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Abstract.

The impact of climate change on weather pattern dynamics over the North Atlantic is explored through the lens of the

information theory of forced dissipative dynamical systems.

The predictability problem is first tackled by investigating the evolution of block-entropies on observational time series

of weather patterns produced by the Met Office, which reveals that predictability is increasing as a function of time in the5

observations during the 19th and beginning of the 20th Century, while the trend is reversed at the end of the 20th century and

beginning of the 21st Century. This feature is also investigated in the 15-member ensemble of the UK Met Office CMIP5 model

for the 20th and 21st centuries under two climate change scenarios, revealing a wide range of possible evolutions depending

on the realization considered, with an overall decrease of predictability in the 21st century for both scenarios.

Lower bounds of the information entropy production is
:::
are

:
also extracted providing information on the degree of time-10

asymmetry and irreversibility of the dynamics. The analysis of the UK Met Office model runs suggests that the information

entropy production will increase by the end of the 21st century, by a factor of 10 % in the RCP2.6 scenario and a factor of

30-40 % in the RCP8.5 one, as compared to the beginning of the 20th century. This allows for making the conjecture that

the degree of irreversibility is increasing, and hence heat production and dissipation will also increase under climate change,

corroborating earlier findings based on the analysis of the thermodynamic entropy production.15

1 Introduction

The climate system is a forced dissipative system, whose forcing depends on time. Among the components of this forcing,

one can mention the obvious natural forcing (solar, volcanic eruptions...), but one of the most important forcing in the recent

decades is the anthropogenic forcing known to strongly affect the climate system (e.g. Lovejoy , 2014; Hébert and Lovejoy ,

2018; Ghil and Lucarini , 2020; IPCC , 2021). This anthropogenic forcing is inducing a rapid global increase of temperature as20

amply illustrated in the IPCC report (IPCC , 2021). The link between these rapid modifications on the dynamics and frequency

of weather patterns is an important question as it could have strong impact on society (e.g. Corti et al , 1999; Plaut and Simonnet

, 2001; Pope et al , 2022).

The use of weather patterns to define similar atmospheric situations goes back to the early 1950s with for instance the

development of the Grosswetterlagen (Hess and Brezowsky , 1952), see also Barry and Perry (1973). Since then, such patterns25
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are mostly used to summarize the information content in weather forecasts (Neal et al , 2016), to develop statistical forecasting

models (Nicolis et al , 1997; Vannitsem , 2001) or to investigate the quality of models (Davini and D’Andrea , 2020; Fabiano

et al , 2020). The key advantage of such an approach is to reduce the complexity of the problem at hand by limiting the number

of possible outcomes to a set of symbols that can be studied on their own.
::::
The

:::
link

:::::::
between

:::
the

:::::::::
succession

:::
of

::::::
patterns

::::
and

:::
the

:::::::::
underlying

:::::::
physical

::::::::::
mechanisms

::
of

:::::::::
transitions

:::::
such

::
as

:::::::::
large-scale

::::::
Rossby

:::::
wave

:::::::
breaking

::
is
::::
also

:::
an

::::::::
important

:::
line

:::
of

:::::::
research30

::::::::::::::::::::::
(Michel and Rivière , 2011)

:
.

The succession of weather patterns, as the underlying dynamics, displays a certain degree of randomness, mainly rooted

in the natural property of sensitivity to initial conditions (e.g. Hannachi et al , 2017; Vannitsem , 2017). To describe such

a dynamics a probabilistic approach is needed, which can be naturally cast in the context of the Information theory. This

framework allows for the characterization of the predictability properties in terms of persistence, transition paths, and the35

degree of surprise of new patterns (Nicolis and Nicolis , 2012). Recently considerable progresses have been made in the

extension of the concept of information to dynamical systems out-of-equilibrium (Daems and Nicolis , 1999; Gaspard , 2004;

Andrieux et al , 2007; Gomez-Marin et al , 2008; Roldán and Parrondo , 2010, 2012; Nicolis and Nicolis , 2012). Notably,

the connections between information entropy, irreversibility and dissipation in such systems have been made, together with

the impact of coarse-graining. Such developments open the way to analyze the dynamical and thermodynamical properties of40

non-equilibrium systems based on single coarse-grained trajectories.

The present work is devoted to investigating the dynamical properties on the succession of the North-Atlantic weather

patterns as defined by Neal et al (2016) in the observations and in the climate projections of the UK Met Office CMIP5

model (Pope et al , 2022), using recent tools of information theory. The focus is placed on the understanding of the impact

of climate change on the predictability of the system through the evolution of the information entropy, and of the associated45

information entropy production. The work is organized as follows. The notions of information entropy and its production are

first introduced in Section 2. In Section 3, the data set used is briefly presented, and in Section 4, the results are discussed.

Finally, a summary of the results are provided in the conclusions.

2 Information theory: Information entropy and entropy production

One key quantity introduced in the context of information theory is the (Shannon) entropy (Shannon , 1951),50

SI =−
∑
i

p(i) ln(p(i)) (1)

where p(i) is the probability to be in state i, with∑
i

p(i) = 1. (2)

This quantity (Eq 1) is an (weighted) average over the ensemble of states i of a measure, − ln(p(i)), of unexpectedness of

an event (equivalent of the amount of information content in this event). This quantity has three important properties (Nicolis55

and Nicolis , 2012): (i) It is maximized when all the possible events have the same probabilities, like for instance in drawing
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random numbers from a dice; (ii) adding an impossible event does not change SI ; and (iii) the additivity property, i.e. the

entropy of a composite system SI(A,B) = SI(A)+SI(B|A).

The Shannon entropy used in this form is however static, and does not provide insight on the dynamics of the process. Other

tools should therefore be used. A natural extension of this concept can be made to series of symbols, called words, known as60

the block entropy:

Sn =−
∑

i1,i2,...,in

p(i1, i2, ..., in) ln(p(i1, i2, ..., in)) (3)

where p(i1, i2, ..., in) is the joint probability of the sequence i1, i2, ..., in. Block entropies have already been used to characterize

the succession of weather patterns over Switzerland in Nicolis et al (1997). They showed in particular that this evolution is

not a first-order Markov process that could, otherwise, be reduced to the analysis of the two-state transition matrix between65

successive patterns (Gardiner , 1996).
:::
This

::::
type

:::
of

:::::::
analysis

::
is

::::
also

:::::::::
performed

::
to

::::::::::
characterize

:::
the

::::::::::
complexity

::
of

:::::::::
processes

::
in

::::
many

::::::::
different

:::::
fields

::::
from

:::::::
biology

:::::::::::::::::::::
(e.g. Provata et al , 2014)

:
to

::::::
music

:::::::::::::::::::
(e.g. Basios et al , 2021)

:
.

In 2004, Gaspard introduced the additional notion of time-reversed information entropy per unit time Gaspard (2004),

SR
n =−

∑
i1,i2,...,in

p(i1, i2, ..., in) ln(p(in, in−1, ..., i1)) (4)

where now the path through the different patterns is reversed in time, and the average is still performed along the forward path.70

If this quantity is subtracted to Sn, one gets the Kullback-Leibner divergence between the forward and backward trajectories

in the form of

dn = SR
n −Sn =

∑
i1,i2,...,in

p(i1, i2, ..., in) ln
p(i1, i2, ..., in)

p(in, in−1, ..., i1)
(5)

which is positive definite. This quantity is meant to characterize the time-asymmetry of the trajectory, and hence the irre-

versibility of the underlying process (Gaspard , 2004).75

For n tending to infinity, this quantity converges to an asymptotic value d∞, which is equal to the rate of contraction in phase

space provided the partition is generated by a Markov process with infinitesimally small cells and infinitesimally small time

steps (Gaspard , 2004; Nicolis and Nicolis , 2012), already demonstrating a strong connection of the information content with

the underlying dynamics. At microscopic level, the quantity, d∞, can also be related to the physical entropy production under

some appropriate assumptions (Andrieux et al , 2007; Gomez-Marin et al , 2008; Roldán and Parrondo , 2010, 2012). In this80

work, d∞ will be referred as the information entropy production.

In general, it can be shown that (e.g. Roldán and Parrondo , 2012):

d∞ ≥ ...≥ d3 ≥ d2 ≥ d1 = 0 (6)

and when the process is generating a first-order Markov dynamics, d2 = d∞, which is readily available when computing the

2-state joint probabilities. When it is not first order Markov, d∞ can be accessed by computing the sequence of dk, and using85

empirical laws, estimate d∞ (Roldán and Parrondo , 2010). In the current work, the process of succession of weather patterns
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is not first-order Markov (as discussed in the Appendix), and one must evaluate the sequence of lower bounds. This needs

considerable data, and one can only estimate a small number of these lower bounds, yet providing very important information

on the information entropy production.

The process of coarse-graining has also an impact on the amplitude of dk as shown in Gomez-Marin et al (2008), and90

also Gaspard (2022, personal communication): When reducing the number of variables
:::::::
symbols

:::
(or

:::::::
patterns)

:
to characterize

the system, the amplitude of dk decreases.
:::
This

:::::
could

::::
lead

::
to

::::::::
estimates

::
of

:::
the

::::::::::
information

:::::::
entropy

:::::::::
production

:::
for

::::
very

::::::
coarse

::::::::
partitions

::
of

:::
the

::::::::
dynamics

::::
that

:::
are

:::
not

::::::::::
statistically

::::
very

::::
well

:::::::
defined.

::::
This

::
is

:::::
most

:::::::
probably

:::
the

::::
case

:::
of

:::
the

:::::::
analyses

::::
that

:::
are

::::
done

::::
with

:::
the

:::::::
coarser

:::::::
partition

:::
for

:::
the

:::::::::::
observations

::::::
below.

::::
This

:::::::
problem

::
is

:::::::
however

:::::::::
alleviated

:::::
when

:::::::::::
investigating

:::
the

::
set

:::
of

:::::
model

:::::
runs

::
as

:::::
better

::::::::
statistics

:::
can

::
be

::::::::
obtained.

:
95

3 Data

At the Met Office, 30 weather patterns were defined and are used on a daily basis in the operational forecasting suite in order

to draw the overall evolution of the weather over the East part of the North-Atlantic and the western part of Europe (Neal et

al , 2016). The evolution of the weather on a daily basis is available starting from January 1st, 1850 until now. In the present

work, the series used start on January 1st 1850, until December, 31 2019, featuring 62,091 daily weather situations.100

As the application of the tools mentioned in section 2 can be effectively used provided the number of data is large and the

number of different patterns is small, it is important to find an appropriate balance between the length of the series and the

number of patterns. 30 regimes is very large and already 900 entries have to be estimated for the 2-state joint probabilities, and

this becomes even worse when increasing the length of the words. With such a small number of daily events, it is therefore

unrealistic to keep a large amount of weather patterns. To solve that problem one can further cluster the patterns, as done for105

instance in Neal et al (2016) to 8 states.
:::
The

::
8
:::::::
weather

:::::::
patterns

:::
are

::::::::
described

::
in

:::::
Table

::
1

::
of

:::::::::::::::
Neal et al (2016),

:::
and

:::::::::
displayed

::
in

::::
their

:::::
figure

::
3.

::::
The

:::
first

::::
two

:::::::
patterns

::::
with

:::
the

::::::
largest

:::::::::
populations

:::
in

::::
their

:::::::
analysis

:::
are

:::::::
referred

::
to

::
as

:::
the

::::::
NAO+

::::
(21.2

:::
%)

::::
and

:::::
NAO-

:::::
(17.8

:::
%)

::::
with

:::::::
opposite

:::::::
positive

::::
and

:::::::
negative

:::::
mean

:::
sea

::::
level

::::::::
pressure

:::::::::
anomalies

::::
over

:::::::
Iceland.

:::::
These

::::
two

:::::::
patterns

:::
are

::::::
usually

:::::
found

::
in

:::
the

:::::::::::
investigation

::
of

:::::::
weather

:::::::
patterns

::::
over

:::
the

:::::
North

:::::::
Atlantic

::::
and

::
its

::::::::::::
surroundings.

:::
The

:::::
other

:::::::
patterns

::::::
mostly

:::::
related

::
to
:::
the

:::::
local

::::::
weather

:::::
fields

::::
over

:::
the

::::::
British

::::::
Islands

:::
and

:::::::
western

::::::
Europe

:::
are

::::::
defined

::
in

:::::::::::::::
Neal et al (2016)

::
as

::::::::::::
Northwesterly,110

::::::::::::
Southwesterly,

:::::::::::
Scandinavian

:::::
high,

::::
High

:::::::
pressure

::::::::
centered

::::
over

:::
UK,

:::::
Low

::::
close

::
to

::::
UK

:::
and

::::::
Azores

:::::
high,

::::::::::
respectively.

:

This number is still large to evaluate joint probabilities with such a small amount of data. We therefore further reduce the

number of clusters to 6 with a merging of similar patterns, 8 with 6 and 7 with 5, as in Allen (2021). This can be even further

reduced to 3, with the two dominant patterns 1 and 2, representing the positive and negative phases of the North Atlantic

Oscillation (NAO), and the third one regrouping all other possible patterns (Allen , 2021). Besides their use for forecasting115

purposes, these data were used for different research purposes, such as for investigating the persistence of weather patterns

Richardson et al (2018).

Besides the observational weather patterns, the UK Met Office produces the time series of weather patterns for a set of 15

different perturbed-parameter climate model versions under two climate scenarios (Pope et al , 2022). The two climate scenarios
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are defined based on two Representative Carbon Pathways (RCP), namely RCP 2.6 and RCP 8.5.
:::
The

:::::
model

::::::::
versions

:::::
differ120

::::
only

::
by

:::
the

::::::
choice

::
of

:::::::::
parameters

::::
and

:::
not

::
by

:::
the

::::::
forcing

::::::::::::::::::::::::::::::::
(Pope et al , 2022; Sexton et al , 2021).

:

All simulations are run from December 1st 1899 to November 30th 2099, at a resolution of N216. The model is first forced

by the historical forcing until 2005, and then forced with the Representative Carbon Pathway scenarios. More information can

be found in Pope et al (2022). The simulations are projected on the same weather patterns as of Neal et al (2016), leading

to a set of temporal evolution for the 8, 6 and 3 weather partitions defined above. For the simulations, 15 × 71,970 days are125

available.

4 Results

4.1 Information Entropy analysis of the observed data

The changes in the statistical and dynamical properties of the weather patterns is investigated through the analysis of the

probabilities, the block-entropies and the information entropy production as a function of time. It should be first assumed that130

the impact of climate change on the natural variability is slow, allowing to consider that the statistical properties of the weather

are stationary during a sufficiently long period. Here a sliding window of 50 years has been defined for the evaluation of the

statistics, progressively moved forward in time. As the observation data are starting in 1850, the first period to consider is

1850-1899, then shifted forward in time every year. Note that the statistics will be associated (arbitrarily) to the 25th year of

the window in the figures.135

Figure 1 displays the probabilities for (a) 3, (b) 6, and (c) 8 partitions as a function of time. A clear trend
::::::::
evolution in the

probabilities is visible, and
:
.
:
χ2 tests

::
of

:::::::::
differences

:
between the first and the last values

:::
have

:::::
been

:::::::::
computed.

:::
The

:::
χ2

:::
test

:::
of

:::::::::
differences

:::::::
between

:::
the

:::
two

:::::::::::
distributions

:::
are

:::
50,

:::
176

:::
and

::::
214

:::
for

::
3,

:
6
:::
and

::
8

:::::::
clusters,

::::::::::
respectively.

:::::
With

::::
their

::::::::
respective

:::::::
degrees

::
of

:::::::
freedom

::
of

::
2,
::

5
::::
and

::
7,

:::::
these

:::::
values

:
indicate that the differences are highly significant.

:::
two

:::::::::::
distributions

:::
are

:::::::::::
significantly

:::::::
different

::
at

:
a
::::::::::
probability

::::
level

:::::
much

:::::
lower

::::
than

:::::
0.001.

::::
The Panel (d) shows the evolution of the Shannon entropy for the three140

partitions. Here however, the (static) information content does not change much as a function of time whatever the partition

chosen.

The Shannon entropy, however, does not provide any information on the dynamics. Let us then turn to the dynamics of the

weather patterns by investigating the 2-state entropy, S2, providing information on the dynamics of the succession of pairs of

patterns, together with the backward-in-time entropy, SR
2 , for the three partitions of interest (Figure 2). A first general remark145

is the fact that S2 is decreasing for most of the period, and then slightly increase, whatever the partition. This suggests that the

information content decreases, with a less diverse set of pairs of events. When looking at the diagonal of the transition matrix,

W (i|j), featuring the persistence from one day to the next, these conditional probabilities (for i= j) are increasing while S2

is decreasing (not shown). This result suggests that the system becomes progressively more predictable and persistent during

the historical period, except at the very end of the period.150

On the same panels, SR
2 is displayed, that would be larger than the S2 if a time-asymmetry is present in the data (Gaspard

, 2004; Andrieux et al , 2007). The amplitude of SR
2 is indeed larger when considering the 6-pattern and 8-pattern partitions,
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Figure 1. Temporal evolution of (a) the probability to be in one of the 3 patterns, (b) the probability to be in one of the 6 patterns, (c) the

probability to be in one of the 8 patterns, and (d) the Shannon entropy for the three partitions.

but not for the 3-pattern partition. Considering the latter case first, this type of behavior suggests a time-symmetry (or detailed

balance) of the dynamical process generated by that partition, as for instance found in the analysis of different alphabets used

to "read" the DNA in Provata et al (2014). Is this feature due to the fact that the series is too short or to a very specific feature155

of this 3-pattern partition, remains to explore.

For the former cases of 6 and 8 patterns, the results are very interesting as the backward entropy is always much larger

than the forward, suggesting a time-asymmetry related to the irreversibility of the process (Gaspard , 2004). This is further

illustrated in panel (d) of Fig. (2), by the evolution of the difference between the backward and forward entropy, d2. Note that

d2 shows an overall increase as a function of time. This would suggest an increase of the lower bound, d2, of the information160

entropy production over the North Atlantic. However, the trend is not reproduced when analyzing d3 associated with the joint

probabilities of 3 successive weather patterns, questioning the validity of the trend found with d2. This type of analysis however

suffers from a lack of data, that can only be compensated by investigating model runs. This point will be taken up further in

the analysis of the UK Met Office models.

The analysis of the information entropies of pairs of events can be extended to longer blocks of symbols. In Fig. 3, a165

decrease is also experienced whatever the length of the blocks of symbols (until
:
i=7 days), except at the end of the period

::
in
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Figure 2. Temporal evolution of forward and backward entropies, S2 and SR
2 , for (a) 3 patterns, (b) 6 patterns, and (c) 8 patterns. (d) the

lower bound of the information entropy productio, d2, for the three partitions.

::
the

::::
last

:::::::
decades. This feature is going in the same direction as for S2, with an increase of predictability of the system. An

additional indication of that is the constant
:::::::::
progressive

:
decrease of the number of words (sequence of symbols) that are present

in the window of 50 years as we move forward in time
:::
until

:::
the

:::
end

:::
of

::
the

::::
time

:::::
series

:
(not shown). In other words, the diversity

of possible sequences is decreasing during the historical period. In panel (d), a different view of this evolution is displayed170

with the block entropy as a function of the length of the words at the beginning of the historical period and at the end, further

illustrating the change.

The analysis reveals a drastic modification of the dynamics of the succession of weather patterns over the North Atlantic and

Western Europe, with an increase of predictability except at the end of the period. Is this feature a response to climate change

or the presence of some low-frequency variability, is not clear at this stage. Another aspect that could affect the statistics is the175

number and quality of the observations used. A natural conjecture would be to believe that the first part of the period is not

much influenced by climate change, and therefore could reflect a natural tendency of the system provided that the dynamics is

not affected much by the number and quality of observations. This conjecture could be challenged, either by analyzing weather

pattern dynamics based on the same set of observation stations throughout the period, or with long reference runs of models

allowing to clarify the impact of the low-frequency variability on the evolution of the dynamics of weather patterns.180
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Figure 3. Temporal evolution of normalized forward block entropies, Si/i, for (a) 3 regimes, (b) 6 regimes, and (c) 8 regimes. (d) Depen-

dencies of the block entropies as a function of the length of the words, i, for the three partitions for the initial and final windows of 50 years

of the observation dataset.

4.2 Information Entropy analysis of the UK Met Office model

Figures 4 and 5 show the entropy, S2, for the 15 model runs of the Met Office. The estimation based on the 15 realizations

altogether is also shown (blue curve), together with the observations (red curve).

For the RCP2.6, S2 shows a strong variability among the different realizations. One first remark is that S2 for the different

partitions over the overlapping periods is generally larger for the model runs than for the observations. This suggests that less185

regularities are present in the dynamics of the model with less predictability. Moreover, it is not clear at this stage whether the

large variability among the realizations is the impact of slightly different parameterizations within the model, or of a different

possible realization of the dynamics starting from different initial states, or both.

For the RCP8.5, a similar picture is found, except that S2 for most of the model runs shows larger values at the end of the

21st century.190

In panel (d) of Figs. 4 and 5, the evolution of the lower bound, d2, of the information entropy production of the model,

combined over the 15 different model versions, and of the observations, are displayed for the three partitions. The interesting
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Figure 4. Temporal evolution of S2 for the 15 model runs of the Met Office model from 1900 to 2099 under RCP2.6 scenario (black lines),

for (a) 3 patterns, (b) 6 patterns, and (c) 8 patterns. The red curves represent the reference historical data and the blue triangle curve the

average entropy over the 15 runs. (d) The lower bound of the information entropy production, d2, for the three regime partitions for the

observations (red), and for the average information entropy production of the model runs (blue). The different symbols (star, open square,

full square) correspond to the three partitions 3, 6 and 8 patterns, respectively.

message here is that d2 is larger in the model than in the observations. This feature is also present for d3 (not shown), which

could reflect a larger information entropy production and degree of irreversibility than in reality.

Finally in Figure 6, d2, d3 and d4 are shown for both RCP scenarios. The larger bounds are not displayed as they are showing195

values smaller than the first three, in violation with their ordering, further indicating that the number of realizations are still not

sufficient to provide reliable estimates of high order joint probabilities. Interestingly, these three lower bounds are increasing

as a function of time in both scenarios, suggesting that the information entropy production is also increasing as a function of

time, and hence the atmospheric irreversibility. Furthermore, there is a change of the rate of increase of the lower bounds for

one scenario or the other. In the case of the RCP8.5, the increase is faster around 2030 (corresponding to the period 2010-2050)200

indicating an acceleration of the change of information entropy production.

These remarkable results suggest that the information entropy production in the North Atlantic will considerably change

depending on the type of scenario the Earth Climate system will follow. As the information entropy production is related to

irreversibility of the dynamics, one may conjecture that production of heat and dissipation of the underlying dynamics will
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Figure 5. Temporal evolution of S2 for the 15 model runs of the Met Office model from 1900 to 2099 under RCP8.5 scenario (black lines),

for (a) 3 patterns, (b) 6 patterns, and (c) 8 patterns. The red curves represent the reference historical data and the blue triangle curve the

average entropy over the 15 runs. (d) The lower bound of the information entropy production, d2, for the three regime partitions for the

observations (red), and for the average information entropy production of the model runs (blue). The different symbols (star, open square,

full square) correspond to the three partitions 3, 6 and 8 patterns, respectively.

also increase substantially for large increase of the green-house gases. This is corroborated by works that have been done on205

the increase of dissipation on the North Atlantic region (Coumou and Rahmstorf , 2012) and (physical) entropy production in

general in climate models under climate change (Lucarini et al , 2010, 2011; Lembo et al , 2019; Kanno and Iwasaki , 2022).

5 Conclusions

The dynamics of weather patterns over the North Atlantic under climate change is explored from the perspective of information

theory with a focus on the information entropy and its production. The weather patterns are the ones defined by the Met Office210

(Neal et al , 2016), on which both the observations starting in 1850 and the model projections from 1900 to 2099, are projected.

Three sets of weather pattern partitions are used, 3, 6 and 8.

The first key message conveyed by this analysis is the overall decrease of the information entropy in the observations, except

at the end of the period. This decrease indicates that the predictability increased during the historical period, with a slight
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Figure 6. Temporal evolution of the lower bounds of the entropy production d2, d3 and d4 combining the statistics of the 15 Met Office

model versions, under (a) RCP2.6 and (b) RCP8.5.
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decrease at the end. One key question is now to know whether this evolution is directly related to climate change, or to a215

natural low-frequency variability, or even to the change of the observational system over the North Atlantic. This question will

be addressed in the future.

To further clarify the role of climate change in the evolution of the information entropy, the UK Met Office climate model

runs under two climate scenarios, RCP2.6 and RCP8.5, were explored. The analysis of the Met Office climate model indicates

that the information entropy is for most of the realizations larger than the one of the observations, suggesting a lower pre-220

dictability in the model. At the same time, all the realizations suggest that the information entropy will be larger by the end of

the 21st Century, further suggesting a decrease of weather pattern predictability.

The lower bounds of the information entropy production have been computed for both the observations and the model runs.

For the observations, an increase of d2 is found during the historical period, but the limited number of data does not allow

to confirm this with the other bounds. For the model runs, these bounds are increasing as a function of time with a rate that225

depends on the specific scenario chosen, indicating an increase of the degree of irreversibility.
::::::
Overall,

:::
the

::::::::::
information

:::::::
entropy

:::::::::
production

:::::::
increases

:::
by

:
a
:::::
factor

::
of

:::
10

::
%

::
in

:::
the

:::::::
RCP2.6

:::::::
scenario

:::
and

:
a
::::::
factor

::
of

:::::
30-40

::
%

::
in

:::
the

:::::::
RCP8.5

:::
one,

::
as
:::::::::
compared

::
to

:::
the

::::::::
beginning

::
of

:::
the

::::
20th

:::::::
century. This further allows us for making the conjecture that heat production and dissipation associated

with the emergence of irreversibility is increasing with climate change, corroborating earlier findings (Lucarini et al , 2010;

Coumou and Rahmstorf , 2012; Lembo et al , 2019; Kanno and Iwasaki , 2022). As the rate of increase is much larger in230

the RCP8.5 scenario than in the RCP2.6 one, a further increase of heat production and dissipation should be expected under

RCP8.5.

The novel approach of evaluating the (physical) entropy production based on coarse-grained time series at the microscopic

level proposed by Gomez-Marin et al (2008); Roldán and Parrondo (2010, 2012) offers an important opportunity to estimate

experimentally this quantity. Yet, when dealing with the dynamics of a macroscopic system like the atmosphere, the connection235

between the information entropy productionand
:
,
:
the physical entropy production

:
,
:::::::::
dissipation

::::
and

:::::
global

::::::::::
constraints,

:
is still

missing. The possibility offered by these advances however opens the way to improve our knowledge of the dynamics of the

climate system, provided appropriate researches are done in that direction.

The current model analysis is based on a set of slightly different model versions of the UK Met Office model. These

differences could bias the estimates. A natural extension will be to explore large ensembles of a single model, and to explore240

different models of CMIP-class.

Data availability. The observation data set the historical classifications are available on request to the Met Office. Part of it can also be found

on the Pangaea website at https://doi.pangaea.de/10.1594/PANGAEA.942896 (Neal, 2022). The UK Met Office Global model data used in

this study is all available from the Centre for Environmental Data Analysis http://data.ceda.ac.uk/badc/ukcp18/data.
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Appendix A: Markovianity of the succession of weather patterns245

The Markovian nature of the dynamics can provide considerable simplifications in the description of coarse-grained dynamics.

It is however now well known that lumping continuous state-space variables into a set of discrete states does not lead in general

to a Markov dynamics (Nicolis and Nicolis , 2012). To check the Markovian character of the dynamics, statistical tests can be

performed. A test of the order of Markovianity has been proposed by Bilingsley (1961) and used in Provata et al (2014). This

is a χ2 test under the hypothesis that the Markov chain is of order r:250

χ2 =
∑

i1,...,is

[Np(i1, ..., is)−Np(i1, ..., is−1)W (is|is−r, ..., is−1)]
2

Np(i1, ..., is−1)W (is|is−r, ..., is−1)
(A1)

with a number of degrees of freedom of

NF =Ns −Ns−1 − (Nr −Nr−1) (A2)

where N is the number of successive times in the series, W (is|is−r, ..., is−1), the transition matrix from the path is−r, ..., is−1

to the new symbol is. The null hypothesis of the test is to assume that the process is Markov of order r. If the statistics of the255

test are larger than a certain threshold fixed by the level of confidence, then the null hypothesis is rejected. The test is applied

to the data at our disposal with a level of confidence of 5%.

The test has been used for the 3, 6 and 8 patterns defined in Section 3. The results are shown in Table 1 for the observations.

This table indicates that whatever the number of patterns used here, they cannot be represented as first order Markov pro-

cesses. It is however interesting to remark that when the number of patterns increases, the order of the Markov process needed260

to represent properly the dynamics seems to decrease. This particular feature has however to be taken with caution as the

computation of the probabilities of large blocks of symbols and with a large number of patterns, needs a large number of data

much larger than the one currently at our disposal. A similar analysis has been performed for the different model runs with

similar conclusions.
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Table A1. Test χ2 for 3, 6 and 8 weather patterns for the series of observations.The two first columns represent the two Markov orders that

are compared. The third column contains the number of degrees of Freedom of the test. The fifth and sixth columns contain the p-value of

the test at the 5% level and the actual value of the test. If the actual value is smaller thant the p-value, the order r is considered as the order

of the Markov chain necessary to describe the dynamics of the weather patterns.

3 regimes

Order r r+1 Numb Degrees Freedom 5% p-value Value of the test

0 1 4 9.5 39,432.5

1 2 12 21.0 581.7

2 3 36 51.0 272.3

3 4 108 133.3 135.2

4 5 324 367.0 281.6

6 regimes

Order r r+1 Numb Degrees Freedom 5% p-value Value of the test

0 1 25 37.7 85,806.6

1 2 150 179.6 1664.9

2 3 900 970.9 1600.6

3 4 5400 5572.1 3312.0

4 5 32400 32819.8 9743.8

8 regimes

Order r r+1 Numb Degrees Freedom 5% p-value Value of the test

0 1 49 66.3 108,108

1 2 392 439.2 2,402.9

2 3 3136 3267.4 3190.2

3 4 25088 25457.6 6944.2

4 5 200704 201747.0 18371.7
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