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Abstract. Ground-level ozone (O3) is a major air pollutant that adversely affects human health and ecosystem productivity. 

Removal of tropospheric O3 by plant stomatal uptake can in turn cause damage to plant tissues with ramifications for ecosystem 

and crop health. In many atmospheric and land surface models, the functionality of stomata opening is represented by a bulk 

stomatal conductance, which is often semi-empirically parameterized, and highly fitted to historical observations. A lack of 15 

mechanistic linkage to ecophysiological processes such as photosynthesis may render models inadequate to represent plant-

mediated responses of atmospheric chemistry to long-term changes in CO2, climate and short-lived air pollutant concentrations. 

A new ecophysiology module was thus developed to mechanistically simulate land−atmosphere exchange of important gas 

species in GEOS-Chem, a chemical transport model widely used in atmospheric chemistry studies. The implementation not 

only allows dry deposition to be coupled with plant ecophysiology, but also enables plant and crop productivity and functions 20 

to respond dynamically to atmospheric chemical changes.  We conduct simulations to evaluate the effects of the ecophysiology 

module on simulated dry deposition velocity and concentration of surface O3 against an observation-derived dataset known as 

SynFlux. Our estimated stomatal conductance and dry deposition velocity of O3 are close to SynFlux with root-mean-squared 

errors (RMSE) below 0.3 cm s–1 across different plant functional types (PFTs), despite an overall positive bias in surface O3 

concentration (by up to 16 ppbv). Representing ecophysiology was found to reduce the simulated biases in deposition fluxes 25 

from the prior model, but worsen the positive biases in simulated O3 concentrations. The increase in positive concentration 

biases is mostly attributable to the ecophysiology-based stomatal conductance being generally smaller (and closer to SynFlux 

values) than that estimated by the prior semi-empirical formulation, calling for further improvements in non-stomatal deposi-

tional and non-depositional processes relevant for O3 simulations. Estimated global O3 deposition flux is 864 Tg O3 yr–1 with 

GEOS-Chem, and the new module decreases this estimate by 92 Tg O3 yr–1. Estimated global gross primary product (GPP) 30 

without O3 damage is 119 Pg C yr–1. O3-induced reduction in GPP is 4.2 Pg C yr–1 (3.5%). An elevated CO2 scenario (580 

ppm) yields higher global GPP (+16.8%) and lower global O3 depositional sink (–3.3%). Global isoprene emission simulated 
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with a photosynthesis-based scheme is 317.9 Tg C yr–1, which is 31.2 Tg C yr−1 (−8.9%) less than that calculated using the 

MEGAN emission algorithm. This new model development dynamically represents the two-way interactions between vegeta-

tion and air pollutants, and thus provides a unique capability in evaluating vegetation-mediated processes and feedbacks that 35 

can shape atmospheric chemistry and air quality, as well as pollutant impacts on vegetation health, especially for any timescales 

shorter than the multidecadal timescale. 

1 Introduction 

Surface ozone (O3) is a strong oxidative species and is harmful to human respiratory system (e.g., Anenberg et al., 

2010) and vegetation, with ramifications to boundary-layer meteorology (e.g. Sadiq et al., 2017), water and carbon cycle (e.g. 40 

Sitch et al. 2007; Lombardozzi et al., 2015), crop production (e.g. Avnery et al, 2011; Ainsworth et al, 2012; Mills et al, 2018) 

and food security (e.g. Tai et al, 2014; Tai and Val Martin, 2017). Tropospheric O3 is not emitted directly into the atmosphere, 

but is generated by photochemical oxidation of precursor gases including carbon monoxide (CO), methane (CH4), and other 

volatile organic compounds (VOCs) under the presence of nitrogen oxides (NOx= NO + NO2); while many of these precursors 

are mostly from anthropogenic sources, biogenic VOCs (BVOCs) are globally important components of VOCs. The most 45 

abundant species of BVOCs is isoprene emitted mostly from land vegetation. Meanwhile, O3 is mainly removed by chemical 

loss as well as via dry deposition, whereby vegetation also plays an important role. Therefore, surface O3 can be significantly 

modulated by vegetation through isoprene emission and dry deposition. Further, strong positive correlations between surface 

ozone and temperature have been well documented and attributed to multiple factors including higher isoprene emission and 

faster decomposition of PAN back to NOx at higher temperatures (e.g., Jacob and Winner, 2009). Vegetation can therefore 50 

further modulate surface O3 by regulating surface energy balance and surface temperature via transpiration and changing the 

land surface albedo (e.g., Wang et al., 2020). 

Isoprene emission is one of the pathways via which vegetation affects surface O3 concentration. Isoprene comprises 

about half of the global BVOC emissions and is mainly produced by terrestrial vegetation. It can be photochemically oxidized 

under the presence of NOx to form surface O3. Therefore, in a VOC–limited environment, more surface O3 is produced fol-55 

lowing an increase in isoprene emission rate. However, in a NOx–limited environment, isoprene can reduce O3 concentration 

either by directly reacting with O3 or sequestrating NOx as isoprene nitrate (e.g., Sanderson et al., 2003; Tai et al., 2013). An 

increase in isoprene emission rate could thus reduce surface O3 concentration. Isoprene emission rate is dependent on both the 

vegetation type and a complex array of environmental variables, such as sunlight, temperature, soil moisture, and ambient CO2 

concentration. Many previous studies have used various models to estimate the global biogenic isoprene emission budget (e.g., 60 

Arneth et al., 2007; Pacifico et al., 2011; Guenther et al., 2012; Unger, 2013), which is about 300–500 Tg C yr−1.  

Dry deposition is a process of uptake at the Earth’s surface by water bodies, soil and vegetation. It is often modeled 

by a resistor-in-series model, analogous to the concept of electric circuit (Wesely, 1989). Under this framework, gaseous 

species in the atmosphere will go through different layers of air before depositing on a surface, and the flux across each layer 
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is controlled by a resistance. There are three major resistances in this scheme: aerodynamic resistance (ra), quasilaminar sub-65 

layer resistance (rb) and surface resistance (rc). For a vegetated surface, rc is further divided into different components to 

represent the uptake via different parts of plant canopy and soil surface. The bulk canopy stomatal resistance rs, which describes 

the bulk property of plant stomata, is frequently the component that contributes the most to the variability of rc. Plants modulate 

their stomata to maximize CO2 capture and minimize water loss, so stomatal behavior is tightly connected to photosynthesis 

and depends on environmental conditions such as photosynthetically active radiation (PAR), humidity, temperature, and soil 70 

moisture. The openness of stomata is represented by the stomatal conductance, gs, which is the reciprocal of rs. The bulk 

canopy stomatal conductance aggregates the behavior of all stomata inside a canopy. Therefore, smaller resistance or larger 

conductance represents more open stomata inside a canopy and allows a larger material flux, and vice versa. In many chemical 

transport models (CTMs), the response of rs to environmental variables is not fully captured. For example, the parameterization 

of rs in Wesely (1989) as commonly implemented in various CTMs includes the dependence on PAR and temperature only. 75 

However, atmospheric moisture content is also an essential factor contributing to the variability of rs. Franks and Farquhar 

(1999) showed that a doubling of vapor pressure deficit (VPD) reduces rs by more than 20%. Kavassalis and Murphy (2017) 

showed that VPD is a strong predictor of midday O3 in the US, suggesting that VPD-dependent dry deposition plays an im-

portant role in producing day-to-day O3 variability. Various mechanistic approaches that include VPD in the formulation of rs 

have been suggested (e.g., Leuning, 1995; Medlyn et al., 2011; De Kauwe et al., 2015). These formulations are ultimately 80 

connected to the modeling of plant ecophysiology. 

Ecophysiology refers to the study of interactions between physiological processes of plants and the environment. 

Photosynthesis fixes atmospheric CO2 into terrestrial ecosystems and thereby facilitates the exchange of water, CO2 and energy 

between plants and the environment. Formulations to model photosynthesis have been developed by Collatz et al. (1991) and 

Collatz et al. (1992) for C3 and C4 plants, respectively, and widely used in different numerical models (e.g. Sellers et al., 1996; 85 

Clark et al. 2011). When plant stomata open to absorb CO2, water vapor diffuses from the leaf interior to the atmosphere in 

the process known as transpiration, with ramifications for canopy micrometeorology and boundary-layer meteorology. Sto-

matal behavior is regulated by a compromise between photosynthetic pathways and transpiration. Larger stomatal conductance 

results in larger photosynthetic uptake of CO2 but also larger water loss through transpiration, and plants have evolved to strike 

a balance between the two. The coupling between photosynthesis and stomatal conductance also has implications for their 90 

interactions with the environment under dry conditions. For instance, during a drought event, stomatal conductance decreases 

as plants attempt to reduce water loss. This, in turn, amplifies the drought condition and reduces ecosystem productivity (e.g., 

Emberson et al., 2013). Plant stomatal behavior also affects biosphere−atmosphere exchange of other gaseous species relevant 

for atmospheric chemistry. Besides the exchange of water and CO2, dry-depositing gaseous species including O3, sulfur dioxide 

(SO2) and hydrogen peroxide (H2O2) can be removed from the atmosphere through plant stomata. Thus, the openness of plant 95 

stomata affects the dry deposition flux of these gaseous species, altering concentrations of near-surface air pollutants. For 
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example, O3 dry deposition is suppressed during drought events, possibly resulting in higher surface O3 concentrations (Em-

berson et al., 2013; Huang et al., 2016). 

O3–vegetation interaction is another important topic in plant ecophysiology that is also relevant for atmospheric 

chemistry. Vegetation not only affects O3 but is also influenced by O3, which can attack and damage plant tissues upon stomatal 100 

uptake. When the O3 flux into plant stomata is small, plants naturally detoxify the oxidative stress from O3, but large O3 flux 

overwhelms the detoxification capacity and may cause visible foliage injury. Stomata can close, or in some cases become 

“sluggish” in responding to environmental changes (e.g., Huntingford et al., 2018), as a result of O3 damage, with ramifications 

to boundary-layer meteorology, water and carbon cycle, crop production and food security. In particular, it reduces gross 

primary production (GPP), which is the gross carbon uptake via photosynthesis and a measure of ecosystem productivity. O3-105 

induced reduction in GPP is usually less than 10% globally under present-day O3 concentration, but it can be more than 30% 

regionally (Lombardozzi et al., 2015; Yue and Unger, 2015). Stomatal control of O3 uptake also appears to explain the diver-

gent trends in O3 concentration and plant damage in the recent decade (Ronan et al., 2020). Overall, there are three major 

feedback pathways that couple surface O3 to vegetation, whereby O3 damage on vegetation ultimately affects O3 itself (Sadiq 

et al., 2017; Zhou et al., 2018; Wang et al., 2020). First, long-term decline in GPP and leaf area index (LAI) due to O3 damage 110 

can suppress BVOC emissions, thereby modulating surface O3; in a high-NOx environment, this may reduce O3 levels, consti-

tuting a negative feedback. Second, O3 damage generally reduces stomatal conductance and thus the dry-depositional flux of 

O3, thereby enhancing surface O3 concentration (i.e., positive feedback). Finally, O3 damage can suppress transpiration and 

the associated evaporative cooling effect, thereby enhancing surface temperature and surface O3 (i.e., positive feedback). 

Rising CO2 can further complicate O3–vegetation interactions. An elevated CO2 concentration alters plant behaviors 115 

and thus atmospheric chemistry via three main pathways. First, plants tend to close their stomata more as the CO2 diffusive 

flux increases, and such stomatal responses to changing CO2 can be described either mechanistically (e.g., Clark et al., 2011) 

or empirically (e.g., Franks et al., 2013). Dry deposition flux is thus reduced, and the corresponding chemical gas species 

remain in the atmosphere longer. For example, Sanderson et al. (2007) suggested that O3 concentration could increase by 8 

ppbv under a doubling of present-day CO2 concentration due to reduced stomatal conductance and dry deposition. A reduction 120 

in dry deposition flux of O3 should imply less O3 damage on plants, but more O3 left in the atmosphere in the longer term 

might offset such benefit. Second, it was shown that isoprene emission can be suppressed by elevated CO2 (Possell and Hewitt, 

2011). In high-NOx environments, lower isoprene emission reduces O3 production rate, but in NOx-limited regions such as 

tropical forests and other remote areas, O3 concentration may increase (Tai et al., 2013). Finally, higher CO2 enhances photo-

synthesis and thus LAI in the long term, and this is known as CO2 fertilization. This can enhance both dry deposition and 125 

isoprene emission, either enhancing or offsetting the previous two effects depending on the O3 formation regime. 

In view of the above, a proper representation of ecophysiological processes has the potential to improve atmospheric 

chemistry modeling, especially in relation to biosphere-atmosphere exchange. This can be done in various ways. A CTM can 

be coupled with a land surface or biosphere model within an Earth system framework, whereby atmospheric processes (e.g., 
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deposition, emissions) can be linked dynamically to biospheric processes (e.g., photosynthesis, stomatal regulation, soil bio-130 

geochemistry). For instance, Sadiq et al. (2017) and Lei et al. (2020) both examined O3-vegetation interactions by developing 

a modeling framework where ozone air quality, ecophysiology and ecosystem structure (e.g., LAI, canopy height) can co-

evolve interactively. This approach is particularly useful for examining how ecosystem structure may respond to long-term 

atmospheric chemical changes over multidecadal timescales. However, the computation of ecosystem structure involves com-

plex representation of plant phenology and biogeochemistry (e.g., allocation, biomass growth, senescence, mortality), which 135 

may be unnecessary for problems involving shorter timescales, e.g., seasonal responses of plant-atmosphere interactions and 

O3 pollution to droughts or heatwaves (e.g., Emberson et al., 2013). It also introduces extra uncertainties while not necessarily 

improving model performance in atmospheric chemistry. A more efficient approach is to implement process-based represen-

tation of ecophysiology into a CTM. This has been done to various extents in the past; e.g., Zhang et al. (2003) implemented 

a semi-empirical, multiplicative scheme based on Jarvis (1976) to account for plant responses to varying radiation, temperature, 140 

VPD, and soil water stress. However, thus far the variability of rs is still often not fully captured in CTMs. A mechanistic 

approach in modeling rs should account for the ecophysiology behind, especially photosynthesis, and therefore better simulate 

rs. 

In this study, we developed a new ecophysiology module in the GEOS-Chem chemical transport model to dynami-

cally simulate bulk canopy stomatal conductance gs and plant photosynthesis An. Figure 1 summarizes the interactions in the 145 

prior GEOS-Chem and in the new ecophysiology module. We highlight that O3 damage on vegetation is a key component in 

the model because it allows atmospheric chemistry, in addition to meteorology, to affect plant ecophysiology, and represents 

a more complete set of two-way interactions and feedback pathways. This development not only provides an alternative to the 

prior parameterization in the dry deposition module based on Wesely (1989), but also allows biogeoscientists to study the 

effects of pollutant deposition on plant health, especially when simultaneously influenced by other stresses such as droughts 150 

and heatwaves. By considering leaf biochemistry, boundary-layer meteorology, soil moisture stress and O3 deposition damage, 

this new module can couple physiological processes to atmospheric chemistry. We particularly aim to address two questions: 

1. How does the ecophysiology module compare to the semi-empirical Wesely (1989) parameterization in terms of 

simulating concentration and dry deposition velocity of O3, when compared to estimates based on site measurements? 

2. Does the ecophysiology module simulate vegetation productivity, dry deposition, isoprene emission rate and O3–155 

vegetation interactions reasonably under a present-day and an elevated CO2 concentration?  
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Figure 1: Atmosphere–biosphere interactions represented in the GEOS-Chem chemical transport model. Blue arrows indicate in-
teractions included in the prior GEOS-Chem without ecophysiology. Green arrows indicate interactions added in the new ecophys-
iology module. The sign associated with each arrow indicates the sign of effect of one factor on another. The two arrows pointing 160 
from “Meteorology” to “Stomatal conductance” indicate that the ecophysiology module changes how meteorology affects stomatal 
conductance. Other species are also simulated by the GEOS-Chem and may interact with O3, but are omitted here for simplicity. 

2 Model  

2.1 Model description 

The GEOS-Chem global chemical transport model (www.geos-chem.org) version 12.2.0 includes detailed HOx–NOx–165 

VOC–O3–halogen–aerosol tropospheric chemistry (Bey et al., 2001). We conducted simulations at a horizontal resolution of 

2° latitude by 2.5° longitude, driven by assimilated meteorology at an hourly time resolution from the Modern-Era Retrospec-

tive analysis for Research and Applications, Version 2 (MERRA-2) (Gelaro et al., 2017) dataset, which is an atmospheric 

reanalysis dataset that includes assimilation of aerosol observations. Leaf area indices (LAI) are prescribed by a gridded dataset 

from Yuan et al. (2011), who used gap-filling and smoothing techniques to process MODIS (Moderate Resolution Imaging 170 

Spectroradiometer) LAI. Emission data are handled by the Harmonized Emission Component (HEMCO) v2.1 (Keller et al., 

2014). HEMCO uses anthropogenic emissions of CO, NOx and non-methane VOCs (NMVOCs) from the Community Emis-

sions Data System (CEDS) inventory (Hoesly et al., 2018) and the biogenic emissions of NMVOCs are computed by the Model 

of Emissions of Gases and Aerosols from Nature (MEGAN) version 2.1 (Guenther et al., 2012). Besides the MEGAN emission 

inventory, we also implemented a photosynthesis-based isoprene emission scheme following Pacifico et al. (2011) as an 175 
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alternative. The scheme introduces another pathway of coupling atmospheric chemistry to ecophysiology. The detailed formu-

lation is included in Sect. 2.1.7. 

Dry deposition is modeled using the Wesely (1989) scheme, but with rs calculated from the new ecophysiology mod-

ule. It is simulated for every land surface type in the Olson Land Map, which is derived from the USGS global land 

characteristics database (https://doi.org/10.5066/F7GB230D). These land surface types are also mapped into five plant func-180 

tional types (PFTs), which are used in the ecophysiology module to represent different types of vegetation. The five PFTs are 

broadleaf tree, needleleaf tree, C3 grass, C4 grass, and shrub. Each PFT has a different set of parameters, thus yielding different 

rs. PFT-specific parameters (tabulated in Table S1) are from Clark et al. (2011), Raoult et al. (2016) and Sitch et al. (2007). 

The module would skip the calculation for a PFT if it does not exist within the grid cell. The ecophysiology module also 

requires extra soil parameters to calculate soil moisture stress (see Sect. 2.1.5). We used gridded soil parameter data from the 185 

Hadley Centre Global Environment Model version 2 – Earth System Model (HadGEM2-ES) to calculate the soil moisture 

stress function (details in Sect. 2.1.5). Besides rs, vegetation-related outputs such as gross photosynthetic uptake of carbon, 

canopy dark respiration and canopy O3 uptake are also available. The formulations in the ecophysiology module were adopted 

from the Joint UK Land Environmental Simulator (JULES) (Best et al., 2011; Clark et al., 2011). Important ones are included 

below and others are detailed in the supplementary materials. 190 

2.1.1 Leaf biochemistry 

 Formulations of photosynthesis rates for C3 and C4 plants were derived from leaf biochemistry and formulated as in 

Collatz et al. (1991) and Collatz et al. (1992), respectively. It is calculated from the three potentially limiting rates, each as a 

function of ci and some other meteorological variables (see supplementary materials). 

The leaf-level net photosynthesis (An, μmol CO2 m−2 s−1) is calculated as a smoothed minimum (see supplementary materials) 195 

of the three potentially limiting rates (Wc, Wl, We, μmol CO2 m−2 s−1) minus dark respiration (Rd, μmol CO2 m−2 s−1): 

𝐴! = min(𝑊",𝑊#,𝑊$) 	−	𝑅%         (1) 

where Rd is linearly proportional to Vcmax by the dark respiration coefficient fdr: 

𝑅% = 𝑓%&	𝑉"'()           (2) 

2.1.2 Photosynthesis as a diffusive flux 200 

The leaf-level net photosynthesis An can also be represented as a diffusive flux of CO2 modulated by the leaf-level 

stomatal conductance gs0 (m s−1). Therefore, we can find gs0 using: 

𝑔*+ =
,..×,+!" 1#

2$ 3 2%
𝑅∗𝑇           (3) 

where cc is the canopy CO2 partial pressure (Pa), 1.6 accounts for different diffusivities of CO2 and H2O through leave stomata, 

R* = 8.31 J K–1 mol–1 is the universal molar gas constant, and T is the canopy air temperature (K). We assume cc and T to be 205 

equal to the ambient CO2 concentration and the 2 m temperature respectively. 
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2.1.3 Canopy scaling 

A simple big-leaf approach is applied to scale up leaf-level variables to the canopy-level variables. It is assumed that 

incident light is attenuated by the canopy according to Beer’s law:  

𝐼(𝐿) = 𝐼+𝑒356           (4) 210 

where I(L) and I0 are the irradiance at the height of the canopy with cumulative leaf area index L and at the top of the canopy, 

respectively, and k is the PAR extinction coefficient of the canopy. Detailed formulations can be found in the supplementary 

materials.  

2.1.4 Stomatal closure parameterization 

A third equation by Jacobs (1994) relating ci and gs via canopy humidity deficit D (kgw kga–1) is included to obtain a 215 

closed set of equations for An, gs0 and ci. This formulation was discussed in detail by Cox et al. (1998). 
2%	3	8
2$	3	8

= 𝑓+ 41	 −	
9
9∗
6          (5) 

where f0 and D* are PFT-specific parameters. D is evaluated as the difference between the saturation specific humidity (kgw 

kga−1) evaluated at leaf temperature Tl and the 2 m specific humidity. We assume a thin leaf boundary layer, Tl would be equal 

to the 2 m air temperature. 220 

2.1.5 Soil moisture stress 

Under dry soil conditions, An, Rd and gs0 are reduced due to limited availability of water. An extra factor βt, which 

ranges from 0 to 1, is multiplied to all three quantities. It is modeled as: 

𝛽: = 8

1 for	𝜃 > 𝜃"
;	3	;'
;$	3	;'

	 for	θ< < 𝜃 ≤ 𝜃"
0 for	𝜃 ≤ 𝜃<

        (6) 

where θ = S × θs is the root zone soil moisture, S is the root zone soil wetness (in terms of fraction of soil pore space), and θs, 225 

θc and θw are the saturation, critical and wilting soil moisture, respectively. We use the soil ancillary maps that contain θs, θc 

and θw at 0.5°×0.5° resolution from HadGEM2-ES. 

2.1.6 O3 damage 

The O3 damage scheme in JULES is based on Sitch et al. (2007). When the ambient O3 concentration is high enough, 

An, Rd and gs0 is further reduced due to O3 damage on plant cells. An O3 damage factor βO3, which ranges from 0 to 1, is 230 

multiplied to the three quantities. The damage factor is given by:  

𝛽=( = 1 − 𝑎	 ×	max[𝐹=( − 𝐹=(	"&>:, 0]       (7) 
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where FO3 is the O3 deposition flux through stomata (nmol m−2 s−1), FO3 crit is the threshold for stomatal O3 uptake (nmol m−2 

s−1), and a is the gradient of the O3 dose response function (nmol−1 m2 s); a and FO3 crit are PFT-specific parameters. There are 

two sets of values of a corresponding to “high” and “low” sensitivities. The stomatal O3 deposition flux is modeled using a 235 

flux gradient approach: 

𝐹=( =
[=(]

A)	B	A*	B	C+(A,
	         (8) 

where [O3] is the molar concentration of O3 at the lowest model level, ra is the aerodynamic resistance (s m–1), rb is the quasi-

laminar sublayer resistance, rs = 1 / gs is the stomatal resistance, and κO3 = 1.61 accounts for the relative difference in diffu-

sivities of O3 and H2O through leave stomata. Since rs in equation (8) depends on βO3, equations (7) and (8) can be combined 240 

into a quadratic equation and solved analytically to give βO3. 

2.1.7 Photosynthesis-dependent isoprene emission  

In the default GEOS-Chem, canopy isoprene emission is computed by MEGAN v2.1, which calculates biogenic VOC 

emissions of various species as functions of canopy-scale PFT-specific emission factors modulated by environmental activity 

factors to account for changing temperature, light, leaf age and LAI, weighted by the PFT fraction in each grid cell to give the 245 

grid cell-level emission fluxes. The activity factors are essentially semi-empirical functions constrained by experimental data, 

not explicitly linked to mechanistic ecophysiological processes. Here in the ecophysiology module, canopy isoprene emission 

(Eisoprene, kg C m−2 s−1) is linked explicitly to photosynthesis, based on Pacifico et al. (2011): 

𝐸>*DE&$!$ = IEF	𝜌#$(F 	
1$	B	G-$

(1#),.	B	(G-),.
	𝑓J	𝑓K=L           (9) 

where IEF is the PFT-specific isoprene emission factor (μg C g dw−1 h−1, “dw” means dry weight), i.e., base emission rate of 250 

isoprene at the leaf level under standard conditions (i.e., temperature of 30°C, photosynthetically active radiation of 1000 μmol 

CO2 m−2 s−1, CO2 concentration of 370 ppm and without any O3 damage or soil moisture stress), ρleaf is the dry leaf area density 

(g dw−1 m−2), fT and fCO2 are temperature- and CO2-dependent empirical factors to account for variation with changing temper-

ature and CO2 level (see supplementary materials for detailed formulations). Variables with subscript “st” are calculated under 

standard conditions. We note that, as opposed to Pacifico et al. (2011), our model does not capture a reduction in ci following 255 

soil moisture limitation because we use prescribed 2 m specific humidity data in the meteorological input to calculate ci. The 

effect of soil moisture stress on isoprene emission is only captured in the calculation of Ac and Rdc. This may lead to a lower 

isoprene emission rate compared to the original scheme, but direct comparison is not possible due to different input meteorol-

ogy used in our study. 

2.2 Experimental design 260 

To evaluate the modeled concentration and dry deposition velocity of O3, we conduct four one-year simulations from 

1 January 2012 to 1 January 2013 using GEOS-Chem v12.2.0 driven by offline MERRA-2 meteorology. A half-year spin-up 
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is conducted before the simulation period. Table 1 summarizes the configurations of each simulation. A control case (case 0) 

uses the GEOS-Chem v12.2.0 with prior input configuration while other three (cases 1a–c) use the modified GEOS-Chem 

with ecophysiology module turned on. Each of the three cases use different O3 damage sensitivities. We then compare the 265 

modeled concentration and dry deposition velocity of O3 against site observations. Year 2012 is chosen as the simulation year 

to maximize the number of observations our results can be evaluated against. 

 

 

Table 1: Configuration of the first set of simulations that evaluate the modeled concentration and dry deposition velocity of ozone 270 
(O3). 

Case [CO2] (ppmv) Ecophysiololgy module O3 damage scheme and sensitivity 

0 390 Off No O3 damage applied 

1a 390 On No O3 damage applied 

1b 390 On Sitch et al. (2007), low sensitivity 

1c 390 On Sitch et al. (2007), high sensitivity 

 

 

We also conduct a second set of simulations from 1 January 2000 to 1 January 2001 to demonstrate the capability of 

the new module to simulate changes in plant productivity in response to changing CO2 and subsequent changes in atmospheric 275 

chemistry. A half-year spin-up is conducted before the simulation period. The simulations are set up with only CO2 being 

changed, while meteorological and other inputs remain unchanged. Table 2 summarizes the configuration of each simulation. 

Case 2a is the control experiment where prior configuration from the GEOS-Chem is used. Case 2b simulates the effect of 

elevated CO2 on stomatal conductance by using the CO2–gs scaling factor described in Franks et al. (2013) (details are included 

in supplementary materials) and setting the ambient CO2 concentration to 580 ppm, which is approximately the projected CO2 280 

concentration around 2050s in a business-as-usual scenario (e.g., Representative Concentration Pathway 8.5). This simple 

scaling approach has been suggested to investigate how rising CO2 may affect ozone dry deposition in the future. This now 

allows us to compare between the mechanistic ecophysiology module, which simulates plant responses to rising CO2 more 

mechanistically, and the semi-empirical CO2–gs scaling factor in the context of O3 concentration and depositional sink. Cases 

2c–f are conducted to compare the O3 depositional sink and concentration to cases 2a–b, and to investigate how GPP and O3 285 

depositional sink changes under an elevated CO2 scenario. Cases 2g–h are duplicates of 2c–d respectively, except that the 

isoprene emission rates are calculated using a photosynthesis-based scheme from Pacifico et al. (2011) instead of from the 

prior MEGAN emission inventory. They reveal whether the photosynthesis-based scheme yields a reasonable estimate of 

global isoprene emission under our model. 

 290 
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Table 2: Configuration of the second set of simulations that investigate gross primary productivity (GPP) and ozone (O3) concen-

tration under an elevated CO2 scenario. 

Case [CO2] 

(ppmv) 
O3 damage scheme and 

sensitivity 

Stomatal conductance formulation Isoprene emission 

2a 370 No O3 damage applied Wesely (1989) parameterization and 

CO2 scaling by Franks et al. (2013) 

MEGAN v2.1 

2b 580 No O3 damage applied Wesely (1989) parameterization and 

CO2 scaling by Franks et al. (2013) 

MEGAN v2.1 

2c 370 No O3 damage applied Ecophysiology module MEGAN v2.1 

2d 370 Sitch et al. (2007), high 

sensitivity 

Ecophysiology module MEGAN v2.1 

2e 580 No O3 damage applied Ecophysiology module MEGAN v2.1 

2f 580 Sitch et al. (2007), high 

sensitivity 

Ecophysiology module MEGAN v2.1 

2g  370 No O3 damage applied Ecophysiology module  Photosynthesis-based scheme by 

Pacifico et al. (2011) 

2h 370  Sitch et al. (2007), high 

sensitivity 

Ecophysiology module  Photosynthesis-based scheme by 

Pacifico et al. (2011) 

 

2.3 Evaluation data: SynFlux 

We evaluate the modeled dry deposition velocity and concentration of O3 against an observationally derived dataset 295 

known as Synthetic O3 Flux (SynFlux) (Ducker et al., 2018). It derives site-level vd by combining eddy covariance 

measurements of micrometeorological flux from FLUXNET sites in the United States and Europe with a gridded dataset of 

O3 concentration. The aerodynamic and quasilaminar sublayer resistances ra and rb from each of the sites are derived from the 

meteorological quantities measured at the sites. The surface conductance (reciprocal of resistance) is a summation of two 

components: stomatal conductance gs and non-stomatal conductance gns; gs is derived from the measured water vapor flux and 300 

meteorological data, and gns is estimated using Zhang et al. (2003). Figure 2 shows the locations of 36 SynFlux sites used in 

our evaluation of the ecophysiology module. All sites with available data within the simulation interval are selected. The total 

number of sites for each PFT is listed in the legend of Fig. 2. There are only two sites that represent C4 grass, and they are 

ignored because observational data are only available in August. The SynFlux dataset was evaluated at three sites with direct 

O3 flux measurements. The synthetic stomatal O3 flux strongly correlates with measurements (R2 = 0.83–0.93) and the mean 305 

bias is modest (21% or less). In addition, 95% of the SynFlux values differ from measurements by less than a factor of two. 
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The errors in SynFlux have been shown to be modest compared with differences between observations and regional and global 

CTMs that are frequently a factor of two or more, illustrating its utility for evaluating models (Ducker et al., 2018). 

 

 310 
Figure 2: Locations of 36 SynFlux sites used in evaluation of the ecophysiology module. Different symbols indicate different plant 
functional types (PFTs) as broadleaf tree (Green “+”, includes evergreen broadleaf tree (EBF) and deciduous broadleaf tree (DBF)), 
needleleaf tree (Blue “Y”, includes evergreen needleleaf tree (ENF) only), C3 grass (Red “|”, includes grassland (GRA) only), and 
shrub (Black “X”, includes wetland (WET), open shrubland (OSH) and closed shrubland (CSH)). Number of sites for each PFT is 
bracketed in the legend. Two C4 grass (including savanna (SAV) and woody savanna (WSA)) sites are ignored in our evaluation due 315 
to a lack of observational data in our simulation period. Mixed forest (MF) and cropland (CRO) sites are not classified into any of 
the PFTs because they are usually composed of multiple PFTs. 

 

3 Results  

3.1 Comparison between ecophysiology module and prior Wesely (1989) parameterization 320 

We compare the modeled PFT-specific dry deposition velocity vd and stomatal conductance gs of O3 in summer (JJA) 

to SynFlux. The modeled vd and gs were obtained by averaging hourly outputs from June to August 2012. They were then 

paired up with the SynFlux dataset by matching the month, location and PFT. In Fig. 3 and 4, the model results on model grid 

cells closest to the SynFlux sites are plotted against the corresponding observation-derived estimates from SynFlux for each 

PFT. C4 grass is ignored due to a lack of observational data. The soil moisture stress factor βt on the corresponding model grid 325 

is represented by the color of the circle. 

Figure 3 shows that the ecophysiology module reduces the overestimation in vd by the prior dry deposition module, 

especially for broadleaf trees, for which the root-mean-squared error (RMSE) decreases from 0.48 cm s–1 to 0.11 cm s−1. C3 

grass shows a similar change where the RMSE decreases from 0.36 cm s−1 to 0.21 cm s−1 in case 1c (see Fig. S1), where high 

O3 damage sensitivity is applied. C3 grass is the most sensitive to O3 damage among the four PFTs as the modeled vd varies 330 

the most under different O3 damage sensitivities. For needleleaf tree, the overestimation without the ecophysiology module 

becomes underestimation, regardless of the sensitivity of O3 damage. O3 damage barely affects vd.  
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Figure 4 shows that the ecophysiology module significantly improves the simulation of gs for broadleaf trees, 

needleleaf trees and shrubs, excluding those simulated with a soil moisture stress factor of βt = 0. This exclusion is due to the 

assumption that the soil moisture stress parameterization is not well calibrated in the ecophysiology module. The results with-335 

out the exclusion are available in Fig. S2. The RMSEs for both broadleaf trees and needleleaf trees decrease from 0.90 and 

0.75 cm s−1 to 0.15 and 0.21 cm s−1, respectively. For shrubs, the RMSE also decreases from 0.50 to 0.03–0.04 cm s−1 (de-

pending on sensitivity of O3 damage applied, see Fig. S2). For C3 grass, the mechanistic formulation slightly decreases gs, 

which is consistent with the results in Fig. 3. Combining the validation of vd and gs, we find that the lower vd as simulated by 

the ecophysiology module is attributable to photosynthesis-based stomatal conductance being generally smaller than that esti-340 

mated by the semiempirical formulation, which was also discussed by Wong et al. (2019). 
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Figure 3: Plots of modeled monthly mean dry deposition velocity of O3 (cm s−1) in northern summer (JJA) against SynFlux estimates, 
categorized by site PFT for each simulation case. Columns from right to left represent simulation cases 0 and 1a respectively Each 
row corresponds to a PFT. C4 grass is ignored due to a lack of observational data. The soil moisture stress factor βt on the corre-345 
sponding model grid cell is represented by the color of the circle. Mean bias (MB) and root-mean-squared error (RMSE) are shown 
for each plot. Full results including cases 1b and 1c can be found in the supplementary materials. 
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Figure 4: Same as Fig. 3 but for monthly mean stomatal conductance gs (cm s−1) under βt ≠ 0 condition. For results including βt = 0 
condition, please refer to Fig. S2. 350 

In Fig. 3–5, the colors of circles represent the soil moisture stress factor βt described in Sect. 2.1.5. In the semi-

empirical parameterization, vd and gs do not depend on βt. However, vd and gs simulated using the ecophysiology module are 
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significantly affected by βt as vd and gs with low βt are almost always lower than those with high βt, regardless of site locations. 

Also, for broadleaf trees and needleleaf trees, low βt values appear to result in a nearly constant value of vd = 0.2 cm s−1, 

reflecting mostly non-stomatal deposition, while high βt gives a much closer estimate of gs and vd to observations. Since gs is 355 

multiplied by βt as described in Sect. 2.1.5, low βt values should indeed give lower gs and thus lower vd. At different site 

locations, other components of vd can also vary, but the strong correlation between βt and vd remains. Whether vd is sensitive 

to vapor pressure deficit (VPD) in a similar fashion arguably warrants further investigation. Overall, our results indicate that 

βt is an important parameter in this formulation and strongly affects the model performance on simulating dry deposition 

velocity. However, there is a large inter-model variation in βt due to variability in soil moisture, different formulations of βt 360 

and vertical resolution of soil levels (Trugman et al., 2018). Since GEOS-Chem does not simulate soil explicitly, we only use 

a simple and empirical parameterization of βt with input of a single-layer soil moisture from the MERRA-2 dataset. Such 

deficiency in the representation of βt may render the model less reliable in simulating the potential impact of drought events 

on atmospheric chemistry and plant productivity. Therefore, simulation of drought events, which is one of the potential uses 

of the ecophysiology module, should be interpreted cautiously unless parameters in the βt function are more thoroughly cali-365 

brated on a regional or local basis. Despite the uncertainty of βt, we emphasize that including the stomatal responses to VPD 

and soil moisture is valuable because the Wesely (1989) parameterization cannot represent such stomatal responses.We also 

compare the model results of monthly mean O3 concentration in summer with SynFlux estimates, derived from a gridded 

dataset of O3 concentration. Figure 5 shows the comparison of monthly mean O3 concentration on model grid cells closest to 

the SynFlux sites against the corresponding estimates from SynFlux categorized by site PFT. According to the rightmost 370 

column, O3 concentration is originally overestimated by the GEOS-Chem model. The ecophysiology module increases the 

model bias by 4 to 5 ppbv for broadleaf trees, needleleaf trees and C3 grasses, and 2 ppbv for shrubs. Activation of the O3 

damage scheme and the change of sensitivity to O3 damage only produce modest differences (see Fig. S3) in terms of monthly 

mean O3 concentration, representing relatively weak O3-vegetation feedback effects. 

There can be multiple possible reasons leading to the biases in O3 concentration. First, the simulated O3 concentration 375 

on nearby model grid cells is only a bulk average over the entire area of the grid cell, while the measurement reflects the local 

O3 concentration. Subgrid variability created by local meteorology or surface topography is not accounted for during the com-

parison. Unlike dry deposition velocity, it is not possible to separate O3 concentration into PFT-specific quantity for a fair 

comparison. Secondly, accurate simulation of O3 relies on many non-stomatal depositional and non-depositional processes as 

well, e.g., chemistry, photochemistry, emissions of precursor gases, etc. Since we show that simulation of dry deposition 380 

velocity of O3 is improved by the ecophysiology module, modifications in non-stomatal depositional and non-depositional 

processes would be required more urgently to improve the performance in O3 simulations. The problems of general overesti-

mation of O3 by various models at northern midlatitudes have been discussed by Travis et al. (2016). 
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 385 
Figure 5:  Same as Fig. 3, but for modeled monthly mean O3 concentration (ppbv). 
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3.2 GPP and O3 depositional sink simulated by the ecophysiology module under different CO2 levels 390 

In the second set of simulations, we demonstrate that with the new dynamic linkage to ecophysiology, the model is 

capable of capturing CO2–O3–vegetation interactions under elevated CO2 concentration. Table 3 tabulates the global GPP and 

the O3 depositional sink for each of the cases, and Fig. 6 shows their spatial distributions. Under the year 2000-level CO2 

scenario, the simulated gross primary production (GPP) is 119 Pg C yr−1 and the total O3 depositional sink is 772 Tg O3 yr−1 

in the absence of O3 damage. The global O3 deposition flux is close to the mean value from 12 CTMs (747 Tg O3 yr−1) used 395 

in the Third Assessment Report of the Intergovernmental Panel on Climate Change (IPCC TAR) (Prather and Ehhalt, 2001), 

but is generally lower than the values from later multi-model studies, e.g., 1003 ± 200 Tg O3 yr−1 from Stevenson et al. (2006) 

and 902 ± 255 Tg O3 yr−1 from Wild (2007). A possible reason is that most CTMs use a semi-empirical formulation of the 

stomatal conductance, which is generally larger than ecophysiology-based stomatal conductance (Wong et al., 2019), and thus 

higher dry deposition fluxes in other CTMs are expected. Globally, the O3 damage on GPP is 4.2 Pg C yr−1 (3.5%), but the O3 400 

damage percentage can reach more than 20% regionally, for example in China, as shown in Fig. 6c. 

 

Table 3: Annual global GPP and total O3 depositional sink in each simulation. 

Case Global GPP  

(Pg C yr−1)  

O3 depositional sink 

(Tg O3 yr−1)  

Elevated 

CO2 

Ecophysiology 

module 

O3 dam-

age 

EIsoprene depends 

on Ac? 

2a N/A 863.6 No No N/A N/A 

2b N/A 812.9 Yes No N/A N/A 

2c 119.0 772.1 No Yes No No 

2d 114.8 768.1 No Yes Yes No 

2e 138.6 746.3 Yes Yes No No 

2f 136.0 744.5 Yes Yes Yes No 

2g 119.4 766.4 No Yes No Yes 

2h 115.3 761.3 No Yes Yes Yes 
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 405 
Figure 6a–d: Maps of (a) global GPP distribution (kg C m−2 yr−1) in case 2c, (b) percentage change in GPP driven by CO2 concen-
tration increase, (c) percentage change in GPP driven by high-sensitivity O3 damage, and (d) difference in O3-driven percentage 
change in GPP between experiments with year-2000 and elevated CO2 concentrations, where the positive values indicate a reduction 
in ozone damage. 

 410 

Under elevated CO2 scenario (case 2e minus 2c), GPP is projected to increase by 19.7 Pg C yr−1 (16.8%) globally, 

and up to 30% regionally near tropics (Fig. 6b). We note also that such changes in GPP are entirely due to higher photosynthetic 

rate, since LAI is prescribed. The global O3 depositional flux decreases by 25.8 Tg O3 yr−1 (3.3%). This change is about half 

of that given by the CO2–gs scaling factor experiments (cases 2b minus 2a) implying that, compared to the simple CO2–gs 

scaling factor, the mechanistic ecophysiology module predicts less reduction in stomatal conductance at a higher CO2 level. It 415 

should be noted that the semi-empirical CO2–gs scaling factor is an approximation based only on the RuBP-limited photosyn-

thesis rate (Franks et al., 2013), thus does not necessarily represent the full range of limiting or compensating conditions for 

photosynthesis. The magnitude of O3 percentage damage is reduced by around 10 percentage points (i.e., the percentage dam-

age goes from about –20% to –10%) in regions with originally high O3 damage such as southern China, Europe and the eastern 

US (Fig. 6d). The monthly distribution of GPP also generally agrees with results from other models. Figure 7a shows the 420 

monthly distribution of global GPP and Fig. 7b−f show the area-weighted average GPP for each of the PFTs. Our results 

demonstrate a seasonal cycle of GPP that peaks at around 130 g C m−2 month−1 in July and falls steadily to around 60 g C m−2 

month−1 in February. This resembles with observation-derived datasets like FLUXNET-MTE, as shown in Fig. 3a of Slevin et 

al. (2017). When the seasonal cycle of GPP for each PFT is considered separately, different trends and features are present. 

For broadleaf trees, the average GPP stays around 150 to 200 g C m−2 month−1 throughout a year and is slightly higher in 425 
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northern summer. C4 grasses also have a steady average GPP of around 100 to 150 g C m−2 month−1 but have an opposite cycle 

to all other PFTs. For needleleaf trees, C3 grasses and shrubs, GPP is very low in northern winter, but for needleleaf trees, it 

rises to more than 200 g C m−2 day−1 in July, which is the highest among all PFTs. Under the elevated CO2 scenario, GPP is 

projected to rise by 10 to 30 g C m−2 month−1, higher in northern summer and vice versa. Most of the increase in GPP can be 

attributed to broadleaf trees and needleleaf trees, which have larger total leaf surface area than grasses and shrubs, thus ampli-430 

fying the enhanced photosynthesis under higher ambient CO2 concentration, as suggested by Eq. (S8) in the supplementary 

materials. On the other hand, C4 grasses show no change in average GPP throughout a year. 

 

 
Figure 7a−f: Monthly gross primary productivity (GPP) (g C m−2 month−1) for simulation cases 2c−f for (a) all PFTs, (b) broadleaf 435 
trees, (c) needleleaf trees, (d) C3 grasses, (e) C4 grasses and (f) shrubs. Blue and green lines denote simulation cases under year-2000 
and elevated CO2 level respectively. Darker and paler lines denote cases with and without O3 damage, respectively.  

 

O3 concentration only changes moderately under elevated CO2 concentration overall, but with larger changes hap-

pening in some regions. Figure 8 shows the change in annual mean O3 concentration under the increase in CO2 concentration 440 

for cases 2b and 2e. In addition to larger increases of up to 3 ppbv found in the Amazon forest and Borneo regions, smaller 

increases of up to 1 ppbv are also found in central Africa, Southeast Asia and at middle-high latitudes. This agrees with the 
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simulation result using the CO2−gs scaling factor (case 2b). The latter shows even stronger increases in O3 concentration over 

the Amazon forest, central Africa and Southeast Asia. 

 445 

 
Figure 8a−b: Changes in ozone (O3) concentration (ppbv) due to the increase in CO2 concentration simulated using (a) the ecophys-
iology module and (b) the CO2–gs scaling factor. 

 

3.3 Comparison of isoprene emission rates between photosynthesis-dependent formulation and MEGAN v2.1 emission 450 
model 

Implementing a photosynthesis-dependent isoprene emission scheme into the GEOS-Chem introduces another inter-

action between ecophysiology and atmospheric chemistry. Here, we demonstrate that the simulated isoprene emission rates 

are close to what the MEGAN emission algorithm simulates. The annual isoprene emission rates in year 2000 using the ME-

GAN emission inventory (case 2c) and the photosynthesis-dependent scheme from Pacifico et al. (2011) (case 2g) are shown 455 

in Fig. 9a–b, and the annual totals are 349.1 Tg C and 317.9 Tg C respectively. The annual isoprene emission totals are at the 

lower end of other published estimates of 300–530 Tg C (as summarized in Table 3 in Weng et al., 2020), but are consistent 

with Weng et al. (2020), who estimated 330–345 Tg C yr−1 using the MEGAN v2.1 at a finer spatial resolution than this study. 
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The monthly averages of land surface temperature in year 2000 are lower than the 2000–2009 monthly averages (See Fig. S4), 

which can lower the emission total. The simulated isoprene emission rate is similar to the MEGAN emission model in general, 460 

as the tropics, especially the Amazon forest, contributes the most to the annual isoprene emission total. There are, however, 

some modest differences in the magnitude and location of the largest emission flux in each of the continents, e.g., from −15 to 

+10 g C m−2 yr−1 in different parts of South America, and about −5 g C m−2 yr−1 in the southern US and Australia. Since the 

isoprene emission rate is proportional to the photosynthesis rate as in Eq. (9), these differences can be due to the simple 

classification of PFTs, which can constraint the maximum photosynthesis capacity and thus the photosynthesis rate. We also 465 

note that the MEGAN emission model is also subject to uncertainties in its algorithm. Besides, temperature variability in the 

subgrid scale is often a major source of uncertainty, since a temperature difference of +1°C is equivalent to a +10% increase 

in isoprene emission rate, as inferred from Eq. (S17). Figure 9d shows that global isoprene emission decreases by 12.1 Tg C 

yr−1 (3.8%) (case 2h minus 2g) due to O3 damage on vegetation. This reduction is mainly due to the 3.5% decrease in GPP via 

the dry deposition pathway, as described in Sect. 3.2. 470 

 

 
Figure 9a−d: Annual mean isoprene emission rates (g C m−2 yr−1) for year 2000 simulated using (a) the MEGAN emission model 
(case 2c) and (b) the Pacifico et al. (2011) scheme coupled with the ecophysiology module without O3 damage (case 2g), and the 
differences in mean isoprene emission rates due to (c) switching emission schemes (case 2g minus 2c) and (d) O3 damage on photo-475 
synthesis, which is proportional to isoprene emission rates (case 2h minus 2g). The number on the top right corner denotes the area-
weighted total of emitted isoprene. White color in the figures denotes zero value. 
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In terms of GPP and O3 depositional sink, switching isoprene emission scheme from the MEGAN emission model to 

a photosynthesis-based scheme by Pacifico et al. (2011), i.e., comparing case 2c to case 2g, does not change the GPP when O3 480 

damage is absent, as shown in Table 3. This is expected because turning off the O3 damage scheme would interrupt the feedback 

pathways as shown in Fig. 1, so vegetation productivity would not be affected by atmospheric chemistry. The O3 depositional 

sink is however affected because isoprene is a precursor gas of O3. It is lowered by 5.7 Tg O3 yr−1 (0.74%), due to a lower 

mean O3 concentration in the tropics (Fig. 10a) where the dry deposition velocity is generally higher (Fig. 10b). The reduction 

in GPP due to O3 damage does not differ as the isoprene emission scheme changes, as inferred by comparing cases 2c–d to 485 

2g–h. This is likely due to the changes of O3 concentration being too small to cause a significant feedback effect. Additional 

experiments would be required to quantify the feedback effect via the isoprene emission pathway. 

 

 
Figure 10a−b: (a) Difference in annual mean O3 concentration (ppbv) between using the MEGAN emission model and the Pacifico 490 
et al. (2011) photosynthesis-based isoprene emission scheme (case 2g minus 2c) and (b) annual mean dry deposition velocity of O3 
(cm s−1) simulated with the ecophysiology module (case 2g, and it should be very similar to case 2c). 
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4 Conclusions and discussion  

Ecophysiology-based approaches in modelling gs allow models to capture changes in plant stomatal and emission 

behaviors, which are essential in simulating biosphere–atmosphere exchange of gaseous species and O3–vegetation interac-495 

tions. In this study, we incorporate an ecophysiology module into the GEOS-Chem CTM to couple changes in atmospheric 

chemistry to changes in plant ecophysiological behaviors mechanistically, enabling the model to address how vegetation re-

sponses to climatic changes may modify atmospheric chemistry and capture two specific O3–vegetation feedback pathways as 

shown in Fig. 1: (1) reduced photosynthesis due to plant stomatal O3 uptake suppresses isoprene emission, which modulates 

the formation of O3; (2) O3 damage on plants reduces stomatal conductance and thus O3 dry deposition, leading to higher 500 

surface O3 concentration. We then validate the simulated dry depositional velocity, stomatal conductance and concentration 

of O3 against SynFlux, which is an observation-derived dataset that constrains O3 deposition from measured water, heat, and 

momentum fluxes. Moreover, the module can also simulate canopy photosynthesis, which is also used for calculating isoprene 

emission and O3–vegetation interactions and is itself an important indicator for ecosystem productivity and health. We inves-

tigate O3 deposition flux and GPP under present-day and elevated CO2 concentrations. This module provides a unique ability 505 

in evaluating the effects of pollutant deposition on air quality and plant health by allowing plant physiology to respond dy-

namically to changes in atmospheric chemistry and meteorological conditions. 

By using a mechanistic, photosynthesis-based representation of gs instead of the semi-empirical parameterization of 

Wesely (1989), the ecophysiology module significantly reduces the overestimation of gs by up to 0.7 cm s–1 and thus reduces 

the overestimation in dry deposition velocity vd of O3 in northern summer by 0.1–0.3 cm s−1 across different PFTs when 510 

compared to the SynFlux observation-based dataset. The reduction is the largest for broadleaf trees and C3 grasses. Lei et al. 

(2020), who coupled an integrated biosphere model to GEOS-Chem, showed that the change in annual mean vd of O3 due to a 

coupled stomatal conductance is only up to −0.15 cm s−1. However, the reduction in vd is not uniform in all seasons, but 

generally larger in summer, as shown in their seasonal cycle of vd. When the comparison is restricted to the same season, our 

results agree with Lei et al. (2020). We further highlight that values of vd are heavily affected by the soil moisture stress factor 515 

βt. Representation of βt is not very reliable in the current generation of models, and thus this is one of the limitations of our 

studies. More thorough calibration of parameters related to soil water stress to more localized observations over higher spati-

otemporal resolutions, as well as consideration of more soil moisture layers and distribution specific to PFTs or regions, is 

recommended. Here we emphasize that introducing a mechanistic representation of gs into GEOS-Chem is valuable because 

the Wesely (1989) parameterization cannot represent stomatal responses to vapor pressure deficit and soil moisture, which is 520 

an essential step toward studying the influence of climatic stresses such as droughts and heatwaves on the interactions between 

atmospheric chemistry and vegetation. 

Due to a decrease in dry deposition velocity of O3, simulated O3 concentration increases by 2–5 ppbv, amplifying the 

original overestimation by GEOS-Chem. Lei et al. (2020) also showed similar magnitude of changes (1–3 ppbv) in terms of 
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annual surface O3 concentration, and attributed the increase in O3 concentration mostly to changes in vd. Given the improve-525 

ments in model performance for stomatal conductance and dry deposition velocity per se, the worsened overestimation of O3 

concentration calls for improvements and modifications of non-stomatal depositional and non-depositional processes in CTMs. 

We also demonstrate that the ecophysiology module is capable of simulating O3 deposition, plant productivity and 

O3–vegetation interactions under year-2000 CO2 (370 ppm) and elevated CO2 (580 ppm) scenarios. Under the present-day 

CO2 scenario, the global annual GPP without O3 damage is 119 Pg C yr−1. The reduction in GPP due to O3 damage is 4.2 Pg 530 

C yr−1 (3.5%) globally, and the percentage reduction can be more than 20% in the eastern US and China. This percentage 

roughly agrees with an estimate of 2–5% by Yue and Unger (2015), who applied the same O3 damage scheme from Sitch et 

al. (2007) to estimate global changes in GPP. An elevated CO2 concentration leads to higher GPP through both direct CO2 

fertilization effect (+19.7 Pg C yr−1) and mitigation of O3 damage (+1.5 Pg C yr−1). Monthly GPP distribution generally agrees 

with other models. The global O3 deposition flux simulated under year-2000 CO2 concentration is 772 Tg O3 yr−1, which is 535 

low relative to some multi-CTM studies, e.g., 1003 ± 200 Tg O3 yr−1 from Stevenson et al. (2006) and 902 ± 255 Tg O3 yr−1 

from Wild (2007). This is mostly attributable to the semi-empirical stomatal conductance used in other CTMs being generally 

larger than the ecophysiology-based stomatal conductance, resulting in a larger deposition flux. Estimates of global O3 depo-

sition flux can also differ due to other factors such as oceanic deposition (Pound et al., 2020). We also compare calculating gs 

with the mechanistic ecophysiology formulations to using the semi-empirical CO2–gs scaling factor suggested by Franks et al. 540 

(2013) in terms of O3 deposition flux. The decrease in global O3 deposition flux due to an elevated CO2 concentration using 

the ecophysiology module is almost half of that using the CO2–gs scaling factor based on light-limited photosynthesis rate, 

implying that such a simple scaling approach may substantially overestimate the effect of elevated CO2 on stomatal conduct-

ance and thus O3 deposition. 

We also implement a photosynthesis-based isoprene emission scheme in the ecophysiology module. The simulated 545 

global isoprene emission total is 317.9 Tg C yr−1, which is 31.3 Tg C yr−1 (−9.0%) less than the values calculated using the 

MEGAN emission model in GEOS-Chem. The commonly accepted range is around 300–500 Tg C yr−1 and the simulated 

value is on the lower end of this range. The variability of model estimates can arise from different algorithms, vegetation 

presentation and other input data sources. A recent study by Weng et al. (2020) estimated a narrower range of 330–345 Tg C 

yr−1 particularly for MEGAN v2.1, which is included as the emission component of the GEOS-Chem model. Our simulated 550 

value for global isoprene emission total using the Pacifico et al. (2011) scheme is comparable. The reduction in isoprene 

emission due to the O3 damage on GPP is 12.1 Tg C yr−1 (−3.8%), which is mainly attributable to the dry deposition pathway. 

All in all, the implementation of the new scheme not only serves as an alternative of the MEGAN emission model to simulate 

isoprene emission, but also brings new research opportunities that require isoprene emission to be mechanistically linked to 

plant physiology. 555 
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Limitations exist within our study. Our module only simulates ecophysiological processes directly related to photo-

synthesis. Unlike Lei et al. (2020), who coupled a CTM to an integrated biosphere model, we do not simulate any biogeo-

chemical processes and ecosystem structural changes such as carbon allocation, long-term growth in biomass, litter, or soil 

decomposition. In particular, LAI does not change dynamically with climatic conditions or O3 damage in the current model. 

This, however, allows our module to be computationally more efficient and perform better with respect to the reproduction of 560 

observations, when compared to other models that simulate a larger array of processes of terrestrial ecosystems extensively. 

The difference in computational speed from the prior GEOS-Chem v12.2.0 is barely noticeable (< 20% increase in dry depo-

sition module run time, and < 0.001% increase in total model run time for a 6-month simulation). There are also fewer relevant 

ecophysiological factors contributing to variabilities in atmospheric chemistry. Thus, our module should be preferred over 

fully coupled Earth system models or coupling a CTM with a biosphere model (e.g., Lei et al. (2020)) if short-term (seasonal 565 

or interannual) atmosphere–biosphere exchange and air quality responses to intermittent meteorological events and stressors 

with a given ecosystem structure and distribution are concerned. We can also examine such interactions with a prescribed, 

hypothetical land cover according to future land use scenarios or in response to future climatic changes as simulated by any 

biogeochemical models. In contrast, if long-term (e.g., multi-decadal and multi-centurial) dynamic evolution of ecosystem 

structure and distribution, e.g., in response to higher CO2 level, climate change or nitrogen deposition, is an essential aspect of 570 

the study, the coupled modeling framework may be preferred. 

Uncertainties in soil moisture and water stress also represent an important limitation to our model for arid and semiarid 

environments. The simulated gs and vd are heavily affected by a linearly parameterized function known as the soil moisture 

stress factor βt, which is a common approach in vegetation models (Powell et al., 2013). It is worth noting that soil moisture 

could be a highly variable quantity in different models, because of different vertical resolution of the soil layers, and the 575 

dependence on other model-specific quantities such as porosity and hydraulic conductivity (Dirmeyer et al., 2006; Koster et 

al., 2009). There have been several studies (Blyth et al., 2011; Verhoef and Egea, 2014; Harper et al., 2021) on improving the 

representation of soil moisture stress in the Joint UK Land Environmental Simulator (JULES), from which we adopted the 

formulations. The development of the ecophysiology module in this study serves as a first and essential step toward represent-

ing interactions between atmospheric chemistry and plant ecophysiology in a CTM; improving the representation of soil mois-580 

ture stress and calibrating it with respect to specific locations and events will be an important and promising future application 

of such a model. 

Uncertainties in the SynFlux dataset for model evaluation should also be noted. The dataset was itself only evaluated 

at three sites with direct O3 flux measurements, but Ducker et al. (2018) showed that the synthetic stomatal O3 flux strongly 

correlates with measurements and the mean bias is modest, and assumed that the uncertainties at other sites would not differ 585 

significantly. Comparing coarse-resolution model results with point measurements as in SynFlux could also be problematic 

due to subgrid variability. However, they showed that 95% of the SynFlux values differ from measurements by less than a 
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factor of two, whereas the differences between observations and regional and global atmospheric chemistry models are fre-

quently more than that (Zhang et al., 2003; Hardacre et al., 2015; Clifton et al., 2017; Silva and Heald, 2017). Furthermore, 

most of the site measurements in SynFlux are located in the US and Europe, mostly at midlatitudes. It is unclear how our 590 

results of dry deposition velocity and O3 concentration would compare against observations in the tropics, which are relatively 

scarce compared to that at the midlatitudes. 

Moreover, C4 grass is ignored in our results because of a lack of site observations. The module also skipped the 

calculation for a PFT if it does not exist within the grid cell. This prohibited us from comparing model results to observations 

from the few C4 grass sites. Extending the temporal length of simulations and including other sources of site observations may 595 

solve this problem. Utilizing the photosynthesis-based isoprene emission scheme to quantify feedback between atmospheric 

chemistry and vegetation via this specific pathway would also be a warranted follow-up of this development. Our current set 

of experiments only captured modest feedbacks between O3 concentration and vegetation productivity via both the dry depo-

sition and isoprene emission feedback pathways (e.g., isoprene emission decreases following an O3-induced reduction in pho-

tosynthesis), but did not consider how isoprene emission may respond immediately to acute O3 exposure (e.g., isoprene emis-600 

sion increases to counteract the oxidative stress from O3) (e.g., Loreto and Schnitzler, 2010). As newer approaches to model 

O3 damage on vegetation are available (e.g., using a leaf mass-based index as suggested by Feng et al., 2018), our model can 

provide a flexible framework for future studies to compare between the effects of different O3 damage schemes on O3-vegeta-

tion interactions. Comparing between different land cover inputs and evaluating the sensitivity of stomatal conductance and 

GPP to meteorological inputs under the new formulations using broader sources of data (e.g., satellite-derived GPP products) 605 

also warrant further investigation. 
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