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 17 

Abstract. The widespread of coronavirus (COVID-19) has significantly impacted the global human 18 

activities. Compared to numerous studies on conventional air pollutants, atmospheric mercury that 19 

has matched sources from both anthropogenic and natural emissions is rarely investigated. At a 20 

regional site in Eastern China, an intensive measurement was performed, showing obvious 21 

decreases of gaseous elemental mercury (GEM) during the COVID-19 lockdown, while not as 22 

significant as most of the other measured air pollutants. Before the lockdown when anthropogenic 23 

emissions dominated, GEM showed no correlation with temperature and negative correlations with 24 

wind speed and the height of boundary layer. In contrast, GEM showed significant correlation with 25 

temperature while the relationship between GEM and wind speed/boundary layer disappeared 26 

during the lockdown, suggesting the enhanced natural emissions of mercury. By applying a machine 27 

learning model and the Shapley Additive ExPlanation Approach, it was found that the mercury 28 
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pollution episodes before the lockdown were driven by anthropogenic sources, while they were 29 

mainly driven by natural sources during and after the lockdown. Source apportionment results 30 

showed that the absolute contribution of natural surface emissions to GEM unexpectedly increased 31 

(44%) during the lockdown. Throughout the whole study period, a significant negative correlation 32 

was observed between the absolute contribution of natural and anthropogenic sources to GEM. We 33 

conclude that natural release of mercury could be stimulated to compensate the significantly reduced 34 

anthropogenic GEM via the surface - air exchange balance of mercury. 35 

Keywords: gaseous elemental mercury, lockdown, correlation, explainable machine learning, 36 

natural mercury 37 

 38 

 39 

1 Introduction 40 

Mercury pollution has received widespread attention due to its long-range transport, 41 

bioaccumulation, and neurotoxicity (Giang and Selin, 2016; Horowitz et al., 2017; Driscoll et al., 42 

2013). The atmosphere is the key to the distribution of mercury on the global scale, because gaseous 43 

elemental mercury (the predominant form of mercury in the atmosphere, >90%) has relatively high 44 

stability and long residence time, and can be transported through the atmosphere for long distances 45 

(Xu et al., 2017; Mao et al., 2016). Mercury in the atmosphere derives from both anthropogenic 46 

emissions and natural processes. The main anthropogenic sources of atmospheric mercury include 47 

coal combustion, nonferrous smelters, cement production, waste incineration, and mining (Wu et 48 

al., 2018; Wu et al., 2016). The amount of mercury in the atmosphere directly emitted by 49 

anthropogenic activities accounted for about 30% of global mercury emissions (Streets et al., 2019; 50 

Steenhuisen and Wilson, 2019) and China is the country with the largest anthropogenic atmospheric 51 

mercury emissions in the world (Liu et al., 2019). The natural sources of mercury in the atmosphere 52 

are mainly from the exchange processes between natural surfaces (e.g., soil, vegetation, and water) 53 

and the atmosphere (Outridge et al., 2018; Pirrone et al., 2010). Unlike anthropogenic emissions, 54 

natural releases of mercury are passive emissions and are susceptible to various environmental 55 

factors, such as meteorological parameters (e.g., solar radiation, temperature, and atmospheric 56 

turbulence), surface properties (e.g., soil/water mercury content, organic matter, and microbial 57 

activity), and ambient air characteristics (e.g., Hg0 concentration and O3 concentration in the 58 



3 

 

atmosphere) (Zhu et al., 2016). Previous studies have focused on the effects of various 59 

meteorological factors and different medium properties on natural surface releases of mercury. The 60 

soil Hg0 flux and solar radiation showed a high positive correlation, which was generally considered 61 

that high solar radiation tended to promote the reduction of HgⅡ to Hg0 (Carpi and Lindberg, 1997; 62 

Poissant et al., 2004; Bahlmann et al., 2006). High wind speed was conductive to the release of 63 

mercury from seawater (Wanninkhof, 2014). The terrestrial vegetations acted as a global mercury 64 

pump (Jiskra et al., 2018) and deforestation would increase forest floor radiation and temperature, 65 

thereby increasing Hg0 emissions (Carpi et al., 2014; Mazur et al., 2014). However, few studies 66 

have investigated the impact of changes in ambient GEM concentration in response to the natural 67 

surface emissions of Hg0. Under the background that the global Hg0 concentration has been 68 

decreasing year by year (Zhang et al., 2016b), it is particularly urgent and important to conduct such 69 

research. 70 

China has taken many stringent and ambitious control measures since 2013 to tackle the severe air 71 

pollution, such as imposing ultra-low emission standards on coal-fired power plants, and phasing 72 

out small and high-emission factories (Zheng et al., 2018). These pollution control measures co-73 

benefited the significant reduction of anthropogenic mercury emissions (Wen et al., 2020; Liu et al., 74 

2018). The anthropogenic atmospheric mercury emissions of China fell by 22% from 2013 to 2017 75 

(Liu et al., 2019) and correspondingly, decreasing trends in the annual mean atmospheric mercury 76 

concentration were observed at both Chinese urban and remote sites (Qin et al., 2020; Tang et al., 77 

2018; Yin et al., 2018). In this regard, this change could be likely to affect the surface – air exchange 78 

balance of mercury. In the early 2020, China’s lockdown measures to control the spread of the 2019 79 

Novel Coronavirus (COVID-19) resulted in a significant reduction in the emissions of primary air 80 

pollutants (Chang et al., 2020). One study in the Beijing – Tianjin – Hebei region showed that the 81 

anthropogenic emission of atmospheric mercury reduced by about 22% during the lockdown 82 

compared with that before the lockdown (Wu et al., 2021). Therefore, the COVID-19 lockdown 83 

provided a natural experiment to explore how the natural surface emissions of mercury would 84 

respond to the dramatic reduction of anthropogenic mercury emissions. Traditionally, chemical 85 

transport models were the most widely used tools for disentangling the contributions from 86 

meteorology and various emission sources, while the performance of these models relied heavily on 87 



4 

 

the availability of updated emission inventories with high accuracy (Selin et al., 2007; Holmes et 88 

al., 2010; Huang and Zhang, 2021). Therefore, applying traditional models to reproduce and explain 89 

some special events and processes of atmospheric mercury could be limited by certain uncertainties. 90 

Recently, data-driven methods such as machine learning has been widely used in atmospheric 91 

science research (Grange et al., 2018; Vu et al., 2019; Qi et al., 2019). The model performance of 92 

machine learning in predicting atmospheric pollutants (such as PM2.5) was generally better than 93 

traditional chemical transport models (Hou et al., 2022; Yang et al., 2021), however, these results 94 

were less robust in terms of interpretability due to the “black box” nature of machine learning model. 95 

With the development of data analysis methods, tools that can unlock the mystery of machine 96 

learning has been emerging, such as the SHapley Additive exPlanation (SHAP) approach (Stirnberg 97 

et al., 2021). Therefore, combined with new interpretation methods, machine learning can be a 98 

promising alternative to study the behavior of pollutants in the atmosphere. However, few studies 99 

have applied machine learning to the study of atmospheric mercury. 100 

Many receptor - based models have been used to determine the sources and processes of air 101 

pollutants, among which the positive matrix factorization (PMF) is a commonly used method (Yu 102 

et al., 2019; Sun et al., 2016; Chang et al., 2018). The PMF method provides quantitative source 103 

profiles and source contributions, and the obtained source profiles can aid factor interpretation 104 

(Belis et al., 2013). Another strength of PMF is that the measurement uncertainty is included in the 105 

PMF model, which ensures that species with large uncertainties have less impact on the model 106 

results (Hopke, 2016). Many previous studies have applied the PMF method to the source 107 

apportionment of atmospheric mercury. One study in Canada compared the PMF model 108 

performance of atmospheric mercury in different years and found that the source profiles and source 109 

contributions of GEM in 2009 and 2010 were in good agreement (Xu et al., 2017). By using the 110 

PMF model, the research on the western coast of Ireland found that baseline and combustion 111 

processes were the controlling sources of atmospheric mercury (Custodio et al., 2020). The study in 112 

the Yangtze River Delta in eastern China suggested that the contribution of natural sources to GEM 113 

had gradually exceeded that of anthropogenic sources from 2015 to 2018 by using the PMF method 114 

(Qin et al., 2020). This indicated that it is feasible to use the PMF model to identify the sources of 115 

GEM in the atmosphere. 116 
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In this study, we first compared the concentration of GEM and its relationship with environmental 117 

factors before, during, and after the COVID-19 lockdown. Observational evidence on the changes 118 

of anthropogenic and natural sources of GEM was revealed. Then the drivers of the GEM variation 119 

throughout the study period were explored by using the machine learning model and explained by 120 

a game theoretic approach. Finally, we applied a receptor model to quantify the contribution of 121 

anthropogenic and natural sources to GEM and unveiled the response of natural releases of mercury 122 

to the reduction of anthropogenic mercury emissions. 123 

 124 

2 Materials and Methods 125 

2.1 Site and Instrumentation  126 

Field measurements were conducted at the Dianshan Lake site (31.096°N, 120.988°E; 14 m a.g.l) 127 

at the junction of Shanghai, Zhejiang, and Jiangsu provinces of the Yangtze River Delta (YRD) 128 

region of China (Figure S1). It represents a rural setting and regional-scale air pollution 129 

characteristics of the YRD region. A detailed description of the site can be found in our previous 130 

works (Qin et al., 2019; Qin et al., 2020).  131 

Ambient GEM concentration was measured by an automated mercury vapor analyzer (Tekran 132 

2537B/1130/1135 system, Tekran Inc., Canada) at 5-min time resolution, more details of this 133 

instrument can be found elsewhere (Qin et al., 2019). Water soluble ions in PM2.5 (SO4
2-, NO3

-, 134 

NH4
+, Cl-, Na+, K+, Mg2+, and Ca2+) and water soluble gases (NH3 and SO2) were continuously 135 

measured by Monitor for AeRosols and Gases in ambient Air (MARGA) at a flow rate of 16.7 L/min 136 

with a time resolution of 1 h (Wang et al., 2022b; Xu et al., 2020). Heavy metals in PM2.5 (Pb, Fe, 137 

Ba, Cr, Se, Cd, Ag, Ca, Mn, Cu, As, Ni, Zn, and V) were determined hourly by a multi-metal monitor 138 

(XactTM 625; Cooper Environmental, USA) (Wang et al., 2022a). Black carbon in PM2.5 were 139 

continuously measured by a multi-wavelength Aethalometer (AE-33, Magee Scientific, USA) (Li 140 

et al., 2021). Organic carbon (OC) and elemental carbon (EC) in PM2.5 were measured by an in situ 141 

Semi-Continuous Organic Carbon and Elemental Carbon aerosol analyzer (RT-3195, Sunset 142 

Laboratory, Beaverton, Oregon, USA) (Xu et al., 2018). SO2, CO, O3, and PM2.5 were determined 143 

by Thermo Fisher 43i, Thermo Fisher 48i-TLE, Thermo Fisher 49i, and Thermo Fisher 1405-F, 144 

respectively. Meteorological parameters including air temperature, relative humidity, wind speed, 145 
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and wind direction were collected by using a series of Vaisala weather sensors (WXT530 Weather 146 

Transmitter Series; Vaisala; Vantaa, Finland) with a time resolution of 10 min.  147 

The air pollutants including CO, NO2, and PM2.5 at other ground monitoring stations in the YRD 148 

region were obtained from the public database of China National Environmental Monitoring Centre.  149 

The data of planetary boundary layer (PBL) height were obtained from the US National Oceanic 150 

and Atmospheric Administration (https://www.ready.noaa.gov/archives.php, last access: 31 151 

August, 2022). The 3-days air mass backward trajectories were calculated by applying the Hybrid 152 

Single Particle Lagrangian Integrated Trajectory (HYSPLIT) model 153 

(https://www.ready.noaa.gov/HYSPLIT.php, last access: 31 August, 2022), the MeteoInfo 154 

software was used to perform cluster analysis of backward trajectories. 155 

 156 

2.2 Machine Learning Model  157 

The artificial neural network (ANN) model was used to simulate the GEM concentration at the DSL 158 

site during the study period. Artificial neural network is a mathematical model based on the basic 159 

principles of neural networks in biology. The network structure consists of input layer, hidden layer, 160 

and output layer of neurons. The process of obtaining an ANN model is that the neurons of input 161 

layer pass through each hidden layer and then reach the output layer. If the expected results are not 162 

obtained in the output layer, the errors are propagated back and the neuron weights of each hidden 163 

layer are iteratively updated to minimize them. In this study, long-term observational air pollutants 164 

(SO2, CO, O3, NO2, and PM2.5) and meteorological data (air temperature, relative humidity, and 165 

wind speed) in Shanghai from March 1, 2015 to February 28, 2019 were chosen as input variables 166 

for training. These variables were directly or indirectly related to the emissions (both anthropogenic 167 

and natural sources), transport, and removal processes of GEM. For example, the main sources of 168 

SO2, CO, and NO2 were fossil fuel combustions, which were also the largest anthropogenic sources 169 

of GEM (Zhang et al., 2016a; Streets et al., 2011). The natural sources of GEM were mainly from 170 

the release of land and sea surfaces, which were closely related to temperature, relative humidity, 171 

and wind speed (Wang et al., 2014; Moore and Carpi, 2005).  172 

The detailed training and validation of this model can be found in our previous study (Qin et al., 173 

2022). We have established an ANN model through training the long-term observational data of 174 

https://www.ready.noaa.gov/archives.php
https://www.ready.noaa.gov/HYSPLIT.php
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GEM and other auxiliary environmental parameters at DSL. The long-term observational GEM 175 

(hourly data from March 1, 2015 to February 28, 2019; n = 17532) in Shanghai was the target 176 

variable for training, and the corresponding air pollutants (SO2, CO, O3, NO2, and PM2.5) and 177 

meteorological data (air temperature, relative humidity, and wind speed) were chosen as input 178 

variables for training. The datasets were randomly divided into three parts, i.e., 70% for training, 179 

15% for validation, and 15% for testing. We chose the neural network containing a hidden layer 180 

with 20 nodes, and the training algorithm was the Levenberg-Marquardt. The performance of the 181 

model was evaluated with the mean square error (MSE) and correlation coefficient (R2 value). To 182 

verify the accuracy of the trained neural network model, we compared the observed (not included 183 

in the training data set) and simulated GEM concentrations of DSL from January 1 to February 26, 184 

2020, and found that they exhibited a reasonably good correlation with the correlation coefficient 185 

(R2) of 0.67. To test the applicability of the model on the regional scale, we compared the observed 186 

and simulated GEM concentrations in Suzhou, Ningbo, Nanjing, and Hefei (Figure S2). In Nanjing 187 

and Suzhou, the observed and simulated daily GEM showed consistence with R2 values of 0.52 and 188 

0.71, respectively. In Ningbo, the observed and simulated GEM in summer and winter also showed 189 

consistence with R2 values of 0.64 and 0.65, respectively. A low bias was derived between the 190 

observed and simulated seasonal GEM in Hefei. This suggested that it was feasible to use the trained 191 

ANN model to simulated the GEM concentrations in Shanghai and even the Yangtze River Delta 192 

region.  193 

 194 

2.3 Shapley Additive ExPlanation (SHAP) Approach  195 

The SHAP approach was applied in this study to explain the ANN model simulation results. This 196 

approach constructs a distribution scheme based on coalitional game theory that comprehensively 197 

considers the requirements of the conflicting parties, so as to ensure the fairness of the distribution 198 

(Lundberg et al., 2018; Lundberg et al., 2020; Hou et al., 2022). In the game theory, the Shapley 199 

value of a player represents the average contribution of the player in a cooperative game, which is 200 

a fair distribution of the total gain generated by individual players (Lundberg and Lee, 2017b). In 201 

the context of machine learning prediction, the Shapley value of a feature at a query point represents 202 

the contribution of that feature to the prediction (response for regression or score of each class for 203 
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classification) at a particular query point (Aas et al., 2021). The Shapley value corresponds to the 204 

deviation between the prediction for the query point and the average prediction caused by the feature, 205 

and the sum of the Shapley values for all features for specific query point corresponds to the total 206 

deviation of the prediction from the average (Kumar et al., 2020). The Shapley value of the ith 207 

feature for the query point x is defined by the value function v: 208 

              𝜑𝑖(𝑣𝑥) =
1

𝑁
∑

𝑣𝑥(𝑆∪{𝑖})−𝑣𝑥(𝑆)

(𝑁−1)!

|𝑆|!(𝑁−|𝑆|−1)!𝑆⊆𝜔\{𝑖}                               (1) 209 

Where N is the number of all features, 𝜔 is the set of all features, |𝑆| is the cardinality of the set 210 

S, or the number of elements in the set S, 𝑣𝑥 is the value function of the features in a set S for the 211 

query point x. The value of the function indicates the expected contribution of the features in S to 212 

the prediction for the query point x. 213 

 214 

2.4 Positive Matrix Factorization (PMF)  215 

The PMF model has proven to be a useful tool for obtaining source profiles and quantifying source 216 

contributions of complex air pollution (Gibson et al., 2015). The basic principle of PMF is that the 217 

concentration of the sample is determined by the source profiles with different contributions, which 218 

can be described as follows. 219 

       𝑋𝑖𝑗 =  ∑ 𝑔𝑖𝑘
𝑃
𝑘=1 𝑓𝑘𝑗 + 𝑒𝑖𝑗             (2) 220 

where Xij represents the concentration of the jth species in the ith sample, gik is the contribution of 221 

the kth factor in the ith sample, fkj provides the information about the mass fraction of the jth species 222 

in the kth factor, eij is the residual for specific measurement, and P represents the number of factors. 223 

The number of factors being from three to eight was explored with the optimal solutions determined 224 

by the slope of the Q value versus the number of factors. The Q value is the sum of the square of 225 

the difference between the measured and modeled concentrations weighted by the concentration 226 

uncertainties, and needs to be minimized before the PMF modeled determines the optimal 227 

nonnegative factor profiles and contributions (Cheng et al., 2015).  228 

Q = ∑ ∑ (
𝑋𝑖𝑗 − ∑ 𝐴𝑖𝑘𝐹𝑘𝑗

𝑝
𝑘=1

𝑆𝑖𝑗
)

2
𝑚

𝑗=1

𝑛

𝑖=1
 229 

Where Xij represents the concentration of the jth contamination in the ith sample, m is the total 230 

number of the pollutants, and n is the total number of samples. Aik represents the contribution of the 231 

kth factor on the ith sample, and Fkj represents the mass fraction of the j pollutant in the kth factor. 232 
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Sij is the uncertainty in the jth pollutant on the ith factor, and P is the number of factors. For each 233 

run in this study, the stability and reliability of the outputs were assessed by referring to the Q value, 234 

residual analysis, and correlation coefficients between observed and predicted concentrations. 235 

Finally, we found that a six-factor solution showed the most stable results and gave the most 236 

reasonable interpretation. Detailed description can be seen in previous studies (Qin et al., 2020; Qin 237 

et al., 2019). 238 

 239 

3 Results and Discussion 240 

3.1 Changes in GEM Concentrations during the Lockdown  241 

Figure 1 shows the time series of hourly GEM concentrations during 1 January to 26 February, 2020. 242 

Three periods were defined, i.e., 1 January to 23 January before the lockdown, 24 January to 14 243 

February during the lockdown, and 15 February to 26 February after the lockdown. Before the 244 

lockdown, hourly GEM showed strong fluctuations with frequent extreme concentrations higher 245 

than 5 ng/m3. In contrast, the diurnal variation of GEM was significantly weakened with hourly 246 

concentrations all lower than 4 ng/m3 during the lockdown. After the lockdown, GEM concentration 247 

was slightly higher than that of during the lockdown. On average, GEM declined sharply from 2.78 248 

ng/m3 before the lockdown to 2.06 ng/m3 during the lockdown, and then rose slightly to 2.26 ng/m3 249 

after the lockdown. Figure 1 also shows typical gaseous pollutants such as sulfur dioxide (SO2), 250 

nitrogen dioxide (NO2), and carbon monoxide (CO) behaved similarly as GEM, as well as for PM2.5 251 

and its components such as black carbon (BC), elemental carbon (EC), lead (Pb), and arsenic (As). 252 

This temporal pattern was expected, as the nationwide reduction of automotive mobility and energy 253 

consumption due to the COVID-19 lockdown would certainly lead to drops in primary pollutants 254 

emissions. As shown in Figure S3, the levels of CO, NO2, and PM2.5 in the Yangtze River Delta 255 

(YRD) declined sharply during the lockdown by 26%, 61%, and 27%, respectively, which was 256 

consistent with emissions estimates based on up-to-date activity levels in eastern China (Huang et 257 

al., 2021). For anthropogenic Hg emissions, one study in the Beijing – Tianjin – Hebei region 258 

estimated a decline of approximate 22% during the lockdown, which was mainly due to the 259 

reduction of cement clinker production, coal-fired power plants, and residential coal combustion 260 

(Wu et al., 2021). We compared the meteorological factors (including air temperature, wind speed, 261 

relative humidity, and planetary boundary layer height) before, during, and after the lockdown 262 

(Table S1). No significant changes of the meteorological factors were observed before and during 263 
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the lockdown. In addition, the 3-days backward trajectory cluster analysis indicated that the 264 

transport patterns differed little between these two periods (Figure S4). This suggested that the 265 

significant decline in GEM concentrations during the lockdown was mainly due to the reduced 266 

mercury emissions, rather than changes of synoptic conditions. 267 

 268 

 269 

Figure 1. Hourly variations of GEM concentrations from 1 January to 26 February, 2020. Box 270 

plots of GEM, SO2, NO2, CO, PM2.5, BC, EC, Pb, As, and meteorological parameters 271 

(temperature, wind speed, relative humidity, and planetary boundary layer height) before, during, 272 

and after the lockdown are also shown. 273 

 274 

3.2 Observational Evidences of Enhanced Effects of Natural Sources on GEM  275 

Table S2 further shows the reduction rates of gaseous pollutants SO2, NO2, NO, and CO during the 276 

lockdown were 9%, 56%, 64%, and 33%, respectively, compared to those before the lockdown. 277 

While O3 showed almost one-fold increase due to the strongly depressed titration effect from 278 

substantial reduced NOx emissions during the lockdown (Huang et al., 2021; Yang et al., 2021). As 279 
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for the primary trace elements such as Pb, Fe, Cr, Se, Ca, Mn, As, Ni, and Zn, their reduction rates 280 

ranged from 34% - 73%. As for the main chemical components in PM2.5, NO3
-, NH4

+, and BC were 281 

strongly reduced by 58%, 45%, and 51%, while SO4
2- and OC were less reduced by 20% and 16%, 282 

respectively. Except for SO2, SO4
2-, and OC, GEM presented lower reduction rate than the other air 283 

pollutants, probably indicating the discrepancy in key sources for different air pollutants. In order 284 

to probe the dynamic variation of GEM sources across the observational period, we first investigated 285 

the correlations among GEM and main components of PM2.5 and gaseous pollutants (Figure 2a). 286 

GEM was found significantly correlated with the primary air pollutants such as CO, K+, BC, and 287 

EC with the correlation coefficients (R) above 0.7. This suggested that the main anthropogenic 288 

sources of GEM might be coal combustion and biomass burning in Shanghai, which was consistent 289 

with the previous studies in the Yangtze River Delta (Qin et al., 2019; Tang et al., 2018). 290 

BC, EC, and CO are mainly from fossil fuels combustion and biomass burning, and can be 291 

used as indicators of the main anthropogenic sources of GEM. In order to explore the changes in 292 

the sources of GEM, we further investigated the relationship between GEM and BC/EC/CO before, 293 

during, and after the lockdown. As shown in Figure 2, R between GEM and BC, GEM and CO, 294 

GEM and EC during and after the lockdown were lower than that before the lockdown, suggesting 295 

the influence of anthropogenic sources on GEM was weakened during the lockdown. Different from 296 

BC, CO, and EC that are overwhelmingly derived from anthropogenic sources, natural sources such 297 

as surface emission and ocean release also contribute significantly to GEM (Obrist et al., 2018). 298 

Hence, the ratio of GEM/BC, GEM/CO, and GEM/EC can be simply applied as indicators to reveal 299 

the relative importance of anthropogenic versus natural sources. A higher GEM/BC, GEM/CO, and 300 

GEM/EC ratio indicated the more importance of natural sources, and vice versa. As shown in Figure 301 

2k-m, the GEM/BC ratio significantly increased from 1.9×10-3 before the lockdown to 3.2×10-3 302 

during the lockdown, the GEM/CO ratio significantly increased from 3.1×10-6 to 4.0×10-6, and the 303 

GEM/EC ratio significantly increased from 1.4×10-3 to 2.2×10-3. The GEM/CO ratio has been used 304 

to analyze the sources of GEM in many studies. In this study, the GEM/CO ratio during the 305 

lockdown period was 4.0×10-6, which was significantly higher than the anthropogenic GEM/CO 306 

emission ratio in mainland China, South Asia, and Indochinese Peninsula, whose values were 2.7, 307 

2.6, and 1.5×10-6, respectively (Fu et al., 2015), also higher than the GEM/CO ratio observed in 308 
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Nanjing (3.1×10-6) and Beijing (1.5×10-6) in winter (Zhang et al., 2013; Zhu et al., 2012).This 309 

corroborated that the impact of natural sources on GEM could be more outstanding during the 310 

lockdown than before and after the lockdown. 311 

 312 

Figure 2. (a) Correlation coefficient matrix among GEM and PM2.5 components and gaseous 313 

pollutants during the whole study period. Relationship between GEM and BC, CO, and EC (b-d) 314 

before, (e-g) during, and (h-j) after the lockdown. (k-m) The change of GEM/BC, GEM/CO, and 315 

GEM/EC ratios before, during, and after the lockdown. 316 

 317 

Previous studies have demonstrated the strong dependence of natural surface emissions on 318 

meteorological factors such as temperature, wind speed, and relative humidity (Pannu et al., 2014; 319 

Lindberg et al., 2007; Gustin et al., 2005). We compared the relationship between GEM and 320 

meteorological parameters before, during, and after the lockdown to investigate the changes in 321 
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correlations before and after the lockdown while weak correlations during the lockdown (Figure 3g-333 

i). The increase of PBL height was beneficial to the diffusion of GEM. While the increase of PBL 334 

height usually occurred in daytime when temperature was high, which was conducive to the natural 335 

surface release of mercury. Therefore, ambient GEM did not decrease significantly with the increase 336 

of PBL height during the lockdown. 337 

Overall, all the observational evidences possibly suggested that the role of natural emissions 338 

on GEM was more manifested due to the lockdown. However, all the results were based on 339 

qualitative data analysis. In the following sections, the machine learning and source apportionment 340 

methods will be applied to quantify the contribution of anthropogenic and natural sources to GEM 341 

during the three defined periods. 342 

 343 

Figure 3. Relationship between GEM concentration and (a-c) temperature, (d-f) wind speed, and 344 

(g-i) PBL height before, during, and after the lockdown. 345 
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3.3 Understanding the Drivers of GEM Variation by Explainable Machine Learning  347 

We further conducted machine learning simulations using the trained artificial neural network 348 

(ANN), which has already been established by training the long-term (2015 - 2019) observational 349 

data of GEM and other necessary environmental parameters (including SO2, NO2, CO, O3, PM2.5, 350 

temperature, relative humidity, and wind speed) at the Dianshan Lake site (Qin et al., 2022). Figure 351 

4a-b shows the comparison of ANN-simulated and observed GEM concentrations during the whole 352 

study period, and found their correlation coefficient is acceptable (R2 = 0.67). As shown in Figure 353 

S5, we examined the performance of the ANN model before, during, and after the lockdown. The 354 

correlations between ANN simulated and observed GEM concentrations were also acceptable with 355 

correlation coefficient of 0.67, 0.59, and 0.63, respectively. Then we applied the SHapley Additive 356 

exPlanation (SHAP) approach to uncover the mystery of the machine learning “black box” model 357 

(See methods in Section 2.3). This approach has the potential to quantify the global and local 358 

impacts of input features on model predictions (Lundberg and Lee, 2017a), which has been used in 359 

various fields (Mangalathu et al., 2020; Hou et al., 2022; Lundberg et al., 2018; Zhong et al., 2021; 360 

Wang et al., 2021). 361 

We calculated the SHAP value of each feature to represent the global importance of the feature, 362 

which can be used to indicate the general impact of various features across all samples. As shown 363 

in Figure 4c, by comparing the average absolute SHAP values, PM2.5 ranked as the most important 364 

feature, which changed the simulated GEM concentrations by 0.30 ± 0.20 ng/m3, followed by CO 365 

and temperature with the SHAP values of 0.16 ± 0.25 and 0.14 ± 0.09 ng/m3, respectively. The 366 

average values of the remaining factors were less than 0.1 ng/m3. We further investigated the 367 

relationship between the SHAP value of each feature and its concentration. As shown in Figure 4d-368 

f, with the increase of PM2.5, CO, and SO2 concentrations, their corresponding SHAP values 369 

increased accordingly. Previous studies have shown that GEM, PM2.5, CO, and SO2 shared common 370 

anthropogenic sources such as the combustion of fossil fuels and biomass (Chong et al., 2019; Fu 371 

et al., 2015), thus interpreting the positive effect of various anthropogenic emission sources on GEM. 372 

Similar relationship was also found for temperature and relative humidity with their corresponding 373 

SHAP values (Figure 4g-h). Since temperature and relative humidity are important factors affecting 374 

the natural release of GEM from natural surfaces (Pannu et al., 2014; Wang et al., 2016), the positive 375 
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influence of natural surface emissions on GEM was expected. In contrast, the SHAP value of wind 376 

speed negatively correlated with the magnitude of wind speed (Figure 4i), indicating the 377 

diffusion/accumulation effect of wind speed on GEM. The SHAP values of NO2 and O3 did not 378 

show obvious correlations with their concentrations (Figure 4j-k). One of the main sources of NO2 379 

was vehicle emission, which contributed little to GEM. As for O3, its oxidation on GEM was also 380 

limited. Thus, neither NO2 or O3 exhibited considerable effects on regulating the GEM variation. 381 

 382 

 383 
Figure 4. (a) Time-series of observed and ANN-simulated GEM concentrations during the study 384 

period. (b) Linear correlation between observed and ANN-simulated GEM concentrations. (c) The 385 

ranking of input features calculated via the SHAP algorithm (d-k) Relationship between SHAP 386 

value and corresponding concentration of each feature. 387 
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respectively. Similar to PE1, PM2.5 and CO in PE2 contributed the most to the GEM variation of 397 

0.35 and 0.12 ng/m3, respectively. This indicated that the two mercury pollution episodes before the 398 

lockdown were mainly driven by anthropogenic sources. In contrast, in PE3 and PE4, temperature 399 

ranked the first among all the variables, with contribution to GEM of 0.10 and 0.14 ng/m3, 400 

respectively. This suggested that these two pollution episodes during and after the lockdown 401 

occurred under the dominance of natural sources.  402 

 In addition, we found that there was a trade-off between the SHAP value of temperature and 403 

the SHAP value of PM2.5 and CO. As shown in Figure 5b-c, the SHAP value of temperature 404 

decreased with the increase of the SHAP value of PM2.5 and CO throughout the study period. This 405 

probably suggested that the increase of anthropogenic GEM emissions may inhibit the release of 406 

natural sources to some extents, which will be discussed later. 407 

 408 

 409 

 410 

 411 

Figure 5. (a) Time series and box plots of each feature’s SHAP value during the four mercury 412 

pollution episodes (b-c) Relationship between SHAP value of temperature and SHAP value of CO 413 

and PM2.5 during the whole study period 414 
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To quantify the changes in the contribution of different sources to GEM, we applied the PMF model 417 

to analyze the sources of GEM during the whole study period. Figure S7 shows the resolved factors 418 

and factor loadings, which were similar to the results by previous study at the same site (Qin et al., 419 

2020). A total of six sources were resolved, namely coal combustion with high loadings of SO4
2-, 420 

Pb, K+, As, and Se, natural surface emissions with high loadings of temperature and NH3, vehicle 421 

emission with high loadings of NO, ship emission with high loading of Ni, iron and steel production 422 

with high loadings of Fe, Cr, and Mn, and cement production with high loading of Ca. The mean 423 

contributions of the six factors above to GEM were 55%, 28%, 7%, 5%, 3%, and 3%, respectively 424 

(Figure S7). To evaluate the uncertainty of the PMF results, the Fpeak model run at the strength of 425 

0.5, -0.5, 1, and -1 were conducted by using the rotation tools in PMF. The changes of Q value (dQ) 426 

due to the Fpeak rotation were less than 1% of the base run Q (robust) value (Table S3), less than 427 

the benchmark value of 5%. The profiles and contributions of each source were also examined, and 428 

there were no significant differences between the factor contributions of base run and rotation results, 429 

especially for coal combustion and natural surface emission. Hence, the base run results were used 430 

in this study. 431 

Figure 6a shows the time-series of apportioned GEM concentrations and relative contributions 432 

from six sources during three periods. Significant changes in the sources of GEM were observed 433 

due to the lockdown. The contribution of coal combustion fell from 60% before the lockdown to 434 

51% during the lockdown and 48% after the lockdown. On the opposite, the relative contribution of 435 

natural surface emissions rose significantly from 20% before the lockdown to 39% during the 436 

lockdown, and then dropped slightly to 33% after the lockdown. In addition to the increased relative 437 

contribution of natural surface emissions, its absolute contribution to GEM concentration increased 438 

significantly from 0.55 ng/m3 before the lockdown to 0.80 ng/m3 during the lockdown, i.e., a 44% 439 

increase (Figure 6b). Considering that the synoptic conditions varied little before and during the 440 

lockdown, both increases in the absolute and relative contribution of natural surface emissions to 441 

GEM during the lockdown should be stimulated by the significant reduction of anthropogenic 442 

mercury emissions. Indeed, Figure 6c shows that the absolute contribution of natural surface 443 

emissions to GEM and the contribution of anthropogenic sources exhibited a significant negative 444 

correlation throughout the study period (R2 = 0.86). This indicated that the significant reduction of 445 
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anthropogenic emissions would lead to a significant decrease in the GEM concentration, thereby 446 

disrupting the exchange balance of mercury between the natural surfaces (including soil, vegetation, 447 

and water bodies, etc.) and the atmosphere, resulting in an increase of natural surface release to 448 

compensate for the decrease of GEM concentration in the atmosphere. 449 

 450 

 451 

Figure 6. (a) Daily average concentrations of apportioned GEM from six sources based on PMF 452 

modeling. Pie charts represent the relative contribution of the six sources to GEM during three 453 

periods (b) Changes of absolute contribution of natural and anthropogenic sources to GEM before 454 

and during the lockdown (c) Relationship between absolute contribution of natural surface 455 

emissions and anthropogenic sources to GEM during the whole study period 456 
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relationship between GEM and wind speed/PBL disappeared during the lockdown, suggesting the 466 

enhanced natural emissions of mercury. By applying a machine learning model, GEM was well 467 

simulated and the results were interpreted by the Shapley Additive ExPlanation Approach. It was 468 

found that the mercury pollution episodes before the lockdown were driven by anthropogenic 469 

sources, while they were mainly driven by natural sources during and after the lockdown. Source 470 

apportionment results showed that the relative contribution of natural sources to GEM during the 471 

lockdown reached 39%, which was significantly higher than that before the lockdown (20%). The 472 

absolute contribution of natural sources to GEM during the lockdown was about 0.80 ng/m3, 44% 473 

higher than that before the lockdown. Finally, we revealed the negative correlation between the 474 

absolute contribution of natural sources and anthropogenic sources, suggesting the natural release 475 

of mercury could be enhanced in response to the significant reduction of anthropogenic mercury 476 

emissions. 477 

In the long-term, the surface ambient mercury concentration in the northern hemisphere decreased 478 

by 30-40% from 1990 to 2010 (Slemr et al., 2011; Soerensen et al., 2012; Cole et al., 2014). From 479 

2013 to 2017, the gaseous total mercury concentration in China decreased by about 12% (Liu et al., 480 

2019). It has been long recognized mitigation of anthropogenic mercury emissions regulated this 481 

global or regional trend, while the role of natural mercury emissions is less known. Specifically, the 482 

response of natural mercury release to the reduction of ambient Hg0 concentration is ambiguous, 483 

which limits better understanding the role of natural sources in global mercury cycling. In this study, 484 

the COVID-19 lockdown provided a natural experiment on assessing the dynamic behavior of 485 

natural and anthropogenic contributions to gaseous elementary mercury by different means. As 486 

shown in Figure S8, the sum of the SHAP values of CO and PM2.5 exhibited a good positive 487 

correlation with the concentration of GEM contributed by anthropogenic sources based on PMF 488 

modeling (R2 = 0.72). Moderate correlation was also derived between the SHAP value of 489 

temperature and the concentration of GEM contributed by natural sources (R2 = 0.50). This indicated 490 

that the results of machine learning with an explainable approach and the traditional receptor model 491 

were consistent and corroborated each other. This study highlighted that machine learning coupled 492 

with reliable interpretation methods can well quantify the role of different factors in the process of 493 

air pollution, showing great potential in the fields of atmospheric science. However, we realize that 494 
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the performance of machine learning in simulating atmospheric mercury in this study has yet to be 495 

improved. Continuous long-term observations of atmospheric mercury with more monitoring sites 496 

are desired to ensure a more adequate training dataset. Also, more relevant environment parameters 497 

for GEM are needed to further improve the training performance of machine learning model. In 498 

addition, different machine learning methods such as artificial neural network, decision tree, random 499 

forest, and Bayesian learning should be evaluated to choose an optimal solution. 500 

The natural release of mercury mainly comes from the exchange between the natural surfaces and 501 

the atmosphere, including two processes: (1) the formation of volatile Hg0 in the surface and (2) the 502 

mass transfer of Hg0 between the interfaces (Zhu et al., 2016). At locations with high ambient Hg0 503 

concentrations (e.g., mining areas and landfills), the exchange of mercury between the surface and 504 

the atmosphere is always dominated by deposition, regardless changes in meteorological conditions 505 

(Bash and Miller, 2007; Wang et al., 2007; Zhu et al., 2013). Fluctuations in ambient Hg0 506 

concentrations can change the Hg0 concentration gradient at the interfaces and thus affect the Hg0 507 

exchange flux (Xin and Gustin, 2007). The results of this study imply that the declining in global 508 

anthropogenic mercury emissions could stimulate increases in natural surface releases, which may 509 

pose challenges to future control of atmospheric mercury pollution. 510 
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