
Response to Reviewer #1’s Comments 

Anonymous Referee #1: 

Major comments:  

This study investigated the impacts of anthropogenic and natural emission sources on 

atmospheric mercury before, during, and after the COVID-19 lockdown based on data 

measured at a rural site in eastern China. Correlation analysis, an explainable machine learning 

model, and the PMF model were applied to quantify the impacts of the key factors reflecting 

anthropogenic and natural sources. The manuscript tried to depict the change of atmospheric 

mercury behavior caused by the COVID-19 lockdown in China. However, my major concern 

is that the authors seemed to be a bit arbitrary in drawing conclusions. More solid evidences 

are required. Moreover, the reliability of the machine learning model and the PMF model needs 

more rigorous illustration. The novelty of this study also needs to be better addressed. The 

compensation effect of natural mercury emission when the GEM concentration is reduced has 

been reported before, and the results from this study could not confirm this effect. In addition, 

the discussion part in the manuscript needs significant improvement. Therefore, in my opinion, 

this manuscript is not acceptable for publication on Atmospheric Chemistry and Physics in its 

current version. 

We sincerely thank for the reviewer’s in-depth comments and helpful suggestions on this 

manuscript. Based on the specific comments, we have responded to all the comments point-by-

point and made corresponding changes in the manuscript as highlighted in red color. The 

reviewer has raised a number of issues and we quite agree. The manuscript has been 

significantly revised. We feel the substantial revisions based on the reviewer’s comments have 

greatly improved the quality of this manuscript. Please check the detailed responses to all the 

comments as below. 

Here are some specific comments: 

1. Lines 20–23: The conclusion that the decrease of GEM was not as significant as other air 

pollutants is not convincing. 

Response: Thanks for the comment. In order to make this conclusion more solid, the table below 

shows the changes in GEM and the other measured air pollutants (including SO2, NO2, CO, O3, 

NO, NO3
-, SO4

2-, NH4
+, Ca2+, OC, EC, Pb, Fe, Cr, Se, Ca, Mn, As, Ni, Zn, and BC) before and 

during the lockdown. It is found that except for SO2, SO4
2-, and OC, the declines of other air 

pollutants are all greater than that of GEM. The average decline percentage of those air 

pollutants is 55%, while that of GEM is 26%. To make the expression more accurate, we change 

the sentence as “At a regional site in Eastern China, an intensive measurement was performed, 

showing obvious decreases of gaseous elemental mercury (GEM) during the COVID-19 

lockdown, while not as significant as most of the other measured air pollutants” in Line 23 of 

the revision. 



As for the original writing in the first paragraph in Section 3.2, “Figure S4 further shows the 

reduction rates of GEM, SO2, NO2, CO, EC, Pb, As, and BC during the lockdown were 26%, 

9%, 56%, 33%, 38%, 36%, 34%, and 51%, respectively, compared to pre-lock. Except for SO2, 

GEM presented lower reduction rate than the other air pollutants, probably suggesting the 

different release mechanism of GEM from the other air pollutants.”, it is changed as “Table S2 

further shows the reduction rates of gaseous pollutants SO2, NO2, NO, and CO were 9%, 56%, 

64%, and 33%, respectively, compared to those before the lockdown. While O3 showed almost 

one-fold increase due to the strongly depressed titration effect from substantial reduced NOx 

emissions during the lockdown (Huang et al., 2021; Yang et al., 2021). As for the primary trace 

elements such as Pb, Fe, Cr, Se, Ca, Mn, As, Ni, and Zn, their reduction rates ranged from 34% 

- 73%. As for the main chemical components in PM2.5, NO3
-, NH4

+, and BC were strongly 

reduced by 58%, 45%, and 51%, while SO4
2- and OC were less reduced by 20% and 16%, 

respectively. Except for SO2, SO4
2-, and OC, GEM presented lower reduction rate than the other 

air pollutants, probably indicating the discrepancy in key sources for different air pollutants.” 

in Line 276-284 of the revision. 

 

Table. The changes of GEM and the other measured air pollutants before and during the 

lockdown. 

 before during relative change (%) 

GEM 2.78 2.06 26 

SO2 7.47 6.76 9 

NO2 53.52 23.76 56 

CO 0.91 0.61 33 

O3 42.13 83.10 -97 

NO 11.53 4.17 64 

NO3
- 23.37 9.73 58 

SO4
2- 9.97 7.99 20 

NH4
+ 10.88 5.98 45 

Ca2
+ 0.14 0.03 77 

OC 5.32 4.47 16 

EC 2.45 1.52 38 

Pb 32.62 21.02 36 

Fe 372.22 137.59 63 

Cr 5.82 1.06 82 

Se 3.37 2.28 32 

Ca 67.15 19.86 70 

Mn 36.63 9.92 73 

As 8.09 5.36 34 

Ni 4.02 1.82 55 

Zn 112.76 35.26 69 

BC 1.87 0.93 51 

   



Note: the units of GEM and all trace elements are ng/m3. The units of the other air pollutants 

are μg/m3. 

 

2. Lines 46–58: It is not quite appropriate to use the past tense in these sentences. More updated 

literatures could be used, e.g., Streets et al. (2019) and Steenhuisen and Wilson (2019) for 

global anthropogenic Hg emissions, Liu et al. (2019) for anthropogenic Hg emissions in China, 

and Pirrone et al. (2010) and Outridge et al. (2018) for global natural Hg emissions. 

Response: Thanks for the suggestion, we changed the past tense to the present tense and updated 

the literatures according to reviewer’s suggestions in Line 46-55 of the revision as follows. 

“Mercury in the atmosphere derives from both anthropogenic emissions and natural processes. 

The main anthropogenic sources of atmospheric mercury include coal combustion, nonferrous 

smelters, cement production, waste incineration, and mining (Wu et al., 2018; Wu et al., 2016). 

The amount of mercury in the atmosphere directly emitted by anthropogenic activities 

accounted for about 30% of global mercury emissions (Streets et al., 2019; Steenhuisen and 

Wilson, 2019) and China is the country with the largest anthropogenic atmospheric mercury 

emissions in the world (Liu et al., 2019). The natural sources of mercury in the atmosphere are 

mainly from the exchange processes between natural surfaces (e.g., soil, vegetation, and water) 

and the atmosphere (Outridge et al., 2018; Pirrone et al., 2010). Unlike anthropogenic emissions, 

natural releases of mercury are passive emissions and are susceptible to various environmental 

factors, such as meteorological parameters…”. 

3. Section 2.2: The size of the input dataset should be given. The results from model verification 

should be introduced in detail. 

Response: Thanks for the suggestion. We add the size of the input dataset in the revision, the 

relevant sentence has been changed as “The long-term observational GEM (hourly data from 

March 1, 2015 to February 28, 2019; n = 17532) in Shanghai was the target variable for training, 

and the corresponding air pollutants (SO2, CO, O3, NO2, and PM2.5) and meteorological data 

(air temperature, relative humidity, and wind speed) were chosen as input variables for training.” 

in Line 175-179 of the revision. 

We add details about the model verification in Line 182-193 of the revision. “To verify 

the accuracy of the trained neural network model, we compared the observed (not included in 

the training data set) and simulated GEM concentrations of DSL from January 1 to February 

26, 2020, and found that they exhibited a reasonably good correlation with the correlation 

coefficient (R2) of 0.67. To test the applicability of the model on the regional scale, we 

compared the observed and simulated GEM concentrations in Suzhou, Ningbo, Nanjing, and 

Hefei (Figure S2). In Nanjing and Suzhou, the observed and simulated daily GEM showed 

consistence with R2 values of 0.52 and 0.71, respectively. In Ningbo, the observed and 

simulated GEM in summer and winter also showed consistence with R2 values of 0.64 and 0.65, 

respectively. A low bias was derived between the observed and simulated seasonal GEM in 



Hefei. This suggested that it was feasible to use the trained ANN model to simulated the GEM 

concentrations in Shanghai and even the Yangtze River Delta region.”  

 

Figure S2. Comparison of observed (blue line) and simulated (red line) GEM concentrations 

in (a) Nanjing, (b) summer Ningbo, (c) winter Ningbo, (d) Suzhou, and (e) Hefei. The left panel 

is their time series, and the right panel is their corresponding correlation. The blue dotted line  

represents the y = x reference line. 

 

4. Section 2.4: Which factors were considered in the PMF model? How were they determined? 

Response: In this study, we explored the number of factors being from three to eight, with the 

optimal solutions determined by the slope of the Q value versus the number of factors. The Q 

value is the sum of the square of the difference between the measured and modeled 

concentrations weighted by the concentration uncertainties, and needs to be minimized before 

the PMF modeled determines the optimal nonnegative factor profiles and contributions (Cheng 

et al., 2015).  
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Where Xij represents the concentration of the jth contamination in the ith sample, m is the total 

number of the pollutants, and n is the total number of samples. Aik represents the contribution 

of the kth factor on the ith sample, and Fkj represents the mass fraction of the j pollutant in the 

kth factor. Sij is the uncertainty in the jth pollutant on the ith factor, and P is the number of 

factors. For each run in this study, the stability and reliability of the outputs were assessed by 

referring to the Q value, residual analysis, and correlation coefficients between observed and 

predicted concentrations. Finally, we found that a six-factor solution showed the most stable 

results and gave the most reasonable interpretation. 

The above writings are added in Line 224-237 of the revision. 

 

5. Lines 199–200: The case after the “lockdown” could not be called a “rebound”. There were 

just two small GEM pollution episodes. They could also occur during the “lockdown”. In fact, 

the lockdown continued for about six months. It was just that the extent of lockdown was 

gradually weakening. 

Response: We agree with the reviewer that the word “rebound” is inappropriate here, so we 

change the sentence as “After the lockdown, GEM concentration was slightly higher than that 

of during the lockdown.” in Line 247-248 of the revision. 

6. Lines 230–231: This statement is a bit arbitrary. The lower reduction rate of GEM could be 

due to the discrepancy in key sources for different air pollutants. 

Response: We agree with the reviewer that the lower reduction rate of GEM could be due to 

the discrepancy in key sources for different air pollutants. In fact, this is exactly what we meant 

to express here. More discussions about the reduction of GEM compared to the other air 

pollutants have been detailed in the response to Comment #1. This sentence is revised as 

“Except for SO2, SO4
2-, and OC, GEM presented lower reduction rate than the other air 

pollutants, probably indicating the discrepancy in key sources for different air pollutants.” in 

Line 283-284 of the revision. 

7. Lines 233–237: This statement is too vague. What kind of fossil fuel combustion? Coal 

combustion or vehicle emissions? Is biomass burning an important source in Shanghai? 

Response: Thanks for pointing this issue out. As indicated by previous studies (Qin et al., 2019), 

source apportionment results indicated vehicle emission was a negligible contributor to 

mercury, while coal combustion contributed significantly in Shanghai. As for biomass burning, 

it was not important in Shanghai. However, the straw burning in the adjacent areas of Shanghai 

was ubiquitous as the Yangtze River Delta is a base for crop cultivation (Yang and Zhao, 2019). 

To make the expression more accurate, we change the sentence as “This suggested that the 



main anthropogenic sources of GEM might be coal combustion and biomass burning in 

Shanghai, which was consistent with the previous studies in the Yangtze River Delta (Qin et 

al., 2019; Tang et al., 2018).” in Line 289 of the revision. 

8. Lines 238–239: It is not appropriate to regard BC as a proxy for anthropogenic emissions. 

What kind of anthropogenic emissions? 

Response: Sorry for the confusing description, what we wanted to express is that BC can be a 

proxy for the main anthropogenic sources of GEM. Because BC mainly come from fossil fuels 

combustion and biomass burning (Briggs and Long, 2016), which is also the main 

anthropogenic sources of GEM (Streets et al., 2019). We realize that it is not sufficient to use 

BC as the proxy of main anthropogenic sources of GEM only, so in the revised version, we also 

add CO and EC as indicators. The sentence is modified as “BC, EC, and CO are mainly from 

fossil fuels combustion and biomass burning, and can be used as indicators of the main 

anthropogenic sources of GEM.” in Line 291-292 of the revision. 

9. Lines 242–243: Using only the R value or the ratio of GEM/BC to indicate the contribution 

of anthropogenic sources is not robust. Also, the ratio of GEM/BC should be compared with 

previous studies. 

Response: We agree with the reviewer that it is not robust to indicate the change of GEM 

sources only through the change of the relationship between GEM and BC in different control 

stages. In the revised version, in addition to BC, we also discussed the relationship between 

GEM and CO, EC, so that we can more clearly show the changes in the sources of GEM. As 

shown in the figure below, the R values between GEM and BC, CO, EC before the lockdown 

were higher than those during and after the lockdown, which indicates that the influence of 

anthropogenic sources on GEM is indeed weakened during and after the lockdown by using 

different parameters. The related sentences have also been changed accordingly in the revision 

as follows. “As shown in Figure 2, R between GEM and BC, GEM and CO, GEM and EC 

during and after the lockdown were lower than that before the lockdown”, “Different from BC, 

CO, and EC that are overwhelmingly derived from anthropogenic sources, natural sources such 

as surface emission and ocean release also contribute significantly to GEM (Obrist et al., 2018). 

Hence, the ratio of GEM/BC, GEM/CO, and GEM/EC can be simply applied as indicators to 

reveal the relative importance of anthropogenic versus natural sources.” in Line 296-300 of the 

revision. 

Few studies have addressed the ratio of GEM/BC, while the GEM/CO ratio has been used to 

analyze the source of GEM in many studies. In this study, the GEM/CO ratio during the 

lockdown period was 4.0 × 10-6, which was significantly higher than the anthropogenic 

GEM/CO emission ratio in mainland China, South Asia, and Indochinese Peninsula, whose 

values were 2.7, 2.6, and 1.5×10-6, respectively (Fu et al., 2015), also higher than the GEM/CO 

ratio observed in Nanjing (3.1×10-6) and Beijing (1.5×10-6) in winter (Zhang et al., 2013; Zhu 

et al., 2012). This implies that during the lockdown, the impact of anthropogenic sources on 

GEM is weakened and natural sources become more important. We added relevant sentences 



“The GEM/CO ratio has been used to analyze the sources of GEM in many studies. In this study, 

the GEM/CO ratio during the lockdown period was 4.0×10-6, which was significantly higher 

than the anthropogenic GEM/CO emission ratio in mainland China, South Asia, and 

Indochinese Peninsula, whose values were 2.7, 2.6, and 1.5×10-6, respectively (Fu et al., 2015), 

also higher than the GEM/CO ratio observed in Nanjing (3.1×10-6) and Beijing (1.5×10-6) in 

winter (Zhang et al., 2013; Zhu et al., 2012).” in Line 304-309 of the revision. 

  

 

Figure. Relationship between GEM and BC, CO, EC and the change of their ratios before, 

during, and after the lockdown. 

10. Lines 262–266: The increase of the R value didn’t necessarily imply the enhanced role of 

natural sources. It could be that other meteorological factors took the lead in affecting GEM 

concentration before and during the lockdown. 

Response: Thanks for the comment. As can be seen from the table below, the main 

meteorological factors (including temperature, wind speed, relative humidity, planetary 

boundary layer height and air pressure) before and during the lockdown did not change 

significantly. And the 3-days backward trajectory cluster analysis as shown in the Figure below 

indicated that the transport patterns differed little between these two periods. Therefore, we 

believe that the reason for the increase in R value between GEM and temperature should not be 

caused by changes in meteorological factors. Temperature, as an important factor affecting the 

natural releases of GEM (Pannu et al., 2014; Zhang et al., 2021), has a significantly better 
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correlation with GEM during the lockdown than that before the lockdown, the most likely 

reason is that the effect of natural release on GEM has become more important, especially as 

the average temperature during the lockdown is lower than that before the lockdown. In order 

to make the statement more rigorous, we change the sentence as “This might indicate the 

enhanced role of natural sources on GEM concentration due to the lockdown control measures.” 

in Line 324-325 of the revision. 

 

Table. Changes in major meteorological factors before, during, and after the lockdown. 

 Temperature (℃) WS(m/s) RH (%) PBL(m) Pressure (Pa) 

before 7.2 1.8 83.1 416.6 1024.9 

during 6.1 1.9 77.7 483.0 1024.1 

after 9.9 2.3 74.4 439.8 1024.5 

 

 

Figure. HYSPLIT 3-days backward trajectory cluster analysis at DSL (a) before, (b) during, 

and (c) after the lockdown. 

11. Lines 266–277: It could also be that different meteorological factors dominate the influence 

on GEM concentration before, during and after the lockdown. 

Response: Thanks for the comment. As responded above, the table below shows the main 

meteorological factors (including temperature, wind speed, relative humidity, planetary 

boundary layer height and air pressure) before and during the lockdown did not change 

significantly. And the 3-days backward trajectory cluster analysis as shown in the Figure below 

indicated that the transport patterns differed little between these two periods. Therefore, we 

suggested that it is unlikely that changes in meteorological conditions dominated the changes 

in GEM concentration before, during and after the lockdown. 

Table. Changes in major meteorological factors before, during, and after the lockdown. 

 Temp(℃) WS(m/s) RH (%) PBL(m) Pressure (Pa) 

before 7.2 1.8 83.1 416.6 1024.9 

during 6.1 1.9 77.7 483.0 1024.1 

pre-lock lock after-lock

cluster 1: 15%, 2: 25%, 3: 46%, 4: 14% cluster 1: 18%, 2: 26%, 3: 40%, 4: 16% cluster 1: 21%, 2: 24%, 3: 20%, 4: 35% 

(a) (b) (c)



after 9.9 2.3 74.4 439.8 1024.5 

 

 

Figure. HYSPLIT 3-days backward trajectory cluster analysis at DSL (a) before, (b) during, 

and (c) after the lockdown. 

12. Line 278: These were very weak evidences. The word “confirmed” is too strong. 

Response: Thanks for pointing this out. We changed the word “confirmed” to “possibly 

suggested” in Line 338 of the revision. 

13. Section 3.3: There should be a training dataset and a test dataset to check if the model is 

overfitting. 

Response: Thanks for the suggestion. In this study, the training dataset includes the target 

variable GEM (hourly data, n = 17532) observed in Shanghai from March 1, 2015 to February 

28, 2019, and the input variables were corresponding air pollutant data (SO2, CO, O3, NO2, and 

PM2.5) and meteorological data (air temperature, relative humidity, and wind speed). During 

the training of the model, the data set were randomly divided into three parts, i.e., 70% for 

training, 15% for validation, and 15% for testing. In order to verify the feasible of the trained 

model, we first compared the observed and simulated GEM in Shanghai from January 1 to 

February 26, 2020 (not included in the model training data set), and found that they are well 

correlated (as shown in the Figure below), which indicated that it is feasible to use the model 

to simulate the GEM concentration in Shanghai.  

 

Figure. Time-series of observed and ANN-simulated GEM concentrations during the study 

period. 
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To test the applicability of the model on a regional scale, we compared the observed and 

simulated GEM concentrations in Suzhou, Ningbo, Nanjing, and Hefei (Figure below). In 

Nanjing and Suzhou, the observed and simulated daily GEM shows consistence with R2 values 

of 0.52 and 0.71, respectively. In Ningbo, the observed and simulated GEM in summer and 

winter also show consistence with R2 values of 0.64 and 0.65, respectively. A low bias was 

derived between the observed and simulated seasonal GEM in Hefei. This suggested that it is 

feasible to use the trained ANN model to simulated the GEM concentrations in Shanghai and 

even the Yangtze River Delta region. 

 

Figure. Comparison of observed (blue line) and simulated (red line) GEM concentrations 

in (a) Nanjing, (b) summer Ningbo, (c) winter Ningbo, (d) Suzhou, and (e) Hefei. The left panel 

is their time series, and the right panel is their corresponding correlation. The blue dotted line 

represents the y = x reference line. 

We added detail description “To verify the accuracy of the trained neural network model, 

we compared the observed (not included in the training data set) and simulated GEM 

concentrations of DSL from January 1 to February 26, 2020, and found that they have a good 



correlation, the correlation coefficient (R2) is 0.67. To test the applicability of the model on a 

regional scale, we compared the observed and simulated GEM concentrations in Suzhou, 

Ningbo, Nanjing, and Hefei (Figure S2). In Nanjing and Suzhou, the observed and simulated 

daily GEM showed consistence with R2 values of 0.52 and 0.71, respectively. In Ningbo, the 

observed and simulated GEM in summer and winter also showed consistence with R2 values of 

0.64 and 0.65, respectively. A low bias was derived between the observed and simulated 

seasonal GEM in Hefei. This suggested that it is feasible to use the trained ANN model to 

simulated the GEM concentrations in Shanghai and even the Yangtze River Delta region.” in 

Line 182-193 of the revision. 

14. Figure 4(d-k): The influencing patterns of each factor should be discussed. 

Response: Thanks for the suggestion. We added a detailed description of the influencing 

patterns of each factor in Line 368-381 of the revision. 

“As shown in Figure 4d-f, with the increase of PM2.5, CO, and SO2 concentrations, their 

corresponding SHAP values increased accordingly. Previous studies have shown that GEM, 

PM2.5, CO, and SO2 shared common anthropogenic sources such as the combustion of fossil 

fuels and biomass (Chong et al., 2019; Fu et al., 2015), thus interpreting the positive effect of 

various anthropogenic emission sources on GEM. Similar relationship was also found for 

temperature and relative humidity with their corresponding SHAP values (Figure 4g-h). Since 

temperature and relative humidity are important factors affecting the natural release of GEM 

from natural surfaces (Pannu et al., 2014; Wang et al., 2016), the positive influence of natural 

surface emissions on GEM was expected. In contrast, the SHAP value of wind speed negatively 

correlated with the magnitude of wind speed (Figure 4i), indicating the diffusion/accumulation 

effect of wind speed on GEM. The SHAP values of NO2 and O3 did not show obvious 

correlations with their concentrations (Figure 4j-k). One of the main sources of NO2 was vehicle 

emission, which contributed little to GEM. As for O3, its oxidation on GEM was also limited. 

Thus, neither NO2 or O3 exhibited considerable effects on regulating the GEM variation.”  

15. Lines 334–338: Does the SHAP value reflect the absolute impact of the factor or the relative 

contribution of it? If latter, the statement is incorrect. If former, the statement is not necessarily 

correct either. 

Response: Thanks for the comments. According to the algorithm of SHAP value, the SHAP 

value of a feature for a query point explains the deviation of the prediction for the query point 

from the average prediction due to the feature. For each query point, the sum of the SHAP 

values for all features corresponds to the total deviation of the prediction from the average. In 

this study, the SHAP value of a feature at a specific time represents its influence on the 

deviation of the GEM concentration at that time from the average GEM concentration 

throughout the whole study period. For example, the SHAP value of temperature can be used 

to represent the influence of natural sources on GEM concentration at corresponding time 

deviating from the average GEM concentration throughout the whole study period, and the 

SHAP values of PM2.5 and CO can be used to represent the influence of major anthropogenic 



sources. Thus, the SHAP value reflects the absolute impact of the factor but not the relative 

contribution. 

As for the statement in Line 334–338, we agree with the reviewer that the conclusion which 

was based on the SHAP value analysis needs more evidence. Based on the negative correlation 

between the SHAP value of temperature and PM2.5, CO, we suggested a possible mechanism 

that the increase of anthropogenic emissions of GEM might inhibit the natural release of GEM 

to some extents. However, this conclusion should be confirmed and thus the PMF modeling 

was applied in Section 3.4. As shown in Figure 6b, the absolute contribution of natural surface 

emissions to GEM during the lockdown increased more 40% compared to that before the 

lockdown. It was previously mentioned that the differences of the key meteorological 

parameters between the lockdown period and pre-lock period were marginal. Thus, it was 

supposed that the absolute contribution of natural surface emissions to GEM shouldn’t be 

varying greatly between these two periods. However, even the mean temperature during the 

lockdown (6.1℃) was slightly lower than that before the lockdown (7.2℃), which was opposite 

to the PMF results on natural emission of GEM. Thus, we concluded that part of the increased 

contribution to GEM from natural release should be induced by the significantly reduced 

anthropogenic sources based on the analysis from different perspectives in this study. 

16. Section 3.4: The uncertainty of the PMF results should be evaluated. For example, factor 

rotation could lead to very different outcome. 

Response: Thanks for the suggestion. We have added the uncertainty of PMF results as shown 

in the Table below. By using the rotation tools in PMF, the Fpeak model run at the strength of 

0.5, -0.5, 1, and -1 was conducted, respectively. We found that the changes in the Q value (dQ) 

due to the Fpeak rotation were less than 1% of the base run Q (robust) value. According to the 

user guide of PMF 5.0, it was acceptable when the percent for dQ was less than 5%. The profiles 

and contributions of each source were examined, and there were no significant differences 

between the factor contributions of base run and rotation results, especially for coal combustion 

and natural surface emission. Hence, the base run results were used in this study. In order to 

avoid confusion caused by the uncertainty of PMF results as much as possible, we take all 

resolved anthropogenic sources as a whole when compared with natural surface emission in the 

discussion.  

We add sentences “To evaluate the uncertainty of the PMF results, the Fpeak model run at the 

strength of 0.5, -0.5, 1, and -1 were conducted by using the rotation tools in PMF. The changes 

of Q value (dQ) due to the Fpeak rotation were less than 1% of the base run Q (robust) value 

(Table S3), less than the benchmark value of 5%. The profiles and contributions of each source 

were also examined, and there were no significant differences between the factor contributions 

of base run and rotation results, especially for coal combustion and natural surface emission. 

Hence, the base run results were used in this study.” in Line 425-431 of the revision. 

 



Table. Summary of Fpeak rotation and comparison of the source profiles and contribution between Base Run and Fpeak Run. 

 

 

 

 

  

 

 

 

 

Fpeak 

strength 

dQ 

(Robust) 

%dQ 

(Robust) 

natural surface 

emissions (%) 

ship emission 

(%) 

cement 

production (%) 

iron and steel 

production (%) 

vehicle emission 

(%) 

coal combustion 

(%) 

Base 

run 

Fpeak 

run 

Base 

run 

Fpeak 

run 

Base 

run 

Fpeak 

run 

Base 

run 

Fpeak 

run 

Base 

run 

Fpeak 

run 

Base 

run 

Fpeak 

run 

0.5 17 0.12 28.5  27.4  5.1  4.7  2.7  2.3  2.5  2.8  6.5  7.8  54.6  55.0  

-0.5 14.8 0.11 28.5  28.3  5.1  5.1  2.7  4.0  2.5  1.9  6.5  6.4  54.6  54.2  

1 65 0.47 28.5  26.8  5.1  4.6  2.7  1.6  2.5  3.1  6.5  7.7  54.6  56.1  

-1 55.8 0.4 28.5  28.0  5.1  4.6  2.7  5.2  2.5  1.9  6.5  6.4  54.6  53.9  
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Response to Reviewer #2’s Comments 

Anonymous Referee #2: 

Major comments:  

This work investigates how anthropogenic and natural mercury emissions differ before, during, 

and after the COVID-19 lockdown. The paper aims to show that the decrease in anthropogenic 

mercury emissions during the lockdown led to an increase in natural release. The methods used 

to quantify that are correlation analysis, a PMF model and a neural network (NN) combined 

with SHAP values. The NN learned to predict gaseous elemental mercury (GEM) given other 

air pollutants and atmospheric conditions and then applies the SHAP approach to obtain how 

much each input feature contributed to the prediction. The choice of method, using an NN with 

SHAP values, seems suitable for this setting. The performance of the NN is not very good, this 

will also affect the interpretability of the SHAP values. In general, more details of the NN would 

be helpful.  

From my point of view, this paper needs rewriting and changes before it can be accepted for 

publication at ACP. 

We sincerely thank for the reviewer’s in-depth comments and helpful suggestions on this 

manuscript. Based on the specific comments, we have responded to all the comments point-by-

point and made corresponding changes in the manuscript as highlighted in red color. The 

reviewer has raised a number of issues and we quite agree. We feel the substantial revisions 

based on the reviewer’s comments have greatly improved the quality of this manuscript. Please 

check the detailed responses to all the comments as below. 

Major comments: 

(1). The performance of the NN is not very good, this will also affect the interpretability of 

the SHAP values. 

Response: Thanks for the comment. Compared to numerous machine learning studies applied 

in common air pollutants such as PM2.5, the performance of NN in simulating mercury is indeed 

not so good. There are some reasons. First, for those common air pollutants, the availability of 

the monitoring network (e.g., spatial coverage and time span of measurement) is sufficient. 

Thus, there are enough data for the training. As a comparison, there is only one multi-year 

mercury observational site in the Yangtze River Delta region. On the other hand, the model 

performance depends a lot on the input parameters. By taking building the PM2.5 model as an 

example, parameters such as aerosol optical depth from remote sensing products are usually 

considered. As aerosol optical depth is directly related to PM2.5, the model performance usually 

can be improved to a certain extent. In contrast, there is no such parameter for mercury and this 

may limit the goodness of model performance. 



In this study, as shown in the figure below, the R2 value between ANN-simulated and observed 

hourly GEM concentration was 0.67. By averaging the hourly data as the daily data, the R2 

value increased to 0.85, and the modeled GEM concentration was ~10% underestimated 

compared to observation. This performance is better than previous study using CMAQ model 

in eastern China, which found that the modeled TGM concentrations in Shanghai was ~51% 

overestimated (Zhu et al., 2015). In addition, to test the applicability of the model on the 

regional scale, we compared the observed and simulated GEM concentrations in Suzhou, 

Ningbo, Nanjing, and Hefei (Figure below). In Nanjing and Suzhou, the observed and simulated 

daily GEM showed consistence with R2 values of 0.52 and 0.71, respectively. In Ningbo, the 

observed and simulated GEM in summer and winter also showed consistence with R2 values of 

0.64 and 0.65, respectively. A low bias was derived between the observed and simulated 

seasonal GEM in Hefei. This suggested that it is feasible to use the trained ANN model to 

simulated the GEM concentrations in Shanghai and even the Yangtze River Delta region. 

 

Figure. (a) Time-series of observed and ANN-simulated GEM concentrations during the study 

period. (b) Linear correlation between observed and ANN-simulated GEM concentrations. (c)-

(e) Linear correlation between observed and ANN-simulated GEM concentrations before, 

during, and after the lockdown. 
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Figure. Comparison of observed (blue line) and simulated (red line) GEM concentrations 

in (a) Nanjing, (b) summer Ningbo, (c) winter Ningbo, (d) Suzhou, and (e) Hefei. The left panel 

is their time series, and the right panel is their corresponding correlation. The blue dotted line  

represents the y = x reference line. 

 

In the revised manuscript (Line 494-500), we have added a paragraph about the shortcomings 

of this study and some future outlooks in the conclusion section.  

“However, we realize that the performance of machine learning in simulating atmospheric 

mercury in this study has yet to be improved. Continuous long-term observations of 

atmospheric mercury with more monitoring sites are desired to ensure a more adequate training 

dataset. Also, more relevant environment parameters for GEM are needed to further improve 

the training performance of machine learning model. In addition, different machine learning 

methods such as artificial neural network, decision tree, random forest, and Bayesian learning 

should be evaluated to choose an optimal solution.”. 

 

(2). In general, more details of the NN would be helpful. 

Response: Thanks for the suggestion. We have added the detailed description of the training 

and validation of the ANN model in Line 175-193 of the revised manuscript.  



“The long-term observational GEM (hourly data from March 1, 2015 to February 28, 2019; n 

= 17532) in Shanghai was the target variable for training, and the corresponding air pollutants 

(SO2, CO, O3, NO2, and PM2.5) and meteorological data (air temperature, relative humidity, and 

wind speed) were chosen as input variables for training. The datasets were randomly divided 

into three parts, i.e., 70% for training, 15% for validation, and 15% for testing. We chose the 

neural network containing a hidden layer with 20 nodes, and the training algorithm was the 

Levenberg-Marquardt. The performance of the model was evaluated with the mean square error 

(MSE) and correlation coefficient (R2 value). To verify the accuracy of the trained neural 

network model, we compared the observed (not included in the training data set) and simulated 

GEM concentrations of DSL from January 1 to February 26, 2020, and found that they exhibited 

a reasonably good correlation with the correlation coefficient (R2) of 0.67. To test the 

applicability of the model on the regional scale, we compared the observed and simulated GEM 

concentrations in Suzhou, Ningbo, Nanjing, and Hefei (Figure S2). In Nanjing and Suzhou, the 

observed and simulated daily GEM showed consistence with R2 values of 0.52 and 0.71, 

respectively. In Ningbo, the observed and simulated GEM in summer and winter also showed 

consistence with R2 values of 0.64 and 0.65, respectively. A low bias was derived between the 

observed and simulated seasonal GEM in Hefei. This suggested that it was feasible to use the 

trained ANN model to simulated the GEM concentrations in Shanghai and even the Yangtze 

River Delta region.” 



 

Figure S2. Comparison of observed (blue line) and simulated (red line) GEM concentrations 

in (a) Nanjing, (b) summer Ningbo, (c) winter Ningbo, (d) Suzhou, and (e) Hefei. The left panel 

is their time series, and the right panel is their corresponding correlation. The blue dotted line  

represents the y = x reference line. 

 

Specific comments: 

1. Line 106: The PMF approach should be mentioned in the introduction 

Response: Thanks for the suggestion. We have added descriptions about the PMF approach in 

the introduction section in Line 101-116 of the revised manuscript. 

“Many receptor – based models have been used to determine the sources and processes of air 

pollutants, among which the positive matrix factorization (PMF) is a commonly used method 

(Yu et al., 2019; Sun et al., 2016; Chang et al., 2018). The PMF method provides quantitative 

source profiles and source contributions, and the obtained source profiles can aid factor 

interpretation (Belis et al., 2013). Another strength of PMF is that the measurement uncertainty 

is included in the PMF model, which ensures that species with large uncertainties have less 



impact on the model results (Hopke, 2016). Many previous studies have applied the PMF 

method to the source apportionment of atmospheric mercury. One study in Canada compared 

the PMF model performance of atmospheric mercury in different years and found that the 

source profiles and source contributions of GEM in 2009 and 2010 were in good agreement 

(Xu et al., 2017). By using the PMF model, the research on the western coast of Ireland found 

that baseline and combustion processes were the controlling sources of atmospheric mercury 

(Custodio et al., 2020). The study in the Yangtze River Delta in eastern China suggested that 

the contribution of natural sources to GEM had gradually exceeded that of anthropogenic 

sources from 2015 to 2018 by using the PMF method (Qin et al., 2020). This indicated that it 

is feasible to use the PMF model to identify the source of GEM in the atmosphere.” 

2. Line 155: Please include a few details of the NN in this work, such as data size, how the 

train-val-test split was done, and a comment on hyperparameter tuning  

Response: Thanks for the suggestion. We have added the detailed description of the training 

and validation of the ANN model in Line 175-193 of the revised manuscript.  

“The long-term observational GEM (hourly data from March 1, 2015 to February 28, 2019; n 

= 17532) in Shanghai was the target variable for training, and the corresponding air pollutants 

(SO2, CO, O3, NO2, and PM2.5) and meteorological data (air temperature, relative humidity, and 

wind speed) were chosen as input variables for training. The datasets were randomly divided 

into three parts, i.e., 70% for training, 15% for validation, and 15% for testing. We chose the 

neural network containing a hidden layer with 20 nodes, and the training algorithm was the 

Levenberg-Marquardt. The performance of the model was evaluated with the mean square error 

(MSE) and correlation coefficient (R2 value). To verify the accuracy of the trained neural 

network model, we compared the observed (not included in the training data set) and simulated 

GEM concentrations of DSL from January 1 to February 26, 2020, and found that they exhibited 

a reasonably good correlation with the correlation coefficient (R2) of 0.67. To test the 

applicability of the model on the regional scale, we compared the observed and simulated GEM 

concentrations in Suzhou, Ningbo, Nanjing, and Hefei (Figure S2). In Nanjing and Suzhou, the 

observed and simulated daily GEM showed consistence with R2 values of 0.52 and 0.71, 

respectively. In Ningbo, the observed and simulated GEM in summer and winter also showed 

consistence with R2 values of 0.64 and 0.65, respectively. A low bias was derived between the 

observed and simulated seasonal GEM in Hefei. This suggested that it was feasible to use the 

trained ANN model to simulated the GEM concentrations in Shanghai and even the Yangtze 

River Delta region.” 



 

Figure S2. Comparison of observed (blue line) and simulated (red line) GEM concentrations 

in (a) Nanjing, (b) summer Ningbo, (c) winter Ningbo, (d) Suzhou, and (e) Hefei. The left panel 

is their time series, and the right panel is their corresponding correlation. The blue dotted line  

represents the y = x reference line. 

 

3. Line 284: R² values are missing in three out of the nine subplots 

Response: Thanks for pointing this out. We have added the missing R2 value to the subplots as 

shown in the figure below. 



 

Figure. Relationship between GEM concentration and (a-c) temperature, (d-f) wind speed, and 

(g-i) PBL height before, during, and after the lockdown. 

4. Line 284: What are the lines shown in the plots and why aren’t they shown in each of the 

subplots 

Response: The lines in the plots represent the fitting lines of the scatter points. Some subplots 

are not shown with fitting lines as the investigated parameters are poorly correlated. In the 

revision, we have added the missing fitting lines and R2 value to the subplots as shown in the 

figure below. 
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Figure. Relationship between GEM concentration and (a-c) temperature, (d-f) wind speed, and 

(g-i) PBL height before, during, and after the lockdown. 

5. Line 293: The R² score of 0.67 is okay, but not great. 

Response: This sentence is changed as “Figure 4a-b shows the comparison of ANN-simulated 

and observed GEM concentrations during the whole study period, and found their correlation 

coefficient is acceptable (R2 = 0.67).” in Line 351-353 of the revised manuscript. 

6. Line 293: It would be relevant to know the different performances of the NN evaluated on 

the pre-lockdown, lockdown, and post-lockdown periods. 

Response: Thanks for the suggestion. We examined the performance of the ANN model before, 

during, and after the lockdown. As shown in the figure below, the correlation between ANN 

simulated and observed GEM concentrations were 0.67, 0.59, and 0.63, respectively.  

We added the sentence “As shown in Figure S5, we examined the performance of the ANN 

model before, during, and after the lockdown. The correlations between ANN simulated and 

observed GEM concentrations were also acceptable with correlation coefficient of 0.67, 0.59, 

and 0.63, respectively.” in Line 353-356 of the revision. 
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Figure S5. Linear correlation between observed and ANN-simulated GEM concentrations 

before, during, and after the lockdown. 
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