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Abstract. Sentinel-2 satellite imagery has been shown by studies to be capable of detecting and quantifying methane emissions

from oil and gas production. However, current methods lack performance calibration with ground-truth testing. This study

developed a multi-band-multi-pass-multi-comparison-date methane retrieval algorithm that enhances Sentinel-2 sensitivity

to methane plumes. The method was calibrated using data from a large-scale controlled release test in Ehrenberg, Arizona

in fall 2021, with three algorithm parameters tuned based on the true emission rates. Tuned parameters are the pixel-level5

concentration upper bound threshold during extreme value removal, the number of comparison dates, and the pixel-level

methane concentration percentage threshold when determining the spatial extent of a plume. We found that a low value of

the upper bound threshold during extreme value removal can result in false negatives. A high number of comparison dates

helps enhance the algorithm sensitivity to the plumes in the target date, but values in excess of 12 days are neither necessary

nor computationally efficient. A high percentage threshold when determining the spatial extent of a plume helps enhance the10

quantification accuracy, but it may harm the yes/no detection accuracy. We found that there is a trade-off between quantification

accuracy and detection accuracy. In a scenario with the highest quantification accuracy, we achieved the lowest quantification

error and had zero false positive detections; however, the algorithm missed 3 true plumes which reduced the yes/no detection

accuracy. On the contrary, all the true plumes were detected in the highest detection accuracy scenario, but the emission rate

quantification had higher errors. We illustrated a two-step method that updates the emission rate estimates in an interim step15

which improves quantification accuracy while keeping high yes/no detection accuracy. We also validated the algorithm’s ability

of detecting true positives and true negatives in two application studies.

1 Introduction

Methane (CH4) emissions during oil and natural gas production are receiving increased attention since CH4 is a potent green-

house gas (GHG) with radiative forcing 84 times greater than that of CO2 over a 20-year time frame (MacKay et al., 2021).20

During the 2008-2017 decade, around 60% of global methane emissions are from anthropogenic sources(Saunois et al., 2020).

Of these sources, fossil fuel (coal, oil and gas) production and use was estimated to have contributed 81-154 Tg CH4 a−1 of
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methane emissions, accounting for around one third of the global anthropogenic methane fluxes (Saunois et al., 2020). Another

estimate suggested that >80 Tg of methane emissions were from the oil and gas sector across the globe in 2021, ∼ 30% higher

than the 62 Tg in 2000 (IEA, 2022). The most detailed studies to date have been performed in the United States, where the25

methane loss rate from oil and gas supply in 2015 was estimated at 2.3% of the gross natural gas production (Alvarez et al.,

2018). Studies also claim that the U.S. official inventories have been consistently underestimating methane emissions in oil

and natural gas systems, suggesting a more important role for methane in GHG emissions reduction in the oil and gas sector

(Alvarez et al., 2018; Brandt et al., 2014; Zavala-Araiza et al., 2015; Rutherford et al., 2021).

Reducing methane loss from oil and gas systems will require measurement and monitoring. Because of the large spatial scale30

of the oil and gas industry, there has been significant interest in methane measurement methods using aircraft or satellites to

detect methane emissions across large areas (Karion et al., 2013; Hausmann et al., 2016; Frankenberg et al., 2016; Chen et al.,

2022; Cusworth et al., 2021). Particularly, satellite detection has been considered a promising methane emissions monitoring

technology because of its frequent revisit time, wide spatial coverage and low labor cost. SCIAMACHY (2003-2012) and

Greenhouse Gases Observing Satellite (GOSAT, 2009-present) were the first two satellites to measure total methane columns35

by solar backscatter in the shortwave infrared (SWIR) (Jacob et al., 2016). The EO-1 Hyperion spectrometer achieved the

first orbital detection of a methane superemitter plume from the Aliso Canyon release in 2016 (Thompson et al., 2016). The

TROPOspheric Monitoring Instrument (TROPOMI) on the Sentinel-5 Precursor satellite launched in 2017 maps methane

columns with daily global coverage at up to 7× 5.5 km2 resolution (Veefkind et al., 2012; Hu et al., 2018). The GHGSat

constellation instruments launched from 2016-2022, each provide methane measurements with 25-50 m spatial resolution over40

a ∼ 12× 12 km2 domain (Varon et al., 2018, 2020). More recently, the Sentinel-2 twin land-surveying satellites launched

in 2015 and 2017 were shown to have moderate sensitivity to methane at specific wavelength bands (Varon et al., 2021).

And other space-based sensors designed for land-surface monitoring, such as PRISMA (30 m spatial resolution), Landsat-8

(30 m spatial resolution), and WorldView-3 (WV-3, 3.7 m spatial resolution), have similarly demonstrated methane detection

capabilities (Cusworth et al., 2019; Ehret et al., 2021; Sánchez-García et al., 2022). Several studies in the last few years have45

reported methane enhancements from oil and gas producing regions and monitored methane "ultra-emitters" from oil and gas

production based on the data from these satellite instruments (Lauvaux et al., 2022; Ehret et al., 2021; Irakulis-Loitxate et al.,

2022; Cusworth et al., 2021).

The Sentinel-2 constellation has two polar-orbiting satellites placed in the same sun-synchronous orbit phased at 180◦ to each

other. The main Sentinel-2 data products are imagery from 13 spectral bands from the visible to the SWIR (Phiri et al., 2020).50

Among these spectral bands, bands 11 (∼ 1560−1660 nm) and 12 (∼ 2090−2290 nm) integrate radiances over methane’s 1650

and 2300 nm SWIR absorption features, thus enabling methane detection and quantification. Because of its global coverage,

fine spatial resolution (20× 20 m2 in band 11 and 12) and frequent revisit time (2-5 days), Sentinel-2 is believed to have

potential for large-scale high-frequency monitoring of methane plumes in oil and gas producing regions (Ehret et al., 2021).

Varon et al. (2021) developed three retrieval approaches to derive methane enhancements across a scene of a methane55

point source based on the Sentinel-2 data in bands 11 and 12. The single-band-multi-pass (SBMP) retrieval method uses the

changes in band-12 reflectance between a satellite pass with a plume and a pass sampling a reference scene with no plume
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to derive methane column enhancements. The multi-band-single-pass (MBSP) retrieval compares reflectance in band 11 and

12 on a single pass. And the multi-band-multi-pass (MBMP) retrieval applies two MBSP retrievals on two satellite passes to

remove artifacts from the retrieval field. In that work, two case studies of applying these approaches to methane point-source60

plume detection from oil and gas facilities were presented, one in the Hassi Messaoud oil field of Algeria and the other in

the Korpezhe oil and gas field of Turkmenistan. The Korpezhe retrieval results were shown to be consistent with GHGSat-D

satellite instrument observations in 2018-2019 although with higher observation density. Among the three retrieval methods,

MBMP method generally performs the best, mainly because it increases the contrast of the plumes by combining two spectral

bands and having one pass sampling a reference scene.65

However, the retrieval methods from Varon et al. (2021) might still be improved. First, calibration of the retrieved emission

source rates with ground-truth values needs to be done to validate the performance of the sensor and the retrieval method.

Varon et al. (2021) validated the retrieval results by comparing them with GHGSat observations since GHGSat has relatively

higher precision; however, ground-truth calibration with controlled release volumes is still essential in performance validation

and retrieval method fine tuning. Second, the retrieval methods include tunable parameters such as the percentage threshold70

during plume mask extraction. Nevertheless, the optimal values of the tunable parameters were not discussed. Lastly, because

of Sentinel-2’s limited sensitivity to methane, the MBMP retrieval method can generate false detections if the atmospheric

conditions between satellite passes are different or if some ground features have higher reflectance in band 11 than band 12.

And removing these false detections still relies on manual verification, such as checking if a similar shape occurs in the satellite

observation of the other bands or in the imagery basemap. New modifications need to be made to remove the false detections75

at scale in a reasonable and convenient way.

Here we present a Multi-band-multi-pass-multi-comparison-date (MBPD) retrieval algorithm based on the MBMP approach

from Varon et al. (2021). The new algorithm extends the MBMP approach to enhance its sensitivity to methane plumes and

reduces false detections. Additionally, we were able to calibrate the method using data from a single-blind controlled release

test in Ehrenberg, Arizona in fall 2021. During calibration, three algorithm parameters were tuned based on the ground-80

truth emission rates to improve the algorithm performance. Furthermore, we show two simple application studies of the new

algorithm, one examining the ability of true positive detection, and the other examining the ability of true negative detection.

To our knowledge, this is the first time that a methane detection and quantification algorithm based on Sentinel-2 imagery has

been calibrated with ground-truth emission rates.

2 Methodology85

2.1 MBPD retrieval algorithm

The MBPD retrieval algorithm is an improved retrieval method with modifications based on the MBMP retrieval method from

Varon et al. (2021). The new algorithm follows the same logic of retrieving the vertical column concentrations of atmospheric

methane ∆Ω (kg ·m−2) from Sentinel-2 SWIR reflectances. Main steps are shown in the flow chart of Figure 1. The main idea

is retrieving methane column concentrations from one spectral measurement featuring methane absorption and one not, such as90
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two observations from different passes with or without a methane plume, or two adjacent spectral bands with different methane

absorption properties. For a given scene, the method compares the Sentinel-2 measurements with the top-of-atmosphere (TOA)

radiance simulated by a 100-layer, clear-sky radiative transfer model at 0.02 nm spectral resolution over the band 11 and 12

wavelength ranges. The specific steps are: first in a specific pass 1, the methane concentration enhancements are retrieved by

minimizing the difference between the fractional change of Sentinel-2 reflectance and a fractional absorption model based on95

the simulated TOA radiance in bands 11 and 12; then the same process is repeated in another pass 2, and the difference of these

two retrieved column enhancements (two MBSP retrievals) is the MBMP methane column enhancement in pass 1 (Equation

(1)). Here the subtraction between two passes aims to remove systematic errors in the MBSP retrieval due to wavelength

separation between bands 11 and 12. In other words, the MBSP retrieval in pass 2 is mainly used for removing artifacts of the

MBSP retrieval in pass 1. Therefore, in this paper we name pass 1 as the “target date (TD)” and pass 2 as the “comparison date100

(CD)" for clarification. The TD in our method is the date for which the plume size is estimated. And by default here the target

date is assumed to be chronologically after the comparison date, although in practice this need not be the case.

∆ΩMBMP =∆ΩMBSP,TD −∆ΩMBSP,CD(kg ·m−2) (1)

We make some modifications during the column retrieval process since the MBMP retrieval can still lead to false detections,

especially in the MBMP subtraction step (Equation (1)). In theory, in the background with no methane plume, we expect the105

two MBSP retrievals to have similar values of methane column enhancements since they are at the same scene. However, this is

not always true because: (1) MBSP retrieval can be greatly affected by the atmospheric conditions such as cloud coverage; (2)

the MBSP retrieval in one pass may have similar spatial distribution but with all the pixel values higher or lower than the MBSP

retrieval in another pass due to differences in various atmospheric or earth properties (e.g., solar zenith angle, surface albedo)

between different dates; and (3) other unpredictable random measurement errors can occur in a specific pass. Therefore, we110

add the following steps to further reduce the number of false detections (see Figure 1 for sequence):

Choose clear-view passes. First, we only select passes with a clear view for both the target date and comparison dates since

clouds can result in false detections by affecting reflectance. Here we use Sentinel-2 cloud probability, a data product created

with the sentinel2-cloud-detector library, to select clear-view passes with no large cloud coverage. Specifically, we select the

passes with less than 10% of cloud coverage (i.e., the area with cloud probability higher than 65% is less than 10% of the total115

area of the study region).

Normalization. If two MBSP retrievals of Equation (1) have a uniform value difference in all the pixels, artifacts will still be

preserved after the MBMP subtraction. So we normalize both MBSP retrievals before the MBMP subtraction to maximize the

effects of artifacts removal. For example, in Figure 2, the MBMP retrievals with normalization show more plume contrast with

the background compared with the ones without normalization. Some artifacts, such as the straight line in the unnormalized120

retrieval with 09/19/2021 as the comparison date, are also removed in the normalized retrieval. Therefore, changing MBSP

retrievals to the same scale helps enhance the ability to detect true methane plumes. However, note that the resulting concentra-
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tion enhancements after normalization are no longer “actual" enhancements, thus should not be used to calculate the emission

rates. In other words, normalization is only used for detecting the plume location and shape.

Remove extreme values. In some cases extremely high methane column enhancements can be generated for a small number125

of pixels because of the appearance of random features in one of the two passes. Thus we also remove extreme values for the

two MBSP retrievals before normalization. The removal method is based on setting upper and lower bound thresholds, and

truncating values outside the bound thresholds to the threshold values. Here we set the lower bound threshold as 0 kg m−2, and

the upper bound threshold will be tuned using the controlled release experimental data below. Similar with normalization, this

step is only used for plume detection instead of quantification.130

Include multiple comparison dates. Instead of using a single comparison date, we include multiple comparison dates to

help with plume detection. Different with the “sliding window” method from Ehret et al. (2021) which uses a multi-linear

regression onto 1-20 previous passes, we directly take the average of comparison date retrievals as the subtrahend in the

MBMP subtraction. Using multiple comparison days helps to stabilize the background since the background values can vary

among different passes due to weather, temperature, surface albedo difference, and other variation. Shown in Figure 3, more135

comparison dates provide a more stable background, and therefore are more likely to increase the contrast of the plumes. On

the other hand, it is possible that in real application, the comparison date may also have methane plumes at the same location

with similar shape as the plumes in the target date. In this case, it is harder for the algorithm to detect the target date plumes

after the MBMP subtraction. So using the average of multiple comparison dates helps lower the possibility of the occurrence

of high-volume methane plume in the subtrahend, thus enhance the algorithm sensitivity to the plumes in the target date. Here140

the comparison dates are selected as continuous clear-view passes before the target date, and the number of comparison dates

is a parameter that will be tuned using the controlled release experimental data below. Because the new algorithm considers

multiple comparison dates for the multi-band-multi-pass approach, it is named the “Multi-band-multi-pass-multi-comparison-

date” (MBPD) retrieval algorithm.

After column retrieval, the methane column enhancements ∆ΩMBPD are further used to calculate the emission source rate145

Q using the Integrated mass enhancement (IME) method described by Varon et al. (2021) (Equation (2)) (Frankenberg et al.,

2016; Varon et al., 2018). In this equation, IME is the integrated mass enhancement (kg), Ueff is the effective wind speed

(m/s), and L is the plume size (m).

Q= 3.6× IME×Ueff

L
(t/hr) (2)

To calculate IME, we first generate Boolean plume masks based on ∆ΩMBPD by selecting methane columns above some150

percentage threshold for the scene, and smooth with a 3×3 median filter and a 3×3 Gaussian filter (see Figure1 (e)). Here the

percentage threshold is a parameter that will be tuned using the controlled release experimental data below. This plume mask

generation step sets the location and shape of the methane plumes.

Then the IME is defined as the sum of multiplication of column enhancements and pixel-level area of all the mask pixels.

Note that the column enhancements here are the original enhancements without any data transformation such as normalization155
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or extreme value removal applied to aid detection of the plume shape. The effective wind speed Ueff is the function of

the local 10 m wind speed U10 derived by Varon et al. (2021), calibrated with large-eddy simulations. We collect local wind

speed data from the High-Resolution Rapid Refresh (HRRR) atmospheric model from U.S. National Oceanic and Atmospheric

Administration(U.S. NOAA, 2021). The plume size L is taken in a simplified form as the square root of the plume mask area.

2.2 Performance assessment160

To validate the performance of the new algorithm, calibration is required to compare the algorithm outcome with the ground

truth. The goal of calibration is to assess the algorithm performance in both detection and quantification. Accurate yes/no

detection is defined as the algorithm being able to detect a methane plume when it appears, and detecting nothing when no

plume appears. Accurate quantification means that the emission rate estimates derived from the algorithm are consistent with

the ground-truth measured release volumes.165

Additionally, the algorithm performance can also be improved by parameter tuning to best match the ground truth. Here three

parameters in the new algorithm are tuned: (1) the upper bound threshold during extreme value removal bu, (2) the number of

comparison dates for each target date n, and (3) the percentage threshold during the plume mask generation p. The way each

parameter affects the algorithm outcome is described as below:

The upper bound threshold bu: bu is a parameter that occurs during the extreme value removal, during which the retrieval170

values higher than it are considered to be extreme outliers and are replaced by the threshold value. So a lower bu means a more

strict constraint during extreme value removal. Ideally, an optimal bu helps remove false detections due to the extreme highs.

However, if bu is too low, a true methane plume may also be ignored since its retrieval values could be removed.

The number of comparison dates n: We expect that the higher n is, the more stable the background is, thus the contrast of

the plume is increased. However, this stability increase is not linear, so the increase of n may not help much in the case of a175

very large n. In addition, the computation workload also increases along with higher n, approximately linearly with n.

The percentage threshold p: The higher p is, the fewer pixels are included in the plume mask. So a higher p means a smaller

plume mask area. This may help with removing false positives and enhancing quantification accuracy, but may also lead to

false negatives or result in underestimation of plume volume if selected at too high of a value.

To quantify the algorithm performance, we use two assessment factors with focus on different aspects. First, we choose F1180

score to assess the performance of detection. F1 score is a function of “precision” and “recall”, measures of false positives

and false negatives respectively (Equations (3)(4)(5)). F1 score has a range of 0 to 1, with higher values representing better

algorithm performance. In addition, we choose the average absolute error (AAE) to assess the performance of quantification

(Equation (6), where xi and x̂i are the emission rate estimate and ground-truth emission rate in day i, and N is the number of

days). AAE has a range of 0 to ∞ with lower values suggesting better algorithm performance. Absolute error is used so that185

under- and over-estimates do not cancel each other out.

F1 = 2× precision · recall
precision+ recall

(3)
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precision =
#True Positive

#True Positive+#False Positive
(4)

recall =
#True Positive

#True Positive+#False Negative
(5)

AAE =

∑N
i=1 |xi − x̂i|

N
(6)190

3 Results

In fall 2021, a single-blind controlled release test was conducted by the Stanford University Environmental Assessment &

Optimization Group. The test was performed in Ehrenberg, Arizona, the testing methods are described in detail in Sherwin

et al. (2022) and Rutherford et al. (2022), and the test was generally similar to previous tests of airplane-based methane plume

detection from the same group (Sherwin et al., 2021). This test aimed at assessing the performance of various aircraft and195

satellite methane detection technologies. During the test, the participants were given the information of time and location of

the potential release, although the methane plume volumes (including zero, i.e., no methane plume) were unknown to them.

Participants were asked to estimate the mass emissions rate during each observation in kg CH4/h. Specifically for Sentinel-2,

there are 7 clear-view satellite passes and one cloud-covered pass covered in this test from 10/17/2021 to 11/03/2021. Here we

consider only the 7 clear-view passes, and also add three dates after the test with zero emission, so that in total 10 target dates200

with ground-truth emission rates are used to do the ground-truth calibration. Of the 10 target dates, 5 have methane plumes

with non-zero emission rates, and 5 have no methane plumes. Figure 4 region A is the study region that covers the controlled

release point source. After calibration, we also provided two simple application studies to validate the algorithm performance

(Section 3.2). Because we lacked other ground-truth data to use as a blind test set, one goal of these application studies was to

test if the algorithm can avoid generating false positives in the case of no methane plumes.205

3.1 Controlled release calibration

We selected a wide value range for each algorithm parameter during the parameter tuning. For bu, we noticed that the mag-

nitudes of the pixel-level column enhancements of a methane plume are usually from 10−3 to 10−1 kg ·m−2. So we selected

10 values from 0.01 to 0.1 kg ·m−2 with increment 0.01 kg ·m−2, and 4 other values 0.005, 0.12, 0.15 and 0.20 kg ·m−2.

For n, for each target date 15 clear-view passes were selected with the earliest comparison date around 45 days before the210

target date, so n ranges from 1 to 15 with increment 1. And for p, 16 values were selected from 0.80 to 0.95 with increment

0.01. Therefore, there are in total 3360 scenarios of different combinations of three parameters. Each of these 3360 parameter

settings was run to quantify volumes from all 10 study days.
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Figure 5 shows how each parameter affects the algorithm outcome. In each figure, an assessment factor (AAE or F1 score)

is shown as a function of two parameters, based on a fixed value of the third parameter (i.e., a “slice” through 2 parameters215

keeping the third constant). Here the fixed values are from the parameter setting with the lowest AAE. Figures 5(a)(b) show

that a small bu value (0.005-0.02 kg ·m−2) leads to bad algorithm performance with high AAE and low F1 score (AAE>1.3,

F1 score<0.4). This suggests that the bu constraint is too strict in this range and removes retrievals not only from the extreme

highs, but also from true methane plumes. Thus the algorithm starts to generate false negatives. Particularly in Figure 5(b)

when bu is 0.005 kg ·m−2, we see NAN values of F1 score because there is no true positive detection at all. Aside from the220

low value range, AAE and F1 score show less sensitivity to bu at the other values. Therefore, the conclusion from bu tuning is

that one should avoid excessively low values of bu (< 0.02 kg ·m−2).

Figures 5(a)(c) show a rough decreasing trend of AAE along with higher n when n < 12. This suggests that a higher n

helps with quantification accuracy by providing a more stable background and lowering the possibility of high-volume plume

in the comparison dates. However, AAE does not show an obvious decrease when n≥ 12, which suggests that 12 or more225

comparison dates are not necessary, or at least ceases to improve performance. Figure 5(b)(d) show low F1 scores when n is

low (for example, F1 scores <0.67 when n= 2). This is because some target dates have their earlier comparison dates with

higher methane plume volumes, and a low value of n does not effectively reduce the average volume in the comparison dates,

thus resulting in more false negatives. In real application, this may be a more serious problem if the plume is continuous among

a long time period with varying volumes. Additionally, computational cost is roughly proportional to n, so too high of a value230

of n can have excessive computational costs with little benefit to accuracy. Therefore, the value of n should not be too low nor

too high, and from the figures we can conclude that a reasonable choice of n is in the range 10-12.

Figure 5(c)(e) show that AAE decreases with higher p at first, but starts to increase when p > 0.92. The decreasing trend

is due to smaller plume volumes and less false positives resulting from smaller plume masks during the Boolean plume mask

generation. The increasing trend in high p range, however, is because p becomes sufficiently high such that no mask is generated235

even for the dates with real methane plumes. This also explains why in Figure 5(d)(f) the F1 score is low in high p ranges. Low

AAEs occur in the p range 0.91-0.93, while high F1 scores occur in the p range 0.85-0.86. This suggests a trade-off between

accurate quantification and accurate yes/no detection: accurate quantification usually requires a high p value, but accurate

yes/no detection needs a lower p value (though not excessively low). Therefore, when selecting the best p value, we can choose

to emphasize quantification accuracy and accept the possibility of missing plumes (p > 0.90) ; or we can choose to detect more240

plumes, and accept the possibility of emission rate overestimation(p≈ 0.85).

Here two specific scenarios shown in Table 1 and 2 further illustrate the trade-off between accurate quantification and

accurate yes/no detection. The “Min AAE" scenario is an example of pursuing quantification accuracy. It has the lowest AAE

of all the parameter settings and with the highest precision, meaning that it also has the minimum amount of false positives.

However, this scenario has three false negatives that reduce the F1 score. Aside from this specific scenario, the top 1% scenarios245

with low AAEs have their bu ranging widely in 0.03− 0.15, n in a middle-to-high range of 7− 14 and p staying high in

0.91− 0.92. On the other hand, the “Max F1 score" scenario has the highest F1 score. It doesn’t have false negatives, but in

order to find all plumes it becomes too aggressive, leading to one false positive. Note that multiple scenarios have the same
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highest F1 score, and the scenario we show here is the one with the lowest AAE among them. The top 1% scenarios with high

F1 scores have their bu ranging widely in 0.02− 0.12, n in a wide range of 1− 15 and p in the middle range of 0.82− 0.85.250

As a compromise, we developed a method to apply the MBPD algorithm in sequence to reduce the quantification error

further while keeping a high F1 score. The specific steps are: (1) apply a scenario with high F1 score as the base case to

generate the first round of emission rate estimates; (2) raise the value of p and apply the updated scenario again to generate

the second round of emission rate estimates; (3) for the passes with non-zero emission rates in both scenarios, update the

base case estimates to the new ones since they are likely to be closer to the ground-truth volumes. We name this method the255

“two-step application” method. Here we only change the value of p since the mask extraction step where p is applied is after

the column retrieval step where bu and n are applied. So a consistent bu and n greatly reduces the computation workload as

we only need to redo the mask extraction. Different with direct application of the MBPD algorithm, this method is specifically

designed to address the trade-off issue between quantification accuracy and detection accuracy. Table 1 shows an example of

the two-step application (“Two-step hybrid” scenario) with the “Base case” scenario. Results show that the ‘Two-step hybrid”260

scenario achieves lower AAE than the “Base case” scenario with F1 score remaining the same. Specific locations and shapes

of detected plumes in “Min AAE", “Max F1 score" and “Two-step hybrid” scenarios are shown in Figure 6.

We also compared the performance of MBPD algorithm with MBMP, MBSP and SBMP methods from Varon et al. (2021)

in Figure 7. The top row is for a true emission rate of 7.38 tCH4/h while the bottom row is for a true emission rate of 0 tCH4/h.

Results show that the MBPD algorithm performs the best with both true positive and true negative detections. Its emission265

rate estimates are also the closest to the ground-truth volumes. The MBMP method has true negative detection in 10/17/2021,

but shows a small false positive detection in 10/19/2021. Its emission rate estimate in this date is also much lower than the

ground truth. This implies that the steps of normalization and inclusion of multiple comparison dates in the MBPD method

contribute to a higher sensitivity to the true plume than the MBMP method. MBSP and SBMP retrievals perform worst with

multiple large-area false positive plumes. SBMP method is likely to produce false detections if the surface albedo changes270

across different passes, and MBPD method reduces the effect of changing surface albedo by including different spectral bands

and multiple comparison dates. MBSP method can produce false detections because of the wavelength separation between two

spectral bands, and MBPD method largely removes these artifacts by subtracting the MBSP retrieval between different passes.

3.2 Broader application in cases of unknown emission rates

3.2.1 Examine true positives275

To test the algorithm’s performance in detecting true positives, we applied the algorithm in a methane-emitting site in the

Permian basin during the summer of 2020 studied in Ehret et al. (2021). We used the parameters of the “Max F1 score”

scenario which achieved the highest detection accuracy in the ground-truth calibration above. We detected all plumes from the

9 days covered in Ehret et al. (2021) with similar plume shapes and the emission rate estimate difference within ±55%. This

test validates the performance of detecting true positives of our method (Figure 8).280
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3.2.2 Examine true negatives

To test the algorithm’s performance in detecting true negatives, we applied the algorithm with the “Min AAE” scenario since

it achieved zero false positive in the ground-truth calibration above. Two application studies were designed, one in an extended

three-month time period from 10/01/2021 to 12/31/2021 at the same region with the controlled release test (Figure 4 region A),

and one at a different region (Figure 4 region B) in the same time period. The algorithm shows zero emission in all the passes285

of both two studies, which validates its performance of detecting true negatives. Two detection examples are shown in Figure

9.

4 Conclusion

This study presented a multi-band-multi-pass-multi-comparison-date (MBPD) methane retrieval algorithm using Sentinel-2

satellite imagery with several modifications based on the multi-band-multi-pass (MBMP) retrieval method from Varon et al.290

(2021). The major modification is including multiple comparison dates into the retrieval, which helps increase the contrast of

the plume by stabilizing the background.

The new retrieval algorithm was then calibrated by a controlled release test in Ehrenberg, Arizona in fall 2021. During cali-

bration, three algorithm parameters were tuned based on the ground-truth emission rates to improve the algorithm performance.

They are the the pixel-level concentration upper bound threshold bu for extreme value removal, the number of comparison dates295

n, and the pixel-level methane concentration percentage threshold p when determining the spatial extent of a plume. We found

that although the algorithm sensitivity to bu is generally not very high, a low bu value can decrease its accuracy by resulting in

false negatives. n value should be high enough to enhance the algorithm sensitivity to the plumes in the target date, but values

> 12 are neither necessary nor computationally efficient. A high p value helps enhance the quantification accuracy, but it may

harm the yes/no detection accuracy by missing some true plumes.300

The controlled release calibration suggests that there is a trade-off between quantification accuracy and detection accuracy.

If the algorithm aims to guarantee the quantification accuracy, then a bu in range 0.03-0.15, a n in range 7-14 and a p in range

0.91-0.92 are preferable. If the algorithm is expected to guarantee the detection accuracy, particularly with the fewest false

negatives, then it would be more appropriate to choose bu in 0.02-0.12, n in range 1-15 and p in range 0.82-0.85. We also

illustrate a two-step method that changes the parameter values and updates the emission rate estimates in an interim step which305

improves quantification accuracy while keeping high yes/no detection accuracy.

To our knowledge, this is the first study that validates the performance of a Sentinel-2 methane detection and quantification

algorithm by calibrating it with the ground-truth emission rates. We believe the ground truth calibration offers researchers an

opportunity to optimally tune methane retrieval algorithms and have confidence in their widespread deployment. In the future,

the MBPD algorithm can be validated with more systematic experiments wherein the algorithm can be adjusted or tuned to310

meet different detection expectations.

We believe that the algorithm can still be improved further in the following aspects. First, the optimal values of three

parameters may vary in different situations. For example, bu may vary with the methane plume volumes; n is affected by

10



whether the plume is continuous or discrete in time; and p also depends on the area of the plume and the area of the study

region, so it may vary with the study region size. In particular, this study is based on a homogeneous study area and results may315

not generalize to heterogeneous sites with changing surface features during the study time period (e.g. due to seasonal shifts

in vegetation). How to filter out outliers and define the true plume in a heterogeneous site is still difficult to answer since our

controlled release test covers only one region over a single month. In future controlled release tests, we hope to explore these

questions further based on more abundant ground-truth data in areas with more complex background features. Additionally,

the current algorithm focuses more on removing false positives resulting from the background noise of the comparison dates.320

In real applications, however, more false positives due to the background noise of the target dates may be generated. Removing

these false positives requires more work after the plume mask generation, such as removing the plume masks that are far away

from known well pad or pipeline locations. Other options may involve developing an automatic approach of outlier filtering

and plume definition, as in Ehret et al. (2021), or applying machine vision based shape learning methods to filter out plume

masks with shapes unlikely to be generated by a gas cloud. We hope to develop an efficient method of false detection removal325

so that Sentinel-2 can play a more important role in routine oil and gas methane monitoring in the global scale.

Code and data availability. The methane detection and quantification algorithm code will be made available upon request. The methane

column retrieval code will be made available for non-commercial use upon request (GHGSAT Data and Products – Copyright © 2021

GHGSAT Inc. All rights reserved). The Sentinel-2 satellite imagery are available in the Google Earth Engine (GEE) cloud platform, and the

HRRR wind data are available in the AWS HRRR GRIB2 Archive. Both the data collection codes will be made available upon request.330
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Figure 1. Basic algorithm workflow. Solid boxes are specific steps of the multi-band-multi-pass (MBMP) retrieval. Dashed boxes are new

modifications added in this study. (a): study region. (b): Sentinel-2 imagery in band 11 and 12 on both target date (TD, top row) and

comparison date (CD, bottom row), with pixel value as reflectance. (c): MBSP retrieval on both TD (top row) and CD (bottom row) with

pixel value as methane column concentration (kg ·m−2). (d): MBMP retrieval on TD, i.e., the result of subtracting the MBSP retrieval on

TD by the MBSP retrieval on CD. (e): Boolean plume mask generated from MBMP retrieval by selecting methane columns above some

percentage threshold for the scene, and smooth with a median filter (window size 3× 3) and a Gaussian filter (window size 3× 3). Basemap

of (a): ArcGIS Online World Imagery Basemap. Sources: Esri, DigitalGlobe, GeoEye, i-cubed, USDA FSA, USGS, AEX, Getmapping,

Aerogrid, IGN, IGP, swisstopo, and the GIS User Community.
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Figure 2. Examples of normalization. Here are two MBMP retrieval examples, one with 10/19/2021 as target date (TD) and 10/14/2021 as

comparison date (CD), and the other with 10/19/2021 as TD and 09/10/2021 as CD. In each example, we show MBMP plume observation

without and with normalization (see figures of the third and fourth column from left). In both examples, the normalized MBMP retrieval

shows more plume contrast with the background than the one without normalization. Particularly in the second example with 09/10/2021 as

CD, there is a straight line artifact in the MBMP retrieval without normalization, and it is removed in the normalized MBMP retrieval. This

illustrates the fact that normalization improves the effect of artifacts removal by making MBSP retrievals of TD and CD to the same scale.
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Figure 3. Examples of including multiple comparison dates. In the MBMP subtraction, we include multiple comparison dates and take their

average MBSP retrievals as the subtrahend to stabilize the varying background in different dates. Here n is the number of comparison dates.

From left to right figures (n = 1, 7 and 15) we can see that a higher n provides a “cleaner” background in the MBPD retrieval, particularly in

the lower right area, thus increases the contrast of the plume.
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Figure 4. Study regions. Region A covers the controlled release point source (red-marked, 33.6306◦N, 114.4878◦W) and is mainly used for

the controlled release calibration. Region B is to the east of region A with the same area, and is used for the application study. Basemap:

ArcGIS Online World Imagery Basemap. Sources: Esri, DigitalGlobe, GeoEye, i-cubed, USDA FSA, USGS, AEX, Getmapping, Aerogrid,

IGN, IGP, swisstopo, and the GIS User Community.
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Figure 5. Parameter tuning scenarios. Three algorithm parameters are tuned: the upper bound threshold during extreme value removal bu,

the number of comparison dates for each target date n, and the percentage threshold during the plume mask generation p. Two assessment

factors are used with focus on different aspects: the average absolute error (AAE) assesses quantification performance, and F1 score assesses

detection performance. Totally 3360 parameter settings were run with wide value ranges of three parameters. Figures (a)(b) show how AAE

and F1 score change with bu and n respectively with p= 0.91; (c)(d) show how two assessment factors change with n and p with bu = 0.03;

(e)(f) show how they change with p and bu with n= 12. The fixed values are from the parameter setting with the lowest AAE. White space

indicates NAN value of F1 score resulted from zero true positive.
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Figure 6. Locations and shapes of the detected plumes. All the dates with plumes detected in “Min AAE", “Max F1 score" and “Two-step

hybrid” scenarios are shown. Plumes that are too small with only few pixels are red-marked, although they are not necessarily the full plume

extent. Each figure also has methane plume emission rate shown in the upper right area, and wind speed and direction shown in the lower

right. Note that the plumes in 11/01/2021 are false positives since the ground-truth volume in this day is 0, and the dates with multiple plumes

detected are also likely to include false positives although it’s hard to validate. Basemap: ArcGIS Online World Imagery Basemap. Sources:

Esri, DigitalGlobe, GeoEye, i-cubed, USDA FSA, USGS, AEX, Getmapping, Aerogrid, IGN, IGP, swisstopo, and the GIS User Community.
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Figure 7. Comparison of four retrieval methods. The performance of multi-band-multi-pass-multi-comparison-date (MBPD) algorithm

is compared with multi-band-multi-pass (MBMP) method, multi-band-single-pass (MBSP) method and single-band-multi-pass (SBMP)

method from Varon et al. (2021) in two dates, one with methane plume (10/19/2021) and one with no plume (10/17/2021). The MBPD algo-

rithm performs the best with correct yes/no detection and emission rate estimates closest to the ground-truth volumes. The MBMP retrieval

has a small-area false positive detection in 10/19/2021 (red-circled), and its emission rate estimate is much lower to the ground truth. MBSP

and SBMP methods perform the worst with multiple large-area false positive plumes. Basemap: ArcGIS Online World Imagery Basemap.

Sources: Esri, DigitalGlobe, GeoEye, i-cubed, USDA FSA, USGS, AEX, Getmapping, Aerogrid, IGN, IGP, swisstopo, and the GIS User

Community.
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Figure 8. Examine true positives. The application site is in the Permian basin during the summer of 2020 studied in Ehret et al. (2021)

(31.7335◦N, 102.0421◦W). The first and third rows show plume observation of this study, and the second and fourth row show plume

observation from Ehret et al. (2021) (image source: Ehret et al. (2021)). All the 9 plumes represented in Ehret et al. (2021) were detected

with similar shapes in this study. The emission rate estimate difference is within ±55% of Ehret et al. (2021).
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Figure 9. Two examples of application studies. Top row shows an application case at 10/02/2021 in region A, and bottom row shows a case at

10/19/2021 in region B. Both examples have true negative detection. All the other dates in the application studies have true negative detection

as well.
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Table 1. Scenario examples of three parameters.

Scenarios bu n p AAE F1 score #False positives #False negatives

Min AAE 0.03 12 0.91 0.94 0.57 0 3

Max F1 score 0.02 14 0.84 1.20 0.91 1 0

Base case 0.04 10 0.87 1.18 0.67 1 2

Two-step hybrid 0.04 10 0.87→ 0.91 1.09 0.67 1 2

“Min AAE” scenario: the scenario with the lowest AAE; “Max F1 score” scenario: the scenario with the highest F1 score; “Base case”

scenario: the base case of the two-step application method example; “Two-step hybrid” scenario: the two-step application method example.
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Table 2. Emission rate estimates of scenario examples.

Ground truth (t/hr) Min AAE (t/hr) Max F1 score (t/hr) Base case (t/hr) Two-step hybrid (t/hr)

10/17/2021 0 0 0 0 0

10/19/2021 7.38 6.29 6.04 6.07 6.25

10/22/2021 1.69 0 0.64 0.50 0.50

10/27/2021 3.60 3.67 5.55 4.86 4.06

10/29/2021 5.18 0 1.03 0 0

11/01/2021 0 0 2.56 1.54 1.54

11/03/2021 1.40 0 0.43 0 0

11/06/2021 0 0 0 0 0

11/08/2021 0 0 0 0 0

11/11/2021 0 0 0 0 0

“Min AAE” scenario: the scenario with the lowest AAE; “Max F1 score” scenario: the scenario with the highest F1 score; “Base case” scenario: the base case

of the two-step application method example; “Two-step hybrid” scenario: the two-step application method example.
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