

1 **Equilibrium climate sensitivity increases with aerosol concentration**
2 **due to changes in precipitation efficiency**

3 Guy Dagan^{1*}

4 ¹ Fredy and Nadine Herrmann Institute of Earth Sciences, Hebrew University,
5 Jerusalem, Israel

6 *Corresponding author. Email: guy.dagan@mail.huji.ac.il

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

35 **Abstract**

36 How Earth's climate reacts to anthropogenic forcing is one of the most burning
37 questions faced by today's scientific community. A leading source of uncertainty in
38 estimating this sensitivity is related to the response of clouds. Under the canonical
39 climate-change perspective of forcings and feedbacks, the effect of anthropogenic
40 aerosols on clouds is categorized under the forcing component, while the modifications
41 of the radiative properties of clouds due to climate change are considered in the
42 feedback component. Each of these components contributes the largest portion of
43 uncertainty to its relevant category and is largely studied separately from the other. In
44 this paper, using idealized cloud resolving, radiative-convective-equilibrium
45 simulations, with a slab ocean model, we show that aerosol-cloud interactions could
46 affect cloud feedback. Specifically, we show that equilibrium climate sensitivity
47 increases under high aerosol concentration due to an increase in the shortwave cloud
48 feedback. The shortwave cloud feedback is enhanced under high aerosol conditions due
49 to a stronger increase in the precipitation efficiency with warming, which can be
50 explained by higher sensitivity of the droplet size and the cloud water content to the
51 CO₂ concentration rise. These results indicate a possible connection between cloud
52 feedback and aerosol-cloud interactions.

53

54 **1. Introduction**

55 Estimating Earth's equilibrium climate sensitivity (ECS), defined as the steady-state
56 global mean temperature increase for a doubling of CO₂, is considered as a first-order,
57 fundamental milestone on the way to understanding and predicting anthropogenic-
58 driven climate change (Sherwood et al., 2020). Decades of research have tried to
59 accurately quantify ECS, with only limited success. The most probable current ECS
60 estimates are in the range of 2.3–4.5K (Sherwood et al., 2020). The largest source of
61 uncertainty in estimating ECS is related to the response of clouds to the externally
62 forced warming and the feedback of these changes on the climate system (Sherwood et
63 al., 2020; Ceppi et al., 2017; Schneider et al., 2017). Clouds strongly modulate Earth's
64 radiation budget by reflecting the incoming shortwave radiation from the sun and by
65 absorbing and re-emitting the terrestrial longwave radiation (Loeb et al., 2018). Thus,
66 changes in the cloud macro-physical properties (such as coverage and vertical extent)
67 and micro-physical properties (such as liquid/ice partition or hydrometeors size) due to
68 anthropogenic-driven climate change could significantly alter the climate system's

pmw: significantly

pmw: strong

71 response (Gettelman and Sherwood, 2016; Nuijens and Siebesma, 2019; Schneider et
72 al., 2017).

73 An important factor in determining cloud feedback magnitude is the sensitivity of the
74 Precipitation Efficiency (ϵ) (Lutsko et al., 2021; Li et al., 2022; Lutsko and Cronin,
75 2018). ϵ quantifies the fraction of condensed water in a cloud to reach the surface as
76 precipitation. Using idealized cloud resolving simulations, it was shown that ϵ is
77 expected to increase with temperature (Lutsko and Cronin, 2018). The increase in ϵ
78 with warming was shown to be mostly driven by an increase in the efficiency with
79 which cloud condensate is converted into precipitation, while changes in the
80 evaporation of falling precipitation was shown to play a smaller role (Lutsko and
81 Cronin, 2018).

82 more efficiently depletes An increase in ϵ with warming represents more efficient depletion of the water from
83 the clouds, thus affecting the radiation budget. On the one hand, increase in ϵ with
84 warming was suggested to reduce the anvil cloud coverage and hence increase the
85 outgoing longwave radiation (Lindzen et al., 2001; Mauritsen and Stevens, 2015), thus
86 producing negative feedback. On the other hand, however, it was recently shown that
87 the longwave effect of an ϵ increase is over-compensated for by changes in the
88 shortwave flux (Li et al., 2019), i.e., a large reduction in the cloud optical depth, driving
89 a reduction in the shortwave cooling effect of clouds, dominates the response.

90 The efficiency with which cloud condensate is converted into precipitation is closely
91 linked to the micro-physical properties of the clouds. The autoconversion of cloud
92 droplets into rain becomes significant when liquid water amount and/or droplet radii
93 reach a critical threshold (Freud and Rosenfeld, 2012). An important factor influencing
94 the droplet radii (and also the liquid water amount, to some degree) is the amount of
95 available cloud condensation nuclei (CCN). Generally, an increase in aerosol
96 concentration drives an increase in CCN concentration, which results in more numerous
97 and smaller droplets in the cloud (Twomey, 1974; Warner and Twomey, 1967). The
98 smaller droplets require longer time (or equivalently larger vertical distance) in the
99 clouds to grow by diffusion to the critical size enabling precipitation, thus delaying the
100 initial warm rain formation (Rosenfeld, 2000; Dagan et al., 2015b). In addition, aerosols
101 were suggested to enhance the vertical velocities and the cloud top heights of deep
102 convective clouds (due to the so-called invigoration mechanism (Abbott & Cronin,
103 2021; Koren et al., 2005; Rosenfeld et al., 2008)), which in turn can results in

105 [precipitation enhancement](#) (Koren et al., 2012). Therefore, aerosols could affect ϵ
106 (Khain, 2009).

107 In addition to the effect on rain, aerosols could modify the radiative properties of clouds,
108 by modifying the droplet concentration and size distribution (Twomey, 1974) and by
109 affecting the clouds' macro-physical properties (Albrecht, 1989; Bellouin et al., 2019).
110 These changes to the radiative properties of clouds result in radiative forcing that could
111 affect the sea surface temperature [SST (Bellouin et al., 2019)]. Using cloud-resolving
112 radiative-convective-equilibrium simulations with interactive SST, Khairoutdinov and
113 Yang (2013) showed that the surface temperature decreases by 1.5K with each 10-fold
114 increase in aerosol concentration, an effect quite comparable to a 2.1–2.3K SST
115 warming obtained in a simulation with given (low) aerosol conditions but doubled CO₂
116 concentration.

117 It has been suggested that cloud feedback and aerosol forcing are not independent of
118 each other (Mülmenstädt and Feingold, 2018; Igel and van den Heever, 2021). In
119 addition, the strong links between ϵ and cloud feedback and between ϵ and aerosol
120 concentration merit a dedicated study on the potential mutual CO₂ and aerosol effect on
121 clouds and thus also on ECS, which is the aim of the current study.

122

123

124 **2. Methods**

125 **Model description and experimental design**

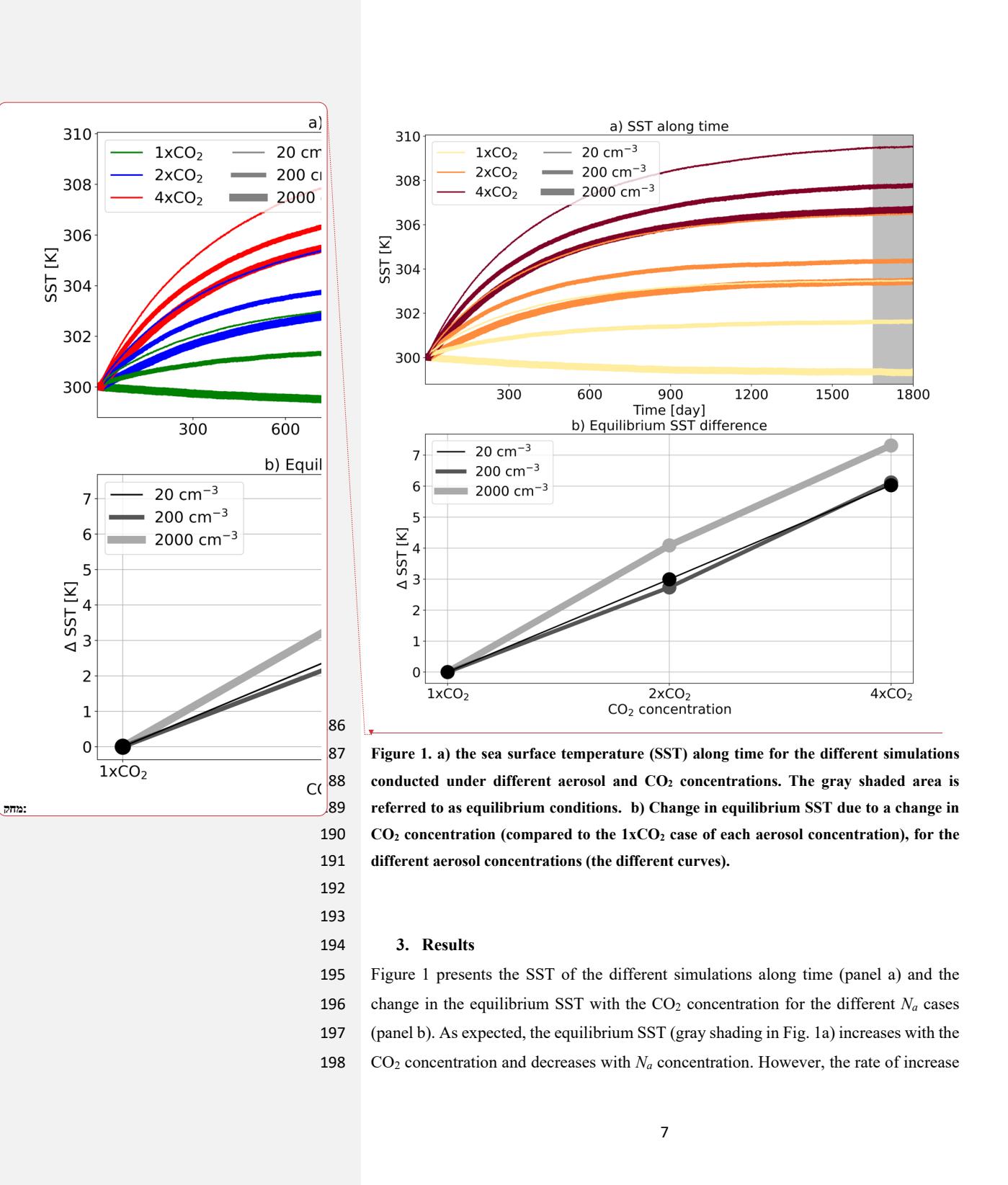
126 The model used herein is the System of Atmospheric Modeling [SAM - (Khairoutdinov
127 and Randall, 2003)] version 6.11.7. Subgrid-scale fluxes are parameterized using
128 Smagorinsky's eddy diffusivity model and gravity waves are damped at the top of the
129 domain. The microphysics scheme used is Morrison et al. (2005) 2-moment bulk
130 microphysics. The cloud droplet number concentration source assumes that the number
131 of activated CCN depends on the super-saturation ([S – which is estimated diagnostically
132 in the model as the model assumes saturation adjustment](#)) according to a power-law:
133 $CDNC = N_a S^k$, where N_a is the prescribed concentration of CCN active at 1 % super-
134 saturation, and k is a constant (set in this study to 0.4 - a typical value for maritime
135 conditions). Changes in N_a serve as a proxy for the change in aerosol concentration.
136 Three levels of N_a are considered here, covering an extreme range of conditions – 20,
137 200 and 2000 cm⁻³. While this wide range of conditions is unlikely to exist at any given

pmw: computes

pmw: ius for

138 geographical location, they are used here in order to cover the range of possible
139 conditions at different locations and to maximize the effect for establishing better
140 physical understanding. The activation of CCN at the cloud base is parameterized
141 following Twomey (1959), using the vertical velocity and CCN spectrum parameters.

142 The model is configured to pass cloud water and ice-crystal effective radii, from the
143 microphysics scheme to the radiation scheme; thus, the Twomey effect (Twomey,
144 1977) of both liquid and ice is considered. Direct interactions between aerosols and
145 radiation are not considered here.


146 The simulations are conducted in a radiative-convective-equilibrium (RCE) mode and
147 generally follow the RCEMIP (RCE model inter-comparison project (Wing et al.,
148 2018)) small-domain instructions (but with interactive SST and changes in the CO₂ and
149 aerosol concentration). The simulations were performed on a square, doubly periodic
150 domain. In this case, we want to avoid the effect of convective self-aggregation on ϵ ;
151 thus, the domain size is set to 96x96 km², which was shown to be small enough to
152 prevent convective self-aggregation (Muller and Held, 2012; Lutsko and Cronin, 2018;
153 Yanase et al., 2020). The horizontal grid spacing is set to 1km and 68 vertical levels are
154 used, between 25m and 31km, with vertical grid spacing increasing from 50m near the
155 surface to roughly 1km at the domain top. We note that while shallow clouds are present
156 in the simulations, the grid spacing used here is too coarse for a full representation of
157 these clouds. A time step of 10s is used, and radiative fluxes are calculated every 5 min
158 using the CAM radiation scheme (Collins et al., 2006). The output resolution for all
159 fields is 1h. (3D fields are saved as snapshots while domain statistics are saved as
160 hourly-averages). The incoming solar radiation is fixed at 551.58 Wm⁻² with a zenith
161 angle of 42.05° (Wing et al., 2018), producing a net insolation close to the tropical-
162 mean value. Convection is initialized with a small thermal noise added near the surface
163 at the beginning of the simulation. The initial conditions for the simulations are as in
164 Wing et al. (2018).

165 Greenhouse gases are varied for three different levels: pre-industrial level (280 PPM,
166 1xCO₂), 2 times pre-industrial level (2xCO₂) and 4 times pre-industrial level (4xCO₂).
167 As in the case of the aerosol concentrations, the large range of CO₂ conditions covered
168 here are used to examine the clouds' sensitivity to greenhouse gas concentrations under
169 a wide range of conditions. Nine different simulations, with all possible combinations
170 of N_a and CO₂ concentrations, were conducted. The O₃ vertical profile is similar to

173 [Wing et al. \(2018\) and represents a typical tropical atmosphere. The effect of other trace](#)
174 [gases \(such as CH₄ and N₂O\) is neglected for simplicity.](#)

175 In all simulations, the SST is interactive and predicted by a slab ocean model (SOM).
176 The SOM's mixed layer depth is set to 5m, which represented a compromise between a
177 relatively deep layer (≥ 10 m), which reduces SST noise (Khairotdinov and Yang,
178 2013), and a relatively shallow layer ($\ll 1$ m), which requires a shorter computation time
179 for equilibrium (Romps, 2020). As in Romps (2020), the SOM is cooled at a rate of 112
180 Wm^{-2} in order to ensure that the simulations with 1xCO₂ are kept at around the initial
181 SST of 300K (Fig. 1). Each simulation was run for 1800 days, which is sufficient for
182 reaching close to equilibrium (the surface energy imbalance is $\leq 0.1 \text{Wm}^{-2}$ in all
183 simulations during the last 150 days). The last 150 days of each run are used for
184 statistical sampling (gray shading in Fig. 1).

185

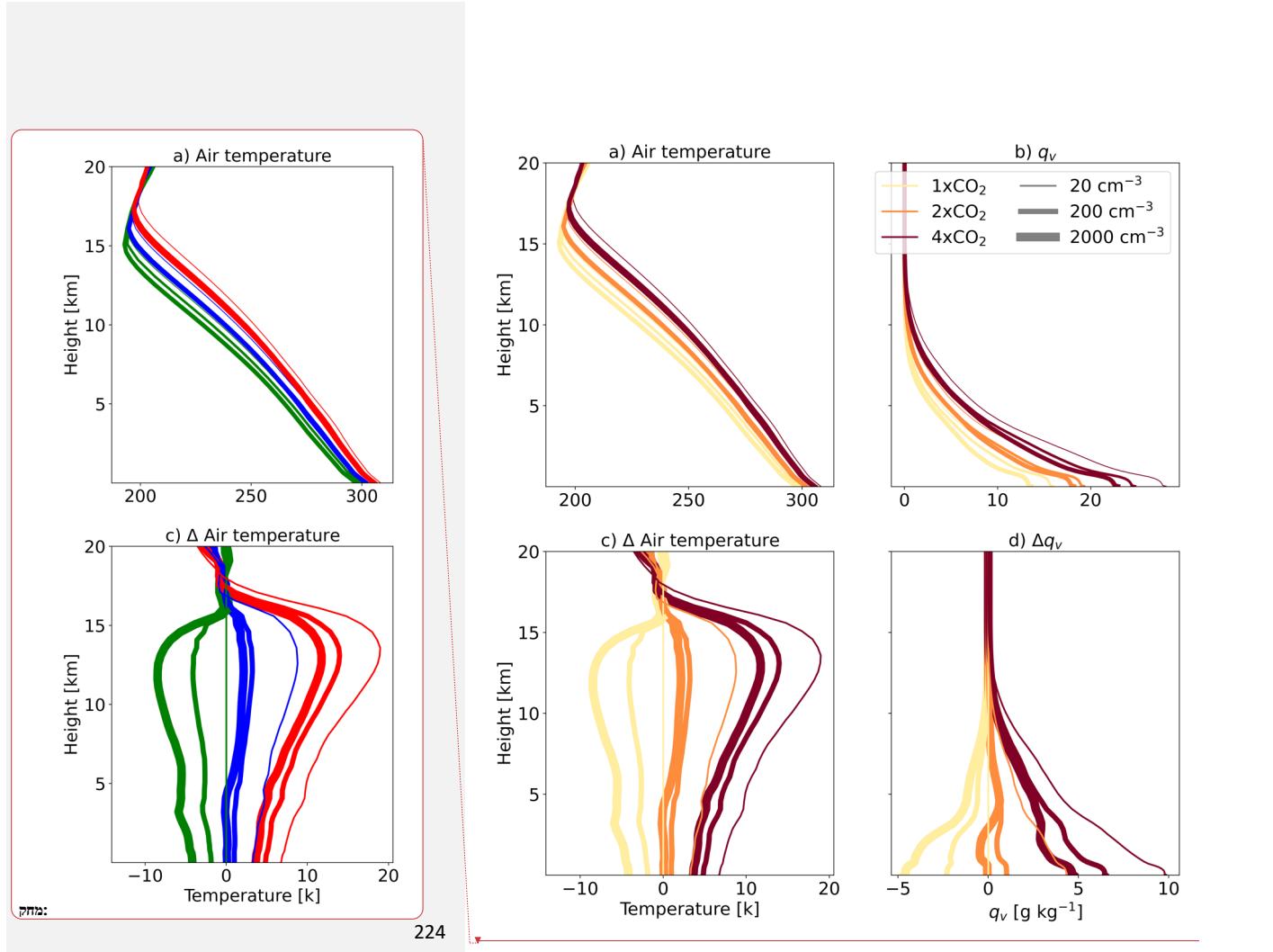
200 in equilibrium SST with CO₂ concentration increases under extremely high N_a
201 concentrations (2000 cm⁻³), compared with the low and medium N_a concentrations (20
202 and 200 cm⁻³, respectively - Fig. 1b). Calculating the average ECS based on the three
203 combinations available for each N_a condition [2xCO₂-1xCO₂, 4xCO₂-2xCO₂ and
204 (4xCO₂-1xCO₂)/2], demonstrates that it increases with N_a from 3.0K at the lowest N_a
205 to 3.7K at the highest N_a (i.e., a 23% increase – Table 1).

206

207 **Table 1. Average equilibrium climate sensitivity (ECS), cloud-feedback parameter (λ_{cloud}),**
208 **hydrological sensitivity (η), and change in precipitation efficiency ($\Delta\epsilon$) of the three**
209 **combinations available for each N_a condition [2xCO₂-1xCO₂, 4xCO₂-2xCO₂ and 4xCO₂-**
210 **1xCO₂]. For the calculation of the average ECS, the difference between 4xCO₂ and 1xCO₂**
211 **is divided by 2. The rest of the quantities are normalized by the SST change between the**
212 **relevant simulations. Please refer to the text for the definitions of these quantities.**

N_a [cm ⁻³]	ECS [K]	λ_{cloud} [W m ⁻² K ⁻¹]	η [% K ⁻¹]	$\Delta\epsilon$ [% K ⁻¹]
20	3.0	-0.45	3.8	1.2
200	3.1	-0.38	4.3	1.3
2000	3.7	-0.08	4.6	2.7

213


214 Figure 2 presents the time and domain mean vertical profiles of temperature and water
215 vapor mixing ratio (q_v) in the different simulations (panels a and b) and their difference
216 from the simulation with the lowest N_a and CO₂ concentrations (panels c and d). It
217 demonstrates, as expected, that the vertical profile of air temperature is set by the
218 surface temperature (increases with CO₂ concentrations and decreases with N_a) with an
219 amplification of the change at the upper troposphere, as the profiles follow the moist
adiabatic lapse-rate. It also shows that q_v increases with the temperature, as expected
(Held and Soden, 2006).

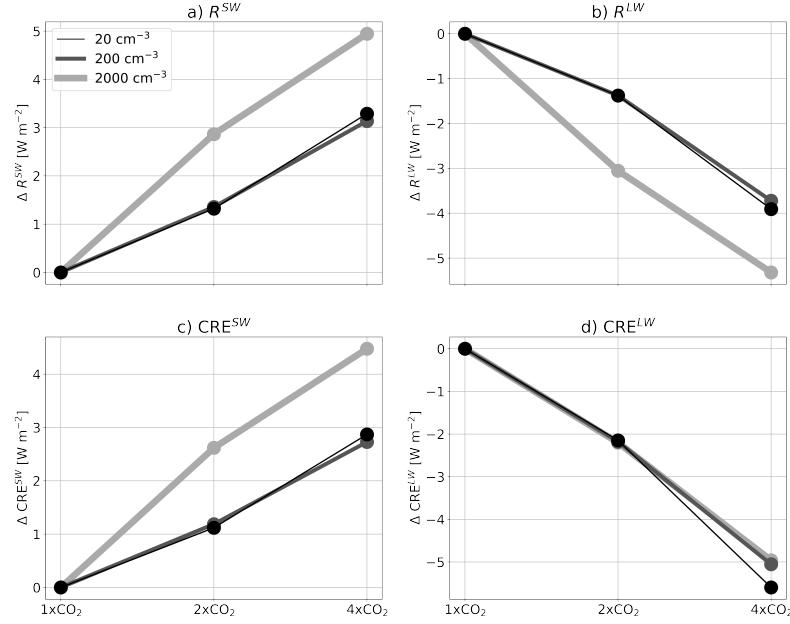
220

221

222

pmw: q_v

224
225 **Figure 2. Time and domain mean vertical profiles of air temperature and water vapor
226 mixing ratio (q_v) in the different simulations (a and b) and how they differ from the
227 simulation with the lowest N_a and CO₂ concentrations (panels c and d).**
228
229

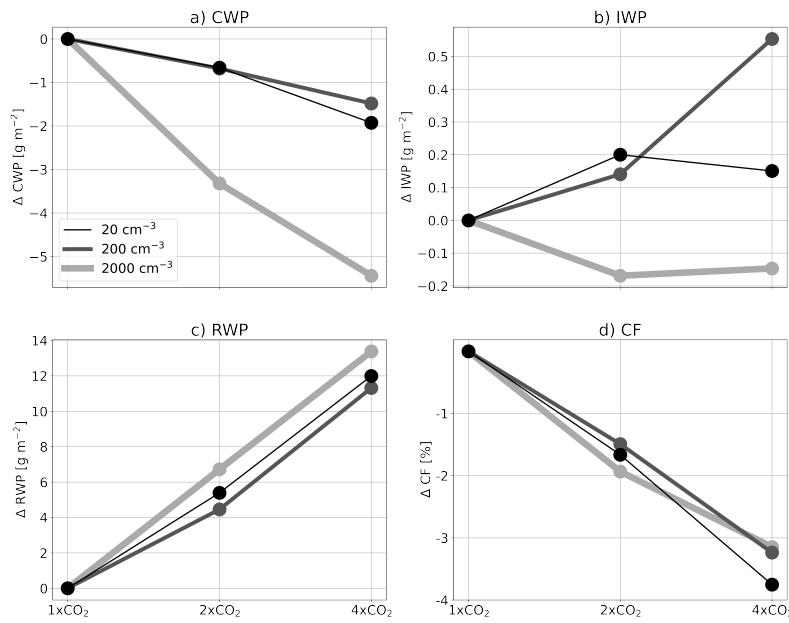

230 In order to understand the increase in ECS with N_a , we next examine the top-of-
231 atmosphere (TOA) energy budget. Figure 3 presents the change in the net shortwave
232 and longwave TOA energy gain (R^{SW} and R^{LW} , respectively) with the CO₂
233 concentration for the different N_a conditions. In addition, Fig. 3 presents the change in
234 the cloud radiative effect (CRE) with increasing the CO₂ concentration, where CRE is
235 computed by subtracting the clear-sky from the all-sky TOA radiative fluxes

37 עיבוד: לא נתוי, גופן עברית ושותות אחרות: לא
38 כתוי

($R - R_{\text{clear-sky}}$), again for the shortwave and longwave separately (CRE^{SW} and CRE^{LW} , respectively). Figure 3a and b demonstrates that under equilibrium conditions R^{SW} increases, while R^{LW} decreases with the CO_2 concentration. However, the rate of change in both R^{SW} and R^{LW} is much faster under the high N_a conditions than under the low and medium N_a conditions. The trend in CRE^{SW} under the different N_a conditions (Fig. 3c) resembles the trend in R^{SW} , suggesting that the clouds' response dominates the changes in the TOA shortwave fluxes. CRE^{LW} , on the other hand, decreases at a similar rate with CO_2 concentration for the different N_a conditions (Fig. 3d). Thus, the different decrease rates in R^{LW} with CO_2 concentration for the different N_a conditions (Fig. 3b) must be driven by clear-sky changes (specifically, the plank, the lapse-rate and the water vapor feedbacks – see Fig. 2 above).

239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255

In Table 1 above, we estimate the average cloud radiative feedback (λ_{cloud}) as the change in CRE with increasing surface temperature, i.e., $\lambda_{\text{cloud}} = d\text{CRE}/dT$, for the different N_a conditions. The table shows that λ_{cloud} becomes less negative with the increase in N_a , leading to higher climate sensitivity. The differences in the values of λ_{cloud} between the different N_a conditions is mostly derived from the shortwave part of the spectrum (Fig. 3).


257
258 **Figure 3. The change in the net top-of-atmosphere energy gain (R) in the shortwave (a)**
259 **and in the longwave (b), and the change in the cloud radiative effect (CRE) in the**
260 **shortwave (c) and in the longwave (d), due to a change in the CO₂ concentration**
261 **(compared to the 1xCO₂ case of each aerosol concentration), for the different aerosol**
262 **concentrations (the different curves).**

263
264 Thus far, we have seen that the ECS increases with N_a (Fig. 1 and Table 1) and that this
265 increase can be explained by changes in λ_{cloud} (Table 1) and specifically in CRE^{SW} (Fig.
266 3). To understand the changes in the cloud properties driving the changes in λ_{cloud} , and
267 hence also in ECS, under the different N_a conditions, in Fig. 4 we present the change in
268 cloud liquid water path (CWP), ice water path (IWP), rain water path (RWP) and cloud
269 fraction (CF) with increasing CO₂ concentrations for the different N_a conditions. The
270 figure shows that the CWP decreases with the CO₂ concentrations at a much faster rate
271 (about 3 times faster) under the highest N_a conditions compared to the low and medium
272 N_a conditions (Fig. 4a). The changes in the IWP, on the other hand, are about an order
273 of magnitude smaller than the changes in CWP and are not consistent in sign for the
274 different N_a conditions (Fig. 4b). The RWP increases with the CO₂ concentrations at a
275 slightly faster rate (about 20% faster) under the highest N_a conditions compared to the

276 low and medium N_a conditions (however the response is non-monotonic with N_a - Fig.
 277 4c). The CF decreases with the CO_2 concentrations, at a similar rate for the different N_a
 278 conditions (about 1.5% decrease in CF for each doubling of the CO_2 concentrations -
 279 Fig. 4d).

280 The faster decrease in CWP with CO_2 concentrations under high N_a conditions drives
 281 the faster increase in CRE^{SW} as the clouds become less opaque in the shortwave. We
 282 note that the difference in CRE^{SW} trend under different N_a conditions could not be
 283 explained by the minor differences in the CF trends. In addition, the small differences
 284 in the IWP between the different N_a conditions are consistent with the small differences
 285 in the CRE^{LW} seen above. The general increase in RWP with CO_2 concentrations is
 286 consistent with an increase in rain efficiency with warming (Lutsko and Cronin, 2018),
 287 as elaborated below.

288
 289

290
 291 **Figure 4. The change in: a) cloud liquid water path (CWP), b) ice water path (IWP, c)
 292 rain water path (RWP), and d) cloud fraction (CF) due to a change in the CO_2
 293 concentration (compared to the $1x\text{CO}_2$ case of each aerosol concentration), for the
 294 different aerosol concentrations (the different curves).**

295 Figure 4 suggests that the largest difference in the cloud response to CO₂ under different
296 N_a conditions is due to changes in CWP. The higher sensitivity of CWP to CO₂
297 concentration under higher N_a conditions can explain the higher λ_{cloud} and thus also the
298 larger ECS. Hence, the question arises: What causes the faster reduction in CWP with
299 CO₂ concentration under high N_a conditions? A major sink for CWP is via precipitation.
300 Hence, in Fig. 5 we present the change in the mean surface precipitation rate, the
301 hydrological sensitivity (η - the rate of change in the surface precipitation per 1K
302 increase in surface temperature) and the precipitation efficiency (ϵ - calculated
303 following Li et al. (2022) as the ratio of surface precipitation-to-condensed water path,
304 i.e., CWP+IWP+RWP). [Please note that the precipitation efficiency definition used
here, following Li et al. \(2022\), is slightly different from the definition used in Lutsko
and Cronin \(2018\). However, the two different definitions were shown to be tightly
correlated \(Li et al., 2022\), thus, the exact definition used is not expected to change the
main conclusions. In addition, the use of this definition will enable easier comparison
with observations and global climate models in the future.](#)

310 As expected, [Fig. 5 demonstrates that](#) the surface precipitation increases with CO₂ (i.e.,
311 η is positive) and so does ϵ (Lutsko and Cronin, 2018). This is true for all N_a conditions.
312 However, the rates of increase in surface precipitation and ϵ with CO₂ concentration
313 are higher under the highest N_a conditions (see also Table 1). We note that the larger
314 rate of increase in surface precipitation under the highest N_a conditions is not solely due
315 to the higher surface temperature increase, as η also increases with N_a .

316 The much larger (more than double- Table 1) rate of increase in ϵ with the CO₂
317 concentration under the highest N_a conditions [represents more efficient depletion of](#) the
318 cloud water [from the atmosphere](#), leading to a faster reduction in CWP with CO₂
319 concentration (Fig. 4), which in turn leads to higher λ_{cloud} and ECS. The faster increase
320 in RWP with CO₂ concentration under the highest N_a conditions presented in Fig. 4c is
321 consistent with this explanation.

322
323
324

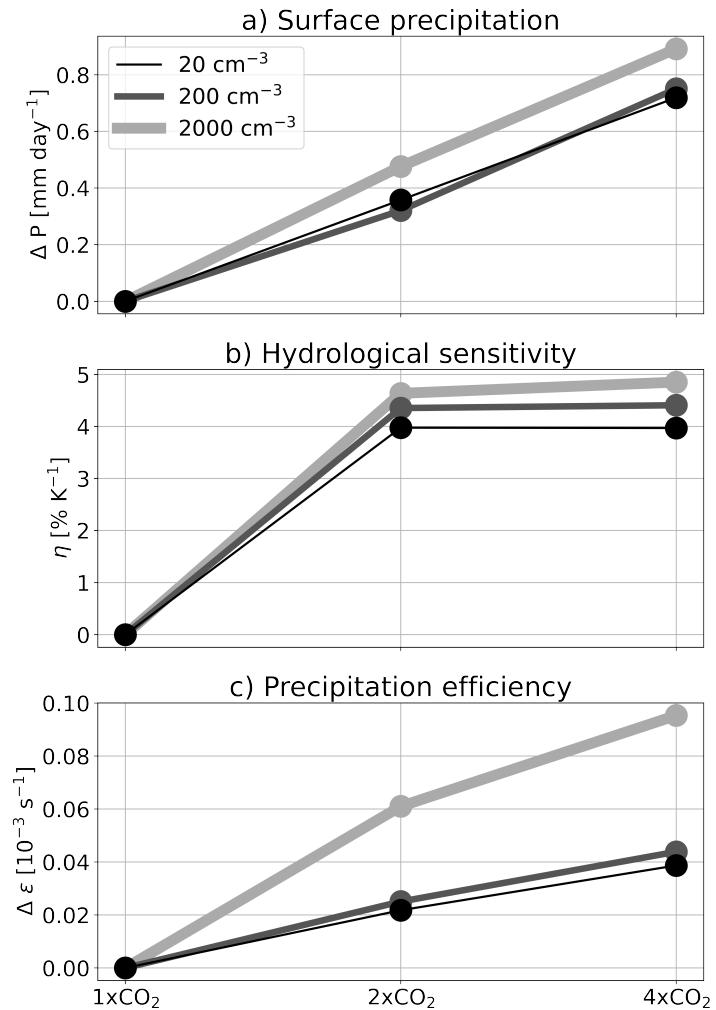
17

18

19

20

21


22

23

24

pnas: es

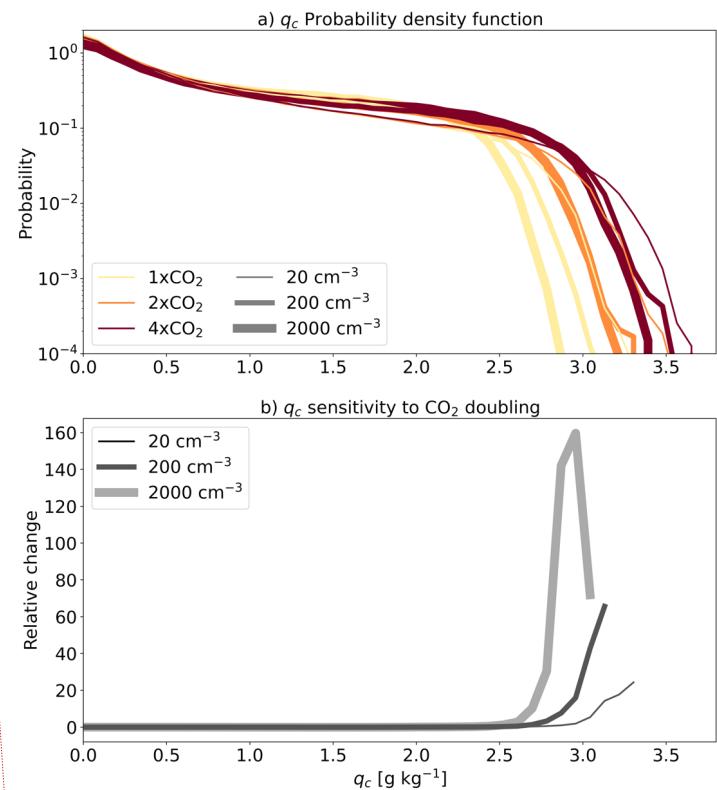
pnas: more efficiently

327

328 **Figure 5. The change in: a) surface precipitation, b) hydrological sensitivity (η), and c)**
 329 **precipitation efficiency (ϵ) due to a change in the CO₂ concentration (compared to the**
 330 **1xCO₂ case of each aerosol concentration), for the different aerosol concentrations (the**
 331 **different curves).**

332

333 The last open question is why ϵ increases faster with CO₂ concentration under the
 334 highest N_a conditions. The increase in ϵ with warming was shown to be mostly driven
 335 by an increase in the efficiency with which cloud condensate is converted into


336 precipitation (Lutsko and Cronin, 2018). As was mentioned in the introduction, the
337 conversion of cloud condensate into precipitation (or autoconversion of cloud droplets)
338 becomes significant only when liquid water amount and/or droplet radii reach a critical
339 threshold (Freud and Rosenfeld, 2012). To understand the faster ϵ increases with CO₂
340 concentration under the highest N_a conditions, we present the histograms over the
341 domain and time (during the last 150 days of the simulations based on 3D output in 1-
342 hour resolution) of liquid cloud droplets mixing ratio (q_c – Fig. 6) and mean cloud
343 droplet radii (r_c – Fig. 7) around the height of the maximum in cloud droplet effective
344 radii (1950m) and its mean sensitivity to doubling of CO₂ concentration for each N_a
345 condition.

346 Figure 6 demonstrates that the cut-off of the q_c distribution (the mixing ratio for which
347 the probability density function starts to decrease sharply) increases with the CO₂
348 concentration and decreases with the aerosol concentration. However, the sensitivity of
349 the relatively large q_c with CO₂ concentration is significantly larger under high aerosol
350 concentrations compared to the lower aerosol concentrations (Fig. 6b). The larger
351 relative increase in high q_c promotes the autoconversion process and hence enhances ϵ ,
352 more under high aerosol concentrations than under low aerosol concentrations.

353 Figure 7 demonstrates, in line with expectations, that N_a has a strong effect on r_c . In
354 addition, it shows that under all N_a conditions, r_c increases with the CO₂ concentration.
355 This could be explained by the increase in the availability of water vapor (Fig. 2),
356 which, for a given N_a conditions, enable larger diffusional growth of the droplets. [This
357 trend could also be understood from the increase in \$q_c\$ with warming \(Fig. 6, Lutsko
358 and Cronin 2018\), which under a given \$N_a\$ conditions implies larger \$r_c\$.](#) Here again, the
359 highest N_a conditions demonstrate the largest sensitivity of r_c to CO₂ concentration,
360 especially at the right-hand side of the distribution (Fig. 7b). This could be explained
361 by the fact that under these high N_a conditions, the cloud droplet growth is primarily
362 limited by the availability of water vapor, as large number of droplets compete for the
363 available water vapor (Koren et al., 2014; Dagan et al., 2015a; Reutter et al., 2009).

64 [Thus, an increase in the availability of water vapor with CO₂ concentration \(Fig. 2\)
365 under polluted conditions results in a larger increase in \$r_c\$ compared with clean
366 conditions. However, the reasons behind this trend, as well as behind the larger increase
367 in \$q_c\$ in high- \$N_a\$ simulations deserve further exploration in the future.](#) Similarly to the
368 q_c case, the larger relative increase in the relatively large droplets promotes the

369 autoconversion process and hence enhances ϵ , more under high aerosol concentrations
 370 than under lower aerosol concentrations.

369
 370
 371
 372
 373
 374
 375
 376
 377
 378
 379
 380
 381
 382
 383
 384
 385
 386
 387
 388
 389
 390
 391
 392
 393
 394
 395
 396
 397
 398
 399
 400
 401
 402
 403
 404
 405
 406
 407
 408
 409
 410
 411
 412
 413
 414
 415
 416
 417
 418
 419
 420
 421
 422
 423
 424
 425
 426
 427
 428
 429
 430
 431
 432
 433
 434
 435
 436
 437
 438
 439
 440
 441
 442
 443
 444
 445
 446
 447
 448
 449
 450
 451
 452
 453
 454
 455
 456
 457
 458
 459
 460
 461
 462
 463
 464
 465
 466
 467
 468
 469
 470
 471
 472
 473
 474
 475
 476
 477
 478
 479
 480
 481
 482
 483
 484
 485
 486
 487
 488
 489
 490
 491
 492
 493
 494
 495
 496
 497
 498
 499
 500
 501
 502
 503
 504
 505
 506
 507
 508
 509
 510
 511
 512
 513
 514
 515
 516
 517
 518
 519
 520
 521
 522
 523
 524
 525
 526
 527
 528
 529
 530
 531
 532
 533
 534
 535
 536
 537
 538
 539
 540
 541
 542
 543
 544
 545
 546
 547
 548
 549
 550
 551
 552
 553
 554
 555
 556
 557
 558
 559
 560
 561
 562
 563
 564
 565
 566
 567
 568
 569
 570
 571
 572
 573
 574
 575
 576
 577
 578
 579
 580
 581
 582
 583
 584
 585
 586
 587
 588
 589
 590
 591
 592
 593
 594
 595
 596
 597
 598
 599
 600
 601
 602
 603
 604
 605
 606
 607
 608
 609
 610
 611
 612
 613
 614
 615
 616
 617
 618
 619
 620
 621
 622
 623
 624
 625
 626
 627
 628
 629
 630
 631
 632
 633
 634
 635
 636
 637
 638
 639
 640
 641
 642
 643
 644
 645
 646
 647
 648
 649
 650
 651
 652
 653
 654
 655
 656
 657
 658
 659
 660
 661
 662
 663
 664
 665
 666
 667
 668
 669
 670
 671
 672
 673
 674
 675
 676
 677
 678
 679
 680
 681
 682
 683
 684
 685
 686
 687
 688
 689
 690
 691
 692
 693
 694
 695
 696
 697
 698
 699
 700
 701
 702
 703
 704
 705
 706
 707
 708
 709
 710
 711
 712
 713
 714
 715
 716
 717
 718
 719
 720
 721
 722
 723
 724
 725
 726
 727
 728
 729
 730
 731
 732
 733
 734
 735
 736
 737
 738
 739
 740
 741
 742
 743
 744
 745
 746
 747
 748
 749
 750
 751
 752
 753
 754
 755
 756
 757
 758
 759
 760
 761
 762
 763
 764
 765
 766
 767
 768
 769
 770
 771
 772
 773
 774
 775
 776
 777
 778
 779
 780
 781
 782
 783
 784
 785
 786
 787
 788
 789
 790
 791
 792
 793
 794
 795
 796
 797
 798
 799
 800
 801
 802
 803
 804
 805
 806
 807
 808
 809
 810
 811
 812
 813
 814
 815
 816
 817
 818
 819
 820
 821
 822
 823
 824
 825
 826
 827
 828
 829
 830
 831
 832
 833
 834
 835
 836
 837
 838
 839
 840
 841
 842
 843
 844
 845
 846
 847
 848
 849
 850
 851
 852
 853
 854
 855
 856
 857
 858
 859
 860
 861
 862
 863
 864
 865
 866
 867
 868
 869
 870
 871
 872
 873
 874
 875
 876
 877
 878
 879
 880
 881
 882
 883
 884
 885
 886
 887
 888
 889
 890
 891
 892
 893
 894
 895
 896
 897
 898
 899
 900
 901
 902
 903
 904
 905
 906
 907
 908
 909
 910
 911
 912
 913
 914
 915
 916
 917
 918
 919
 920
 921
 922
 923
 924
 925
 926
 927
 928
 929
 930
 931
 932
 933
 934
 935
 936
 937
 938
 939
 940
 941
 942
 943
 944
 945
 946
 947
 948
 949
 950
 951
 952
 953
 954
 955
 956
 957
 958
 959
 960
 961
 962
 963
 964
 965
 966
 967
 968
 969
 970
 971
 972
 973
 974
 975
 976
 977
 978
 979
 980
 981
 982
 983
 984
 985
 986
 987
 988
 989
 990
 991
 992
 993
 994
 995
 996
 997
 998
 999
 1000
 1001
 1002
 1003
 1004
 1005
 1006
 1007
 1008
 1009
 1010
 1011
 1012
 1013
 1014
 1015
 1016
 1017
 1018
 1019
 1020
 1021
 1022
 1023
 1024
 1025
 1026
 1027
 1028
 1029
 1030
 1031
 1032
 1033
 1034
 1035
 1036
 1037
 1038
 1039
 1040
 1041
 1042
 1043
 1044
 1045
 1046
 1047
 1048
 1049
 1050
 1051
 1052
 1053
 1054
 1055
 1056
 1057
 1058
 1059
 1060
 1061
 1062
 1063
 1064
 1065
 1066
 1067
 1068
 1069
 1070
 1071
 1072
 1073
 1074
 1075
 1076
 1077
 1078
 1079
 1080
 1081
 1082
 1083
 1084
 1085
 1086
 1087
 1088
 1089
 1090
 1091
 1092
 1093
 1094
 1095
 1096
 1097
 1098
 1099
 1100
 1101
 1102
 1103
 1104
 1105
 1106
 1107
 1108
 1109
 1110
 1111
 1112
 1113
 1114
 1115
 1116
 1117
 1118
 1119
 1120
 1121
 1122
 1123
 1124
 1125
 1126
 1127
 1128
 1129
 1130
 1131
 1132
 1133
 1134
 1135
 1136
 1137
 1138
 1139
 1140
 1141
 1142
 1143
 1144
 1145
 1146
 1147
 1148
 1149
 1150
 1151
 1152
 1153
 1154
 1155
 1156
 1157
 1158
 1159
 1160
 1161
 1162
 1163
 1164
 1165
 1166
 1167
 1168
 1169
 1170
 1171
 1172
 1173
 1174
 1175
 1176
 1177
 1178
 1179
 1180
 1181
 1182
 1183
 1184
 1185
 1186
 1187
 1188
 1189
 1190
 1191
 1192
 1193
 1194
 1195
 1196
 1197
 1198
 1199
 1200
 1201
 1202
 1203
 1204
 1205
 1206
 1207
 1208
 1209
 1210
 1211
 1212
 1213
 1214
 1215
 1216
 1217
 1218
 1219
 1220
 1221
 1222
 1223
 1224
 1225
 1226
 1227
 1228
 1229
 1230
 1231
 1232
 1233
 1234
 1235
 1236
 1237
 1238
 1239
 1240
 1241
 1242
 1243
 1244
 1245
 1246
 1247
 1248
 1249
 1250
 1251
 1252
 1253
 1254
 1255
 1256
 1257
 1258
 1259
 1260
 1261
 1262
 1263
 1264
 1265
 1266
 1267
 1268
 1269
 1270
 1271
 1272
 1273
 1274
 1275
 1276
 1277
 1278
 1279
 1280
 1281
 1282
 1283
 1284
 1285
 1286
 1287
 1288
 1289
 1290
 1291
 1292
 1293
 1294
 1295
 1296
 1297
 1298
 1299
 1300
 1301
 1302
 1303
 1304
 1305
 1306
 1307
 1308
 1309
 1310
 1311
 1312
 1313
 1314
 1315
 1316
 1317
 1318
 1319
 1320
 1321
 1322
 1323
 1324
 1325
 1326
 1327
 1328
 1329
 1330
 1331
 1332
 1333
 1334
 1335
 1336
 1337
 1338
 1339
 1340
 1341
 1342
 1343
 1344
 1345
 1346
 1347
 1348
 1349
 1350
 1351
 1352
 1353
 1354
 1355
 1356
 1357
 1358
 1359
 1360
 1361
 1362
 1363
 1364
 1365
 1366
 1367
 1368
 1369
 1370
 1371
 1372
 1373
 1374
 1375
 1376
 1377
 1378
 1379
 1380
 1381
 1382
 1383
 1384
 1385
 1386
 1387
 1388
 1389
 1390
 1391
 1392
 1393
 1394
 1395
 1396
 1397
 1398
 1399
 1400
 1401
 1402
 1403
 1404
 1405
 1406
 1407
 1408
 1409
 1410
 1411
 1412
 1413
 1414
 1415
 1416
 1417
 1418
 1419
 1420
 1421
 1422
 1423
 1424
 1425
 1426
 1427
 1428
 1429
 1430
 1431
 1432
 1433
 1434
 1435
 1436
 1437
 1438
 1439
 1440
 1441
 1442
 1443
 1444
 1445
 1446
 1447
 1448
 1449
 1450
 1451
 1452
 1453
 1454
 1455
 1456
 1457
 1458
 1459
 1460
 1461
 1462
 1463
 1464
 1465
 1466
 1467
 1468
 1469
 1470
 1471
 1472
 1473
 1474
 1475
 1476
 1477
 1478
 1479
 1480
 1481
 1482
 1483
 1484
 1485
 1486
 1487
 1488
 1489
 1490
 1491
 1492
 1493
 1494
 1495
 1496
 1497
 1498
 1499
 1500
 1501
 1502
 1503
 1504
 1505
 1506
 1507
 1508
 1509
 1510
 1511
 1512
 1513
 1514
 1515
 1516
 1517
 1518
 1519
 1520
 1521
 1522
 1523
 1524
 1525
 1526
 1527
 1528
 1529
 1530
 1531
 1532
 1533
 1534
 1535
 1536
 1537
 1538
 1539
 1540
 1541
 1542
 1543
 1544
 1545
 1546
 1547
 1548
 1549
 1550
 1551
 1552
 1553
 1554
 1555
 1556
 1557
 1558
 1559
 1560
 1561
 1562
 1563
 1564
 1565
 1566
 1567
 1568
 1569
 1570
 1571
 1572
 1573
 1574
 1575
 1576
 1577
 1578
 1579
 1580
 1581
 1582
 1583
 1584
 1585
 1586
 1587
 1588
 1589
 1590
 1591
 1592
 1593
 1594
 1595
 1596
 1597
 1598
 1599
 1600
 1601
 1602
 1603
 1604
 1605
 1606
 1607
 1608
 1609
 1610
 1611
 1612
 1613
 1614
 1615
 1616
 1617
 1618
 1619
 1620
 1621
 1622
 1623
 1624
 1625
 1626
 1627
 1628
 1629
 1630
 1631
 1632
 1633
 1634
 1635
 1636
 1637
 1638
 1639
 1640
 1641
 1642
 1643
 1644
 1645
 1646
 1647
 1648
 1649
 1650
 1651
 1652
 1653
 1654
 1655
 1656
 1657
 1658
 1659
 1660
 1661
 1662
 1663
 1664
 1665
 1666
 1667
 1668
 1669
 1670
 1671
 1672
 1673
 1674
 1675
 1676
 1677
 1678
 1679
 1680
 1681
 1682
 1683
 1684
 1685
 1686
 1687
 1688
 1689
 1690
 1691
 1692
 1693
 1694
 1695
 1696
 1697
 1698
 1699
 1700
 1701
 1702
 1703
 1704
 1705
 1706
 1707
 1708
 1709
 1710
 1711
 1712
 1713
 1714
 1715
 1716
 1717
 1718
 1719
 1720
 1721
 1722
 1723
 1724
 1725
 1726
 1727
 1728
 1729
 1730
 1731
 1732
 1733
 1734
 1735
 1736
 1737
 1738
 1739
 1740
 1741
 1742
 1743
 1744
 1745
 1746
 1747
 1748
 1749
 1750
 1751
 1752
 1753
 1754
 1755
 1756
 1757
 1758
 1759
 1760
 1761
 1762
 1763
 1764

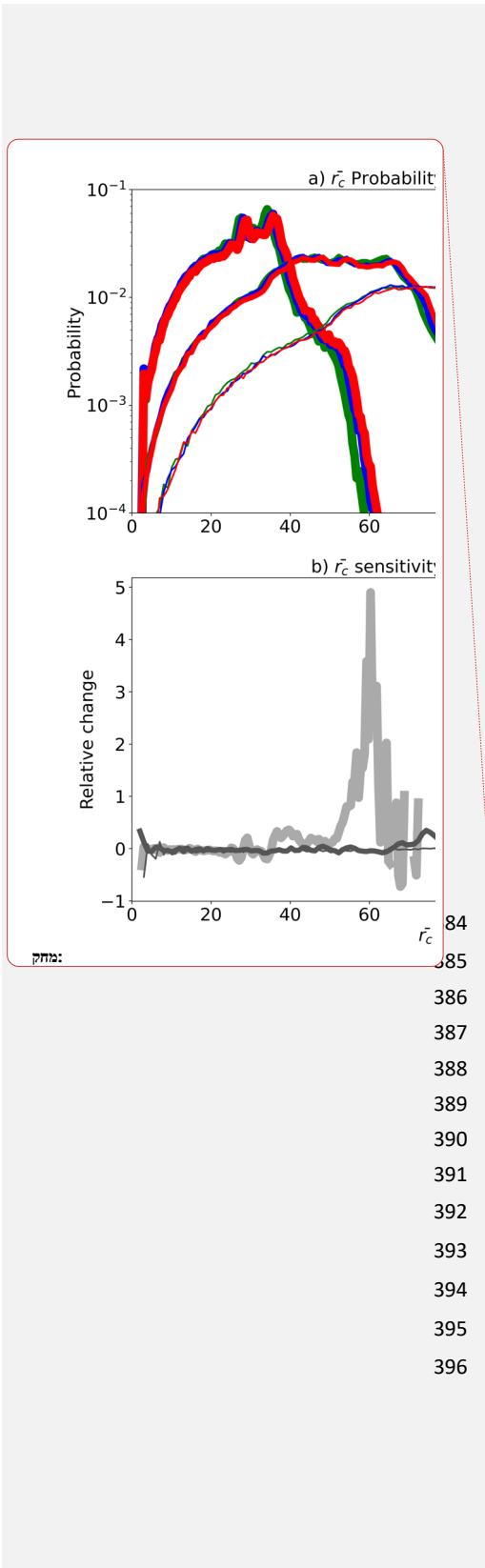


Figure 7. Probability density functions (PDF) of cloud droplet mean radii (r_c) for the different simulations (a), and the mean sensitivity of the r_c PDF to a doubling of the CO₂ concentration based on the three combinations available for each N_a condition [2xCO₂-1xCO₂, 4xCO₂-2xCO₂ and (4xCO₂-1xCO₂)/2] (b), calculated for the heights around which the cloud droplet effective radii reach a maximum (1950m) and using 3-D files output every hour of the last 150 days of the simulations. Note the logarithmic scales for the y-axes of a.

4. Summary and conclusions

The role of clouds in a climate-change is manifested by two pathways: (1) effects of anthropogenic aerosol on clouds, and (2) feedback that clouds exert on the changing climate. These two pathways are usually studied separately, and even by different

398 scientific communities. In this paper, we demonstrate that the two pathways are closely
399 linked to each other and should be examined concurrently.

400 Using long, idealized RCE simulations over a small domain with a slab ocean model,
401 we demonstrate that the ECS, i.e., the increase in surface temperature under equilibrium
402 conditions due to doubling of the CO₂ concentration, increases with the aerosol
403 concentration. The ECS increase is explained by a faster increase in precipitation
404 efficiency with warming under high aerosol concentrations, which [represents a more](#)
405 [efficient depletion of](#) the water from the cloud and thus is manifested as an increase in
406 the cloud feedback parameter. The precipitation efficiency increases faster under high
407 aerosol concentration due to a higher sensitivity of the relatively high liquid water
408 mixing ratios and the relatively large mean droplet sizes to a CO₂ concentration
409 increase. [We note that the increase in the total \(shortwave plus longwave\) cloud](#)
410 [feedback parameter with the increase in precipitation efficiency is a result of a stronger](#)
411 [shortwave effect \(Li et al., 2019\) than a longwave effect \(Lindzen et al., 2001\) in the](#)
412 [simulations presented here. Future work should examine the robustness of this trend in](#)
413 [different models, and with different microphysical and radiative schemes. Moreover,](#)
414 [the response of precipitation to changes in aerosol concentration might be](#)
415 [microphysical representation depended](#) (White et al., 2017), [and hence should be](#)
416 [examined in the future under different microphysical schemes \(conceivably in a multi-](#)
417 [model intercomparison project focusing on aerosol effect on RCE simulations\).](#)

418 The results presented here are based on idealized simulations over a small domain.
419 Under more realistic conditions, other processes, not included here, that could affect
420 the precipitation efficiency and hence the general trend will be introduced. In particular,
421 convective self-aggregation could be of interest as, while it is inhibited in the small
422 domain used here, it was shown to affect precipitation efficiency (Lutsko et al., 2021)
423 and to be affected by aerosols (Nishant et al., 2019). Other processes that should be
424 accounted for in future research include the presence of large-scale circulation and
425 direct aerosol radiative effects (Dagan et al., 2019; Dingley et al., 2021). [In addition,](#)
426 [the results presented here suggest that the sensitivity of ECS to aerosol loading might](#)
427 [not be linear \(Table 1\). Hence, the dynamical aerosol range present at different](#)
428 [geographical locations would affect the total ECS trend.](#)

429 The results presented here suggest a [possible](#) connection between cloud feedback and
430 aerosol-cloud interactions. The regulation of aerosol emissions is known to be more
431 effective than the effort to reduce greenhouse gas emissions. This, together with the

436 short lifetime of aerosols in the atmosphere, has resulted in a reduction in the value of
437 the global mean aerosol effective radiative forcing in recent years (Quaas et al., 2022).
438 If the conclusions of this paper hold under higher levels of complexity (e.g., large-scale
439 circulation, convective self-aggregation, etc.) this might mean that the reduction in
440 global aerosol emissions could lead to a reduction in ECS, which could compensate, at
441 least partially, for the reduction in the negative forcing induced by aerosols (Quaas et
442 al., 2022; Bellouin et al., 2019), thus providing yet additional motivation for reducing
443 aerosol emissions globally.

445 Code availability

446 SAM is publicly available at: <http://rossby.msrc.sunysb.edu/~marat/SAM.html>

448 Data availability

49 The data presented in this study is publicly available at:
50 <https://doi.org/10.5281/zenodo.7306706>

452 Author contributions

453 GD carried out the simulations and analyses presented and prepared the article.

455 Competing interests

456 The authors declare that they have no conflict of interest.

458 Financial support

459 This research was supported by the Israeli Science Foundation Grant (1419/21).

5. References

Abbott, T. H., & Cronin, T. W. (2021). Aerosol invigoration of atmospheric convection through increases in humidity. *science*, 371(6524), 83-85.

Albrecht, B. A.: Aerosols, cloud microphysics, and fractional cloudiness, *Science* (New York, NY), 245, 1227, 1989.

Bellouin, N., Quaas, J., Gryspenert, E., Kinne, S., Stier, P., Watson-Parris, D., Boucher, O., Carslaw, K., Christensen, M., and Daniau, A.-L.: Bounding aerosol radiative forcing of climate change, *Reviews of Geophysics*, 2019.

Ceppi, P., Brient, F., Zelinka, M. D., and Hartmann, D. L.: Cloud feedback mechanisms and their representation in global climate models, *WIREs Climate Change*, 2017.

Collins, W. D., Rasch, P. J., Boville, B. A., Hack, J. J., McCaa, J. R., Williamson, D. L., Briegleb, B. P., Bitz, C. M., Lin, S.-J., and Zhang, M.: The formulation and

475 atmospheric simulation of the Community Atmosphere Model version 3 (CAM3),
 476 Journal of Climate, 19, 2144-2161, 2006.

477 Dagan, G., Koren, I., and Altaratz, O.: Competition between core and periphery-based
 478 processes in warm convective clouds—from invigoration to suppression, Atmospheric
 479 Chemistry and Physics, 15, 2749-2760, 2015a.

480 Dagan, G., Koren, I., and Altaratz, O.: Aerosol effects on the timing of warm rain
 481 processes, Geophysical Research Letters, 42, 4590-4598, 10.1002/2015GL063839,
 482 2015b.

483 Dagan, G., Stier, P., and Watson-Parris, D.: Contrasting response of precipitation to
 484 aerosol perturbation in the tropics and extra-tropics explained by energy budget
 485 considerations, Geophysical Research Letters, 2019.

486 Dingley, B., Dagan, G., and Stier, P.: Forcing convection to aggregate using diabatic
 487 heating perturbations, Journal of Advances in Modeling Earth Systems, 13,
 488 e2021MS002579, 2021.

489 Freud, E., and Rosenfeld, D.: Linear relation between convective cloud drop number
 490 concentration and depth for rain initiation, Journal of Geophysical Research:
 491 Atmospheres (1984–2012), 117, 2012.

492 Gettelman, A., and Sherwood, S.: Processes Responsible for Cloud Feedback, Current
 493 Climate Change Reports, 2, 179-189, 2016.

494 Held, I. M., and Soden, B. J.: Robust responses of the hydrological cycle to global
 495 warming, Journal of Climate, 19, 5686-5699, 2006.

496 Igel, A. L., and van den Heever, S. C.: Invigoration or Enervation of Convective Clouds
 497 by Aerosols?, Geophysical Research Letters, 48, e2021GL093804, 2021.

498 Khain, A. P.: Notes on state-of-the-art investigations of aerosol effects on precipitation:
 499 a critical review, Environmental Research Letters, 4, 015004 (015020 pp.)-015004
 500 (015020 pp.), 10.1088/1748-9326/4/1/015004, 2009.

501 Khairoutdinov, M., and Yang, C.-E.: Cloud-resolving modelling of aerosol indirect
 502 effects in idealised radiative-convective equilibrium with interactive and fixed sea
 503 surface temperature, Atmospheric Chemistry and Physics, 13, 4133-4144, 2013.

504 Khairoutdinov, M. F., and Randall, D. A.: Cloud resolving modeling of the ARM
 505 summer 1997 IOP: Model formulation, results, uncertainties, and sensitivities, Journal
 506 of the Atmospheric Sciences, 60, 2003.

507 [Koren, I., Kaufman, Y. J., Rosenfeld, D., Remer, L. A., & Rudich, Y. \(2005\). Aerosol](#)
 508 [invigoration and restructuring of Atlantic convective clouds. *Geophysical research*](#)
 509 [letters, 32\(14\). \(](#)

510 [Koren, I., Altaratz, O., Remer, L. A., Feingold, G., Martins, J. V., & Heiblum, R. H.](#)
 511 [\(2012\). Aerosol-induced intensification of rain from the tropics to the mid-latitudes.](#)
 512 [Nature Geoscience.](#)

513 Koren, I., Dagan, G., and Altaratz, O.: From aerosol-limited to invigoration of warm
 514 convective clouds, science, 344, 1143-1146, 2014.

515 Li, R., Storelvmo, T., Fedorov, A. V., and Choi, Y.-S.: A positive IRIS feedback:
 516 Insights from climate simulations with temperature-sensitive cloud-rain conversion,
 517 Journal of climate, 32, 5305-5324, 2019.

518 Li, R. L., Studholme, J. H., Fedorov, A. V., and Storelvmo, T.: Precipitation efficiency
 519 constraint on climate change, Nature Climate Change, 12, 642-648, 2022.

520 Lindzen, R. S., Chou, M.-D., and Hou, A. Y.: Does the earth have an adaptive infrared
 521 iris?, Bulletin of the American Meteorological Society, 82, 417-432, 2001.

522 Loeb, N. G., Doelling, D. R., Wang, H., Su, W., Nguyen, C., Corbett, J. G., Liang, L.,
 523 Mitrescu, C., Rose, F. G., and Kato, S.: Clouds and the earth’s radiant energy system

524 (CERES) energy balanced and filled (EBAF) top-of-atmosphere (TOA) edition-4.0
525 data product, *Journal of Climate*, 31, 895-918, 2018.

526 Lutsko, N., Sherwood, S. C., and Zhao, M.: Precipitation Efficiency and Climate
527 Sensitivity (Invited Chapter for the AGU Geophysical Monograph Series" Clouds and
528 Climate"), 2021.

529 Lutsko, N. J., and Cronin, T. W.: Increase in precipitation efficiency with surface
530 warming in radiative-convective equilibrium, *Journal of Advances in Modeling Earth
531 Systems*, 10, 2992-3010, 2018.

532 Mauritsen, T., and Stevens, B.: Missing iris effect as a possible cause of muted
533 hydrological change and high climate sensitivity in models, *Nature Geoscience*, 8, 346,
534 2015.

535 Morrison, H., Curry, J., and Khvorostyanov, V.: A new double-moment microphysics
536 parameterization for application in cloud and climate models. Part I: Description,
537 *Journal of the atmospheric sciences*, 62, 1665-1677, 2005.

538 Muller, C. J., and Held, I. M.: Detailed investigation of the self-aggregation of
539 convection in cloud-resolving simulations, *Journal of the Atmospheric Sciences*, 69,
540 2551-2565, 2012.

541 Mülmenstädt, J., and Feingold, G.: The Radiative Forcing of Aerosol-Cloud
542 Interactions in Liquid Clouds: Wrestling and Embracing Uncertainty, *Current Climate
543 Change Reports*, 4, 23-40, 2018.

544 Nishant, N., Sherwood, S. C., and Geoffroy, O.: Aerosol-induced modification of
545 organised convection and top-of-atmosphere radiation, *npj Climate and Atmospheric
546 Science*, 2, 1-10, 2019.

547 Nuijens, L., and Siebesma, A. P.: Boundary Layer Clouds and Convection over
548 Subtropical Oceans in our Current and in a Warmer Climate, *Current Climate Change
549 Reports*, 1-15, 2019.

550 Quaas, J., Jia, H., Smith, C., Albright, A. L., Aas, W., Bellouin, N., Boucher, O.,
551 Doutriaux-Boucher, M., Forster, P. M., and Grosvenor, D.: Robust evidence for
552 reversal in the aerosol effective climate forcing trend, *Atmospheric Chemistry and
553 Physics Discussions*, 1-25, 2022.

554 Reutter, P., Su, H., Trentmann, J., Simmel, M., Rose, D., Gunthe, S., Wernli, H.,
555 Andreae, M., and Pöschl, U.: Aerosol-and updraft-limited regimes of cloud droplet
556 formation: influence of particle number, size and hygroscopicity on the activation of
557 cloud condensation nuclei (CCN), *Atmospheric Chemistry and Physics*, 9, 7067-7080,
558 2009.

559 Romps, D. M.: Climate sensitivity and the direct effect of carbon dioxide in a limited-
560 area cloud-resolving model, *Journal of Climate*, 33, 3413-3429, 2020.

561 Rosenfeld, D.: Suppression of rain and snow by urban and industrial air pollution,
562 *Science*, 287, 1793-1796, 10.1126/science.287.5459.1793, 2000.

563 [Rosenfeld, D., Lohmann, U., Raga, G. B., O'Dowd, C. D., Kulmala, M., Fuzzi, S., et al. \(2008\). Flood or drought: How do aerosols affect precipitation? science, 321\(5894\), 1309-1313. <Go to ISI>://WOS:000258914300038](#)

564 Schneider, T., Teixeira, J., Bretherton, C. S., Brient, F., Pressel, K. G., Schär, C., and
565 Siebesma, A. P.: Climate goals and computing the future of clouds, *Nature Climate
566 Change*, 7, 3-5, 2017.

567 Sherwood, S., Webb, M. J., Annan, J. D., Armour, K., Forster, P. M., Hargreaves, J. C.,
568 Hegerl, G., Klein, S. A., Marvel, K. D., and Rohling, E. J.: An assessment of Earth's
569 climate sensitivity using multiple lines of evidence, *Reviews of Geophysics*, 58,
570 e2019RG000678, 2020.

571

572

573 Twomey, S.: The nuclei of natural cloud formation part II: The supersaturation in
574 natural clouds and the variation of cloud droplet concentration, *Geofisica pura e*
575 *applicata*, 43, 243-249, 1959.

576 Twomey, S.: Pollution and the planetary albedo, *Atmospheric Environment* (1967), 8,
577 1251-1256, 1974.

578 Twomey, S.: The influence of pollution on the shortwave albedo of clouds, *Journal of*
579 *the atmospheric sciences*, 34, 1149-1152, 1977.

580 Warner, J., and Twomey, S.: The production of cloud nuclei by cane fires and the effect

581 on cloud droplet concentration, *Journal of the atmospheric Sciences*, 24, 704-706, 1967.

מעובב: מושナル לימוי

582 82 → White, B., Gryspeerdt, E., Stier, P., Morrison, H., Thompson, G., & Kipling, Z. (2017).
583 Uncertainty from choice of microphysics scheme in convection-permitting models
584 significantly exceeds aerosol effects. *Atmospheric Chemistry and Physics*, 7.

585 Wing, A. A., Reed, K. A., Satoh, M., Stevens, B., Bony, S., and Ohno, T.: Radiative-
586 convective equilibrium model intercomparison project, *Geoscientific Model*
587 *Development*, 793-813, 2018.

588 Yanase, T., Nishizawa, S., Miura, H., Takemi, T., and Tomita, H.: New critical length
589 for the onset of self-aggregation of moist convection, *Geophysical Research Letters*,
590 47, e2020GL088763, 2020.

591

592

מעובב: מושナル לימוי

93 →

94

רשות: Koren, I., Altaratz, O., Remer, L. A., Feingold, G.,
Martins, J. V., & Heiblum, R. H. (2012). Aerosol-induced
intensification of rain from the tropics to the mid-

latitudes. *Nature Geoscience*.

Koren, I., Kaufman, Y. J., Rosenfeld, D., Remer, L. A., &
Rudich, Y. (2005). Aerosol invigoration and restructuring of
Atlantic convective clouds. *Geophysical research letters*,
32(14).

Rosenfeld, D., Lohmann, U., Raga, G. B., O'Dowd, C. D.,
Kulmala, M., Fuzzi, S., et al. (2008). Flood or drought: How
do aerosols affect precipitation? *science*, 321(5894), 1309-
1313. <Go to ISI>://WOS:000258914300038

White, B., Gryspeerdt, E., Stier, P., Morrison, H.,
Thompson, G., & Kipling, Z. (2017). Uncertainty from
choice of microphysics scheme in convection-permitting
models significantly exceeds aerosol effects. *Atmospheric
Chemistry and Physics*, 7.