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 17 

Abstract. The widespread of coronavirus (COVID-19) has significantly impacted the global human 18 

activities. Compared to numerous studies on conventional air pollutants, atmospheric mercury that 19 

has matched sources from both anthropogenic and natural emissions is rarely investigated. At a 20 

regional site in Eastern China, an intensive measurement was performed, showing obvious 21 

decreases of gaseous elemental mercury (GEM) during the COVID-19 lockdown, while not as 22 

significant as the other air pollutants. Before the lockdown when anthropogenic emissions 23 

dominated, GEM showed no correlation with temperature and negative correlations with wind speed 24 

and the height of boundary layer. In contrast, GEM showed significant correlation with temperature 25 

while the relationship between GEM and wind speed/boundary layer disappeared during the 26 

lockdown, suggesting the enhanced natural emissions of mercury. By applying a machine learning 27 

model and the Shapley Additive ExPlanation Approach, it was found that the mercury pollution 28 
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episodes before the lockdown were driven by anthropogenic sources, while they were mainly driven 29 

by natural sources during and after the lockdown. Source apportionment results showed that the 30 

absolute contribution of natural surface emissions to GEM unexpectedly increased (44%) during 31 

the lockdown. Throughout the whole study period, a significant negative correlation was observed 32 

between the absolute contribution of natural and anthropogenic sources to GEM. We conclude that 33 

natural release of mercury could be stimulated to compensate the significantly reduced 34 

anthropogenic GEM via the surface - air exchange balance of mercury.  35 

Keywords: gaseous elemental mercury, lockdown, correlation, explainable machine learning, 36 

natural mercury 37 

 38 

 39 

1 Introduction 40 

Mercury pollution has received widespread attention due to its long-range transport, 41 

bioaccumulation, and neurotoxicity (Giang and Selin, 2016; Horowitz et al., 2017; Driscoll et al., 42 

2013). The atmosphere is the key to the distribution of mercury on the global scale, because gaseous 43 

elemental mercury (the predominant form of mercury in the atmosphere, >90%) has relatively high 44 

stability and long residence time, and can be transported through the atmosphere for long distances 45 

(Xu et al., 2017; Mao et al., 2016). Mercury in the atmosphere derived from both anthropogenic 46 

emissions and natural processes. The main anthropogenic sources of atmospheric mercury included 47 

coal combustion, nonferrous smelters, cement production, waste incineration, and mining (Wu et 48 

al., 2018; Wu et al., 2016). The amount of mercury in the atmosphere directly emitted by 49 

anthropogenic activities accounted for about 30% of global mercury emissions (Streets et al., 2017; 50 

Pacyna et al., 2010) and China was the country with the largest anthropogenic atmospheric mercury 51 

emissions in the world (Hui et al., 2017). The natural sources of mercury in the atmosphere were 52 

mainly from the exchange processes between natural surfaces (e.g., soil, vegetation, and water) and 53 

the atmosphere (Gustin et al., 2008). Unlike anthropogenic emissions, natural releases of mercury 54 

were passive emissions and were susceptible to various environmental factors, such as 55 

meteorological parameters (e.g., solar radiation, temperature, and atmospheric turbulence), surface 56 

properties (e.g., soil/water mercury content, organic matter, and microbial activity), and ambient air 57 

characteristics (e.g., Hg0 concentration and O3 concentration in the atmosphere) (Zhu et al., 2016). 58 
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Previous studies have focused on the effects of various meteorological factors and different medium 59 

properties on natural surface releases of mercury. The soil Hg0 flux and solar radiation showed a 60 

high positive correlation, which was generally considered that high solar radiation tended to 61 

promote the reduction of HgⅡ to Hg0 (Carpi and Lindberg, 1997; Poissant et al., 2004; Bahlmann et 62 

al., 2006). High wind speed was conductive to the release of mercury from seawater (Wanninkhof, 63 

2014). The terrestrial vegetations acted as a global mercury pump (Jiskra et al., 2018) and 64 

deforestation would increase forest floor radiation and temperature, thereby increasing Hg0 65 

emissions (Carpi et al., 2014; Mazur et al., 2014). However, few studies have investigated the impact 66 

of changes in ambient GEM concentration in response to the natural surface emissions of Hg0. Under 67 

the background that the global Hg0 concentration has been decreasing year by year (Zhang et al., 68 

2016b), it is particularly urgent and important to conduct such research. 69 

China has taken many stringent and ambitious control measures since 2013 to tackle the severe air 70 

pollution, such as imposing ultra-low emission standards on coal-fired power plants, and phasing 71 

out small and high-emission factories (Zheng et al., 2018), These pollution control measures co-72 

benefited the significant reduction of anthropogenic mercury emissions (Wen et al., 2020; Liu et al., 73 

2018), The anthropogenic atmospheric mercury emissions of China fell by 22% from 2013 to 2017 74 

(Liu et al., 2019) and correspondingly, decreasing trends in the annual mean atmospheric mercury 75 

concentration were observed at both Chinese urban and remote sites (Qin et al., 2020; Tang et al., 76 

2018; Yin et al., 2018). In this regard, this change could be likely to affect the surface – air exchange 77 

balance of mercury. In the early 2020, China’s lockdown measures to control the spread of the 2019 78 

Novel Coronavirus (COVID-19) resulted in a significant reduction in the emissions of primary air 79 

pollutants (Chang et al., 2020). One study in the Beijing – Tianjin – Hebei region showed that the 80 

anthropogenic emission of atmospheric mercury reduced by about 22% during the lockdown 81 

compared with that before the lockdown (Wu et al., 2021). Therefore, the COVID-19 lockdown 82 

provided a natural experiment to explore how the natural surface emissions of mercury would 83 

respond to the dramatic reduction of anthropogenic mercury emissions. Traditionally, chemical 84 

transport models were the most widely used tools for disentangling the contributions from 85 

meteorology and various emission sources, while the performance of these models relied heavily on 86 

the availability of updated emission inventories with high accuracy (Selin et al., 2007; Holmes et 87 
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al., 2010; Huang and Zhang, 2021). Therefore, applying traditional models to reproduce and explain 88 

some special events and processes of atmospheric mercury could be limited by certain uncertainties. 89 

Recently, data-driven methods such as machine learning has been widely used in atmospheric 90 

science research (Grange et al., 2018; Vu et al., 2019; Qi et al., 2019). The model performance of 91 

machine learning in predicting atmospheric pollutants (such as PM2.5) was generally better than 92 

traditional chemical transport models (Hou et al., 2022; Yang et al., 2021), however, these results 93 

were less robust in terms of interpretability due to the “black box” nature of machine learning model. 94 

With the development of data analysis methods, tools that can unlock the mystery of machine 95 

learning has been emerging, such as the SHapley Additive exPlanation (SHAP) approach (Stirnberg 96 

et al., 2021). Therefore, combined with new interpretation methods, machine learning can be a 97 

promising alternative to study the behavior of pollutants in the atmosphere. However, few studies 98 

have applied machine learning to the study of atmospheric mercury. 99 

In this study, we first compared the concentration of GEM and its relationship with environmental 100 

factors before, during, and after the COVID-19 lockdown. Observational evidence on the changes 101 

of anthropogenic and natural sources of GEM was revealed. Then the drivers of the GEM variation 102 

throughout the study period were explored by using the machine learning model and explained by 103 

a game theoretic approach. Finally, we applied a receptor model to quantify the contribution of 104 

anthropogenic and natural sources to GEM and unveiled the response of natural releases of mercury 105 

to the reduction of anthropogenic mercury emissions. 106 

 107 

2 Materials and Methods 108 

2.1 Site and Instrumentation  109 

Field measurements were conducted at the Dianshan Lake site (31.096°N, 120.988°E; 14 m a.g.l) 110 

at the junction of Shanghai, Zhejiang, and Jiangsu provinces of the Yangtze River Delta (YRD) 111 

region of China (Figure S1). It represents a rural setting and regional-scale air pollution 112 

characteristics of the YRD region. A detailed description of the site can be found in our previous 113 

works (Qin et al., 2019; Qin et al., 2020).  114 

Ambient GEM concentration was measured by an automated mercury vapor analyzer (Tekran 115 

2537B/1130/1135 system, Tekran Inc., Canada) at 5-min time resolution, more details of this 116 
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instrument can be found elsewhere (Qin et al., 2019). Water soluble ions in PM2.5 (SO4
2-, NO3

-, 117 

NH4
+, Cl-, Na+, K+, Mg2+, and Ca2+) and water soluble gases (NH3 and SO2) were continuously 118 

measured by Monitor for AeRosols and Gases in ambient Air (MARGA) at a flow rate of 16.7 L/min 119 

with a time resolution of 1 h (Wang et al., 2022b; Xu et al., 2020). Heavy metals in PM2.5 (Pb, Fe, 120 

Ba, Cr, Se, Cd, Ag, Ca, Mn, Cu, As, Ni, Zn, and V) were determined hourly by a multi-metal monitor 121 

(XactTM 625; Cooper Environmental, USA) (Wang et al., 2022a). Black carbon in PM2.5 were 122 

continuously measured by a multi-wavelength Aethalometer (AE-33, Magee Scientific, USA) (Li 123 

et al., 2021). Organic carbon (OC) and elemental carbon (EC) in PM2.5 were measured by an in situ 124 

Semi-Continuous Organic Carbon and Elemental Carbon aerosol analyzer (RT-3195, Sunset 125 

Laboratory, Beaverton, Oregon, USA) (Xu et al., 2018). SO2, CO, O3, and PM2.5 were determined 126 

by Thermo Fisher 43i, Thermo Fisher 48i-TLE, Thermo Fisher 49i, and Thermo Fisher 1405-F, 127 

respectively. Meteorological parameters including air temperature, relative humidity, wind speed, 128 

and wind direction were collected by using a series of Vaisala weather sensors (WXT530 Weather 129 

Transmitter Series; Vaisala; Vantaa, Finland) with a time resolution of 10 min.  130 

The air pollutants including CO, NO2, and PM2.5 at other ground monitoring stations in the YRD 131 

region were obtained from the public database of China National Environmental Monitoring Centre.  132 

The data of planetary boundary layer (PBL) height were obtained from the US National Oceanic 133 

and Atmospheric Administration (https://www.ready.noaa.gov/archives.php, last access: 31 134 

August, 2022). The 3-days air mass backward trajectories were calculated by applying the Hybrid 135 

Single Particle Lagrangian Integrated Trajectory (HYSPLIT) model 136 

(https://www.ready.noaa.gov/HYSPLIT.php, last access: 31 August, 2022), the MeteoInfo 137 

software was used to perform cluster analysis of backward trajectories. 138 

 139 

2.2 Machine Learning Model  140 

The artificial neural network (ANN) model was used to simulate the GEM concentration at the DSL 141 

site during the study period. Artificial neural network is a mathematical model based on the basic 142 

principles of neural networks in biology. The network structure consists of input layer, hidden layer, 143 

and output layer of neurons. The process of obtaining an ANN model is that the neurons of input 144 

layer pass through each hidden layer and then reach the output layer. If the expected results are not 145 
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obtained in the output layer, the errors are propagated back and the neuron weights of each hidden 146 

layer are iteratively updated to minimize them. In this study, long-term observational air pollutants 147 

(SO2, CO, O3, NO2, and PM2.5) and meteorological data (air temperature, relative humidity, and 148 

wind speed) in Shanghai (from March 1, 2015 to February 28, 2019) were chosen as input variables 149 

for training. These variables were directly or indirectly related to the emissions (both anthropogenic 150 

and natural sources), transport, and removal processes of GEM. For example, the main sources of 151 

SO2, CO, and NO2 were fossil fuel combustions, which were also the largest anthropogenic sources 152 

of GEM (Zhang et al., 2016a; Streets et al., 2011). The natural sources of GEM were mainly from 153 

the release of land and sea surfaces, which were closely related to temperature, relative humidity, 154 

and wind speed (Wang et al., 2014; Moore and Carpi, 2005). The detailed training and validation of 155 

this model can be found in our previous study (Qin et al., 2022). Briefly, we have established an 156 

ANN model through training the long-term observational data of GEM and other auxiliary 157 

environmental parameters at DSL. The model performance has been satisfactorily verified by 158 

multiple observational datasets in the YRD.  159 

 160 

2.3 Shapley Additive ExPlanation (SHAP) Approach  161 

The SHAP approach was applied in this study to explain the ANN model simulation results. This 162 

approach constructs a distribution scheme based on coalitional game theory that comprehensively 163 

considers the requirements of the conflicting parties, so as to ensure the fairness of the distribution 164 

(Lundberg et al., 2018; Lundberg et al., 2020; Hou et al., 2022). In the game theory, the Shapley 165 

value of a player represents the average contribution of the player in a cooperative game, which is 166 

a fair distribution of the total gain generated by individual players (Lundberg and Lee, 2017b). In 167 

the context of machine learning prediction, the Shapley value of a feature at a query point represents 168 

the contribution of that feature to the prediction (response for regression or score of each class for 169 

classification) at a particular query point (Aas et al., 2021). The Shapley value corresponds to the 170 

deviation between the prediction for the query point and the average prediction caused by the feature, 171 

and the sum of the Shapley values for all features for specific query point corresponds to the total 172 

deviation of the prediction from the average (Kumar et al., 2020). The Shapley value of the ith 173 

feature for the query point x is defined by the value function v: 174 
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              𝜑𝑖(𝑣𝑥) =
1

𝑁
∑

𝑣𝑥(𝑆∪{𝑖})−𝑣𝑥(𝑆)

(𝑁−1)!

|𝑆|!(𝑁−|𝑆|−1)!𝑆⊆𝜔\{𝑖}                               (1) 175 

Where N is the number of all features, 𝜔 is the set of all features, |𝑆| is the cardinality of the set 176 

S, or the number of elements in the set S, 𝑣𝑥 is the value function of the features in a set S for the 177 

query point x. The value of the function indicates the expected contribution of the features in S to 178 

the prediction for the query point x. 179 

 180 

2.4 Positive Matrix Factorization (PMF)  181 

The PMF model has proven to be a useful tool for obtaining source profiles and quantifying source 182 

contributions of complex air pollution (Gibson et al., 2015). The basic principle of PMF is that the 183 

concentration of the sample is determined by the source profiles with different contributions, which 184 

can be described as follows. 185 

       𝑋𝑖𝑗 =  ∑ 𝑔𝑖𝑘
𝑃
𝑘=1 𝑓𝑘𝑗 + 𝑒𝑖𝑗             (2) 186 

where Xij represents the concentration of the jth species in the ith sample, gik is the contribution of 187 

the kth factor in the ith sample, fkj provides the information about the mass fraction of the jth species 188 

in the kth factor, eij is the residual for specific measurement, and P represents the number of factors. 189 

Detail description can be seen in previous studies (Qin et al., 2020; Qin et al., 2019). 190 

 191 

3 Results and Discussion 192 

3.1 Changes in GEM Concentrations during the Lockdown  193 

Figure 1 shows the time series of hourly GEM concentrations during 1 January to 26 February, 2020. 194 

Three periods were defined, i.e., 1 January to 23 January before the lockdown, 24 January to 14 195 

February during the lockdown, and 15 February to 26 February after the lockdown. Before the 196 

lockdown, hourly GEM showed strong fluctuations with frequent extreme concentrations higher 197 

than 5 ng/m3. In contrast, the diurnal variation of GEM was significantly weakened with hourly 198 

concentrations all lower than 4 ng/m3 during the lockdown. After the lockdown, GEM slightly 199 

rebounded. On average, GEM declined sharply from 2.78 ng/m3 before the lockdown to 2.06 ng/m3 200 

during the lockdown, and then rose slightly to 2.26 ng/m3 after the lockdown. Figure 1 also shows 201 

typical gaseous pollutants such as sulfur dioxide (SO2), nitrogen dioxide (NO2), and carbon 202 

monoxide (CO) behaved similarly as GEM, as well as for PM2.5 and its components such as black 203 
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carbon (BC), elemental carbon (EC), lead (Pb), and arsenic (As). This temporal pattern was expected, 204 

as the nationwide reduction of automotive mobility and energy consumption due to the COVID-19 205 

lockdown would certainly lead to drops in primary pollutants emissions. As shown in Figure S2, the 206 

levels of CO, NO2, and PM2.5 in the Yangtze River Delta (YRD) declined sharply during the 207 

lockdown by 26%, 61%, and 27%, respectively, which was consistent with emissions estimates 208 

based on up-to-date activity levels in eastern China (Huang et al., 2021). For anthropogenic Hg 209 

emissions, one study in the Beijing – Tianjin – Hebei region estimated a decline of approximate 22% 210 

during the lockdown, which was mainly due to the reduction of cement clinker production, coal-211 

fired power plants, and residential coal combustion (Wu et al., 2021). We compared the 212 

meteorological factors (including air temperature, wind speed, relative humidity, and planetary 213 

boundary layer height) before, during, and after the lockdown (Figure 1). No significant changes of 214 

the meteorological factors were observed before and during the lockdown. In addition, the 3-days 215 

backward trajectory cluster analysis indicated that the transport patterns differed little between these 216 

two periods (Figure S3). This suggested that the significant decline in GEM concentrations during 217 

the lockdown was mainly due to the reduced mercury emissions, rather than changes of synoptic 218 

conditions. 219 

 220 
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 221 

Figure 1. Hourly variations of GEM concentrations from 1 January to 26 February, 2020. Box 222 

plots of GEM, SO2, NO2, CO, PM2.5, BC, EC, Pb, As, and meteorological parameters 223 

(temperature, wind speed, relative humidity, and planetary boundary layer height) before, during, 224 

and after the lockdown are also shown. 225 

 226 

3.2 Observational Evidences of Enhanced Effects of Natural Sources on GEM  227 

Figure S4 further shows the reduction rates of GEM, SO2, NO2, CO, EC, Pb, As, and BC during the 228 

lockdown were 26%, 9%, 56%, 33%, 38%, 36%, 34%, and 51%, respectively, compared to pre-lock. 229 

Except for SO2, GEM presented lower reduction rate than the other air pollutants, probably 230 

suggesting the different release mechanism of GEM from the other air pollutants. In order to probe 231 

the dynamic variation of GEM sources across the observational period, we first investigated the 232 

correlations among GEM and main components of PM2.5 and gaseous pollutants (Figure 2a). GEM 233 

was found significantly correlated with the primary air pollutants such as CO, K+, BC, and EC with 234 

the correlation coefficients (R) above 0.7. This suggested that the main anthropogenic sources of 235 

GEM were fossil fuel combustion and biomass burning in Shanghai, which was consistent with the 236 
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previous studies in the Yangtze River Delta (Qin et al., 2019; Tang et al., 2018). 237 

BC, as a common product from fuel combustion, was used as a proxy for anthropogenic 238 

emissions. In order to explore the changes in the sources of GEM, we further investigated the 239 

relationship between GEM and BC before, during, and after the lockdown. As shown in Figure 2b-240 

d, R between GEM and BC before, during, and after the lockdown was 0.75, 0.69, and 0.73, 241 

respectively. The R value during the lockdown was lower than of that before and after lockdown, 242 

suggesting the influence of anthropogenic sources on GEM was weakened during the lockdown. 243 

Different from BC that only derived from anthropogenic sources, GEM had additional natural 244 

sources such as surface emission and ocean release (Obrist et al., 2018). Hence, the ratio of GEM/BC 245 

can be simply applied as an indicator to reveal the relative importance of anthropogenic versus 246 

natural sources. A higher GEM/BC ratio indicated the more importance of natural sources, and vice 247 

versa. As shown in Figure 2e, the GEM/BC ratio significantly increased from 0.0019 before the 248 

lockdown to 0.0032 during the lockdown, and then decreased slightly to 0.0028 after the lockdown. 249 

This corroborated that the impact of natural sources on GEM could be more outstanding during the 250 

lockdown than before and after the lockdown. 251 

 252 

Figure 2. (a) Correlation coefficient matrix among GEM and PM2.5 components and gaseous 253 

pollutants during the whole study period. Relationship between GEM and BC (b) before, (c) 254 

during, and (d) after the lockdown. (e) The change of GEM/BC ratios before, during, and after the 255 

lockdown. 256 

 257 

Previous studies have demonstrated the strong dependence of natural surface emissions on 258 

meteorological factors such as temperature, wind speed, and relative humidity (Pannu et al., 2014; 259 

Lindberg et al., 2007; Gustin et al., 2005). We compared the relationship between GEM and 260 
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meteorological parameters before, during, and after the lockdown to investigate the changes in 261 

natural sources of mercury. As shown in Figure 3a-c, there was no clear correlation between GEM 262 

and temperature before the lockdown while moderately high correlations during and after the 263 

lockdown emerged with the correlation coefficients (R2) of 0.43 and 0.71, respectively. This 264 

indicated the enhanced role of natural sources on GEM concentrations due to the lockdown control 265 

measures. For wind speed (Figure 3d-f), strongly negative correlations were observed with GEM 266 

before and after the lockdown, but not during the lockdown. On the one hand, high wind speed was 267 

beneficial to the diffusion of air pollutants in the atmosphere, which explained the negative 268 

correlation between GEM and wind speed. On the other hand, high wind speed promoted the natural 269 

surface release of mercury, partially canceling out the diffusion effect of wind speed, which induced 270 

the ambiguous relationship between GEM and wind speed during the lockdown. The relationship 271 

between GEM and PBL height was similar to that of wind speed, showing strongly negative 272 

correlations before and after the lockdown while weak correlations during the lockdown (Figure 3g-273 

i). The increase of PBL height was beneficial to the diffusion of GEM. While the increase of PBL 274 

height usually occurred in daytime when temperature was high, which was conducive to the natural 275 

surface release of mercury. Therefore, ambient GEM did not decrease significantly with the increase 276 

of PBL height during the lockdown. 277 

Overall, all the observational evidences confirmed that the role of natural emissions on GEM 278 

was more manifested due to the lockdown. However, all the results were based on qualitative data 279 

analysis. In the following sections, the machine learning and source apportionment methods will be 280 

applied to quantify the contribution of anthropogenic and natural sources to GEM during the three 281 

defined periods. 282 
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 283 

Figure 3. Relationship between GEM concentration and (a-c) temperature, (d-f) wind speed, and 284 

(g-i) PBL height before, during, and after the lockdown. 285 

 286 

3.3 Understanding the Drivers of GEM Variation by Explainable Machine Learning  287 

We further conducted machine learning simulations using the trained artificial neural network 288 

(ANN), which has already been established by training the long-term (2015 - 2019) observational 289 

data of GEM and other necessary environmental parameters (including SO2, NO2, CO, O3, PM2.5, 290 

temperature, relative humidity, and wind speed) at the Dianshan Lake site (Qin et al., 2022). Figure 291 

4a-b shows the comparison of ANN-simulated and observed GEM concentrations during the whole 292 

study period, and found they had good consistency (R2 = 0.67). Then we applied the SHapley 293 

Additive exPlanation (SHAP) approach to uncover the mystery of the machine learning “black box” 294 

model (See methods in Section 2.3). This approach has the potential to quantify the global and local 295 

impacts of input features on model predictions (Lundberg and Lee, 2017a), which has been used in 296 
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various fields (Mangalathu et al., 2020; Hou et al., 2022; Lundberg et al., 2018; Zhong et al., 2021; 297 

Wang et al., 2021). 298 

We calculated the SHAP value of each feature to represent the global importance of the feature, 299 

which can be used to indicate the general impact of various features across all samples. As shown 300 

in Figure 4c, by comparing the average absolute SHAP values, PM2.5 ranked as the most important 301 

feature, which changed the simulated GEM concentrations by 0.30 ± 0.20 ng/m3, followed by CO 302 

and temperature with the SHAP values of 0.16 ± 0.25 and 0.14 ± 0.09 ng/m3, respectively. The 303 

average values of the remaining factors were less than 0.1 ng/m3. We further investigated the 304 

relationship between the SHAP value of each feature and its concentration. As shown in Figure 4c-305 

k, the higher concentrations of PM2.5, CO, and SO2 generally corresponded to the higher SHAP 306 

values, which can be interpreted as the positive effect of various anthropogenic emission sources on 307 

GEM. A similar relationship was also found for temperature and relative humidity, also suggesting 308 

the positive influence of natural surface emissions on GEM. In contrast, the SHAP value of wind 309 

speed negatively correlated with the magnitude of wind speed, indicating the 310 

diffusion/accumulation effect of wind speed on GEM. The SHAP values of NO2 and O3 did not 311 

show obvious correlations with their concentrations, indicating their negligible effects on regulating 312 

the GEM variation. 313 

 314 

Figure 4. (a) Time-series of observed and ANN-simulated GEM concentrations during the study 315 

period. (b) Linear correlation between observed and ANN-simulated GEM concentrations. (c) The 316 
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ranking of input features calculated via the SHAP algorithm (d-k) Relationship between SHAP 317 

value and corresponding concentration of each feature. 318 

 319 

To more explicitly identify the drivers to the dynamic variation of GEM, process analysis of 320 

GEM pollution episodes was conducted. One pollution episode was defined as its average GEM 321 

concentration more than 35% of the day before the episode and lasted for more than three days. 322 

Based on this criterion, two pollution episodes (PE1 and PE2) before the lockdown, one pollution 323 

episode (PE3) during the lockdown, and one pollution episode (PE4) after the lockdown were 324 

selected (Figure S5). As shown in Figure 5, the drivers of the first two pollution episodes were 325 

significantly different from the last two. The main influencing factors in PE1 were PM2.5 and CO, 326 

which represented anthropogenic sources, contributing 0.65 and 0.51 ng/m3 to the GEM variation, 327 

respectively. Similar to PE1, PM2.5 and CO in PE2 contributed the most to the GEM variation of 328 

0.35 and 0.12 ng/m3, respectively. This indicated that the two mercury pollution episodes before the 329 

lockdown were mainly driven by anthropogenic sources. In contrast, in PE3 and PE4, temperature 330 

ranked the first among all the variables, with contribution to GEM of 0.10 and 0.14 ng/m3, 331 

respectively. This suggested that these two pollution episodes during and after the lockdown 332 

occurred under the dominance of natural sources.  333 

 In addition, we found that there was a trade-off between the SHAP value of temperature and 334 

the SHAP value of PM2.5 and CO. As shown in Figure 5b-c, the SHAP value of temperature 335 

decreased with the increase of the SHAP value of PM2.5 and CO throughout the study period. This 336 

probably suggested that the increase of anthropogenic GEM emissions may inhibit the release of 337 

natural sources to some extents, which will be discussed later. 338 

 339 

 340 
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 341 

 342 

Figure 5. (a) Time series and box plots of each feature’s SHAP value during the four mercury 343 

pollution episodes (b-c) Relationship between SHAP value of temperature and SHAP value of CO 344 

and PM2.5 during the whole study period 345 

 346 

3.4 Response of Natural Release of GEM to the Lockdown  347 

To quantify the changes in the contribution of different sources to GEM, we applied the PMF model 348 

to analyze the sources of GEM during the whole study period. Figure S6 shows the resolved factors 349 

and factor loadings, which were similar to the results by previous study at the same site (Qin et al., 350 

2020). A total of six sources were resolved, namely coal combustion with high loadings of SO4
2-, 351 

Pb, K+, As, and Se, natural surface emissions with high loadings of temperature and NH3, vehicle 352 

emission with high loadings of NO, ship emission with high loading of Ni, iron and steel production 353 

with high loadings of Fe, Cr, and Mn, and cement production with high loading of Ca. The mean 354 

contributions of the six factors above to GEM were 55%, 28%, 7%, 5%, 3%, and 3%, respectively 355 

(Figure S6). 356 

Figure 6a shows the time-series of apportioned GEM concentrations and relative contributions 357 

from six sources during three periods. Significant changes in the sources of GEM were observed 358 

due to the lockdown. The contribution of coal combustion fell from 60% before the lockdown to 359 

51% during the lockdown and 48% after the lockdown. On the opposite, the relative contribution of 360 
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natural surface emissions rose significantly from 20% before the lockdown to 39% during the 361 

lockdown, and then dropped slightly to 33% after the lockdown. In addition to the increased relative 362 

contribution of natural surface emissions, its absolute contribution to GEM concentration increased 363 

significantly from 0.55 ng/m3 before the lockdown to 0.80 ng/m3 during the lockdown, i.e., a 44% 364 

increase (Figure 6b). Considering that the synoptic conditions varied little before and during the 365 

lockdown, both increases in the absolute and relative contribution of natural surface emissions to 366 

GEM during the lockdown should be stimulated by the significant reduction of anthropogenic 367 

mercury emissions. Indeed, Figure 6c shows that the absolute contribution of natural surface 368 

emissions to GEM and the contribution of anthropogenic sources exhibited a significant negative 369 

correlation throughout the study period (R2 = 0.86). This indicated that the significant reduction of 370 

anthropogenic emissions would lead to a significant decrease in the GEM concentration, thereby 371 

disrupting the exchange balance of mercury between the natural surfaces (including soil, vegetation, 372 

and water bodies, etc.) and the atmosphere, resulting in an increase of natural surface release to 373 

compensate for the decrease of GEM concentration in the atmosphere. 374 

 375 

 376 

Figure 6. (a) Daily average concentrations of apportioned GEM from six sources based on PMF 377 

modeling. Pie charts represent the relative contribution of the six sources to GEM during three 378 

periods (b) Changes of absolute contribution of natural and anthropogenic sources to GEM before 379 

and during the lockdown (c) Relationship between absolute contribution of natural surface 380 
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emissions and anthropogenic sources to GEM during the whole study period 381 

 382 

4 Conclusions and Implications  383 

In this work, we investigated the changes of the impact of anthropogenic and natural sources on 384 

GEM in the suburbs of eastern China in the early 2020. Due to the COVID-19 lockdown, GEM was 385 

significantly reduced by 0.72 ng/m3 compared to that before the lockdown. However, the reduction 386 

extent of GEM was not as strong as most of the other gaseous pollutants (NO2 and CO) and primary 387 

aerosol species (EC, BC, Pb, and As). Before the lockdown when anthropogenic emissions 388 

dominated, GEM showed no correlation with temperature and negative correlations with wind speed 389 

and the height of PBL. In contrast, GEM showed significant correlation with temperature while the 390 

relationship between GEM and wind speed/PBL disappeared during the lockdown, suggesting the 391 

enhanced natural emissions of mercury. By applying a machine learning model, GEM was well 392 

simulated and the results were interpreted by the Shapley Additive ExPlanation Approach. It was 393 

found that the mercury pollution episodes before the lockdown were driven by anthropogenic 394 

sources, while they were mainly driven by natural sources during and after the lockdown. Source 395 

apportionment results showed that the relative contribution of natural sources to GEM during the 396 

lockdown reached 39%, which was significantly higher than that before the lockdown (20%). The 397 

absolute contribution of natural sources to GEM during the lockdown was about 0.80 ng/m3, 44% 398 

higher than that before the lockdown. Finally, we revealed the negative correlation between the 399 

absolute contribution of natural sources and anthropogenic sources, suggesting the natural release 400 

of mercury could be enhanced in response to the significant reduction of anthropogenic mercury 401 

emissions. 402 

In the long-term, the surface ambient mercury concentration in the northern hemisphere decreased 403 

by 30-40% from 1990 to 2010 (Slemr et al., 2011; Soerensen et al., 2012; Cole et al., 2014). From 404 

2013 to 2017, the gaseous total mercury concentration in China decreased by about 12% (Liu et al., 405 

2019). It has been long recognized mitigation of anthropogenic mercury emissions regulated this 406 

global or regional trend, while the role of natural mercury emissions is less known. Specifically, the 407 

response of natural mercury release to the reduction of ambient Hg0 concentration is ambiguous, 408 

which limits better understanding the role of natural sources in global mercury cycling. In this study, 409 
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the COVID-19 lockdown provided a natural experiment on assessing the dynamic behavior of 410 

natural and anthropogenic contributions to gaseous elementary mercury by different means. As 411 

shown in Figure S7, the sum of the SHAP values of CO and PM2.5 exhibited a good positive 412 

correlation with the concentration of GEM contributed by anthropogenic sources based on PMF 413 

modeling (R2 = 0.72). Moderate correlation was also derived between the SHAP value of 414 

temperature and the concentration of GEM contributed by natural sources (R2 = 0.50). This indicated 415 

that the results of machine learning with an explainable approach and the traditional receptor model 416 

were consistent and corroborated each other. This study highlighted that machine learning coupled 417 

with reliable interpretation methods can well quantify the role of different factors in the process of 418 

air pollution, showing great potential in the fields of atmospheric science. 419 

The natural release of mercury mainly comes from the exchange between the natural surfaces and 420 

the atmosphere, including two processes: (1) the formation of volatile Hg0 in the surface and (2) the 421 

mass transfer of Hg0 between the interfaces (Zhu et al., 2016). At locations with high ambient Hg0 422 

concentrations (e.g., mining areas and landfills), the exchange of mercury between the surface and 423 

the atmosphere is always dominated by deposition, regardless changes in meteorological conditions 424 

(Bash and Miller, 2007; Wang et al., 2007; Zhu et al., 2013). Fluctuations in ambient Hg0 425 

concentrations can change the Hg0 concentration gradient at the interfaces and thus affect the Hg0 426 

exchange flux (Xin and Gustin, 2007). The results of this study imply that the declining in global 427 

anthropogenic mercury emissions could stimulate increases in natural surface releases, which may 428 

pose challenges to future control of atmospheric mercury pollution. 429 
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