
Review comments and responses 

Reviewer 2 

Over view 

I have read the manuscript with interest. The paper develops a software for hazard 

assessment of coseismic landslides considering three stages after earthquake. The paper 

is well written, but I have some concerns regarding the innovation and the method used 

by the paper. 

Comments 

1. I agree with the authors that rapid assessment of coseismic landslides is crucial to 

emergency response after strong earthquakes. The paper combined logistic regression 

and Bayesian probability methods in Matlab for assessing the spatial probability of 

landslides. Even the authors emphasized that there is no specialized software for seismic 

landslide hazard assessment, particularly in the various needs of different stages after a 

major earthquake, however, the methods they use are traditional methods, nothing new 

about the methodology itself. There are quite many existing toolbox or packages in 

ArcGIS, QGIS and R, which can be used for the same analysis as the authors did in 

Matlab.   

Authors’ response: Yes. Currently, there are many toolboxes or packages for assessing the spatial 

probability of landslides in different programming languages. However, these toolboxes are built 

by the traditional hazard assessment process, which requires landslide samples for modelling. As a 

result, the prediction results often lag behind the actual application, which cannot satisfy the 

emergency assessment of earthquake-induced landslides (Ma et al 2020). Therefore, to solve this 

problem, we integrated a new generation of earthquake-triggered landslide hazard model (Xu2019 

model), so that our software can serve for the emergency assessment of earthquake-induced 

landslides in the Sichuan-Yunnan area. Secondly, most studies on data-driven model have used the 

same ratio of sliding samples to non-sliding samples. Such a sampling method artificially 

exaggerates the proportion of sliding samples in the study area (Allstadt, et al 2018, Nowicki Jessee 

et al 2018); thus, the assessment results only consider the relative hazard level, but do not represent 

the real occurrence probability of landslides. Consequently, the resulting probability of the model 

overestimates the actual landslide occurrence probability (Shao et al 2020, Nowicki Jessee et al 

2018). We proposed a real probability prediction method of coseismic landslides by the bayesian 

probability method and LR model (Shao et al 2020). The results of this model represent the 

occurrence probability of landslide rather than the relative hazard level (Shao et al 2020) and thus 

can calculate the landslide area of the quake-affected area. Thirdly, to our knowledge, although 

there are quite many existing toolboxes or packages in ArcGIS, QGIS and R, there is no specific 

software for regional landslide hazard assessment based on matlab language, so our work will also 

help those familiar with matlab language to carry out the earthquake-induced landslide assessment. 
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2. In addition, the three-stage methodology is just classified considering the different 

time window after an earthquake. The methods at all stages are the same. The only 

difference is adding more and more landslide data after an earthquake due to more 

available information with time, such as remote sensing images. At third stage, if we 

already know all coseismic landslide distribution by RS imagery interpretation, why we 

still need the hazard model? Even at this stage, you get high R2, it is because the 

overfitting of the model. It does not mean the model will have good prediction power 

for next event. 

Authors’ response: In different stages after a large earthquake, the demand to mitigate 

earthquake disasters is different (Ma et al 2020). Especially in mountainous areas, the spatial 

prediction of landslides is of great significance to short-term emergency response (stage 1), 

medium-term temporary resettlement (stage 2) and long-term rehabilitation and reconstruction 

(stage 3). In stage 1, in the absence of landslide data, the rapid emergency hazard mapping using 

near-real-time model can provide guidance for post disaster emergency rescue and the 

interpretation and identification of earthquake-induced landslide in stage 2. In stage 2, considering 

the timeliness, the earthquake-induced landslide hazard assessment was carried out based on 

partially available landslides data. The assessment results are beneficial for the improvement of the 

construction of earthquake-induced landslide inventory, and provide useful information on avoiding 

high landslide hazard areas for quake-affected areas. 

In stage 3, we are faced with not only the problem of coseismic landslide identification, but 

also the weakened slope caused by the quake. As a result, it is critical to locate the landslides that 

are stable during the earthquake but unstable for a period of time after the earthquake. Such an 

essential process can be achieved by the hazard assessment of earthquake-induced landslides based 

on the complete landslide data. Thus, the results obtained in stage 3 will definitely be more objective 

than those obtained in the stage 2, because the training samples used in the model in this stage are 

abundant and more objective. That is to say, the prediction ability of the model in stage 3 is stronger 

than that in stage 2 (the prediction rate in the third stage is higher). Meanwhile, the evaluation 

results at this stage can effectively serve the town planning and long-term risk assessment of the 

subsequent quake-affected areas. To summarize, we suggested to perform earthquake-induced 

landslide hazard assessment at multiple stages in a large earthquake in order to better deal with 

the landslide disaster prevention and mitigation issues that earthquake areas face at various stages. 

The relevant descriptions have been added in Section 3.2.1 (line 288-296). 
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earthquakes oriented to emergency response, mid-term resettlement and later 

reconstruction. International Journal of Disaster Risk Reduction, 43, 101362. 

Major comments: 

3. Why the authors did not try CNN or other more advanced AI methods, which should 

have better performance than logistic regression and Bayesian probability methods? 

Authors’ response: Currently, the majority of the models employs one of several possible 

classification methods, including classical statistics (e.g., logistic regression, discriminant analysis, 

linear regression), index-based (e.g., weight-of evidence, heuristic analysis), machine learning (e.g., 

support vector machines, random forest) and neural networks (e.g., recurrent neural network, 

Convolutional neural network) (Reichenbach et al., 2018). Among them, the LR model is one of the 

most widely used models in the hazard assessment of earthquake-induced landslides by virtue of its 

simplicity, high efficiency, and high prediction accuracy (Reichenbach et al., 2018; Shao and Xu, 

2022) (Fig.1). In addition, it is the preferred method for establishing the near-real-time prediction 

model of earthquake-induced landslides (Nowicki Jessee et al., 2018; Tanyas et al., 2019; Xu et al, 

2019). 

In recent years, deep learning methods, especially Convolutional Neural Networks (CNN), 

have been pervasively applied in landslide hazard assessment. Similar to other machine learning 

methods, the internal structure of CNN model is complex like a black box, and the models need to 

classify the independent variables before the evaluation modeling (Yang et al., 2022). Compared 

with the CNN model, the LR model can better avoid these two problems. This method can carry out 

different types of independent variables including continuous variables and discrete variables. The 

LR model can give specific regression coefficients of independent variables, with simple calculation 

process and definite physical meanings. At the same time, recent studies show that the LR regression 

model performed better in prediction  other machine learning models (Zhao et al., 2022). The 

relevant description have been added in the section 3.22. 

 

Fig.1 Horizontal bar chart shows the count of 19 model type classes used to group the 163 model 

names given by Reichenbach et al., 2018 in the literature databases. 
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4. PGA and PGV are considered as the most important seismic factors, why the authors 

used intensity rather than PGA and PGV data? Besides, distance to river and distance to 

transportation lines are also important factors considering the river incision in 

mountainous regions and human work effect, why they are not considered in the 

model? 

Authors’ response: Thank the reviewers for their suggestions. Indeed, as the reviewer said, 

PGA and PGV are the two most important seismic factors, and these two factors can be converted 

to each other through specific empirical formula (Boore et al., 2014; Saffari et al., 2012). Like PGA 

and PGV, seismic intensity is also one of the most important seismic factors, and there are specific 

formulas for seismic intensity and PGA to be converted (Du et al., 2018; Xin et al., 2020). In our 

study, we chose the seismic intensity instead of PGA because in the official results released by the 

China Earthquake administration, seismic intensity is obtained by the integration of multi-source 

information such as instrument records, field survey and actual earthquake damages. Compared 

with the PGA map obtained from simple instrument records or attenuation relationship, the map of 

seismic intensity can better reflect the distribution of the seismic influence field. Therefore, in the 

three stages, we carried out the probability prediction of earthquake-induced landslides based on 

the rapidly obtained seismic intensity. 

The reason why the distance to river and distance to transportation lines are not selected is 

that among all influencing factors we selected, the topographic wetness index (TWI) and land-use 

type can represent regional hydrological factors and human factors respectively to a certain extent. 

Additionally, according to the previous studies about the spatial distribution of earthquake-induced 

landslides in the Sichuan-Yunnan region, we found that these two influencing factors do not show 

strong correlation with the occurrence of earthquake-induced landslides. Furthermore, despite the 

fact that these two influencing factors are not taken into account in the evaluation results, the 

performance of the evaluation model is satisfactory. Meanwhile, the model and software we 

developed are adaptable and do not place rigid limits on the input of influencing factors. Peers who 

are interested in assessment models might add or change the corresponding independent variables 

during the modeling process. 
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5. It is quite obvious that from Fig.4 that the actual landslides (black polygons) are not 

falling in high probability zones? The model seems not satisfactory for the first stage. 

Many landslides in all events are failing into blue (low probability zones), while the 

predicted high probability zones have a few landslides. This indicates that the model has 

quite high false alarms from prediction perspective. In the second stage, Fig.6, it still has 

the mis-matching problem. In the third stage, it looks better, but this is because as I 

mentioned above, the overfitting of model by using a large amount of known landslides. 

Actually the first stage, the rapid prediction using very limited or even no available 

landslide information, is most important one considering the emergency response and 

rescue work. The model’s performance at this stage is not good. 

Authors’ response: In the first stage, except for the Minxian earthquake, the AUC value of 

other earthquakes is above 0.8. But we have to admit that the evaluation results of six earthquakes 

based on the Xu2019 model can be improved. We can see that landslide observations from the 

earthquake match well with predicted high probabilities, but the model predicts potential 

landsliding in a large area beyond the mapped landslide area. Especially in Minxian, Jiuzhaigou 

and Yushu earthquake cases, the performance of the model is not satisfactory. But most of the 

current near-real-time models have such problems that the model performs well when evaluated 

over the domain of an entire event area, but clearly, individual pixels will predict probabilities that 

underestimate or overestimate the landslide hazard (Nowicki Jessee et al., 2018; Allstadt, et al 

2018). We propose two possible reasons for this phenomenon: (1) The resolution of the input data 

of the Xu2019 model is 100m, which affects the prediction accuracy of the model to a certain extent. 

Therefore, there may be errors between the modeling prediction and the actual result at the regional 

scale. (2) Nine earthquake cases used for the establishment of the Xu2019 model are located in China 

and its adjacent areas. The corresponding epicentral areas have different topographic and 

geological conditions, and only four cases are in the Sichuan-Yunnan area, which may weaken the 

applicability of the Xu2019 model in other quake events. Therefore, in the past few years, we have 

been constantly supplementing the earthquake landslide database in Sichuan Yunnan region (e.g. 

2014 Ms Jinggu earthquake, 2020 Ms Qiaojia earthquake, 2018 Ms 5.7 Xingwen earthquake, 2019 

Changning earthquake, 2022 Ms 6.8 Luding earthquake,.etc). We suggest that with the 

accumulation of enough coseismic landslide inventories of earthquake cases in Sichuan-Yunnan 

area, we can constantly update the near-real-time earthquake-triggered landslide hazard model 

based on these abundant landslide data and high resolution input factors data, and further improve 

the accuracy of the modelling in the emergency assessment. The relevant description have been 



added in the discussion section (Line 578-602). 

For the second stage, the predicted landslide area (Ap) of the six events are almost the same 

as the observed landslide area (Ao). Except for the Jiuzhaigou earthquake, the overall error of the 

remaining five earthquakes is between 9% and 50%, of which the error of the results of the 2008 

Wenchuan earthquake is the lowest with 9%, indicating that the assessment results of the second 

stage are reliable for the quantification of coseismic landslide development area in the quake-

affected area. In addition, from the complete landslide inventory and prediction results of six events 

(Fig. 6), although some landslides are spread out on the low-hazard areas, most landslide are 

located in the high-hazard areas which are relatively consistent with the actual landslide 

distribution. Meanwhile, based on the complete landslide data, the validation results in the second 

stage show that the AUC values of the second stage are all above 0.85, which indicates that the 

model have pretty good performance. 
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