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Abstract. Lagrangian particle tracking schemes allow a wide range of flow and transport processes

to be simulated accurately, but a major challenge is numerically implementing the inter-particle

interactions in an efficient manner. This article develops a multi-dimensional, parallelized domain

decomposition (DDC) strategy for mass-transfer particle tracking (MTPT) methods in which par-

ticles exchange mass dynamically. We show that this can be efficiently parallelized by employing5

large numbers of CPU cores to accelerate run times. In order to validate the approach and our the-

oretical predictions we focus our efforts on a well known benchmark problem with pure diffusion,

where analytical solutions in any number of dimensions are well established. In this work, we inves-

tigate different procedures for “tiling" the domain in two and three dimensions, (2-d and 3-d), as this

type of formal DDC construction is currently limited to 1-d. An optimal tiling is prescribed based10

on physical problem parameters and the number of available CPU cores, as each tiling provides

distinct results in both accuracy and run time. We further extend the most efficient technique to 3-d

for comparison, leading to an analytical discussion of the effect of dimensionality on strategies for
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implementing DDC schemes. Increasing computational resources (cores) within the DDC method

produces a trade-off between inter-node communication and on-node work. For an optimally sub-15

divided diffusion problem, the 2-d parallelized algorithm achieves nearly perfect linear speedup in

comparison with the serial run up to around 2700 cores, reducing a 5-hour simulation to 8 seconds,

while the 3-d algorithm maintains appreciable speedup up to 1700 cores.

1 Introduction

Numerical models are used to represent physical problems that may be difficult to observe directly20

(such as groundwater flow), or that may be tedious, expensive or even impossible to currently study

via other methods. In the context of groundwater flow, for example, these models allow us to por-

tray transport in heterogeneous media and bio-chemical species interaction, which are imperative

to understanding a hydrologic system’s development (e.g., (Dentz et al., 2011; Perzan et al., 2021;

Steefel et al., 2015; Scheibe et al., 2015; Tompson et al., 1998; Schmidt et al., 2020b; Li et al., 2017;25

Valocchi et al., 2019)). Since geological problems frequently require attention to many separate, yet

simultaneous processes and corresponding physical properties, such as local mean velocity (advec-

tion), velocity variability (dispersion), mixing (e.g., dilution), and chemical reaction, we must apply

rigorous methods to ensure proper simulation of these processes. Recent studies (e.g., (Benson et al.,

2017; Bolster et al., 2016; Sole-Mari et al., 2020)) have compared classical Eulerian (e.g., finite-30

difference or finite-element) solvers to newer Lagrangian methods and shown the relative advantages

of the latter. Therefore, in this manuscript we explore several approaches to parallelize a Lagrangian

method that facilitate the simulation of the complex nature of these problems. Given that all of the

complex processes noted above must ultimately be incorporated and that this is the first rigorous

study of this kind, we focus on well-established and relatively simple benchmark problems with35

analytical solutions to derive a rigorous approach to this parallelization.

Lagrangian methods for simulating reactive transport continue to evolve, providing both in-

creased accuracy and accelerated efficiency over their Eulerian counterparts by eliminating numer-

ical dispersion (see (Salamon et al., 2006)) and allowing direct simulation of all subgrid processes

(Benson et al., 2017; Ding et al., 2017). Simulation of advection and dispersion (without reaction)40
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in hydrogeological problems began with the Lagrangian random walk particle tracking (RWPT) al-

gorithm that subjects an ensemble of particles to a combination of velocity and diffusion processes

(LaBolle et al., 1996; Salamon et al., 2006). Initially, chemical reactions were added in any numer-

ical time step by mapping particle masses to concentrations via averaging over Eulerian volumes,

then applying reaction rate equations, and finally mapping concentrations back to particle masses45

for RWPT (Tompson and Dougherty, 1988). This method clearly assumes perfect mixing within

each Eulerian volume because subgrid mass and concentration perturbations are smoothed (aver-

aged) prior to reaction. The subsequent over-mixing was recognized to induce a scale-dependent

apparent reaction rate that depended on the Eulerian discretization (Molz and Widdowson, 1988;

Dentz et al., 2011), thus eliminating some of the primary benefits of the Lagrangian approach. In50

response, a method that would allow reactions directly between particles was devised and imple-

mented (Benson and Meerschaert, 2008).

Early efforts to directly simulate bimolecular reactions with RWPT algorithms (Benson and Meerschaert,

2008; Paster et al., 2014) were originally founded on a birth-death process that calculated two prob-

abilities: one for particle-particle collocation and a second for reaction and potential transforma-55

tion or removal given collocation (i.e. particles that do not collocate cannot react, thus preserv-

ing incomplete mixing). The next generation of these methods featured a newer particle-number-

conserving reaction scheme. This concept, introduced by (Bolster et al., 2016), and later gener-

alized (Benson and Bolster, 2016; Schmidt et al., 2019; Sole-Mari et al., 2019), employs kernel-

weighted transfers for moving mass between particles, where the weights are equivalent to the60

above-mentioned collision probabilities under certain modeling choices. These algorithms preserve

the total particle count, and we refer to them as mass transfer particle tracking (MTPT) schemes.

These particle-conserving schemes address low-concentration resolution issues that arise spatially

when using particle-killing techniques (Paster et al., 2013; Benson et al., 2017). Furthermore, MTPT

algorithms provide a realistic representation of solute transport with their ability to separate mix-65

ing and spreading processes (Benson et al., 2019). Specifically, spreading processes due to small-

scale differential advection may be simulated with standard random walk techniques (LaBolle et al.,

1996), and true mixing-type diffusive processes may be simulated by mass transfers between par-

ticles. MTPT techniques are also ideally suited to and provide increased accuracy for complex
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systems with multiple reactions (Sole-Mari et al., 2017; Engdahl et al., 2017; Benson and Bolster,70

2016; Schmidt et al., 2020b), but they are computationally expensive because nearby particles must

communicate. This notion of nearness is discussed in detail in Section 3.

The objective of this study is to develop efficient, multi-dimensional parallelization schemes

for MTPT-based reactive transport schemes. We conduct formal analyses to provide cost bench-

marks and to predict computational speedup for the MTPT algorithm, both of which to date were75

only loosely explored in the 1-d case (Engdahl et al., 2019). Herein, we focus on an implementa-

tion that uses a multi-CPU environment that sends information between CPUs via Message Passing

Interface (MPI) directives within FORTRAN code. In particular, we focus on the relative compu-

tational costs of the inter-particle mass transfer versus message passing algorithms, because the

relative costs of either depend upon the manner in which the computational domain is split among80

cores. These mass-transfer methods may be directly compared to smoothed-particle hydrodynamics

(SPH) methods, and are equivalent when a Gaussian kernel is chosen to govern the mass transfers

(Sole-Mari et al., 2019). Specifically, this work shares similarities with previous investigations of

parallelized smoothed particle hydrodynamics (SPH) methods (Crespo et al., 2011; Gomez-Gesteira et al.,

2012; Xia and Liang, 2016; Morvillo et al., 2021), but is novel as it tackles nuances that arise specif-85

ically for MTPT approaches. A substantial difference within this work is that the kernels are based

on the local physics of diffusion, rather than a user-defined function chosen for attractive numerical

qualities like compact support or controllable smoothness. This adherence to local physics allows

for increased modeling fidelity, including the simulation of diffusion across material discontinuities

or between immobile (solid) and mobile (fluid) species (Schmidt et al., 2020a, 2019). In general, the90

parallelization of particle methods depends on assigning groups of particles to different processing

units. Multi-dimensional domains present many options on how best to decompose the entire com-

putational domain in an attempt to efficiently use available computing resources. Along these lines,

we compare two different domain decomposition (DDC) approaches. In the one-dimensional case

(Engdahl et al., 2019), the specified domain is partitioned into smaller subdomains so that each core95

is only responsible for updating the particles’ information inside of a fixed region, though informa-

tion from particles in nearby subdomains must be used. Hence, the first two-dimensional method

we consider is a naive extension from the existing one-dimensional technique (Engdahl et al., 2019)
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that decomposes the domain into vertical slices along the x-axis of the xy-plane. This method is

attractive for its computational simplicity but limits speedup for large numbers of cores (see Section100

7). Our second method decomposes the domain into a “checkerboard” consisting of subdomains

that are as close to squares (or cubes) as is possible given the number of cores available. RWPT

simulations without mixing often require virtually no communication across subdomain boundaries

because all particles act independently in the model. However, MTPT techniques require constant

communication along local subdomain boundaries at each time step, which leads to challenges in105

how best to accelerate these simulations without compromising the quality of solutions. This novel,

multi-dimensional extension of parallelized DDC techniques for the MTPT algorithm will now al-

low for simulation of realistic, computationally-expensive systems in seconds to minutes rather than

hours to days. Further, based on given simulation parameters, we provide formal run time prediction

analysis that was only hypothesized in previous work and will allow future users to optimize par-110

allelization prior to executing simulations. This manuscript rigorously explores the benefits of our

parallelized DDC method while providing guidelines and cautions for efficient use of the algorithm.

2 Model Description

An equation for a chemically-conservative, single component system experiencing local mean ve-

locity and Fickian diffusion-like dispersion is115

∂C

∂t
+∇· (vC) =∇· (D∇C), x ∈ Ω⊆ R

d, t > 0, (1)

where C(x, t) [mol L−d] is the concentration of a quantity of interest, v(x, t) [LT−1] is a velocity

field, and D(v) [L2T−1] is a given diffusion tensor. Advection-diffusion equations of this form arise

within a variety of applied disciplines relating to fluid dynamics (Bear, 1972; Tennekes and Lumley,

1972; Gelhar et al., 1979; Bear, 1961; Aris, 1956; Taylor, 1953). Depending on the physical appli-120

cation under study, various forms of the diffusion tensor may result. Often, it can be separated into

two differing components, with one representing mixing between nearby regions of differing con-

centrations and the other representing spreading from the underlying flow (Tennekes and Lumley,

1972; Gelhar et al., 1979; Benson et al., 2019). This decomposition provides a general splitting of
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the tensor into125

D =Dmix(v)+Dspread(v). (2)

Lagrangian numerical methods, such as those developed herein, can then be used to separate the

simulation of these processes into mass transfer algorithms that capture the mixing inherent to the

system and random walk methods that represent the spreading component (see, e.g., (Ding et al.,

2017; Benson et al., 2019)). As our focus here is mainly driven by the novel implementation of130

diffusive processes in MTPT algorithms, we will for now assume a purely diffusive system so that

v(x) = 0. This assumption results in an isotropic diffusion tensor that reduces to

D =DId, (3)

where Id is the d×d identity matrix. The remaining scalar diffusion coefficient can also be separated

into mixing and spreading components, according to135

D =Dmix +Dspread. (4)

Despite the assumption of zero advection, we simulate spreading via random walks as an eventual

necessity for moving particles within our DDC scheme. Stationary particles do not provide compu-

tational complexity for the mass transfer algorithm as distances between particles remain constant.

2.1 Initial Conditions and Analytic Solution140

We define a general and well-established benchmark test problem to facilitate the analysis of speedup

and computational efficiency. Based on the chosen tiling method, the global domain is subdivided

into equisized subdomains, and each core knows its own local, non-overlapping domain limits. The

particles are then load balanced between the cores and randomly scattered within the local domain

limits. To represent the initial mass distribution, we use a Heaviside function in an Ld-sized domain,145

which assigns all particles with position x≥ L/2 with mass M = 1 and assigns no mass to particles

with position x < L/2 (i.e. a heaviside step function initial condition). This initial condition will

allow us to assess the accuracy of simulations as, for an infinite domain (simulated processes occur
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away from boundaries for all time), it admits an exact analytical solution

C(x,t) =
1

2
erfc [−(x−x′)/4Dt] , (5)150

where x′ = L/2 and t is the elapsed time of the simulation. The existence of an analytical solution

is beneficial to our ability to rigorously test our proposed schemes. We compare simulated results

to this solution using the root-mean-squared error (RMSE). Note that all dimensioned quantities are

unitless for the analysis we conduct and all references to run times are measured in CPU wall clock

time.155

2.2 Simulation Parameters

Unless otherwise stated, all 2-d simulations will be conducted with the following computational pa-

rameters: the L×L domain is fixed with L= 1000; the time step is fixed to ∆t= 0.1; the number of

particles isN = 107; and the diffusion constant is chosen to beD = 1. The total time to be simulated

is fixed as T = 10, which results in 100 time steps during each simulation. We choose parameters in160

an attempt to construct problems with similar
✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿

computationally-intense
✿✿✿✿✿✿✿✿

problems
✿✿✿✿

that
✿✿

do
✿✿✿✿

not
✿✿✿✿✿✿

exceed

✿✿✿✿✿✿✿

available
✿✿✿✿✿✿✿✿

memory.
✿

A
✿✿✿✿✿✿✿✿

Roofline
✿✿✿✿✿✿✿

Analysis
✿✿✿✿

plot
✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿

(NERSC, 2018; Williams et al., 2009; Ofenbeck et al., 2014; Sun et al., 2020)

✿

is
✿✿✿✿✿✿✿✿

provided
✿✿

in
✿✿✿✿✿✿✿✿

Appendix
✿✿

A
✿✿

to
✿✿✿✿✿✿✿✿✿✿

demonstrate
✿✿✿

that
✿✿✿

an
✿✿✿✿✿✿✿✿

optimised
✿✿✿✿✿✿✿

baseline
✿✿✿

was
✿✿✿✿

used
✿✿✿

for
✿✿✿

the
✿✿✿✿✿✿✿

speedup
✿✿✿✿✿✿

results

✿✿

we
✿✿✿✿✿✿✿

present.
✿✿✿✿✿✿✿

Further,
✿✿✿

we
✿✿✿✿✿

intend
✿✿

to
✿✿✿✿✿

retain
✿✿✿✿✿✿

similar
✿✿✿✿✿✿✿✿✿✿✿✿

computational
✿

cost across dimensionality. Hence, all

3-d simulations will be conducted with the same diffusion constant and time step size, but they will165

be in an L3 domain with L= 100 and with a number of particles N = 5× 106 . In general, we will

always use a ∆t that satisfies the optimality condition

min{∆t} ≥

(

L
d√
N

)2

1

β 2D
, (6)

formulated in (Schmidt et al., 2022), in which β is a kernel bandwidth parameter described in Sec-

tion 3.170
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Figure 1. The top figure displays the computed particle masses at final simulation time T = 10, and the bottom

figure provides a computed vs. analytical solution comparison at the corresponding time. The parameters for

this run are N = 10
7, ∆t= 0.1, and D = 1.

2.3 Hardware Configuration

The simulations in this paper were performed on a heterogeneous High Performance Computing

(HPC) cluster called Mio, which is housed at Colorado School of Mines. Each node in the cluster

contains 8-24 cores, with clock speeds ranging from 2.50-GHz to 3.06-GHz and memory capacity

ranging from 24GB to 64GB. Mio uses a network of Infiniband switches to prevent performance175

degradation in multinode simulations. We use the compiler gfortran with optimization level 3,

and the results we present are averaged over an ensemble of 5 simulations to reduce noise that is

largely attributable to the heterogeneous computing architecture.
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3 Mass Transfer Particle Tracking Algorithm

The MTPT method simulates diffusion by weighted transfers of mass between nearby particles.180

These weights are defined by the relative proximity of particles that is determined by construct-

ing and searching a K-D tree (Bentley, 1975). Based on these weights, a sparse transfer matrix is

created that governs the mass updates for each particle at a given time step. As previously noted

(Schmidt et al., 2018), PT methods allow the dispersive process to be simulated in two distinct ways

by allocating a specific proportion to mass transfer and the remaining portion to random walks.185

Given the diffusion coefficient D, we introduce κ ∈ [0,1] such that

DRW =Dspread = κD (7)

and

DMT =Dmix = (1−κ)D. (8)

We choose κ= 0.5 to give equal weight to the mixing and spreading in simulations. Within each190

time step, the particles first take a random walk in a radial direction, the size of which is based on

the value of DRW . Thus, we update the particle positions via the first-order expansion

Xi(t+∆t) =Xi(t)+ ξi
√

2DRW∆t, (9)

where ξi [TL−1] is a standard normal Gaussian random variable. We enforce zero-flux boundary

conditions, implemented as a perfect elastic collision/reflection when particles random walk outside195

of the domain. We define a search radius, ψ, that is used in the K-D tree algorithm given by

ψ = λ

√

1

β
2DMT∆t, (10)

where
√

β−12DMT∆t is the standard deviation of the mass-transfer kernel, ∆t is the size of the

time step, DMT is the mass-transfer portion of the diffusion coefficient, and λ is a user-defined

parameter that determines the radius of the search. We choose a commonly-employed value of λ= 6,200

as this will capture more than 99.9% of the relevant particle interactions; however, using smaller

values of λ can marginally decrease run time at the expense of accuracy. Using the neighbor list
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provided by the K-D tree, a sparse weight matrix is constructed that will transfer mass amongst

particles based on their proximity. Since particles are moving via random walks, the neighbor list

and corresponding separation distances will change at each time step, requiring a new K-D tree205

structure and sparse weight matrix within each subdomain. The mass transfer kernel we use is given

by

K(xi,xj) =
1

√

(4πβ−1∆t)ddet(DMT )
exp

(

− (xi−xj)
T
D

−1

MT (xi−xj)

4β−1∆t

)

. (11)

Here, β > 0 is a tuning parameter that encodes the mass transfer kernel bandwidth h=
√

1

β 2det(DMT )∆t,

and we choose β = 1 hereafter. Recalling DMT =DMT I and substituting for the kernel bandwidth210

h=
√
2DMT∆t, we can simplify the formula in Equation (11) to arrive at

K(xi,xj) =
1

(2πh2)
d
2

exp

(

−‖xi−xj‖2
2h2

)

. (12)

Next, we denote

Kij =K(xi,xj)

for each i, j = 1, ...,N and normalize the MT kernel to ensure conservation of mass (Sole-Mari et al.,

2019; Herrera et al., 2009; Schmidt et al., 2017). This produces the weight matrix W with entries

Wij =
Kij

1

2

(

∑N
i=1

Kij +
∑N
j=1

Kij
) , (13)215

that is used in the mass transfer step (15). The algorithm updates particle masses, Mi(t), via the

first-order approximation

Mi(t+∆t) =Mi(t)+ δi, (14)

where

δi =

N
∑

j=1

β(Mj(t)−Mi(t))Wij (15)220

is the change in mass for a particular particle during a time step. This can also be represented as a

matrix-vector formulation by computing

δ =WM , (16)
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where M is the vector of particle masses, and then updating the particle masses at the next time step

via the vector addition225

M(t+∆t) =M(t)+ δ. (17)

In practice, imposing the cut-off distance ψ from Equation (10) further implies that W is sparse and

allows us to use a sparse forward matrix solver to efficiently compute the change in mass. Finally,

the algorithm can convert masses into concentrations for comparison with the analytic solution using

C(t) =
NM(t)

Ld
(18)230

in d dimensions with an Ld-sized simulation domain.

4 Domain Decomposition

With the foundation of the algorithm established, we focus on comparing alternative tiling strategies

within the domain decomposition method and their subsequent performance.

4.1 Slices Method235

The first approach extends the 1-d technique by slicing the 2-d domain along a single dimension,

depending on how many cores are available for use. For example, depending on the number of

computational cores allocated for a simulation, we define the width of each region as

∆x=
L

NΩ

, (19)

where NΩ is the number of subdomains. In addition, we impose the condition that NΩ is equal to240

the number of allocated computational cores. So, the region of responsibility corresponding to the

first core will consist of all particles with x-values in the range [xmin,∆x), and the next core will be

responsible for all particles with x-values in the interval [∆x,2∆x). This pattern continues through

the domain with the final core covering the last region of [(NΩ − 1)∆x,xmax]. Each of these slices

covers the entirety of the domain in the y-direction, so that each core’s domain becomes thinner as245

the number of cores increases. A graphical example of the slices method decomposition is shown in

Figure 2(a).
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(a) Decomposing the domain with 25 Cores using the Slices Method. Figure 4(a) displays an enlarged slices

domain with a description of ghost particle movement, as well.

(b) Decomposing the domain with 25 Cores using the Checkerboard Method. Figure 4(b) displays an enlarged

checkerboard domain with a description of ghost particle movement, as well.

Figure 2. General schematics of (a) slices and (b) checkerboard domain decompositions.
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4.2 Checkerboard Method

In addition to the slices method, we consider decomposing the domain in a tiled or “checkerboard”

manner. Given a W ×H domain (without loss of generality, we assume W ≥H), we define A=250

W/H to be the aspect ratio. Then, choosing NΩ subdomains (cores) we determine a pair of integer

factors, f1,f2 ∈ N with f1 ≤ f2, whose ratio most closely resembles that of the full domain, i.e.

f1f2 =NΩ such that

|f2/f1 −A| ≤ |g2/g1 −A| (20)

for any other pair g1,g2 ∈ N. Then, we decompose the domain by creating rectangular boxes in the255

horizontal and vertical directions to most closely resemble squares in 2-d or cubes in 3-d. If the full

domain is taller than it is wide, then f2 is selected as the number of boxes in the vertical direction.

Alternatively, if the domain is wider than it is tall, we choose f1 for the vertical decomposition. If

we assume that W ≥H as above, then the grid box dimensions are selected to be

∆x=
xmax −xmin

f2
, (21)

and260

∆y =
ymax − ymin

f1
. (22)

With this, we have defined a grid of subregions that cover the domain, spanning f2 boxes wide and f1

boxes tall to use all of the allocated computational resources. Assuming NΩ is not a prime number,

this method results in a tiling decomposition as in Figure 2(b). Note that using a prime number of

cores reverts the checkerboard method to the slices method.

5 Ghost Particles265

In MTPT algorithms, nearby particles must interact with each other. Specifically, a particle will

exchange mass with all nearby particles within the search radius in Equation (10). Our method of

applying domain decomposition results in subdomains that do not share memory with neighboring

13



Figure 3. The algorithm does not incur noteworthy changes in error, as a function of NΩ for the 2-d checker-

board DDC method considered here, nor in any of the simulations that were performed.

regions. If a particle is near a local subdomain boundary, it will require information from particles

that are near that same boundary in neighboring subdomains. Thus, each core requires information270

from particles in a buffer region just outside the core’s boundaries, and because of random walks,

the particles that lie within this buffer region must be determined at each time step. The size of

this buffer zone is defined by the search distance in Eq. (10). The particles inside these buffers are

called “ghost" particles and their information is sent to neighboring subdomains’ memory using

MPI. Because each local subdomain receives all particle masses within a ψ-sized surrounding buffer275

of the boundary at each time step, the method is equivalent to the NΩ = 1 case after constructing the

K-D tree on each subdomain, resulting in indistinguishable nearest-neighbor lists. Although ghost

particles contribute to mass transfer computations, the masses of the original particles, to which

the ghost particles correspond, are not altered via computations on domains in which they do not

reside. Thus, we ensure an accurate, explicit solve for only the particles residing within each local280

subdomain during each time step.
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The process we describe here differs depending on the decomposition method. For example,

the slices method gives nearby neighbors only to the left and to the right (Figure 4(a)). On the other

hand, the checkerboard method gives nearby neighbors in 8 directions. The communication portion

(a) (b)

Figure 4. All particles within a buffer width of ψ from the boundary of a subdomain (blue) are sent to the

left and to the right for reaction in the slices method (a), whereas they are sent to 8 neighboring regions in the

checkerboard method (b). Note that the red lines depict subdomain boundaries, and the black arrows indicate

the outward send of ghost particles to neighbors. As well, note that the tails of the black arrows begin within

the blue buffer region. Ghost pad size is exaggerated for demonstration.

of the algorithm becomes more complicated as spatial dimensions increase. In 3-d, we decompose285

the domain using a similar method to prescribe a tiling as in 2-d, but the extra sends and receives

to nearby cores significantly increase. For example, the 2-d algorithm must pass information to 8

nearby cores, whereas the 3-d algorithm must pass information to 26 nearby cores—8 neighboring

cores on the current plane and 9 neighboring cores on the planes above and below.
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Figure 5. The red band represents all particles that will be received by the local subdomain (yellow) from

neighboring regions for mass transfer. The number NS quantifies the number of particles that are involved in

the MT step of the algorithm, which is the combination of all particles whose positions are in either the red or

yellow region.

6 Cost Analysis290

6.1 Mass-transfer Cost

In this section, we characterize and predict the amount of work being performed within each of por-

tion of the algorithm. The general discussion of work and cost here refer to the run times required

within distinct steps of the algorithm. We profile the code that implements the MTPT algorithm using

the built-in, Unix-based profiling tool gprof (Graham et al., 2004) that returns core-averaged run295

times for all parent and child routines. The two main steps upon which we focus are the communica-

tion step and the Mass Transfer (MT) step. For each subdomain, the communication step determines

which particles need to be sent (and where they should be sent) and then broadcasts them to their

correct nearby neighbors. The MT step carries out the interaction process described in Section 3

using all of the particles in a subdomain and the associated ghost particles, the latter of which are300
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not updated within this process. As these two processes are the most expensive components of the

algorithm, they will allow us to project work expectations onto problems with different dimensions

and parameters.

We begin with an analysis of the MT work. First, in the interest of tractability, we will consider

only regular domains, namely a square domain with sides of length L so that Ωx =Ωy = L in 2-d305

and a cubic domain with Ωx =Ωy =Ωz = L in 3-d. Hence, the area and volume of these domains

are A= L2 and V = L3, respectively. Also, we define the total number of utilized cores to be P

and take P =NΩ so that each subdomain is represented by a single core. Assuming that P is a

perfect dth power and the domain size has the form Ld for dimension d, this implies that there

are P 1/d subdivisions (or “tiles" from earlier) in each dimension. Further, we define the density310

of particles to be ρd =N/Ld in d-dimensions where N is the total number of particles. Finally,

recall that the pad distance, which defines the length used to determine ghost particles, is defined by

ψ = 6
√
2DMT∆t. With this, we let NS represent the number of particles that will be involved in

the mass transfer process on each core, and this can be expressed as

NS = ρd

(

L

P 1/d
+2ψ

)d

=N

(

1

P 1/d
+

2ψ

L

)d

, d= 1,2,3, (23)315

which is an approximation of the number of particles in an augmented area or volume of each

local subdomain, accounting for the particles sent by other cores. Figure 5 illustrates NS as the

number of particles inside the union of the yellow region (the local subdomain’s particles) and the

red region (particles sent from other cores). As previously mentioned, we construct and search a K-D

tree to find a particles’ nearby neighbors. Constructing the tree structure within each subdomain is320

computationally inexpensive, and searching the tree is significantly faster than a dense subtraction

to find a particle’s nearby neighbors: for N particles in memory, the dense subtraction is O(N)

expensive for a single particle, while the K-D tree search is only O(log10(N)). Based on the results

from gprof, searching the K-D tree is consistently the most dominant cost in the MT routine. As

a result, the time spent in the mass transfer routine will be roughly proportional to the speed of325

searching the K-D tree. This approximation results in the MT costs scaling according to (Kennel,

2004):

TS = αdNS log(NS), (24)
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where αd is a scaling coefficient reflecting the relative average speed of the calculations per particle

for d= 2,3. Note that α3 > α2, as dimension directly impacts the cost of the K-D tree construction.330

We are able to corroborate this scaling for both 2-d and 3-d problems by curve fitting to compare

NS log(NS) for each method of DDC to the amount of time spent in the MT subroutine. In particular,

we analyzed the empirical run time for the K-D tree construction and search in an ensemble of 2-d

simulations with the theoretical cost given by (24). Figure 6 displays the run times plotted against

our predictive curves for the MT portion of the algorithm, exhibiting a coefficient of determination335

(r2) close to 1.

Note that changing the total number of particles within a simulation should not change the

scaling relationship as Equation (24) only depends on the value of NS . This relationship implies

that a simulation with a greater number of particles and using a greater number of cores can achieve

the same value of NS as a simulation with fewer total particles and cores. When the values of340

NS coincide across these combinations of particles and cores, we expect the time spent in the MT

subroutine to be the same (Figs. 7 and 8). We see that our predictions for the MT subroutine, based

on proportionality to the K-D tree search, provide a reliable run time estimate in both the 2-d and

3-d cases. We also observe an overlay in the curves as N increases, which directly increases the

amount of work for the MT portion of the algorithm. For instance, if we consider a range of particle345

numbers in both dimensions (Figs. 7 and 8), we see the respective curves exhibit similar run time

behavior as NS decreases.

The plots of MT run time display an approximately linear decrease as NS decreases, which

would seem to indicate continued performance gains with the addition of more cores. However, one

must remember that adding cores is an action of diminishing returns because the local core areas350

or volumes tend to zero as more are added, and NS tends to a constant given by the size of the

surrounding ghost particle area (see Fig. 5). For example, Figure 6(a) shows that MT run time only

decreases by around half of a second from adding nearly 1500 cores. Figures 7 and 8 display (a)

weak-like scaling plots and (b) strong scaling plots for the MT portion of the algorithm. Predictions

concerning this trade off are made in Section 7.355
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2
 = 1.054e-06

(a)

3
 = 1.707e-04

(b)

Figure 6. Plots of run time in the MT portion of benchmark runs. Note the similar behavior in both 2-d (a)

and 3-d (b) for predicting MT subroutine run time, based on our theoretical run time scaling in Equation (24).

Using this prediction function achieves values of r2 = 0.9780 in 2-d and r2 = 0.9491 in 3-d. Axis bounds are

chosen for ease of comparison to results in Figures 7, 8, and 10(a).
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(a)

(b)

Figure 7. Varying the total particle number N directly influences the value of NS , as the right-most side of

Equation (23) reflects. Simulations across these different values of N in 2-d exhibit common behavior with

respect to MT run time as NS decreases, as shown in (a). Figure (b) shows the strong scaling behavior for the

10M particle simulation for comparison to a common scaling metric. Axis limits are chosen for comparison

with Figure 10(a).

20



(a)

(b)

Figure 8. Varying the total particle number N directly influences the value of NS , as the right-most side of

Equation (23) reflects. Simulations across these different values of N in 3-d exhibit common behavior with

respect to MT run time as NS decreases, as shown in (a). Figure (b) shows the strong scaling behavior for the

10M particle simulation for comparison to a common scaling metric. Axis limits are chosen for comparison

with Figure 10(a). The scaling is strongly similar to the 2-d example.
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6.2 Ghost Particle Communication Cost Analysis

The halo exchange depicted in Section 5 is implemented via a distributed-memory, MPI-based sub-

routine. Each core in the simulation carries out the communication protocol regardless of on-node

or inter-node relationship to its neighboring cores, as shown in Figure 4(b). These explicit, MPI

exchange instructions ensure that this communication occurs in a similar fashion between all cores,360

regardless of node relationship. This claim is substantiated by the single-node scaling seen in Figure

9, reinforcing that our speedup results are not skewed by redundant or “accelerated" shared-memory

communication.

Figure 9. We observe expected wall time scaling for the on-node communication shown here, demonstrating

that the MPI function calls do, in fact, incur communication costs between cores within a shared-memory space.

The communication portion of the algorithm includes three processes on each core: evaluating log-

ical statements to determine which particles to send to each neighboring core, sending the particles365

to the neighboring cores, and receiving particles from all neighboring cores. The total wall time for

these three processes makes up the “MPI Time (s)" in Figures 9 and 10. By nature of these tiled, halo

exchanges, we encounter the issue of load balancing, namely the process of distributing traffic so

that cores with less work to do will not need to wait on those cores with more work. Hence, we only
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need to focus our predictions on the cores that will perform the greatest amount of work. These cores370

(in both dimensions) are the “interior” subdomains, or the subdomains with neighbors on all sides.

In 2-d these subdomains will receive particles from 8 neighboring domains, with 4 neighbors shar-

ing edges and 4 on adjacent corners. In 3-d, particles are shared among 26 neighboring subdomains.

Similar to the MT analysis, we observe that both the 2-d and 3-d data in Figure 10(a) exhibit similar

curves across varying particle numbers, respectively, as the number of cores becomes large (i.e., as375

NS becomes small). This eventual constant cost is to be expected in view of the asymptotic behavior

of NS as P grows large. Note also that the 3-d MPI simulation times are consistently around 5 to 10

times greater than 2-d because of the increased number of neighboring cores involved in the ghost

particle information transfer.

7 Speedup Results380

In this section, we discuss the advantages and limitations of each method by evaluating the manner

in which the decomposition strategies accelerate run times. We employ the quantity “speedup" in

order to compare the results of our numerical experiments. The speedup of a parallelized process is

commonly formulated as

SP =
T1
TP

, (25)

where TP is the run time using P cores and T1 is the serial run time. We also use the notion of385

efficiency that relates the speedup to the number of cores, and is typically formulated as

EP =
SP
P
. (26)

If the parallelization is perfectly efficient, then P cores will yield a P times speedup from the serial

run, producing a value of EP = 1. Hence, we compare speedup performance to establish a method

that best suits multi-dimensional simulations.

We may also construct a theoretical prediction of the expected speedup due to the run-time anal-390

ysis of the preceding section. First, assume that the subdomains are ideally configured as squares in

2-d or cubes on 3-d. In this case, the MT run times always exceed the MPI times. For smaller val-

ues of NS , the MT run times are approximately 10 to 100 times larger than those of the MPI step.
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(a)

(b)

Figure 10. As NS decreases, we observe similar trends in the MPI subroutine run time in both 2-d and 3-d,

respectively. Given that necessary communication takes places between 26 neighboring regions in 3-d rather

than only 8 neighboring regions in 2-d, the 3-dMPI times are, in general, 5 to 10 times slower than similar runs

in 2-d.
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Furthermore, the larger MT times are approximately linear with NS over a large range, regardless

of total particle numbers and dimension. Therefore, we may assume that the run times are approxi-395

mately linear withNS and compare run times for different values of P . Specifically, for a single core,

all of the particles contribute to the MT run time, so the speedup can be calculated using equation

(23) in the denominator:

SP =
N

NS
=

N

N
(

1

P 1/d + 2ψ
L

)d
=

1
(

1

P 1/d + 2ψ
L

)d
. (27)

Now, letting E ∈ (0,1) represent a desired efficiency threshold, we can identify the maximum num-400

ber of cores that will deliver an efficiency of E based on the size L of the domain, the physics of the

problem, and the optimal timestep ∆t that defines the size of the ghost region (given in terms of the

pad distance ψ). In particular, using the above efficiency formula, we want

E ≤ EP =
SP
P

=
1

P
(

1

P 1/d + 2ψ
L

)d
. (28)

A rearrangement then gives the inequality405

P ≤ 1

E

(

(1−E1/d)L

2ψ

)d

, (29)

which provides an upper bound on the suggested number of cores to use once ψ is fixed and a desired

minimum efficiency is chosen.

This gives the user a couple of options before running a simulation. The first option is to choose

a desired minimum efficiency and obtain a suggested number of cores to use based on the inequality410

in (29). This option is ideal for users who request or pay for the allocation of computational resources

and must know the quantity of resources to employ in the simulation. The second option is to choose

a value for the number of cores and apply the inequality (28) to obtain an estimated efficiency level

for that number of cores. This second case may correspond to users who have free or unrestricted

access to large amounts of computing resources and may be less concerned about loss of efficiency.415

Using Equation (27), we can predict speedup performance for any simulation once the parame-

ters are chosen. The speedup prediction inequalities from above depend only on the domain size and
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(a)

(b)

Figure 11. The prediction curves give the user a concrete guideline to determine how many cores to allocate

for a simulation before performance degrades. The curves in (a) are generated for the defined search distance

ψ in a domain with a constant respective hypervolume V , which implies that each dimension’s length scale is

L= V
1/d. The curves in (b) are generated for the same search distance ψ but with Ld-sized domains for fixed

length L.
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the search distance ψ. From these inequalities, the effects of dimensionality while implementing

DDC can be conceptualized in two ways. First, if the hypervolume is held constant as dimension

changes, particle density also remains constant, which should generally not induce memory issues420

moving to higher dimensions. This requires choosing a desired hypervolume V and then determining

a length scale along a single dimension withL= V1/d. Figure 11(a) displays speedup predictions for

1-d, 2-d, and 3-d simulations in domains with equal hypervolumes and fixed D = 1 and ∆t= 0.1.

Keeping hypervolume constant shows the cost of complexity with increasing dimensions, which

reduces efficiency at larger amounts of cores. Conversely, a physical problem may have fixed size425

on the order of L3, and a user may wish to perform upscaled simulations in 1-d and 2-d before

running full 3-d simulations. Figure 11(b) shows the opposite effect: for a fixed length scale L, the

lower-dimension simulations suffer degraded efficiency for lower number of cores.

The 2-d and 3-d benchmark simulations used in previous sections allow us to calculate both

the empirical (observed) and theoretical speedups, and the overlays in Figure 12 and Figure 13 show430

reasonably accurate predictions over a large range of core numbers. The observed run times were

averaged over an ensemble of 5 simulations in order to decrease noise. If the checkerboard method

is used to decompose the domain, significantly more cores can be used before the inequality (29)

is violated for a chosen efficiency. In particular, if we choose a sequence of perfect square core

numbers for the a 1000× 1000 domain, nearly linear speed up is observed for over 1000 cores, and435

a maximum of 1906 times speedup at 2700 cores, the largest number of CPU cores to which we had

access. For reference, the 1906 times speedup performs a 5-hour serial run in 8 seconds, representing

around 0.04% of the original computational time.

Finally, we briefly consider the slices method, as it has drastic limitations in 2-d and 3-d. In-

creasing the number of cores used in a simulation while ψ remains fixed causes the ghost regions440

(as pictured in Figure 4(a)) to comprise a larger ratio of each local subdomain’s area. Indeed, if

each subdomain sends the majority of its particles, we begin to observe decreased benefits of the

parallelization. An inspection of Figure 4(a) suggests that the slices method in 2-d will scale ap-

proximately like a 1-d system, because the expression for NS (Equation (23)) is proportional to the

1-d expression. Indeed, the slices method speedup is reasonably well predicted by the theoretical445

model for a 1-d model (Figure 14). Furthermore, because the slices method only decomposes the
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Figure 12. Observed (diamonds) and theoretical speedup for 2-d simulations. Each chosen number of cores

is a perfect square so that the checkerboard method gives square subdomains. With the chosen parameters

L= 1000,D = 1,∆t= 0.1 and a desired efficiency of 0.75, the upper bound given by the inequality (29) is

not violated for the checkerboard method until around 1700 cores.

domain along a single dimension, it violates the condition given in (29) at lesser numbers of cores

than for the checkerboard method. In fact, using too many cores with the slices method can cease

necessary communication altogether once a single buffer becomes larger than the subdomain width.

For the given parameter values, this phenomenon occurs at 500 cores with the slices method, so we450

do not include simulations beyond that number of cores. The speedup for the slices method up to

500 cores is shown in Figure 14. Although the algorithm is accurate up to 500 cores, we see that

performance deteriorates quite rapidly after around 100 cores, which motivated the investigation of

the checkerboard decomposition.

7.1 Non-Square Tilings and Checkerboard Cautions455

Given some fixed number of cores (hence subdomains), it is clear that using a subdomain tiling

that is as close as possible to a perfect square (or cube) maximizes efficiency. This occurs when the

factors for subdivisions in each dimension are chosen to most closely resemble the aspect ratio of
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Figure 13. Observed (diamonds) and theoretical speedup for 3-d simulations. Each chosen number of cores

is a perfect cube so that the checkerboard method gives cubic subdomains. With the chosen parameters L=

100,D = 1,∆t= 0.1 and a desired efficiency of 0.5, the upper bound given by the inequality (29) is not

violated for the checkerboard method until around 320 cores.

Figure 14. Speedup for the slices method plateaus quickly, as the ghost regions increase in proportion to the

local subdomain’s area.
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the entire domain (shown in 2-d in (20)). Square or cubic subdomains are the most efficient shape

to use, and result in improved speedup that extends to larger numbers of cores. The converse of this460

principle means that a poor choice of cores (say, a prime number) will force a poor tiling, and so

certain choices for increased core numbers can significantly degrade efficiency. Figure 15 depicts

results in 2-d for core numbers of P = 698 (with nearest integer factors of 2 and 349) and P = 1322

(with nearest integer factors of 2 and 661) along with well-chosen numbers of cores, namely the per-

fect squares P = 400 and P = 1600. It is clear from the speedup plot that simulations with poorly465

chosen numbers of cores do not yield efficient runs relative to other choices that are much closer to

the ideal linear speedup. In particular, we note that the speedup in the case of nearly prime numbers

of cores is much closer to the anticipated 1-d speedup. This occurs due to the subdomain aspect

ratio being heavily skewed and therefore better resembling a 1-d subdomain rather than a regular

(i.e., square) 2-d region.

Figure 15. Poorly-chosen core numbers may result in severely non-square tilings that can degrade speedup

performance, despite employing more computational resources.

470
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7.2 Non-Serial Speedup Reference Point

We can loosely describe the standard definition of speedup as the quantitative advantage a simulation

performed with P cores displays over a simulation running with just a single core. However, a serial

run does not require particles to be sent to neighboring regions. Hence, a simulation on a single475

core does not even enter the MPI subroutine necessary for sending ghost particles, omitting a signif-

icant cost. This implies that multi-core simulations have extra cost associated with communication

that the serial baseline does not, which is, of course, the reason that linear speedup is difficult to

achieve. Unlike the traditional, serial speedup comparison shown in Figure 12, it’s possible to com-

pare speedup results to a 100-core baseline to observe how computational time decreases by adding480

cores to an already-parallelized simulation. This may be a non-standard metric, but it provides a

different vantage point to measure how well an HPC algorithm performs. Further, a metric like this

is useful in memory-bound conditions that cannot be conducted on less than 100 cores. Examples

of such speedup plots that compare all simulation times to their respective 100-core run times are

given in Figures 16 and 17. More specifically, these figures display the speedup ratio given by485

SP100
=
T100
TP

, (30)

where TP is the run time on P cores and T100 is the run time on 100 cores. For example, with 2500

cores, perfect speedup would be 25 times faster than the 100 core run.

The performance in Figure 16 displays super-linear speedup for up to 2700 cores, which shows

that memory-restricted simulations using very large particle numbers (i.e., the 15M and 20M particle490

data) can be effectively parallelized to much greater numbers of cores. However, Figure 17 further

shows the effect of dimensionality on this comparison, as only those simulations with smaller parti-

cle numbers in 3-d achieve super-linear speedup.

8 Conclusions and Final Remarks

The checkerboard decomposition for the parallelized DDC algorithm provides significant speedup495

to Lagrangian MTPT simulations in multiple dimensions. For a range of simulations, we find that

the mass transfer step is the dominant cost in terms of run time. The approximate linearity of run
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Figure 16. A speedup reference point of T100 results in super-linear speedup across multiple particle numbers.

Figure 17. Speedup reference points of T125 (and T216 for the 15M run) result in super-linear speedup for only

the N = 5M case, further exemplifying the disparity between 2-d and 3-d.
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time with NS (defined as total number of native particles and external ghost particles on a single

core/subdomain for mass transfer) allows us to calculate a theoretical speedup that matches empirical

results from well-designed DDC domains. The theoretical predictions also allow one to choose an500

efficiency and calculate the optimal number of cores to use, based on the physics of the problem

(specifically, in the context of the benchmarks, we explore domain size L, diffusion coefficient D,

and time step ∆t). As noted in Section 7, these predictions provide users with a range of needs and

resources necessary forecasting ability that is required before running a large-scale HPC simulation.

Given that we assume a purely-diffusive, non-reactive system in this paper, a necessary ex-505

tension of this will be an investigation of the performance of these DDC techniques upon adding

advection, reactions, or both to the system. The benchmarks we establish in this work provide ac-

curate expectations for properly load-balanced problems as we begin to add these complexities into

the simulations. In particular, in future efforts we expect to handle variable velocity fields with an

adaptable, moving DDC strategy similar to the technique that we implement in this manuscript. This510

initial study is an essential prerequisite before other such advances can even begin. Further, using

local averaging and interpolation of the corresponding velocity-dependent dispersion tensors, we

retain accurate representation of small-scale spreading and mixing despite the subdivided simula-

tion domain. We expect that adequately load balanced, advective-reactive simulations in the future

will exhibit as good as or even better scaling than we have observed in these current benchmarks.515

Moving particles via advection is a naturally parallel computation and will only incur minor compu-

tational cost as particles move across subdomain boundaries. Moreover, since the general form of our

algorithm simulates complex chemical reactions on particles after mass transfer takes place for all

species, we change the most computationally expensive process (the reactions) into a naturally paral-

lel process. Simulating these extra physical phenomena strictly increases computational complexity,520

but it will be in addition to the computations we carry out here. Given that we are building on these

computations, we fully intend to preserve the predictive ability in more complex simulations moving

forward. Finally, another natural extension could address various computational questions by explor-

ing how parallelized MTPT techniques might be employed using shared-memory parallelism, such

as OpenMP, CUDA, or architecture-portable parallel programming models like Kokkos, RAJA, or525

YAKL (Edwards et al., 2014; Trott et al., 2022; Beckingsale et al., 2019; raj, 2022; Norman, 2022).
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As we have noted, sending and receiving particles during each time step is a large cost in these sim-

ulations, second only to the creation and search of K-D trees and the forward matrix multiplication

for mass transfer. Thus, if we could implement a similar DDC technique without physically trans-

mitting ghost particle information between cores and their memory locations, would we expect to530

see improved speedup for much larger thread counts? A comparison of simulations on a CPU shared

memory system to those on a GPU configuration would represent a natural next step to address this

question. In this case, we predict that the GPU would also yield impressive speedup, but it is un-

clear as to which system would provide lesser overall run times given the significant differences in

computational and memory architectures between GPU and CPU systems.535

In summary, the checkerboard method in 2-d (and 3-d) not only allows simulations to be con-

ducted using large numbers of cores before violating the maximum recommended core condition

given in (29), but also boasts impressive efficiency scaling at a large number of cores. Under the

guidelines we prescribe, this method achieves almost perfect linear speedup for more than 1000

cores and maintains significant speedup benefits up to nearly 3000 cores. Our work also showcases540

how domain decomposition and parallelization can relieve memory-constrained simulations. For ex-

ample, some of the simulations that we conduct with large numbers of particles cannot be performed

with fewer cores due to insufficient memory on each core. However, with a carefully chosen DDC

strategy, we can perform simulations with particle numbers that are orders of magnitude greater than

can be accomplished in serial, thereby improving resolution and providing higher-fidelity results.545
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efficient
✿✿

as
✿✿✿

the
✿✿✿✿✿✿✿✿✿

hardware

✿✿✿✿✿✿✿✿

bandwidth
✿✿✿✿✿✿✿

allows.
✿✿✿✿

This
✿✿✿✿✿✿✿

ensures
✿✿✿✿

that
✿✿✿✿✿✿✿✿

speedup
✿✿✿✿✿✿

results
✿✿✿

are
✿✿✿

not
✿✿✿✿✿✿✿

inflated
✿✿✿

by
✿✿

a
✿✿✿✿✿✿✿✿✿✿

suboptimal
✿✿✿✿✿✿✿✿

baseline.

✿✿✿✿✿

These
✿✿✿✿✿✿

results
✿✿✿✿

were
✿✿✿✿✿✿✿✿

produced
✿✿✿✿✿

using
✿✿✿✿✿✿✿✿

LIKWID
✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿

(Treibig et al., 2010; Roehl et al., 2014),
✿✿

a
✿✿✿

tool
✿✿✿✿✿✿✿

created
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✿✿

by
✿✿✿✿✿✿✿

NERSC
✿✿

to
✿✿✿✿✿✿✿✿

measure
✿✿✿✿✿✿✿✿

hardware
✿✿✿✿✿✿✿✿✿

limitations
✿✿✿

and
✿✿✿✿✿✿✿✿✿✿

algorithmic
✿✿✿✿✿✿✿✿✿✿✿

performance.
✿✿✿

By
✿✿✿✿✿✿✿

varying
✿✿✿

the
✿✿✿✿✿✿✿

particle

✿✿✿✿✿✿

density
✿✿✿✿✿

within
✿✿✿✿

our
✿✿✿✿✿✿✿✿✿✿

simulations,
✿✿✿

we
✿✿✿✿

show
✿✿✿✿

that
✿✿✿

the
✿✿✿✿✿✿✿✿✿

parameters
✿✿✿

we
✿✿✿

use
✿✿✿

for
✿✿✿

our
✿✿✿✿✿✿✿✿

baseline
✿✿✿✿✿

result
✿✿✿✿✿✿✿

perform555

✿✿✿✿✿

closer
✿✿

to
✿✿✿

the
✿✿✿✿✿✿✿✿✿

bandwidth
✿✿✿✿✿

limit
✿✿

at
✿✿✿

the
✿✿✿✿✿✿✿✿

respective
✿✿✿✿✿✿✿✿✿

arithmetic
✿✿✿✿✿✿✿✿

intensity
✿✿✿✿✿

when
✿✿✿✿✿✿✿✿

compared
✿✿

to
✿✿✿✿✿✿✿✿✿✿✿

surrounding

✿✿✿✿✿✿

particle
✿✿✿✿✿✿✿✿

numbers.
✿✿✿

For
✿✿✿

the
✿✿✿✿✿✿✿

memory
✿✿✿✿✿

limits
✿✿

of
✿✿✿

the
✿✿✿✿✿✿✿✿

hardware
✿✿✿

we
✿✿✿✿✿✿✿

employ,
✿✿✿

we
✿✿✿✿

have
✿✿✿✿✿✿

chosen
✿✿✿

the
✿✿✿✿✿✿✿✿✿

parameter

✿✿✿✿✿✿✿✿✿✿

combination
✿✿✿

that
✿✿✿✿✿✿

yields
✿✿✿

the
✿✿✿✿

most
✿✿✿✿✿✿✿

efficient
✿✿✿✿✿✿✿

baseline
✿✿✿✿✿✿✿✿✿

simulation
✿✿✿✿✿

prior
✿✿

to
✿✿✿✿✿✿✿✿✿✿✿✿

parallelization.
✿

Figure A1.
✿✿✿

This
✿✿✿✿✿

figure
✿✿✿✿✿✿

displays
✿✿✿

the
✿✿✿

full
✿✿✿✿✿✿

Roofline
✿✿✿✿

plot
✿✿✿

with
✿✿

an
✿✿✿✿✿✿✿

enlarged
✿✿✿✿

inset
✿✿

to
✿✿✿✿✿✿✿✿

accentuate
✿✿

the
✿✿✿✿

data
✿✿✿✿✿

trends.
✿✿✿✿

The

✿✿✿

data
✿✿✿✿✿

points
✿✿✿✿✿✿✿✿

correspond
✿✿

to
✿✿✿✿✿✿

various
✿✿✿✿✿✿

particle
✿✿✿✿✿✿✿

densities
✿✿✿✿

while
✿✿✿✿✿✿

domain
✿✿✿

size
✿✿

is
✿✿✿✿

held
✿✿✿✿✿✿✿

constant.
✿✿

As
✿✿✿✿✿✿✿✿

arithmetic
✿✿✿✿✿✿✿

intensity

✿✿✿✿✿✿✿

fluctuates,
✿✿✿

we
✿✿✿✿✿✿

observe
✿✿✿✿

that
✿✿

the
✿✿✿✿✿✿✿✿✿

algorithm’s
✿✿✿✿✿✿✿✿✿✿

performance
✿✿

is
✿✿✿✿✿

limited
✿✿✿

by
✿✿✿

the
✿✿✿✿✿✿✿✿

hardware’s
✿✿✿✿✿✿✿✿✿

bandwidth.
✿✿✿

We
✿✿✿

use
✿✿✿

the

✿✿✿✿✿

chosen
✿✿✿✿✿✿✿✿

parameter
✿✿

set
✿✿✿✿✿✿✿

(orange
✿✿✿

star)
✿✿✿

for
✿✿✿

our
✿✿✿✿✿✿✿

speedup
✿✿✿✿✿

results
✿✿✿✿

since
✿✿

it
✿✿

1)
✿✿

is
✿✿✿

the
✿✿✿✿

most
✿✿✿✿✿✿✿

efficient,
✿✿

2)
✿✿✿✿✿✿✿

displays
✿✿✿✿

high

✿✿✿✿✿✿

accuracy
✿✿✿✿

from
✿✿

its
✿✿✿✿✿✿

particle
✿✿✿✿✿

count,
✿✿✿

and
✿✿

3)
✿✿

is
✿✿

not
✿✿✿✿✿✿✿✿✿✿✿✿

memory-bound
✿✿✿

and
✿✿✿✿

does
✿✿

not
✿✿✿✿✿✿

require
✿✿✿✿✿✿✿✿✿

exceedingly
✿✿✿✿

long
✿✿✿✿✿✿✿✿

simulation

✿✿✿✿

times.
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