate statistical information.

For example, consider the following case which represents the focus of this paper. Suppose one has a complex system, say,

a system of discretized partial differential equations, for which the input data depends on a vector of randomly distributed

parameters z. Letting u(z) denote the solution of the discretized partial differential equations, we define an output of interest

1



F
(
u(z)

)
= F (z) that depends on u(z) so that, of course, it also depends on the choice of z. Next, suppose we wish to use25

Monte Carlo sampling to estimate the expected value Q= E [F (z)] of the output of interest F (z), i.e., we have the Monte

Carlo estimator of Q given by

QMC =
1

M

M∑
m=1

F (zm) =
1

M

M∑
m=1

F
(
u(zm)

)
≈ E [F (z)] =Q, (1)

where {zm}Mm=1 denotes a set of M independent and identically distributed samples of the random vector z. This is a common

task in uncertainty quantification which provides useful statistical information in both predictive and inferential applications.30

On the other hand, Monte Carlo estimation is not without its drawbacks. Consider the following scenario. Let δ < 1 denote

a measure of the spatial grid size used to discretize the PDE system in question, and suppose that δ is normalized by the

diameter of the domain in which that system is posed. Then, we have that the error in the approximate solution is of O(δνd)

for some νd > 0 and that the cost (e.g., measured in seconds, or days, or weeks) of a simulation which obtains the approximate

solution is of O(δ−νc) for some νc > 0. Neglecting any additional costs connected with the evaluation of F (z) = F
(
u(z)

)
(for35

any given z) once u(z) is obtained, it is clear that the cost C incurred when obtaining the Monte Carlo estimator QMC is of

O(Mδ−νc). Of course, it is well known that the accuracy of a Monte Carlo estimator is of O(1/
√
M) so that in order for the

accuracy of the estimator to be commensurate with the discretization error, we must have that 1/
√
M ∝O(δνd). Therefore, the

needed number of samples is proportional to M ∝ δ−2νd , and the total cost CM incurred when determining the Monte Carlo

estimator QMC is of O(δ−2νd−νc).40

The cost CM can quickly get out of control when dealing with large-scale problems. For example, suppose that the approx-

imate solution of the PDE system is second-order accurate, i.e., νd = 2, and that a single simulation incurs a cost of O(δ−3)

(i.e., νc = 3) which is the best-case scenario in three dimensions. We then have that the number of samples needed is M ∝ δ−4

and the total cost CM ∝ δ−7. Thus, with even a modest grid size of δ = 0.01 we have that number of samples needed M ∝ 108

and the total cost CM ∝ 1014, which is too high for practical use. Turning things around, suppose instead that the available45

computational budget allows for at most ten thousand simulations, i.e., M = 104, so that the resulting accuracy of the Monte

Carlo simulator is of O(10−2). Here, the estimator error and approximation error are already commensurate when δ = 0.1,

making the choice of a smaller delta redundant if not infeasible. In fact, in this case there is no way to achieve the four digits

of accuracy sought by choosing δ = 0.01, since the best we can do with the available budget is on the order of O(10−2). Note

that the situation becomes even worse when the PDE system in question is time dependent, as a single simulation incurs an50

even larger cost when one accounts for the number of time steps used in the simulation.

Given that the cost of MC estimation is at times prohibitively expensive, it comes as no surprise that many alternatives or run-

arounds to such estimation have been proposed. One approach in this direction has led to the development of many different

random parameter sampling schemes, e.g., quasi-Monte Carlo sampling, sparse-grid sampling, importance sampling, Latin

hypercube sampling, lattice sampling, compressed sensing, to name just a few, for which the estimation error is guaranteed55

to be smaller than its Monte Carlo equivalent; see, e.g., Addcock et. al. (2022); Evans and Swartz (2000); Gunzburger et.

al. (2014); Nierderreiter (1992); Sloan (1994); Smith (2013). On the other hand, some of these alternate approaches require
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smoothness of solutions to achieve better accuracy. Furthermore, most, if not all, of these methods are superior to Monte Carlo

sampling only for moderate dimension of the parameter vector z; see the references just cited.

A second approach towards reducing the cost of Monte Carlo (and for that matter for any type of) uncertainty estimation is60

to use approximate solutions of the PDE system that are less costly to obtain compared to the cost of obtaining the approxi-

mation of actual interest. For example, using simulations obtained using coarser grids or using reduced-order models such as

reduced-basis or proper orthogonal decomposition methods are less costly as are interpolation and support vector machine ap-

proximations; see, e.g., Cristianini and Shawe-Taylor (2000); Fritzen and Ryckelynck (2019); Keiper et. al. (2018); Quarteroni

and Rozza (2014); Quarteroni et. al. (2016); Steinwart and Christmann (2008). However, such approaches, by definition, result65

in less accurate approximations compared to the accuracy that one wants to achieve.

In this paper we do not consider any of the possible alternate sampling schemes nor do we exclusively consider using less

costly and less accurate approximate solutions of the PDE system. Instead, because of the near ubiquity of its use in practice,

our goal is to outperform traditional Monte Carlo estimation by using a nontraditional Monte Carlo sampling strategy and

in so doing refrain from incurring any loss of accuracy. To meet this goal, we invoke multifidelity Monte Carlo estimation70

which, in addition to the expensive and accurate PDE system approximation of interest (hereafter referred to as the “truth”

approximation) also uses cheaper to obtain
:::::::::::::::
cheaper-to-obtain and less accurate approximations (which are referred to as the

“surrogates”). The bottom line is that multifidelity Monte Carlo estimation meets our goal by leveraging increased sampling of

the less accurate/less costly approximations alongside low sampling of the more expensive/more accurate truth approximation.

The multifidelity Monte Carlo algorithm systematically determines the number of samples taken from each surrogate (i.e., there75

is no guess work involved) and systematically (i.e., again no guess work involved) combines the samples of the surrogates to

obtain the desired estimator. We note that multifidelity Monte Carlo estimation has already been shown to outperform Monte

Carlo estimation in a variety of application settings; see, e.g., Clare et. al. (2022); Dimarco et. al. (2022); Konrad (2019); Law

et. al. (2022); Modderman (2021); Quick et. al. (2019); Rezaeiravesh et. al. (2020); Romer et. al. (2020); Valero et. al. (2022)

for some examples.80

In Section 2, we review how the Monte Carlo and multifidelity Monte Carlo estimators are constructed in an abstract setting;

here we follow the expositions in Peherstorfer et. al. (2016) and also in Gruber et. al. (2022). Then, in Sections 3 and 4 we

demonstrate the effectiveness of multifidelity Monte Carlo estimation using three well-known climate-related benchmarks.

Sections 3.1 and 3.2 are respectively devoted to single layer shallow-water equations model for
::::::
models

:::::
based

::
on

:
the SOMA

Test Case of Wolfram et. al. (2015) and Test Case 5 of Williamson et. al. (1992). Section 4 is devoted to a benchmark case for85

the first-order model for ice sheets; see Blatter (1995); Pattyn (2003); Perego et. al. (2012); Tezaur et. al. (2015). We close by

providing some concluding remarks in Section 5.

2 Monte Carlo and multifidelity Monte Carlo estimators

An abstraction of the specific settings considered in Sections 3 and 4 involves first

3



– having in hand a (discretized) partial differential equation (PDE) system for which the solution u(z) depends on a random90

vector of parameters z ∈ Γ, where Γ denotes a parameter domain.

Note that the input data to this PDE system, e.g., forcing terms, initial conditions, coefficients, etc., could depend on one or

more of the components of the random vector z. Moreover,

– we are interested in situations such that, for any z ∈ Γ, obtaining u(z) is a costly endeavor.

In addition,95

– we define a scalar output of interest (OoI) F 1(z) = F 1
(
u(z)

)
that depends on the solution u(z) of the (discretized) PDE

system; of course, if obtaining u(z) is costly, then so is obtaining F 1(z).

While they are not considered in this work, vector-valued outputs of interest can also be treated with multifidelity Monte Carlo

techniques. OoIs could be, e.g., averages or extremal values of the energy, etc., associated with the solution u(z).

Having defined an OoI F 1(z),100

– we let Q1 = E
[
F 1

]
denote the quantity of interest (QoI) corresponding to the F 1(z),

where E [ · ] denotes the expected value with respect to z. Because the estimation of Q1 = E
[
F 1

]
is the central goal of this

paper,

– we refer to F 1(z) as the “truth” output of interest.

Commonly, even ubiquitously,105

– a Monte Carlo (MC) sampling method is used to (approximately) quantify the uncertainty in the chosen OoI F 1(z).

Specifically,

– MC sampling is used to estimate the quantity of interest Q1 = E
[
F 1

]
corresponding to F 1(z),

i.e., we have that

– the MC estimator of the QoI Q1 = E
[
F 1

]
is given by110

QMC
1 =

1

M1

M1∑
m=1

F 1(zm)≈Q1 = E
[
F 1

]
, (2)

where {zm}M1
m=1 denotes a set of M1 randomly selected points in the parameter domain Γ.

We are then faced with the following dilemma: on the one hand,

– obtaining an acceptably accurate MC estimator QMC
1 of the QoI Q1 requires obtaining the solution u(z) of the discretized

PDE system at many randomly selected points z ∈ Γ,115

and, on the other hand,

– each of those approximate solutions u(z) are computationally costly to obtain.

Quantifying uncertainties in climate system settings are victimized by this two-headed dilemma to the extent that, e.g., accurate

long-time integrations can often not be realized in practice.

Due to the issue of prohibitive computational cost, we turn to multifidelity Monte Carlo (MFMC) methods for uncertainty120

quantification. MFMC methods leverage the availability of surrogate outputs of interest F k(z), k = 2, . . . ,K, which have

smaller computational complexity compared to that of the truth OoI F 1(z). As mentioned in Section 1, there are many types
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of surrogates that can be used for this purpose, e.g., discretized PDEs with coarser spatial grids and larger time steps, reduced-

basis and proper orthogonal decomposition-based reduced-order models, and interpolants of F 1(z), to name just a few.

For the truth and the K − 1 surrogate OoIs, Monte Carlo (MC) sampling yields the K unbiased estimators125

QMC
k =

1

Mk

Mk∑
m=1

F k(zm)≈ E
[
F k

]
=Qk for k = 1, . . . ,K, (3)

where z1, . . . ,zMk
denote Mk i.i.d. samples of z ∈ Γ. The goal of an MFMC method is using an appropriate linear combination

of the K MC estimators QMC
k in (3) to estimate the QoI Q1 = E

[
F 1

]
. Specifically, we define the MFMC estimator as

QMFMC =QMC
1 +

K∑
k=2

αk

(
QMC

k −QMC
k−1

)
≈Q1 = E

[
F 1

]
, (4)

where {αk}Kk=2 denotes a sequence of scalar weights and {Mk}Kk=1 denotes a nondecreasing sequence of integers defining the130

numbers of samples.

Letting Ck denote the cost of evaluating the kth output of interest F k, the costs of computing the respective MC and MFMC

estimators are given as

CMC
k = CkMk for k = 1, . . . ,K and CMFMC =

K∑
k=1

CMC
k =C ·M,

where C= {Ck}Kk=1 and M= {Mk}Kk=1 denote K-vectors formed from the previously introduced sequences.135

The variance σ2
k of the kth output of interest F k and the correlation ζk,k′ between the outputs of interest F k and F k′

are

given by, for k′,k = 1, . . . ,K,

σ2
k =Var

[
F k(z)

]
and ζk,k′ =

Cov
[
F k(z),F k′

(z)
]

σkσk′
,

respectively, where Cov[·, ·] denotes the statistical covariance. We then have that the mean-squared error (MSE) incurred by

the MC estimator QMC
k of the QoI Qk is given by140

e(QMC
k ) = E

[(
Qk −QMC

k

)2]
= E

[(
E
[
F k(z)

]
−QMC

k

)2]
= E

[
F k(z)

]2 −E
[
F k(z)2

]
=

σ2
k

Mk
for k = 1, . . . ,K

(5)

whereas the MSE incurred by the QMFMC estimator of the QoI Q1 is given by (see Peherstorfer et. al. (2016))

e(QMFMC) =
σ2
1

M1
+

K∑
k=2

(
1

Mk−1
− 1

Mk

)(
α2
kσ

2
k − 2αkσkσ1ζ1,k

)
. (6)

Note that it can be shown (see e.g. Peherstorfer et. al. (2016)) that the MSE for QMFMC is lower than that for QMC
1 if and

only if145 √
e(QMFMC)

e(QMC
1 )

=

K−1∑
k=1

√
Ck

C1

(
ζ21,k − ζ21,k+1

)
< 1. (7)
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Given a fixed computational budget B, MFMC aims to construct an optimal sampling strategy M= {Mk}Kk=1 along with

an optimal set of weights α= {αk}Kk=2 so that the MSE (6) of the multifidelity estimator QMFMC is lower than the MSE (5)

of the Monte Carlo estimator QMC
1 . Viewed differently, this means that an appropriate estimator QMFMC can achieve a fixed

MSE ε > 0 at a smaller computational cost compared to that incurred for the Monte Carlo estimator QMC
1 achieving MSE ε.150

In Peherstorfer et. al. (2016, 2018), unique optimal values of M= {Mk}Kk=1 and α= {αk}Kk=2 are analytically obtained

by minimizing the MSE (6) of the QMFMC estimator (4) over the real numbers. However, the values M must certainly be

integers for practical use, and the heuristic of Peherstorfer et. al. (2016) which determines the optimal values can result in either

a biased estimator of the expectation or (with naïve modification) a violation of the given budget B. For “small” computational

budgets, the consequences of this can be quite severe as illustrated in Gruber et. al. (2022).155

Because “small” computational budgets are of high interest for climate modeling, here, instead of using the MFMC method

of Peherstorfer et. al. (2016, 2018), we use the modified MFMC method of Gruber et. al. (2022) which guarantees that the

optimal sampling numbers are integers and that the computational budget is not exceeded. In that method, instead of simply

minimizing the MSE e(QMFMC) defined in (6), the modified MFMC estimator is determined through the use of at least some

of the sequential minimization problems given by160

for k = 1,2, . . . ,K and, if k > 1, for given M1,1, . . . ,Mk−1,k−1,

minimize the functional

Lk(Mk,αk;λk,µk, ξk) =

e(QMFMC)+λk

( K∑
k′=k

Ck′Mk′,k −
(
B−

k−1∑
k′=1

Ck′

))
+

K∑
k′=k+1

µk′,k

(
Mk′,k −Mk′−1,k

)
− ξkMk,k

(8)

where µk′,k for k′ = k+1, . . . ,K, λk, and ξk > 0 are Lagrange multipliers.

In (8), the first term added to the MSE e(QMFMC) enforces the budget constraint, or, more precisely, for each k, enforces

that the remaining available budget suffices to not exceed the given budget B after that budget has been depleted by the

sampling already effected for the OoIs F k′
, k′ = 1, . . . ,k−1, where, of course, for k = 1 the whole budget B is available. The165

second term added in (8) enforces the monotone non-decrease in the numbers of samples Mk′,k for k′ > k. The third term

added to the MSE enforces the positivity of Mk,k.

Repeating the arguments made in Peherstorfer et. al. (2016) concerning optimal choices for the sample numbers and weights,

the results given in the box A below are proved in Gruber et. al. (2022).

Remark 2.1. It is clear from (11) that the weights α∗
k′,k depend only on input data, specifically on the variances and correlations170

of the OoIs {F k′}Kk′=1. As such the value of α∗
k′,k is independent of k so that

α∗
k′,k =

ζ1,k′σ1

σk′
= α∗

k′,1 for all k = 1, . . . ,K and all k′ = k+1, . . . ,K.

Thus, the set of weights {α∗
k′,1}Kk′=2 determined from the minimization of L1 suffices to determine α∗

k′,k for all such k′ and k,

i.e., all α∗
k′,k for all k′ and k are determined once and for all by the minimization of L1. □

6



A. Optimal non-integer sampling numbers for the modified MFMC method; see Gruber et. al. (2022)

• Let {F k}Kk=1 denote the set of computational outputs of interest with correlation coefficients {ζ1,k}Kk=2 and computational costs

{Ck}Kk=1 that respectively satisfy

|ζ1,k−1|> |ζ1,k| and
Ck−1

Ck
>

ζ21,k−1 − ζ21,k
ζ21,k − ζ21,k+1

, k = 2, . . . ,K. (9)

The first requirement is easily satisfied by a reordering of the of the surrogate outputs of interest F 2, . . . ,FK . If after that reorder-

ing, the second requirement is not satisfied for some k ∈ {2, . . . ,K}, then that F k is removed from the list of surrogates.

• Let M1,1, . . . ,Mk−1,k−1 be given which are all positive by construction.

• Also let M∗
k = {M∗

k′,k}Kk′=k and α∗
k = {α∗

k′,k}Kk′=k+1 and let

r∗k′,k =
M∗

k′,k

M∗
k,k

=

√√√√ Ck

Ck′

(
ζ21,k′ − ζ21,k′+1

ζ21,k − ζ21,k+1

)
, k′ = k, . . . ,K.

• Then, for each k = 1, . . . ,K, the unique global minimizer (M∗
k,α

∗
k) of the functional Lk is given by

M∗
k,k =

B−
∑k−1

k′=1Ck′∑K
k′=kCk′rk′,k

, (10)

and

M∗
k′,k =M∗

k,kr
∗
k′,k and α∗

k′,k =
ζ1,k′σ1

σk′
, k′ = k+1, . . . ,K. (11)

Unfortunately, as was the case in Peherstorfer et. al. (2016, 2018), the results given in box A do not immediately lead to a175

practical MFMC method because the sample numbers M∗
k′,k given in (10) and (11) are not, in general, integers. Moreover, as

was also the case in Peherstorfer et. al. (2016, 2018), the first and perhaps even the first few sampling numbers at stage k′ = 1

may be < 1 in addition to being noninteger. In those papers, a rounding procedure is implemented, i.e., the sample numbers

Mk′,1 are replaced by integers, though this is unsuitable for scenarios where M1,1 < 1 as the choice M1,1 = 0 leads to a biased

estimator while the choice M1,1 = 1 exceeds the computational budget. On the other hand, the modified MFMC method in180

box B below is constructed to avoid these issues while preserving the optimality of the original solution (up to some amount

of rounding). Note that in that box and elsewhere, ⌊ ·⌋ denotes rounding downwards to the nearest integer.

7



B. Practical near-optimal integer sampling numbers for the modified MFMC method; see Gruber et. al. (2022)

For k = 1,2, . . .,

Ia. if the minimization of the Lagrangian functional Lk constrained by M1,1 =M2,2 = · · ·=Mk−1,k−1 = 1 results in all K−

k+1 members of the set {Mk′,k}Kk′=k satisfying Mk′,k ≥ 1, k′ = k, . . . ,K.

Then,

Ib. simply rounding downwards to the nearest integer produces integer sample numbers M∗
k′,k → ⌊M∗

k′,k⌋, k′ = k, . . . ,K, so

that the final set {Mk′,k′ = 1}k−1
k′=1 ∪{⌊M∗

k′,k⌋}Kk′=k, of sampling number optimal under the constraint M1,1 = · · ·=

Mk′,k′ = 1 and preserves the computational budget. We then set K̂ = k− 1 and exit to step IV.

Otherwise,

IIa. if M∗
k,k < 1, then it is rounded upwards M∗

k,k → 1 and the function Lk+1 is minimized to obtain the remaining K − k

components of M∗
k′,k, k′ = k+1, . . . ,K.

This yields

IIb. a new set {M∗
1,1 = 1,M∗

2,2 = 1, . . . ,M∗
k,k = 1}∪ {M∗

k′,k}Kk′=k+1} which may or may not contain entries less than 1. If

it does not, the model evaluation vector becomes M∗ = {Mk′,k′ = 1}kk′=1 ∪{⌊M∗
k′,k⌋}Kk′=k+1. We then set K̂ = k and

exit to step IV.

Otherwise,

III. we increment k → k+1 and return to step Ia.

IV. The process terminates and the final set of sample numbers is given by {M∗
1,1 = 1,M∗

2,2 = 1, . . . ,M∗
K̂,K̂

= 1}∪

{M∗
k′,K̂+1

}K
k′=K̂+1

}.

3 Tests for the single-layer rotating shallow-water equations

Consider the single-layer rotating shallow-water equations (RSWEs) posed on the domain Γ× [0,T ] and given by (see ?)

::::::::::
Vallis (2012)

:
)
:

185

∂h

∂t
+∇ · (hu) = 0,

∂u

∂t
+(k · ∇×u+ f)(k×u)+∇

( |u|2
2

+ g(h+hb)
)
=G(h,u),

(12)

where

Γ denotes the surface of a sphere or a subset of that surface,

[0,T ] denotes a time interval,

k denotes a unit vector perpendicular to the surface of the sphere,190

h(x, t) denotes the fluid thickness,

u(x, t) denotes the vector velocity field tangential to the surface of the sphere,

G(h,u) denotes the a forcing term that depends on the specific setting,

f denotes the Coriolis parameter,

8



ρ denotes the density,195

hb(x, t) denotes the bottom topography,

g denotes the (constant) acceleration due to gravity,

∇ denotes the tangential gradient, i.e., ∇f =Df − (Df ·k)k where D is the derivative operator of R3.

Note that the expression (k · ∇×u+ f)/h appearing in the velocity equation is known as the potential vorticity; see ?

::::::::::
Vallis (2012). Supplementing (12) are the initial conditions h= h0 and u= u0 at t= 0 and, if Γ is a strict subset of the200

surface of the sphere, the boundary condition u ·n= 0 on the boundary ∂Γ of Γ, where n denotes the unit vector tangent to

the surface of the sphere and also (outward) perpendicular to ∂Ω.

The RSWEs represent a useful simplification of the primitive equations (?
:::::::::::
Vallis (2012)) which are commonly used in oceanic

and atmospheric modeling and which are obtained by assuming a small ratio between the vertical and horizontal length scales.

In this way, the single-layer RSWEs describe the motion of a thin layer of fluid which lies on a rigid surface, yielding conditions205

used extensively in the modeling of oceanic and atmospheric flows.

Spatial discretization of the system (12) is effected using the TRiSK scheme (Ringler et. al. (2010); Thuburn et. al. (2009))

which is a staggered C-grid mimetic finite difference/finite volume scheme that preserves desirable physical properties in-

cluding conservation laws for mass, energy, and potential vorticity. TRiSK discretization involves the approximation hℓ of the

height
:::::::
thickness

:
h at the center of a grid cell Pℓ, the approximation ue of the normal to the edge component u ·n of velocity210

at the centers of the edges of Pℓ, and the approximation of the potential vorticity (k · ∇×u+ f)/h at the vertices of Pℓ. The

necessary meshing is done using spherical centroidal Voronoi tessellation (SCVT) grids (Jacobsen et. al. (2013); Ringler et. al.

(2008); Yang et. al. (2018)); examples of such grids are given in Sections 3.1 and 3.2 for the specific settings of those sections.

Temporal discretization of the system (12) is effected using an explicit 4th-order Runge-Kutta method, although many

alternative time-stepping schemes have also been proposed for this purpose; see, e.g., Leng et. al. (2019); Meng et. al. (2020);215

Trahan and Dawson (2012). We denote by {tn}Nt
n=0 with t0 = 0 and tNt = T the time instants used for temporal discretization.

3.1 A SOMA
::::::::::
wind-driven

:::::
gyre test case for the RSWE system

The specific setting considered here is a
:::::::::::

modification
::
of

:
the benchmark test case referred to as “simulating ocean mesoscale

activity” (SOMA) (Wolfram et. al. (2015)) which involves a geodesic basin with radius 1250km centered at latitude/longitude

(35◦,0◦) on the surface of the Earth. Inside the basin, the depth of fluid varies from 2500m at the center to 100m on the220

coastal shelf, creating a realistic topography which yields interesting dynamical behaviors which are useful for studying the

propagation of fronts and eddies.
::::
The

::::::
present

::::::::::
experiment

::::::::
considers

:::
this

:::::
same

::::::
setting

::::
with

::
a

:::::::
constant

::::::
density

:::
ρ,

::::::
leading

::
to

::
a

:::::::::::
computational

::::::
model

:::
for

:
a
::::::::::
wind-driven

:::::::::
barotropic

:::::
gyre.

In (12),

G(h,u) = dbottom(h,u)+ dwind(h) with


dbottom(h,u) =−cbottom

|u|u
ρh

dwind(h) =
τwind

ρh

225
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with fbottom(h,u) denoting a forcing term due to the bottom drag and fwind(h) denoting a forcing term due to wind drag. Here,

cbottom denotes the bottom drag coefficient chosen to be 10−3, ρ denotes the density, and τwind denotes the surface wind stress.

See, e.g., Wolfram et. al. (2015) for a discussion of this choice for G(h,u).

For constructing the MC and MFMC estimators, we use three SCVT grids of the SOMA domain Γ given by

grid number of number of number of

resolution cells edges vertices

8km ⇒ 120,953 364,124 243,172

16km ⇒ 30,217 91,285 61,069

32km ⇒ 8,521 25,898 17,378

230

A representative SCVT meshing of Γ is illustrated in Figure 1. Note that for the SCVT grids used by the TRiSK scheme, the

cells are almost all hexagonal, with a few pentagons and heptagons thrown in.

Figure 1. The 32km grid used for the SOMA
:::::::::
wind-driven

:::
gyre

:
test case and a zoom-in on a portion of that mesh.

The output of interest we consider is the maximum sea-surface height
:::
fluid

:::::
layer

::::::::
thickness

:
which is a common benchmark

in oceanic RSWE simulations and which is relevant to, e.g., the detection of phenomena such as flooding. In particular, we

simulate the RSWE until the final time of T = 3 days using the finest grid (8km resolution) of 120,953 cells and then choose235

the OoI F 1
soma given by

::::
F 1
gyre:::::

given
:::
by

F somagyre
:::

1 = max
ℓ=1,...,120,953

hℓ, (13)

where hℓ denotes the sea-surface height (also called fluid thickness )
::::
fluid

::::::::
thickness at the center of the cell Pℓ at the final time

T = 3.

The quantity of interest we choose considers the effect that perturbations of the initial velocity u0 = u(0) have on F 1
soma240

:::::
F 1
gyre and how that effect can be quantified using MC and MFMC estimation. To this end, consider random dilations (1+z)u0
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of the initial velocity depending on the i.i.d. random variable z that is uniformly distributed over the interval [−0.5,0.5]. Then,

the OoI defined in (13) depends on the choice of z in that interval, i.e., we have that F 1
soma = F 1

soma(z)::::::::::::::
F 1
gyre = F 1

gyre(z).

In particular, we choose the QoI to be the expectation Q1,soma = E
[
F 1
soma

]
::::::::::::::::
Q1,gyre = E

[
F 1
gyre

]
:

of the output of interest

F 1
soma(z):::::::

F 1
gyre(z):defined in (13).245

Note that in practical RSWE simulations, as is the case for more sophisticated models such as the primitive equations, an

approximation of the initial data u0 is often obtained from a pre-processing procedure in which the RSWE system is spun-up

from rest, i.e., from a zero initial condition for u, up to some specified time; see Anderson et. al. (1975); Bleck and Boudra

(1986). This procedure is invoked so as to eliminate transient artifacts which are not present in the current ocean or atmosphere

and produces an initial configuration which is closer to observed oceanic and atmospheric data. The outcome of the spin-up250

calculation over the spin-up time frame of 15 days is illustrated in Figure 2. The initial conditions u0 and h0 that supplement

(12) are then simply set to the outcome of this pre-processing step, i.e., to the sea-surface height
:::
fluid

::::::::
thickness

:
and velocity

obtained at the end of the spin-up calculation.

Figure 2. For the setting of Section 3.1, the RSWE truth model solution (8km resolution) with thickness h (left) and velocity field u (right)

after integration of the system from rest for T = 15 days.

3.1.1 MC and MFMC estimators

The MC estimator QMC
1,soma of Q1,soma = E

[
F 1
soma

]
::::::
QMC

1,gyre::
of

:::::::::::::::::
Q1,gyre = E

[
F 1
gyre

]
:
is given by (2). Unfortunately, obtaining255

acceptable accuracy using a MC estimator suffers from a double shortcoming. First, for any given z, obtaining F 1
soma :::::

F 1
gyre is

a costly endeavor because it requires the solution of the discretized RSWE system to obtain the necessary 120,953 values of

hℓ(z). Second, to obtain an MC estimator that is acceptable accuracy requires obtaining F 1
soma ::::

F 1
gyre:

for many sample values

of z.

Naturally, to mitigate this double shortcoming, we turn to the MFMC estimator described in box B of Section 2. To do so,260

we define three surrogate OoIs F 2
soma(z), F

3
soma(z), and F 4

soma(z):::::::
F 2
gyre(z),:::::::::

F 3
gyre(z),:::

and
::::::::
F 4
gyre(z), all three of which are

11



less costly to obtain compared to that of F 1
soma(z)::::::::

F 1
gyre(z). Here, F 2

soma(z) and F 3
soma(z)::::::::

F 2
gyre(z) :::

and
::::::::
F 3
gyre(z) are simply

based on solving the discretized RSWE system using the coarser 16km and 32km grids, respectively. The third surrogate

F 4
soma(z)::::::::

F 4
gyre(z) is the piecewise-linear interpolant based on the values of F 1

soma(z)::::::::
F 1
gyre(z) which is exact at the three

points z = {−0.5, 0, 0.5}. These four OoIs constitute a reasonable multifidelity ensemble of models which are available during265

computational ocean studies, even more realistic ones such as primitive equation models. Moreover, all four OoIs can be

leveraged for MFMC estimation whereas more traditional MC and multilevel MC estimators only make use of the first or the

first three OoIs, respectively. Approximations of the costs and correlations for the four OoIs {F k
soma(z)}4k=1 ::::::::::::

{F k
gyre(z)}4k=1

are obtained by considering 100 uniform i.i.d. samples of z ∈ [−0.5,0.5]. These are computed to be

C=


C1

C2

C3

C4

=


101.1

12.83

1.714

0.05

 and ζ1 =


ζ1,1

ζ1,2

ζ1,3

ζ1,4

=


1.00000000

0.99975045

0.99975920

0.99974835

 , (14)270

where Ck for k = 1,2,3 denote the average computation time (in wall-clock seconds) necessary to advance the relevant dis-

cretized RSWE system one time step, computed using 500 time steps for the simulation parameter z = 0.001. Note that the

cost C4 is assigned arbitrarily because the cost of evaluating the interpolant is negligible. These cost-correlation pairs are ideal

for MFMC estimation, i.e., the surrogates are very well correlated with F 1
soma(z) :::::::

F 1
gyre(z):and are much less costly to ob-

tain compared to F 1
soma(z):::::::

F 1
gyre(z). Note that the 100 samples of z used to determine the data in (14) can be reused when275

determining the MC and MFMC estimators.

From (14), we observe that the more expensive surrogate F 2
soma(z) :::::::

F 2
gyre(z) is slightly less correlated to F 1

soma(z) :::::::
F 1
gyre(z)

than is the cheaper surrogate F 3
soma(z):::::::

F 3
gyre(z). So, to satisfy the first criteria in (9), the correlations should be ordered in the

decreasing order ζ1,1, ζ1,3, ζ1,2, and ζ1,4. However, it turns out that then the second criteria in (9) for k = 2 is not satisfied

so that the F 2
soma(z) :::::::

F 2
gyre(z) is removed from the list of surrogates when computing the MFMC estimator. That estimator280

is given by (4) with K = 4 and where k = 2 is excluded from the sum. This is an example which illustrates, as discussed in

Section 2, that not all surrogates one chooses contribute to the efficiency of MFMC estimation and, on the other hand, their

omission does no harm to the accuracy of that estimator.

As already alluded to, the goal is to compare, for the same budget, the MSEs of the approximations QMC
soma and QMFMC

soma

:::::
QMC

gyre:::
and

::::::::
QMFMC

gyre :
to the exact QoI Q1,soma = E

[
F 1

]
:::::::::::::::
Q1,gyre = E

[
F 1

]
produced by the MC and MFMC estimators. How-285

ever, there is still an additional challenge to be dealt with, namely that it is unclear how to choose a reference QoI that one can

use to determine these MSEs, as only limited data (200 high-fidelity samples) are available and an MC approximation QMC
soma

:::::
QMC

gyre:
with 200 samples is not sufficient for an accurate estimate of the expectation E

[
F 1

]
. Therefore, we choose Qref

soma

:::::
Qref

gyre:
to denote the average of the MFMC approximation QMFMC

soma ::::::::
QMFMC

gyre at the highest budget B = 128C1 taken over

250 runs which use samples z that are independently drawn from the interval [−0,5,0.5] except for the fact that the first M3290

(recall that M2 is omitted) samples of each run are drawn from the pre-collected sampling set of size 200. The use of MFMC

in defining Qref
soma :::::

Qref
gyre:

makes use of the fact that the MFMC method is at least as accurate as MC estimation, which can be

12



verified through the inequality (7). With this choice, the MSEs in the MFMC and MC estimators can be measured with respect

to the “exact quantity” Qref
soma:::::

Qref
gyre.

The results of this procedure are given in Table 1 and Figure 3 from which it is evident that MFMC produces a much295

more precise estimate compared to that of MC. In addition to MSE e(QMFMC
soma )

::::::::::
e(QMFMC

gyre ), we report the relative MSE

defined as erel(QMFMC
soma ) = e(QMFMC

soma )/(Qref
soma)

2
:::::::::::::::::::::::::::::::::
erel(Q

MFMC
gyre ) = e(QMFMC

gyre )/(Qref
gyre)

2. It is interesting that most of the

computational budget is loaded onto the very crude piecewise-linear interpolant approximation F 4
soma(z)::::::::

F 4
gyre(z), allowing

MFMC to achieve not only a lower MSE but also an estimate with much smaller variance from run-to-run. Especially telling is

the bottom plot in Figure 3 from which it is obvious that, for the same budget, MFMC estimation results in greater accuracy of300

2 or 3 orders of magnitude compared to that MC estimation, or looking at it another way, for the same relative MSE, MFMC

estimation requires a much smaller budget compared to MC estimation.

Table 1. Results of the SOMA RSWE
:::::::::
wind-driven

::::::::
barotropic

:::
gyre

:
test with perturbed initial velocities for budgets B = 2kC1 equivalent to

2k highest-fidelity runs.

MC

k e(QMC
soma)× 10−5

:::::::::::::
e(QMC

gyre)× 10−5 erel(Q
MC
soma)× 10−3

:::::::::::::::
erel(Q

MC
gyre)× 10−3

2 22.69 25.89

4 11.08 12.65

8 6.086 6.946

16 2.539 2.898

32 1.167 1.331

64 0.4156 0.4743

128 0.1306 0.1491

Modified MFMC

k number of samples taken of e(QMFMC
soma )

:::::::::
e(QMFMC

gyre ) erel(Q
MFMC
soma )

:::::::::::
erel(Q

MFMC
gyre )

F 1
soma(z) :::::::

F 1
gyre(z) F 3

soma(z) :::::::
F 3
gyre(z) F 4

soma(z) :::::::
F 4
gyre(z) ×10−8 ×10−6

2 1 1 1968 43.09 49.18

4 1 3 4016 32.88 37.52

8 3 6 8032 10.50 11.98

16 7 12 16064 5.949 6.790

32 15 25 32128 2.483 2.833

64 31 51 64256 1.107 1.263

128 62 102 128512 0.5733 0.6542
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Figure 3. Results for the SOMA RSWE
:::::::::
wind-driven

::::::::
barotropic

::::
gyre test with output of interest (13) averaged over 250 applications of MC

and MFMC estimation. Top
:::
Left: the quantity of interest Q as a function of the budget for the MC and MFMC estimators. Middle: a zoom-in

of the top figure. Bottom
::::
Right: the relative MSE of the MC and MFMC estimators as a function of the budget; shadings

:::::
shaded

::::::
regions

represent the standard deviations of the MC and MFMC predictions when compared to their averages over the 250 runs.
:::

Note
:::
that

:::
the

:::::
melon

:::::
region

:
is
::::::::
contained

::
in

::
the

::::
blue

:::::
region,

::::::::
indicating

:::
that

:::
the

:::::
MFMC

::::::::
estimator

::
has

::
a
:::::
smaller

:::::::
standard

:::::::
deviation

::::
than

::
the

::::
MC

:::::::
estimator.

3.2 Test Case 5 for the RSWE system

We again consider the RSWE system (12) but now Ω denotes the whole surface of the sphere. Specifically, we consider the

configuration of Test Case 5 defined in Williamson et. al. (1992), which is widely used as a benchmark and employed as305

a stepping stone towards more realistic atmospheric models; see, e.g., Leng et. al. (2019); Meng et. al. (2020); Ringler et.

al. (2010); Williamson et. al. (1992). Note that for this example there are no additional forces acting on the system, so that

G(h,u) = 0 in (12).

Test Case 5 considers the flow over an isolated mountain centered at longitude λc =
3π
2 and latitude θc =

π
6 with height

hb(z1) = z1

(
1− r

a

)
, (15)310

where a= π
9 , r2 =min{a2,(λ−λc)

2 +(θ− θc)
2}, and λ,θ denote longitude and latitude, respectively. In (15), z1 denotes a

random variable that is uniformly distributed over the interval [1km , 3km].

The initial tangential (to the sphere) velocity in the longitudinal and latitudinal directions is chosen to be u0(z2) = (z2 cosθ,0),

where z2 denotes a random variable that is uniformly distributed over the interval [15m/s , 25m/s]. The initial sea-surface height

::::
fluid

::::::::
thickness h is chosen as315

h0(z2) = ĥ− 1

g

(
Rωz2 +

z22
2

)
sin2 θ,
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where ĥ= 5.96km, R= 6371.22km, and ω = 7.292× 10−5s−1. With this, the solution u(z) and h(z) of the RSWE system

(12) depends on the random vector z= (z1,z2) ∈ [1km ,3km]× [15m/s ,25m/s]. In Figure 4 we provide an example of the

initial thickness h0(z2) and the thickness h(z1,z2) after 10 days for specific values of z1 and z2.

Figure 4. The initial thickness h0(z2) with z2 = 23.82865m (top) and the thickness h after 10 days (bottom) with the mountain height

hb(z1) with z1 = 2023.78m.

For the simulation results given in Figure 4 and for other results in this subsection, we use the TRiSK scheme for spatial320

discretization and a 4th-order explicit Runge-Kutta method for temporal discretization. SCVT uniform gridding is employed

as in Section 3.1, although now the grid covers the whole surface of the sphere. A comparison of two such SVCT grids with

480 km and 240 km resolutions is provided in Figure 5. In constructing the MC and MFMC estimators, we use the three

globally refined SCVT meshes of the whole sphere given by

grid number of number of number of

resolution cells edges vertices

120km ⇒ 40,962 122,880 81,920

240km ⇒ 10,242 30,720 20,480

480km ⇒ 2,562 7,680 5,120

325

For the output of interest, we choose

F 1
test5(z) =

1

N1
ℓ

max
ℓ=1,...,N1

ℓ

|ue,ℓ(z)|,

where N1
ℓ denotes the number of cell edges for the finest resolution case of 120km and ue,ℓ(z) denotes the value of the

normal component of velocity ue at the ℓ-th cell edge for any choice of the random vector z= (z1,z2) ∈ [1km ,3km]×
[15m/s ,25m/s]. We then have that the quantity of interest is given by330

Q1,test5 = E
[
F 1
test5(z)

]
. (16)
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Figure 5. Two global SCVT meshes of the sphere surface with different grid resolutions: 480 km (left) and 240 km (right).

3.2.1 MC and MFMC estimators

Similar to before, the goal is now to construct and compare, for the same computational budget, MC and MFMC estimators

of the QoI defined in (16). The MC estimator QMC
1,test5 of the QoI Q1,test5 = E

[
F 1
test5

]
is given by (2). The MFMC estimator

QMFMC
1,test5 of Q1,test5 = E

[
F 1
test5

]
makes use not only of the MC estimator QMC

1,test5 for the finest 120km grid, but also of the MC335

estimators QMC
2,test5 ≈ E

[
F 1
test5

]
and QMC

3,test5 ≈ E
[
F 1
test5

]
corresponding the coarser 240km and 480km grids, respectively.

In this case, 4500 uniform i.i.d. realizations of z are drawn for pre-computation, of which all models share 1200 and models

the two lower-fidelity surrogates share the entire 4500. Using 100 samples of the random variable z, the costs and correlation

coefficients of these models are respectively approximated by

C=


C1

C2

C3

=


434.8

126.9

58.04

 and ζ1 =


ζ1,1

ζ1,2

ζ1,3

=


1.00000000

0.99986604

0.99925882

 ,340

where the costs C1, C2, and C3 denote the computation time (in wall-clock seconds) necessary to advance the relevant dis-

cretized RSWE system one time step. As was the case for the SOMA
::::::::::
wind-driven

::::
gyre experiment, these cost-correlation pairs

are ideal for MFMC estimation, i.e., the surrogates OoIs F 2
test5(z) and F 3

test5(z) are very well correlated with F 1
test5(z) and

are much less costly to obtain compared to F 1
test5(z). Note the 100 samples of z used to determine the data in (14) can be

reused when determining the MC and MFMC estimators. From this point on, all other details about the construction and use345

of the MC and MFMC estimators are the same as for the SOMA
::::::::::
wind-driven

::::::::
barotropic

:::::
gyre test case of Section 3.1.

The results provided in Table 2 and Figure 6 show that MFMC estimation produces a much more precise estimate compared

to MC estimation. As was true for the SOMA
::::::::::
wind-driven

::::
gyre test case, especially telling is the bottom plot in Figure 6 from

which it is obvious that, for the same budget, MFMC estimation results in an order of magnitude greater accuracy compared to

16



that MC estimation, or looking at it another way, for the same relative MSE, MFMC estimation requires a much smaller budget350

compared to MC estimation.

Table 2. Results of Test Case 5 with perturbed initial velocities for budgets B = 2kC1 equivalent to 2k high-fidelity runs.

MC

k e(QMC
test5) erel(Q

MC
test5)× 10−3

2 26.95 18.51

4 14.54 9.987

8 6.884 4.729

16 3.689 2.534

32 1.609 1.105

64 0.7501 0.5153

128 0.2846 0.1955

256 0.1048 0.07202

Modified MFMC

k number of samples taken of e(QMFMC
test5 ) erel(Q

MFMC
test5 )

F 1
test5(z) F 2

test(z) F 3
test(z) ×100 ×10−3

2 1 1 5 11.49 7.891

4 1 1 20 2.838 1.950

8 1 1 49 1.147 0.7879

16 1 2 106 0.6137 0.4216

32 1 5 218 0.2927 0.2011

64 2 10 437 0.09758 0.06704

128 5 20 874 0.03788 0.02603

256 10 41 1748 0.01169 0.008034

4 First-order ice sheet model

The next experiment we consider illustrates the effectiveness of MFMC estimation on a QoI important for the realistic modeling

of ice sheets such as those found near, e.g., Greenland, Antarctica, and various glaciers.
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Figure 6. Results over 250 runs of the RSWE system for the Test Case 5 experiment with quantity of interest given by 16. Shading represents

:::::
Shaded

::::::
regions

:::::::
represent

:::
the variance in the MC and MFMC predictions over the 250 runs, which are independent except for the fact that

all random sampling employs the same pre-collected (random) set of parameters.
:::
Note

:::
that

:::
the

:::::
melon

:::::
region

::
is

:::::::
contained

::
in

:::
the

:::
blue

::::::
region,

:::::::
indicating

:::
that

:::
the

::::::
MFMC

:::::::
estimator

:::
has

:
a
::::::
smaller

::::::
standard

::::::::
deviation

:::
than

:::
the

:::
MC

:::::::
estimator.

4.1 The first-order model for ice sheets355

The dynamical behavior of ice sheets is commonly modeled by what is referred to as the first-order model or the Blatter–Pattyn

model. Here, we provide a short review of that model; detailed descriptions are given in, e.g., Blatter (1995); Pattyn (2003) and

also in Perego et. al. (2012); Tezaur et. al. (2015).

Let Ω denote the three-dimensional domain occupied by the ice sheet having boundary Γ = Γs ∪Γb ∪Γℓ given by

Γs ⇐ x3 = s(x1,x2) ⇒ top surface of the ice sheet

Γb ⇐ x3 = b(x1,x2) ⇒ bottom (or basal) surface of the ice sheet

Γℓ ⇐ ℓ(x1,x2) = 0 ⇒ lateral boundary.

(17)360

Figure 7 provides an illustration of the boundary segments defined in (17).

Figure 7. An (x1,x3) cross section of the three-dimensional domain Ω occupied by an ice sheet and the boundary segments defined in (17) .
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Also, let u1 and u2 denote the x1 and x2 components of the velocity vector u= (u1 u2 u3)
⊺. Then, the first-order model

equations for ice sheets is given by the partial differential equations
−∇ · (2µϵ1)+ ρg

∂s

∂x1
= 0

−∇ · (2µϵ2)+ ρg
∂s

∂x2
= 0

for x= (x1 x2 x3)
⊺ ∈ Ω, (18)

where µ denotes the viscosity coefficient, g denotes the gravitational acceleration, and ρ denotes the density. In (18), the365

strain-rate tensor (ϵ1,ϵ2) is given by

ϵ1 =


2
∂u1

∂x1
+

∂u2

∂x2

1

2

(∂u1

∂x2
+

∂u2

∂x1

)
1

2

∂u1

∂x3

 and ϵ2 =



1

2

(∂u1

∂x2
+

∂u2

∂x1

)
∂u1

∂x1
+2

∂u2

∂x2

1

2

∂u2

∂x3


and the nonlinear viscosity coefficient µ is given by the Glen flow law

µ=
1

2
A− 1

n ϵ
1
n−1
e

with n= 3 being the usual choice. The effective strain rate ϵe is given by370

ϵ2e =
(∂u1

∂x1

)2

+
(∂u2

∂x2

)2

+
∂u1

∂x1

∂u2

∂x2
+

1

4

(∂u1

∂x2
+

∂u2

∂x1

)2

+
1

4

(∂u1

∂x3

)2

+
1

4

(∂u2

∂x3

)2

,

and A is often chosen to obey the Arrhenius relation

A=A(T ) = aexp(−Q/RT ),

where T denotes the absolute temperature measured in degrees Kelvin, R denotes the universal gas constant, Q denotes the

activation energy for creep, and a is an empirical flow constant often used as a tuning parameter.375

The system (18) is supplemented by the boundary conditions

ϵ1 ·n= 0 and ϵ2 ·n= 0 on Γs

2µϵ1 ·n+βu= 0 and 2µϵ2 ·n+βv = 0 on Γb

u= 0 and v = 0 on Γℓ,

(19)

where β denotes a basal friction parameter.

Once the horizontal components u1 and u2 of the velocity are determined, the vertical velocity component w is determined

by enforcing incompressibility, i.e., we have that380

∂w

∂x3
=−∂u1

∂x1
− ∂u2

∂x2
for x ∈ Ω. (20)

Because the right-hand side is known, this is an ordinary differential equation for w.

19



Of paramount interest in the modeling of ice sheets is the monitoring of the temporal evolution of the ice sheet domain

Ω. However, one notices that there are no time derivatives of u1 and u2 appearing in (18), i.e., that system is a static one.

The reasoning behind this curiosity is twofold. Firstly, we have that the system (18) is coupled to an equation for the temporal385

evolution of the temperature T within the ice sheet, and also coupled to an equation for the temporal evolution of the top surface

of the ice-sheet which engenders changes in the ice-sheet domain Ω. Secondly, the time scale of changes in the temperature is

much shorter (e.g., hourly) when compared to the time scale (e.g., at least many days) of changes in the ice sheet domain Ω.

Thus, in a computational model of ice-sheet dynamics, determination of the domain Ω is coupled to that of the velocity

u. Precisely, the temperature and top surface are first advanced from a given domain/velocity pair (Ω,u) over several time390

steps, producing an evolution that prescribes a new domain/temperature pair (Ω,T ). Following this, the pair (Ω,T ) are used

to generate a new velocity u by solving (18) and (20). While both stages of this process are important, the present experiment

focuses on the computation of u from Ω and T .

4.2 MC and MFMC estimation

The specific application setting we consider is based on Experiment C of the benchmark examples in Leng et. al. (2012); Pattyn395

et. al. (2008). Here, the ice domain is a rectangular parallelepiped having a square base with side length L and thickness H ,

which lies on a slanted bed with slope parameter θ. The upper surface boundary is given as

zs(x1,x2) =−x1 tanθ,

and the basal topography is given as

zb(x1,x2) = zs(x1,x2)−H.400

For constructing the MC and MFMC estimators, we set the length L= 80km and height H = 1km and then use uniform

tetrahedral grids of the ice domain Ωt with 120, 60, and 30 grid intervals in each horizontal direction and, correspondingly, 20,

10, and 5 intervals in the vertical direction. As a result, we have that number of vertices, horizontal triangles, and tetrahedra

are determined to be

grid number of number of number of

resolution vertices horizontal triangles tetrahedra

120× 120× 20 ⇒ 307,461 28,800 1,728,000

60× 60× 10 ⇒ 40,931 7,200 216,000

30× 30× 5 ⇒ 5,766 1,800 27,000

405

The first-order ice-sheet model is discretized using the stabilized P1-P1 finite elements given in Zhang et. al. (2011). To

solve the resulting nonlinear system of discrete equations, 15 Picard iteration steps are carried out after which a switch is made

to a Newton iteration, up to a maximum of a total of 40 iterations. However, if the residual error decrease is less than 75%

relative to the residual error of the previous step, the nonlinear iteration is switched back to a Picard iteration. An example
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illustration of the discrete solution of this ice-sheet model for specific values of the parameters θ and β is provided in Figure 8410

using the highest resolution grid.

Figure 8. A simulation of the ice-sheet model with θ = 0.7387 and β = 901.5232, discretized at the highest grid resolution. The top two

plots display contours of the velocity components u1 and u2, respectively, on the top surface Γs. The third plot displays a contour plot of

velocity component u3. The fourth plot displays a cutaway plot of the velocity magnitude |u| inside the sheet.

Because the cracking and melting of ice sheets is an important indicator of climate change (Clark et. al. (1999); Hanna et.

al. (2013)), we consider the the output of interest

F 1
ice(z) =

1

2N1

N1∑
ℓ=1

|un(z)|2,

where N1 = 307,461 is the number of vertices of the finest 120×120×20 grid, un(z) denotes the value of the discrete velocity415

u at the nth vertex for any choice of the i.i.d. random vector z= (θ,β) ∈ [0.2,0.8]× [800m, 1200m]. This OoI provides a

measurement of how energetic the ice sheet is depending on its slope and friction coefficient, and can be loosely related to how

vigorously the ice will deform given a configuration specified by z. We then choose the quantity of interest given by

Q1,ice = E
[
F 1
ice(z)

]
. (21)

21



Two surrogates for the ice-sheet model420

F 2
ice(z) =

1

2N2

N2∑
n=1

|un(z)|2 and F 3
ice(z) =

1

2N3

N3∑
n=1

|un(z)|2

are defined respectively using the coarser 60× 60× 10 grid with N2 = 40,931 and the even coarser 30× 30× 5 grid with

N3 = 5,766. Then, from (3), we have the corresponding three Monte Carlo estimators {QMC
1,ice, Q

MC
2,ice, Q

MC
3,ice} and, from (4),

we have the MFMC estimator QMFMC
ice which makes use of these three MC estimators.

At this point, we proceed as was done in Section 3.2. For example, we now have that the approximate costs (measured425

in wall-clock seconds and averaged over 100 random samples) for computing F 1
ice(z), F

2
ice(z), and F 3

ice(z), as well as the

approximate correlations for the three OoIs are given by

C=


C1

C2

C3

=


285.5

23.05

2.690

 and ζ1 =


ζ1,1

ζ1,2

ζ1,3

=


1.00000000

0.99999796

0.99996691

 .

The remaining experimental details are nearly identical to those of Section 3.2. As was the case for the oceanic simulations,

the computational expense of these models precludes the collection of unlimited data, so a total of 8000 uniform i.i.d. realiza-430

tions of z are drawn of which all models share 200 and the lower-fidelity surrogates share 1000. The results of carrying out

MFMC and MC estimation over 250 “independent” runs using this common data set are provided in Table 3 and Figure 9. Here

it is especially apparent that the budget-preserving modifications to MFMC that led to the algorithm in Box B were necessary,

as B ≪C ·R and only one high-fidelity run is ever selected by the algorithm.

Despite this, it is clear from Table 3 and the plots in Figure 9 that, at these small budgets, MFMC estimation produces an435

estimator which is much more accurate and precise than does MC estimation. This is not surprising because MFMC estimation

has the flexibility to load most of its budget onto the cheaper lower-fidelity surrogate models, evaluating them many times in

order to bring down the overall variance of their estimates. Again, this provides empirical validation for the use of MFMC

estimation over MC estimation when estimating model statistics even in practical cases where data availability is low.

5 Concluding Remarks440

This paper serves to introduce multifidelity Monte Carlo estimation as an alternative to standard Monte Carlo estimation for

quantifying uncertainties in the outputs of climate system models, albeit in very simplified settings. Specifically, we consider

benchmark problems for the single-layer shallow water equations relevant to ocean and atmosphere dynamics and we also

consider a benchmark problem for the first-order model of ice sheet dynamics. The computational results presented here are

promising in that they amply demonstrate the superiority of MFMC estimation when compared to MC estimation on these445

examples. Furthermore, the use of MFMC as an estimation method will surely be even more efficacious when quantifying

uncertainties in more realistic climate modeling settings for which the simulation costs are prohibitively large, e.g., for long-

time climate simulations. Thus, our next goal is to apply MFMC estimation to more useful models of climate dynamics (such
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Table 3. Results of the ice-sheet experiment for budgets equivalent to 2k high-fidelity runs.

MC

k e(QMC
ice )× 106 erel(Q

MC
ice )× 10−2

2 37.26 11.79

4 20.08 6.354

8 11.62 3.676

16 5.296 1.676

32 2.457 0.7774

64 1.018 0.3221

Modified MFMC

k number of samples taken of e(QMFMC
ice ) erel(Q

MFMC
ice )

F 1
ice(z) F 2

ice(z) F 3
ice(z) ×104 ×10−4

2 1 1 97 69.67 22.05

4 1 1 309 16.81 5.323

8 1 1 726 3.793 1.200

16 1 4 1555 1.370 0.4335

32 1 8 3215 1.123 0.3554

64 1 17 6506 0.3393 0.1074

Figure 9. Results over 250 runs of the ice-sheet experiment with quantity of interest (21). Shading represents
::::::
Shaded

:::::
regions

::::::::
represent

variance in the MC and MFMC predictions over the 250 runs.
::::
Note

:::
that

:::
the

::::
melon

::::::
region

:
is
::::::::
contained

::
in

::
the

::::
blue

:::::
region,

::::::::
indicating

:::
that

:::
the

:::::
MFMC

::::::::
estimator

::
has

::
a
:::::
smaller

:::::::
standard

:::::::
deviation

::::
than

::
the

::::
MC

:::::::
estimator.
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as the primitive equations for ocean and atmosphere and the Stokes model for ice sheets) that are also coupled to the dynamics

of other climate system components and also coupled to passive and active tracer equations.450
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