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Abstract：To enhance the timeliness and accuracy of spatial prediction of co-12 

seismic landslides, we propose an improved three-stage spatial prediction strategy and 13 

developed a corresponding hazard assessment software named Mat.LShazard V1.0. 14 

Based on this software, we evaluate the applicability of this improved spatial 15 

prediction strategy in six earthquake events that have occurred near the Sichuan 16 

Yunnan region, including the Wenchuan, Ludian, Lushan, Jiuzhaigou, Minxian and 17 

Yushu earthquakes. The results indicate that in the first stage (immediately after the 18 

quake event), except for the 2013 Minxian earthquake, the AUC values of the 19 

modelling performance in other five events are above 0.8. Among them, the AUC value 20 

of the Wenchuan earthquake is the highest, reaching 0.947. The prediction results in 21 

the first stage can meet the requirements of emergency rescue with immediately 22 

obtaining the overall predicted information of the possible coseismic landslide 23 

locations in the quake-affected area. In the second and third stages, with the 24 

improvement of landslide data quality, the prediction ability of the model based on 25 

the entire landslide database is gradually improved. Based on the entire landslide 26 
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database, the AUC value of the six events exceeds 0.9, indicating a very high prediction 27 

accuracy. For the second and third stages, the predicted landslide area (Ap) is relatively 28 

consistent with the observed landslide area (Ao). However, based on the incomplete 29 

landslide data in the meizoseismal area, Ap is much smaller than Ao. When the 30 

prediction model based on complete landslide data is built, Ap is nearly identical to Ao. 31 

This study provides a new application tool for coseismic landslide disaster prevention 32 

and mitigation in different stages of emergency rescue, temporary resettlement, and 33 

late reconstruction after a major earthquake. 34 

Keywords: Major earthquake; Earthquake-induced landslide; Hazard assessment; 35 

Logistic Regression model; Sichuan-Yunnan area;  36 

1 Introduction 37 

Coseismic landslides are one of the most widespread and destructive hazards 38 

triggered by earthquakes in mountainous geological environments (Robinson et al., 39 

2017). The Sichuan-Yunnan region of China has experienced frequent seismic activity 40 

due to the characteristics of crustal movement and the action of active faults (Cheng 41 

et al., 2020; Xu et al., 2005). Furthermore, due to the unique subtropical monsoon 42 

climate with rich and concentrated rainfall, the region is considered an intense 43 

coseismic-landslide-prone zone (Cui et al., 2009). Therefore, deep scientific 44 

understandings of the spatial distribution of earthquake-induced landslides in this area, 45 

followed by near real-time emergency assessment (Cao et al., 2019; Tanyas et al., 2019) 46 

and medium and long-term risk assessment (Guzzetti et al., 2005; Lari et al., 2014) can 47 

effectively reduce the landslide risk after the earthquake, and also serve for emergency 48 

rescue and town planning (Lan et al., 2022). 49 

Evaluation and production of landslide susceptibility mapping can be broadly 50 

categorized in three different types, including exploratory analysis based on 51 

professional experience, Newmark model based on seismic landslide occurrence 52 

mechanism, and the data driven-based machine learning model (Shao and Xu, 2022; 53 

Tian et al., 2020). In the application of expert knowledge, this method is heavily 54 

influenced by subjective human factors, so human experience error is unavoidable. 55 
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The physically-based Newmark model is widely used in seismic landslide hazard 56 

assessment of multiple earthquake events, including the 1994 Northridge, California, 57 

earthquake (Jibson et al., 2000), the 2008 Wenchuan earthquake (Ma and Xu, 2019a), 58 

and the 2017 Jiuzhaigou earthquake (Liu et al., 2017). However, since the simplified 59 

Newmark method generalizes calculation process and the input parameters of the 60 

evaluation results, the regional evaluation results are not ideal in earthquake 61 

emergency assessment (Liu et al., 2017; Ma and Xu, 2019b). In contrast, the data-62 

driven machine learning method is frequently employed and has the widest  63 

application potential, such as Information value (Demir et al., 2013), logistic regression 64 

(Bai et al., 2015; Dai et al., 2001; Umar et al., 2014), fuzzy logic (Ercanoglu and Temiz, 65 

2011; Kritikos et al., 2015), artificial neural network (Pradhan and Saro, 2010), support 66 

vector machine (Xu et al., 2012; Yao et al., 2008), etc. Among them, the LR model is 67 

one of the most widely used models in the  susceptibility assessment of earthquake-68 

induced landslides by virtue of its simplicity, high efficiency, and high prediction 69 

accuracy (Reichenbach et al., 2018; Shao and Xu, 2022). 70 

For a single earthquake event, rapidly identifying the high hazard area of 71 

landslides is crucial for understanding the total earthquake impacts (Nowicki Jessee et 72 

al., 2018; Tanyas et al., 2019). However, the issue of the data-driven machine learning 73 

method is that the training model often needs detailed coseismic landslide data. 74 

However, seismic landslide mapping is often a difficult and time-consuming task, 75 

hindered by issues relating to the collection and processing of appropriate satellite or 76 

aerial images, cloud cover, and the slow speeds associated with manual identification 77 

and mapping of large numbers of landslides (Robinson et al., 2017). Consequently, the 78 

evaluation result based on data-driven  methods lags behind practical emergency 79 

response, and thus is unable to serve the short-term disaster prevention and 80 

mitigation (He et al., 2021; Nowicki et al., 2014). 81 

To address the issue that the current spatial prediction of coseismic landslides is 82 

not timely enough for practical application, Ma et al. (2020) propose a three-stage 83 

spatial prediction strategy for seismic landslides, including emergency response, 84 

temporary resettlement, and late reconstruction, and use this strategy in the 2013 85 
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Lushan earthquake event. In the emergency response stage, the Newmark model is 86 

used to carry out rapid emergency hazard mapping in the several hours after the 87 

earthquake. However, it should be noted that the Newmark model's prediction results 88 

are strongly influenced by the input parameters (Dreyfus et al., 2013), and obtaining 89 

relatively reasonable geotechnical parameters for a large area is extremely difficult 90 

(Wang et al., 2016; Zhuang et al., 2019). As a result, the accuracy of prediction results 91 

based on the Newmark model is relatively low, and it cannot meet the needs of 92 

emergency assessment (Ma and Xu, 2019b). At the same time, the three-stage 93 

prediction strategy has only been tested in the Lushan earthquake, and its applicability 94 

in other seismic events with different magnitudes and structural landform 95 

environments is still required to be determined. 96 

In recent years, the near real-time coseismic landslide assessment models have 97 

become a powerful tool for fast estimates of ground failure hazards. The core of these 98 

models is to incorporate the hazard estimate from seismic events by including the 99 

ShakeMap data for each earthquake (available in near real-time from the USGS), 100 

combined with environmental factor data, thus allowing the model to be applied in 101 

near real-time for future events. For example, Nowicki et al. (2014) combine shaking 102 

estimates with proxies for slope, geology, and wetness with 1 km resolution to develop 103 

a globally applicable model for near real-time prediction of coseismic landslides based 104 

on four landslide inventories. Subsequently, Nowicki Jessee et al. (2018) expand the 105 

observational landslide data set which includes 23 landslide inventories and develop a 106 

new global empirical model. Tanyas et al. (2019) use 25 earthquake-induced landslides 107 

and seven independent thematic variables based on the LR model to establish a global 108 

slope unit-based model for the near real-time prediction of earthquake-induced 109 

landslides. Allstadt et al. (2018) select the 2016 Mw 7.8 New Zealand earthquake as a 110 

test case for evaluating the performance and near-real-time response applicability of 111 

three published global earthquake-induced landslide models, and the assessment 112 

results show that the global models have great potential in earthquake landslide 113 

emergency assessment. Simultaneously, Xu et al. (2019) propose a real probability 114 

prediction method of coseismic landslides utilizing the Bayesian probability method 115 
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and LR model, and establish a new generation of Chinese earthquake-triggered 116 

landslide hazard model based on 9 real earthquake-triggered landslide cases. However, 117 

the nationwide model's applicability in various earthquake cases with different 118 

tectonic and geomorphologic environments needs to be further tested. 119 

In view of the issues encountered during the emergency assessment stage of the 120 

three-stage spatial prediction strategy for coseismic landslides, the aim of this study is 121 

to propose an improved three-stage spatial prediction strategy and develop a 122 

corresponding Hazard assessment software called Mat.LShazard V1.0. Based on this 123 

software, we evaluate the applicability of this improved spatial prediction strategy in 124 

six earthquake events that have occurred near the Sichuan-Yunnan region with 125 

different tectonic and geomorphologic environments which include the 2008 Mw 7.9 126 

Wenchuan earthquake, the 2014 Mw 6.6 Ludian earthquake, the 2013 Mw 6.6 Lushan 127 

earthquake, the 2017 Mw 6.5 Jiuzhaigou earthquake, the 2013 Mw 5.9 Minxian 128 

earthquake and the 2010 Mw 6.9 Yushu earthquake. The results of this study are 129 

expected to provide technical supports for the emergency assessment and mid- and 130 

long-term hazard zoning of coseismic Landslides in Sichuan and Yunnan regions. 131 

2 Study area 132 

2.1 Geological setting 133 

The Sichuan-Yunnan region is located on the eastern edge of the Tibetan Plateau. 134 

Because of the Sichuan Basin blocking and the impact of fluid movement in the lower 135 

crust, tectonic activities in this region are extremely complex (Jiang et al., 2012; 136 

Tapponnier et al., 2001; Zhang et al., 2003). Furthermore, due to the intricate tectonic 137 

mechanism, various types of active faults are developed, such as the Lancangjiang fault, 138 

Jinshajiang fault, Xianshuihe fault, Longmenshan fault, Anninghe fault, Honghe fault, 139 

Xiaojiang Fault, and other fault zones, which control the occurrence of strong 140 

earthquakes in this area (Cheng et al., 2020; Ren et al., 2022; Xu et al., 2005). The result 141 

shows that at least 16 magnitude 7.0 or larger earthquake events have occurred since 142 

1327, including four earthquakes with a magnitude larger than 8.0. As a result, this 143 
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area has also become the most severely affected region associated with earthquake-144 

induced landslide disasters (Huang and Fan, 2013; Zhao et al., 2021). Since 2008, 145 

multiple strong earthquakes have frequently struck this area, which triggered massive 146 

coseismic landslides. For example, the 2008 Wenchuan earthquake killed tens of 147 

thousands of people, with landslides accounting for 30% of the total loss from the 148 

earthquake (Cui et al., 2009). The 2013 Lushan earthquake killed 196 people, with 24 149 

missing, at least 11826 injured and more than 968 seriously injured (Xu et al., 2013). 150 

These earthquake events induced a large number of coseismic landslides, which not 151 

only seriously threatened the safety of people's lives and property and traffic arteries, 152 

but also seriously affected the construction and operation of Sichuan Tibet railway, 153 

Yunnan Tibet railway, hydropower resources development and other major national 154 

projects. 155 
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 156 

Fig.1 Map showing the topography, earthquakes and tectonic setting of the Sichuan-Yunnan region 157 

2.2 Six landslide inventories 158 

Six landslide-triggered earthquakes have been investigated to test our model (Fig. 159 

2). For all the available inventories, landslides have been mapped as polygons from 160 

aerial photographs, satellite images, and also through field surveys including the 2008 161 

Mw 7.9 Wenchuan earthquake (Xu et al., 2014b), the 2014 Mw 6.6 Ludian earthquake 162 

(Wu et al., 2020), the 2013 Mw 6.6 Lushan earthquake (Xu et al., 2015), the 2017 Mw 163 

6.5 Jiuzhaigou earthquake (Tian et al., 2019), the 2013 Mw 5.9 Minxian earthquake 164 

(Tian et al., 2016; Xu et al., 2014a), the 2010 Mw 6.9 Yushu earthquake (Xu and Xu, 165 

2014). Landslides in these inventories are reported without differentiating landslide 166 

types. These landslide inventories have the following characteristics: (1) All landslides 167 
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are mapped as polygons with clear boundary information; (2) All landslides are visually 168 

interpreted based on high-resolution images; (3) All landslides are delineated within 169 

the whole earthquake affected area. 170 

The 2008 Mw 7.9 Wenchuan earthquake is the result of sudden dislocation of the 171 

Yingxiu Beichuan fault in Longmenshan fault zone (Xu et al., 2009). This earthquake 172 

has ruptured two large thrust faults along the Longmenshan thrust belt and produced 173 

a 240 km-long surface rupture zone along the Yingxiu-Beichuan fault and a 72 km-long 174 

surface rupture zone along the Guanxian-Jiangyou fault. The earthquake has triggered 175 

nearly 200 thousand landslides, covering an area of about 311880 km2. 176 

The Mw 6.6 Lushan earthquake occurred on April 14, 2013, which is another 177 

strong earthquake that occurred in the southwest section of the Longmenshan 178 

mountain range since the 2008 Wenchuan earthquake. The earthquake triggered 179 

more than 22528 landslides, covering an area of about 234.4 km2. 180 

The Mw5.9 Minxian earthquake on July 12, 2013 occurred within the Lintan-181 

Dangchang fault, located between the East Kunlun fault and the Northern margin of 182 

the West Qinling fault (Zheng et al., 2013). The focal depth of this earthquake is 8.2 183 

km. The earthquake triggered more than 6479 landslides, covering an area of about 184 

830.2 km2. 185 

The seismogenic structure of the Mw 6.6 Ludian earthquake is the NNW-striking 186 

Baogunao-Xiaohe fault. The hypocenter is located at a depth of 12 km. The earthquake 187 

triggered more than 1024 landslides, covering an area of about 234.4 km2. 188 

The Mw 6.5 Jiuzhaigou earthquake occurred on 8 August 2017 in Sichuan 189 

province, China. The depth of the hypocenter was estimated to be around 9 km. The 190 

main seismogenic structure of this earthquake may be a branch of the Tazang fault, or 191 

the northern part of the Huya fault. According to the focal mechanism solution, the 192 

strike of the seismogenic fault is NW-SE, the dip is SW,  and the fault is a left-lateral 193 

strike-slip earthquake (Sun et al., 2018). The earthquake triggered about 5986 194 

landslides, and the total area is about 9.6km2. 195 

The MW 6. 9 Yushu earthquake occurred near Qinghai province on 4 April 2010. 196 

The hypocenter is located at a depth of 17 km within the Ganzi–Yushu strike-slip 197 
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fault(Chen et al., 2010). The earthquake produced a surface fracture zone with a strike 198 

of about 300° and a length of 65 km. The surface rupture zone is characterized by left-199 

lateral strike-slip fault. The surface rupture zone is composed of a series of extrusion 200 

bulge and tension fractures (Chen et al., 2010). The earthquake triggered almost 2036 201 

landslides with an area of about 1455.3 km2. 202 

 203 

Fig.2 Six earthquake-induced landslide inventories used in this study. White lines show spatial 204 

distribution of the seismic intensity, provided by the China Earthquake Networks Center(CENC) 205 

3 Data and Software  206 

3.1 Data sources 207 

Earthquake-induced landslides are mainly controlled by earthquakes, topography, 208 

geology, hydrology and other factors (Nowicki Jessee et al., 2018; Reichenbach et al., 209 

2018). In this study, 11 influencing factors are selected to establish the LR model for 210 

the second and third stages, including elevation, hillslope gradient, slope aspect, 211 

topographic relief, curvature, topographic wetness index (TWI), vegetation coverage 212 

percentage, distance from fault, lithology, annual average precipitation and seismic 213 

intensity. 214 
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The elevation data are acquired from SRTM DEM, and its projection resolution is 215 

30m (Jarvis et al., 2008). The hillslope gradient, slope aspect and curvature are 216 

extracted using this elevation data and ArcGIS software. Topographic relief and TWI 217 

are also computed using GRASS GIS based on the elevation  data. The slope position 218 

is calculated by the LandFacetCorridor program (Jenness et al., 2013). We consider a 219 

global data set that represents the maximum green vegetation fraction (0–100%) to 220 

characterize the vegetation coverage of the land area and the water bodies; the 221 

vegetation coverage is assigned as -1 (Tateishi, 2010). The distribution of active fault 222 

data are acquired from National seismicity fault database (Xu et al., 2016). The 223 

distances from the centroid of the grid cells to the nearest fault are calculated using 224 

ArcGIS. The distribution of seismic intensity for every seismic event is provided by 225 

China Earthquake Networks Center 226 

(https://www.cenc.ac.cn/cenc/zgdztw/index.html), and then the raster format for the 227 

seismic intensity is obtained by the Kriging interpolation. 228 

The stratigraphic data are from the 1:2,500,000 geological map published by 229 

China Geological Survey (http://dcc.cgs.gov.cn/). We divide the lithology into 12 230 

categories according to the stratigraphic ages, which are Quaternary (Q), Tertiary (R), 231 

Cretaceous (K), Jurassic (J), Triassic (Tr), Permian (P), Carboniferous (C), Devonian (D), 232 

Silurian (S), Ordovician (O), Cambrian (∈ ) and Precambrian (Pre∈ ). The annual 233 

average rainfall data are obtained from 1 km spatial resolution climate surfaces for 234 

global land areas of WorldClim 2 dataset(Fick and Hijmans, 2017). Finally, the spatial 235 

distribution of the 11 influencing factors is converted into a raster format with a grid 236 

cell size of 30 m. 237 

3.2 Mat.LShazard V1.0 Software description 238 

3.21 The computational framework 239 

A number of tools for landslide hazard assessment are already available in current 240 

studies, such as GIS-based LSAT toolbox (Polat, 2021), LAND-SE implemented in R 241 

(Rossi and Reichenbach, 2016), r.landslide module based on GRASSGIS (Bragagnolo et 242 

https://www.cenc.ac.cn/cenc/zgdztw/index.html
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al., 2020), GeoFIS (Osna et al., 2014), and LSAT PM v1.0 (Torizin et al., 2022), providing 243 

great convenience for us to conduct the regional landslide susceptibility assessment. 244 

However, to our knowledge, there currently no specialized software for coseismic 245 

landslide hazard assessment, particularly in the various needs of different stages after 246 

a major earthquake. 247 

Based on MATLAB, we develop an earthquake-induced hazard assessment 248 

software named Mat.LShazard V1.0. This section describes the computational 249 

framework and operation of the software. A flowchart describing the module is 250 

presented in Fig.3. Data input, model training, and model validation are the three main 251 

components of the software. Landslide data and the influencing factors of the study 252 

area are used for the input data. These data are in TIFF grid layer format. We employ 253 

the LR model for model training. We train the LR model using the aforementioned 254 

input data, and then produce the seismic landslide hazard maps. Finally, in order to 255 

assess and confirm the accuracy of the model's prediction outputs, three indexes are 256 

chosen for the verification of the receiver operating characteristics curve (ROC), the 257 

confusion matrix and the predicted landslide area (Ap). 258 

It is important to note that Mat.LShazard V1.0 is not the same as the traditional 259 

landslide susceptibility software. The goal of this software is to meet the needs of 260 

various stages following a major earthquake. As a result, for different stages, we 261 

calculate seismic landslide hazard assessment results based on different LR models. 262 

For the emergency rescue stage I (immediately after the quake event ), we select the 263 

new generation of Chinese earthquake-triggered landslide hazard model, which is 264 

established by 9 earthquake cases, including 306435 real earthquake landslide records 265 

and 13 influencing factors with a 100m resolution (Xu et al., 2019). A total of 13 266 

influencing factors are selected for model conformation, including elevation, 267 

topographic relief, hillslope gradient, slope aspect, slope curvature, slope position, 268 

topographic wetness index, land-over type, vegetation coverage percentage, distance 269 

to the fault, lithology, average annual precipitation and seismic intensity. More 270 

detailed theory and calculation procedures can be found in supplementary materials. 271 

In the absence of seismic landslide data, this model can produce seismic landslide 272 
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hazard distribution map for stage I with only the seismic intensity map.  273 

For temporary resettlement stage II (hours to a few days (e.g., Planet)), remote 274 

sensing images can be gradually obtained following the earthquake. Based on visual 275 

interpretation or automatic identification, we can obtain the seismic landslide 276 

distribution map of the meizoseismal area, which can be used as the preliminary 277 

results of this event. We choose the similar influencing factors as the model's input for 278 

the second and third stages, so that we can easily compare the regression coefficient 279 

changes of different influencing factors in different stages and thus explain the 280 

relationship between each influencing factor and the earthquake-induced landslide 281 

occurrence. Combined with the above influencing factors with a 30m resolution and 282 

incomplete landslide data, we can establish a new LR model and provide the seismic 283 

landslide hazard distribution map for stage II. 284 

For the late reconstruction stage III (few days to weeks (e.g., Planet, Sentinel 2, 285 

Landsat 8/9)), a large number of remote sensing images collected before and after the 286 

earthquake in the quake-affected area can be obtained, which can effectively cover 287 

the entire earthquake area, realizing the establishment of a comprehensive 288 

earthquake-induced landslide inventory. In stage III, we are faced with not only the 289 

problem of identification of coseismic landslide, but also the weakened slope caused 290 

by the quake. As a result, it is critical to locate the landslide that is stable during the 291 

earthquake but unstable for a period of time after the earthquake. At this stage, we 292 

combine the complete landslide data and influencing factor data with a 30m resolution 293 

to train and update the LR model, and provide the seismic landslide hazard map for 294 

stage III. Therefore, the results obtained in stage III will definitely be more objective 295 

than those obtained in the stage II, because the training samples used in the model in 296 

this stage are more abundant and objective. 297 
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 298 

Fig.3 Logical schema of the Mat.LShazard V1.0 software for earthquake-induced hazard assessment 299 

3.22 Logistic Regression model 300 

Logistic regression model (LR) is a statistical model that predicts the probability 301 

of one event taking place by having the log-odds (the logarithm of the odds) for the 302 

event be a linear combination of one or more independent variables ("predictors") 303 

(Dai and Lee, 2002; Merghadi et al., 2020; Tolles and Meurer, 2016). It is a nonlinear 304 

multivariate statistical model that has been widely used in landslide hazard modeling 305 

by virtue of its simplicity, high efficiency, and high prediction accuracy (Allstadt et al., 306 

2018; Broeckx et al., 2018; Lin et al., 2017; Massey et al., 2018; Reichenbach et al., 307 

2018). It is also the preferred method for establishing the near-real-time prediction 308 

model of earthquake-induced landslides (Nowicki Jessee et al., 2018; Tanyas et al., 309 

2019; Xu et al., 2019). LR model converts dependent variables into binary logic 310 

variables that occur (recorded as 1) and do not occur (recorded as 0). The relationship 311 

between landslide occurrence probability and impact factors can be expressed as: 312 
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Z = β0 + β1χ1 + β2χ2 + β3χ3 … βiχi                   (1) 313 

P = 1 (1 + e−z)⁄                     (2) 314 

Where P represents the probability of landslide occurrence, ranging from 0 to 1. 315 

Z represents the sum of linear weight values after variable superposition. χ𝑖 denotes 316 

each impact factor, and β𝑖 is the corresponding regression coefficient. 317 

3.22 Bayesian probability method 318 

The aim of this study is to develop a probability estimator for predicting the areal 319 

extent of landslides. In other words, we correlate the resulting probability with spatial 320 

extent (e.g., areas labeled 5% probability of landsliding contain about 5% landslides by 321 

area) (Nowicki Jessee et al., 2018; Shao et al., 2020b). As a result, we generate sample 322 

points randomly in the study area. The points within the landslide area are sliding 323 

samples, while the others are not; such setting ensures that the ratio of sliding to non-324 

sliding is equivalent to the probability of coseismic landslides occurring in the study 325 

area (Shao et al., 2020b). The coseismic landslide probability (Pcols) in the region is 326 

simply defined as the ratio of the area of all landslides to the total area of the region 327 

based on Bayesian theory: 328 

𝑃𝑐𝑜𝑙𝑠 =
𝐴𝑙

𝐴𝑠
× 100%               (3) 329 

where Al is the total area of all coseismic landslides and As is the area of the entire 330 

study area. 331 

Based on the above Bayesian probability method and the corresponding landslide 332 

surface data, the corresponding landslide sample points and non-landslide sample 333 

points can be randomly generated; thus, the predictive model can be constructed. 334 

3.23 Model validation 335 

In this study, three indexes including the receiver operating characteristics (ROC) 336 

curve, the confusion matrix and the predicted landslide area (Ap) are used to evaluate 337 

our results. First, we assess the modelling performance by checking the variation in 338 

AUC value (varying between 0.5 for a random classification model and 1 for the best 339 

performance), which is a metric referring to the area under the ROC Curve (Brenning, 340 
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2005; Swets, 1988). Second, we use the confusion matrix for the performance 341 

evaluations of the prediction results. The confusion matrix consists of four basic 342 

characteristics (numbers) that are used to define the measurement metrics of the 343 

classifier, which are TP (True Positive), TN (True Negative), FP (False Positive) and FN 344 

(False Negative) (Fawcett, 2006), respectively. One of the most commonly employed 345 

metrics for classification is accuracy. The accuracy of a model through a confusion 346 

matrix is calculated using the formula expressed as: 347 

Accuracy = 𝑇𝑃 + 𝑇𝑁
𝑇𝑁 + 𝐹𝑃 + 𝐹𝑁 + 𝑇𝑃⁄             (4) 348 

Otherwise, in order to evaluate the model prediction performance, we compute 349 

the predicted landslide area (Ap) as a metric to summarize the total hazard estimated 350 

by a given model for a given earthquake with a single number. The probability value of 351 

each grid multiplied by the grid area represents the predicted landslide area in each 352 

grid. The predicted landslide area in the study area can be obtained by all grids 353 

superposition (Allstadt et al., 2018; Shao et al., 2020b). The predicted landslide area 354 

(Ap) is computed by equation 5 (Allstadt et al., 2018; Shao et al., 2020b). 355 

Ap = ∑ ∑ pi,jA
n
j=1

m
i=1       (5) 356 

in which pi,j is the probability of a landslide at pixel i and j, m is the number of 357 

rows, n is the number of columns, and A is the pixel/cell area (constant). 358 

4 Results and analysis 359 

4.1 First Stage 360 

The landslide hazard estimate of six earthquake events in the first stage 361 

(immediately after the event) is obtained using the Chinese earthquake-triggered 362 

landslide hazard model (Xu et al., 2019). The predicted results in our software can be 363 

processed at the first stage by entering the seismic intensity maps of six cases 364 

produced by CENC. Fig.4 shows the predicted probability distribution for six 365 

earthquake events in the first stage. Overall, the Chinese earthquake-triggered 366 

landslide hazard model has different forecasting abilities for different earthquake 367 

events. For the Wenchuan earthquake, the prediction results in this stage are reliable. 368 
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The regions with high hazard are primarily found in intensity X and XI, and the 369 

distribution of actual landslides also reveals that nearly 80% of the landslides are 370 

concentrated in the northeast area with intensity X and XI. In addition, for the 2013 371 

Lushan earthquake and the 2017 Jiuzhaigou earthquake, most of the actual landslides 372 

are basically located in high-hazard areas. Especially for the Lushan earthquake, the 373 

prediction results can better forecast the northwest region located in the epicenter 374 

region, which corresponds to the landslide-concentrated area. For the 2010 Yushu 375 

earthquake, the high-hazard area is located in the southeast region with intensity VII 376 

and the whole region with intensity IX. The actual coseismic landslides of the Yushu 377 

earthquake are primarily distributed in regions with intensity IX, indicating that with 378 

the exception of the overestimated southeast region with intensity VII, the remaining 379 

area can accurately predict the potential high hazard areas. However, the prediction 380 

results of the 2013 Minxian earthquake are barely satisfactory. According to Fig.4e, the 381 

high-hazard prediction areas are primarily concentrated in the northwest region with 382 

intensity VII and the southwest region with intensity VIII. However, according to the 383 

actual distribution of landslides, the most landslides triggered by this earthquake are 384 

located in the central region with intensity VIII. Namely, the prediction results do not 385 

accurately predict the actual landslide distribution, and the majority of coseismic 386 

landslides occur in low-hazard prediction areas. 387 
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 388 

Fig.4 Maps showing predicted landslide probability distribution for six earthquake events in the 389 

first stage; (a) the 2013 Mw 5.9 Minxian earthquake; (b) the 2014 Mw 6.6 Ludian earthquake; (c) 390 
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the 2017 Mw 6.5 Jiuzhaigou earthquake; (d) the 2013 Mw 6.6 Lushan earthquake; (e) the 2010 Mw 391 

6.9 Yushu earthquake; (f) the 2008 Mw 7.9 Wenchuan earthquake. 392 

We compare the predicted landslide area (Ap) in the first stage with the actual 393 

landslide area. Fig.5 shows that the slope of the fitting curve between the predicted 394 

and actual areas of the six earthquakes is close to one. The Ap for the Yushu, Lushan, 395 

and Wenchuan earthquakes are on the high side, with an error range of 50%-78%. On 396 

the other hand, the Ap of Minxian, Ludian and Jiuzhaigou earthquake are on the low 397 

side, with an error range of 17%-30%. In general, the prediction results meet the 398 

requirements of emergency rescue with quickly obtaining the predicted information 399 

of the possible coseismic landslide locations in the whole quake-affected area. 400 

 401 

Fig.5 Relationships between the observed landslide area (Ao) and the predicted landslide area (Ap) 402 

for six earthquake events in the first stage. 403 

4.2  Second and Third Stages 404 

As mentioned in section 3.21, for the landslide hazard prediction of the second 405 

and third stages, we train the evaluation model of these two stages using landslide 406 

data from the meizoseismal area and the whole quake-affected area respectively. To 407 



 

19 

reduce the stochastic effects of data sampling, we calculate the LR model by randomly 408 

selecting the training samples by considering the uncertainty of the samples (Shao et 409 

al., 2020b; Tanyas et al., 2019). We choose 70% of all samples at random and 410 

independently repeated 50 times to construct the LR model. All the predicted models 411 

for 6 earthquake cases are performed 50 times, yielding 50 predicted pictures of 412 

potential landslides in the study area for each event. 413 

Fig.6 shows the mean predicted probability distribution of six events in the 414 

second stage (hours to a few days (e.g., Planet)). The majority of the high-hazard areas 415 

of six earthquakes are located in high-intensity areas. For example, the high-hazard 416 

areas of the Ludian earthquake are concentrated in the meizoseismal area, which is 417 

essentially consistent with the actual landslide distribution. However, in the southwest 418 

region where landslides are well developed beyond the meizoseismal area with 419 

intensity VIII, the landslide density is high, but the predict probability is quite low. 420 

Similar phenomena have been observed in the Jiuzhaigou and Lushan earthquakes. 421 

The above phenomenon is less obvious in other three earthquake events including the 422 

Minxian, Wenchuan, and Yushu earthquakes. For instance, the seismogenic fault of the 423 

Yushu earthquake is a left-lateral strike-slip fault, and thus the majority of the 424 

coseismic landslides are basically distributed along both sides of the seismogenic fault. 425 

The high-hazard areas of the Yushu earthquake are distributed in the meizoseismal 426 

area on both sides of the seismogenic fault, and these areas essentially correspond to 427 

the main development areas of seismic landslides. 428 

To obtain the prediction probability distribution map of the third stage, we use all 429 

available landslide data from the entire earthquake-affected region (few days to weeks 430 

(e.g., Planet, Sentinel 2, Landsat 8 or 9)). Based on the same method, 70% of all 431 

samples are used for modeling, and then 50 model results are generated by repeating 432 

50 experiments. Fig.7 shows the mean probability distribution of six events in the third 433 

stage. Compared to the second stage, the predicted results in the third one are more 434 

consistent with the actual landslide distribution. The majority of actual landslides are 435 

basically distributed in areas with high hazard , indicating that the evaluation model 436 

has high prediction ability at this stage. Particularly for the Ludian, Jiuzhaigou and 437 
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Lushan earthquakes, the assessment results can better predict the actual landslide 438 

distribution in all earthquake affected areas. 439 

 440 

Fig.6 Maps showing predicted landslide probability distribution for six earthquake events in the 441 

second stage; (a) the 2013 Mw 5.9 Minxian earthquake; (b) the 2014 Mw 6.6 Ludian earthquake; 442 
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(c) the 2017 Mw 6.5 Jiuzhaigou earthquake; (d) the 2013 Mw 6.6 Lushan earthquake; (e) the 443 

2010 Mw 6.9 Yushu earthquake; (f) the 2008 Mw 7.9 Wenchuan earthquake; 444 

 445 
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Fig.7 Maps showing predicted landslide probability distribution for six earthquake events in the 446 

third stage; (a) the 2013 Mw 5.9 Minxian earthquake; (b) the 2014 Mw 6.6 Ludian earthquake; (c) 447 

the 2017 Mw 6.5 Jiuzhaigou earthquake; (d) the 2013 Mw 6.6 Lushan earthquake; (e) the 2010 448 

Mw 6.9 Yushu earthquake; (f) the 2008 Mw 7.9 Wenchuan earthquake; 449 

Fig.8 shows the relationships between the observed landslide area (Ao) and the 450 

predicted landslide area (Ap) for six earthquake events in the second and third stages. 451 

The results show that whether in the second or third stage, Ap is in good agreement 452 

with Ao. In the second and third stages, the slope of the fitting curves of the two stages 453 

are 0.86 and 1.01 respectively. In addition, we can observe that in the second stage, 454 

the Ap of the six earthquakes are generally lower than the corresponding Ao, and the 455 

overall error is between 9% and 74%. Among them, the prediction error of the 456 

Wenchuan earthquake is the lowest (9%), and the error of the Jiuzhaigou earthquake 457 

is the highest, reaching 74%. For the six cases in the third stage, Ap is basically 458 

consistent with Ao, and the error range is about 1%, showing high performance of LR 459 

model in this stage. 460 

 461 
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Fig.8 Relationships between the observed landslide area (Ao) and the predicted landslide 462 

area (Ap) for six earthquake events in the second and third stages; The hollow and filled 463 

circles represent the predicted landslide area for the second and third stages, respectively. 464 

The red and black lines represent the fitting curves of the second and third stages, 465 

respectively. 466 

Fig.9 shows the distribution of regression coefficients of various influencing 467 

factors in the second and third stages. For continuous variables, if the regression 468 

coefficient is positive, with the increase of the independent variable, the probability 469 

of landslide is larger (Nowicki Jessee et al., 2018; Shao et al., 2020a). According to the 470 

regression coefficient, we can explain the relationship between each influencing factor 471 

and the corresponding landslide occurrence. We choose four independent variables 472 

that have large impact on landslide occurrence, namely, topographic relief, hillslope 473 

gradient, seismic intensity, and distance to seismogenic fault. The results show that 474 

regression coefficient of seismic intensity is the largest in all seismic events, followed 475 

by hillslope gradient, indicating that the seismic factor and hillslope gradient are the 476 

main factors controlling the occurrence of seismic landslides. The distance to fault is 477 

another important factor that controls the occurrence of seismic Landslides. The 478 

regression coefficient of this variable is negative, implying that it has a negative effect 479 

on the occurrence of seismic landslides (i.e., the farther away from the seismogenic 480 

fault, the less likely the occurrence of seismic landslides). Furthermore, with the 481 

exception of the 2010 Yushu earthquake, the regression coefficients of topographic 482 

relief in the other five earthquake events are all positive, indicating that topographic 483 

relief in other five earthquake events plays an essential role in the occurrence of 484 

seismic landslides. Fig.S1 shows LR regression coefficients of all continuous 485 

independent variables of six earthquake events in different stages. 486 
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 487 

Fig.9 Regression coefficients of independent variables at different evaluation stages; The red box 488 

chart represents the regression coefficients of the independent variables in the second stage, and 489 

the blue chart represents the regression coefficients of the independent variables in the third 490 

stage 491 
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4.3 Quantitative analysis 492 

In order to quantitatively analyze the model results of the six earthquakes at 493 

different stages, three indexes including the receiver operating characteristics curve 494 

(ROC), the confusion matrix, and the predicted landslide area (Ap) are used to evaluate 495 

our model results. Fig.10 and Table S1 show the predicted landslide area for six 496 

earthquake events in different stages. The results reveal that the Ap of the three 497 

events including the Minxian, Ludian, and Jiuzhaigou earthquakes in the first stage is 498 

much lower than the corresponding Ao, whereas the Ap of the Lushan, Yushu, and 499 

Wenchuan earthquakes is significantly greater. Furthermore, based on incomplete 500 

landslide data in the meizoseismal area, Ap is much smaller than Ao. However, when 501 

the prediction model of the third stage based on complete landslide data is built, Ap 502 

is nearly identical to Ao. 503 

504 

Fig.10 Predicted landslide area for six earthquake events in different evaluation stages. The 505 



 

26 

horizontal line represents the total area of landslides triggered by this earthquake 506 

In this study, we randomly select 70% of the total samples for model training, and 507 

the remaining 30% are used for modeling validation. Fig.11 and Table S2 show the 508 

distribution of AUC values based on validation samples for six earthquake events in 509 

different stages. The results show that except for the Ludian earthquake, the 510 

prediction accuracy of the model outputs for other five earthquake events exhibits an 511 

upward trend. In the first stage, the AUC value of the modelling performance of the 512 

Wenchuan earthquake is the highest, reaching 0.947, while the AUC value of the 513 

Minxian earthquake is the lowest, only 0.57. Additionally, the AUC values of other four 514 

earthquakes range from 0.8 to 0.85. In the second and third stages, we can observe 515 

that as landslide data quality is continuously improved, the prediction accuracy of the 516 

model based on the entire landslide database is gradually increased. Based on the 517 

entire landslide database, the AUC value of six events exceeds 0.9, indicating a very 518 

high prediction accuracy.  519 
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520 

Fig.11 Distribution of AUC values for the six earthquake events in different evaluation stages. 521 

Fig. 12 and Table S3 show the calculated model accuracy using actual landslide 522 

data from the six seismic events at different stages. The accuracy of the model 523 

fluctuates from 58% to 78% at the first stage, indicating that the model's applicability 524 

in different seismic events changes. In the second stage, with the exception of the 525 

Wenchuan earthquake, the accuracy of other earthquake events is less than 80%. In 526 

the third stage, the model accuracy of all seismic events exceeds 80%, with the 527 

Jiuzhaigou event reaching 91%.  528 
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 529 

Fig.12 Results of models validated by the six earthquake inventories. TN: True Negative; TP: True 530 

Positive; FN: False Negative; FP: False Positive. The accuracy (ACC) of the models represented 531 

graphically by the sum of the two lower bars. 532 

 533 

5 Discussion 534 

Time is of the essence in the emergency response stage I. Rapid evaluation of 535 

earthquake-induced landslides can quickly determine the high-hazard areas of seismic 536 

landslides and provide a basis for optimizing emergency deployment. Although the 537 

Newmark model is widely used in the emergency evaluation of earthquake-indcued 538 

landslides, this method is affected by input parameters and model simplification, 539 

resulting in the problem of practicability in the emergency rescue stages (Ma and Xu, 540 

2019b). In recent years, the near real-time coseismic landslide models based on global 541 

landslide data have been proposed and tested in some earthquake cases. Allstadt et 542 

al. (2018) compare three global earthquake-induced landslide models and use the 543 

2016 Mw 7.8 Kaikoura, New Zealand earthquake to evaluate the performance of three 544 

models. The seismic landslide hazard assessment map of this earthquake event is 545 

created by the above models and the ShakeMap published by USGS, demonstrating 546 

the remarkable potential of the near real-time model in earthquake landslide 547 
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emergency assessment. Similarly, Xu et al. (2019) establish a new generation of 548 

Chinese earthquake-triggered landslide hazard model based on 9 real earthquake-549 

triggered landslide cases. We apply this model to the six earthquake events in the 550 

Sichuan Yunnan region and the result shows that although the prediction result based 551 

on this model is the landslide hazard estimate with 100m resolution, the model can 552 

quickly determine the high-hazard area after the earthquake. Furthermore, with the 553 

exception of the Minxian earthquake, the model shows strong prediction ability in 554 

other five events, and the AUC values are greater than 0.8 (Fig.11). However, the AUC 555 

value of the Minxian event is only 0.57, illustrating that the model is inapplicable in 556 

the Minxian region (Fig.11). 557 

The main lithology of the landslides triggered by the earthquake in Minxian region 558 

is Pleistocene loess, and thus the main landslide type is small- and medium-sized loess 559 

landslide (Xu et al., 2014a). In contrast, the coseismic landslides triggered by other five 560 

events are primarily rock landslides. Furthermore, the landform of the Minxian area is 561 

typical loess landform with thick loess covering the hillside. The remaining five 562 

earthquake zones are typical mountainous landforms with high altitudes and steep 563 

slopes, and the rock joints are well developed due to the strong influence of tectonic 564 

activity. Therefore, the Minxian earthquake has extremely different geological, 565 

topographic, and geomorphic conditions, compared with other five earthquake events. 566 

Such differences lead to the poor evaluation ability of the model for the Minxian 567 

earthquake. Otherwise, the AUC value of the Wenchuan earthquake is the highest, 568 

reaching 0.947 (Fig.11). The Chinese earthquake-triggered landslide hazard model 569 

includes more than 300000 real landslide records, of which the landslide records of 570 

the Wenchuan earthquake account for more than 60% of the total records. Because of 571 

the relative large number of landslides triggered by the Wenchuan event, the global 572 

data set remains dominated by this earthquake. The construction of the LR model is 573 

most affected by the landslide samples of the Wenchuan events, which leads to the 574 

highest applicability and accuracy of the model in the Wenchuan region. The same 575 

phenomenon can also be found in previous studies (Nowicki Jessee et al., 2018; 576 

Nowicki et al., 2014). 577 
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In the first stage, we have to admit that the evaluation results of six earthquakes 578 

based on the Xu2019 model has yet to be improved. It is prominent that landslide 579 

observations from the earthquake match well with the predicted high probabilities, 580 

but the model predicts potential landslides in a large area beyond the mapped 581 

landslide area. Especially in Minxian, Jiuzhaigou and Yushu earthquake cases, the 582 

performance of the model is not satisfactory (Fig.4). Most of the current near-real-583 

time models have such problems that the model performs well when evaluated over 584 

the domain of an entire event area, but clearly, individual pixels will predict 585 

probabilities that underestimate or overestimate the landslide hazard (Nowicki Jessee 586 

et al., 2018). We propose two possible reasons for this phenomenon: (1) The 587 

resolution of the input data of the Xu2019 model is 100m, which affects the prediction 588 

accuracy of the model to a certain extent. Therefore, there may be errors between the 589 

modeling prediction and the actual result at the regional scale. (2) Nine earthquake 590 

cases used for the establishment of the Xu2019 model are located in China and its 591 

adjacent areas. The corresponding epicentral areas have different topographic and 592 

geological conditions, and only four cases are in the Sichuan-Yunnan area, which may 593 

weaken the applicability of the Xu2019 model in other quake events. Therefore, in the 594 

past few years, we have been constantly supplementing the earthquake landslide 595 

database in Sichuan Yunnan region (e.g. 2014 Ms 6.6 Jinggu earthquake, 2020 Ms 5.0 596 

Qiaojia earthquake, 2018 Ms 5.7 Xingwen earthquake, 2019 Ms 6.0 Changning 597 

earthquake, 2022 Ms 6.8 Luding earthquake,.etc). We suggest that with the 598 

accumulation of enough coseismic landslide inventories in Sichuan-Yunnan area, we 599 

can constantly update the near-real-time earthquake-triggered landslide hazard model 600 

based on these abundant landslide data and high resolution input factor data, and 601 

further improve the accuracy of the modelling in the emergency assessment. 602 

Despite the fact that remote sensing and GIS technology have advanced 603 

significantly in recent years, a considerable amount of post-earthquake images may 604 

appear within a few hours or days after the earthquake. However, due to the broad 605 

quake-affected area, cloud coverage, satellite scheduling and other factors, it is 606 

difficult to acquire the post-quake optical imagery immediately (Kargel et al., 2016; 607 
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Roback et al., 2018). Therefore, in the temporary resettlement stage II, we can only 608 

obtain the images of the meizoseismal area, and carry out visual interpretation or 609 

automatic identification of the seismic landslides in this area. Robinson et al. (2017) 610 

use the coseismic landslide database of the 2016 Nepal earthquake to conduct the 611 

rapid post-earthquake modelling of coseismic landslides. The evaluation results 612 

obtained by randomly selecting a small number of landslide samples are not much 613 

different from those obtained based on the complete landslide database, indicating 614 

that incomplete landslide samples can also be used to conduct seismic landslide 615 

hazard assessments. Our findings also reveal that the AUC values of all seismic events 616 

in the second stage are greater than 0.8, demonstrating that the prediction results 617 

based on incomplete landslide data in the meizoseismal area can better predict the 618 

location of the landslides in the entire earthquake area (Fig.11 and 12). Although the 619 

Ap calculated by incomplete landslide data is slightly less than the Ao triggered by 620 

earthquake events (Fig.10), the prediction model generally has certain applicability in 621 

the mid-term stage of the earthquakes, which can better take into account the 622 

timeliness and accuracy and thus more effectively serve the post-disaster resettlement 623 

in earthquake stricken areas (Ma et al., 2020).  624 

6 Conclusion 625 

The aim of this study is to propose an improved three-stage spatial prediction 626 

strategy and evaluate its applicability in six earthquake events. The results reveal that 627 

in the first stage, the AUC value of the modelling performance of the Wenchuan 628 

earthquake is the highest, reaching 0.947, while the AUC value of the Minxian 629 

earthquake is the lowest, only 0.57. In the second and third stages, we can observe 630 

that as landslide data is continuously improved, the prediction ability of the model 631 

based on the entire landslide database is gradually enhanced. Based on the entire 632 

landslide database, the AUC values of six events exceed 0.9, indicating a very high 633 

prediction accuracy. Furthermore, the Ap for the six earthquake events in different 634 

evaluation stages shows that based on incomplete landslide data in the meizoseismal 635 

area, Ap is much smaller than Ao. Nevertheless, when the prediction model based on 636 
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complete landslide data is built, Ap is nearly identical to Ao. Overall, the prediction 637 

results in the first stage can meet the requirements of emergency rescue with quickly 638 

obtaining the overall predicted information of the possible coseismic landslide 639 

locations in the quake-affected area. With the improvement of the coseismic landslide 640 

data in the second and third stages, the accuracy of the prediction results can be more 641 

accurate, and thus it can meet the requirement of temporary restoration and later 642 

reconstruction. This improved three-stage spatial prediction strategy has preferable 643 

practicability for regional landslide prevention and mitigation of major earthquakes in 644 

the Sichuan and Yunnan regions. 645 
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