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Abstract. Parameterizing incident solar radiation over com-
plex topography regions in Earth system models (ESMs) re-
mains a challenging task. In ESMs, downward solar radia-
tive fluxes at the surface are typically computed using plane-
parallel radiative transfer schemes, which do not explicitly5

account for the effects of a three-dimensional topography,
such as shading and reflections. To improve the represen-
tation of these processes, we introduce and test a param-
eterization of radiation–topography interactions tailored to
the Geophysical Fluid Dynamics Laboratory (GFDL) ESM10

land model. The approach presented here builds on an ex-
isting correction scheme for direct, diffuse, and reflected
solar irradiance terms over three-dimensional terrain. Here
we combine this correction with a novel hierarchical multi-
variate clustering algorithm that explicitly describes the spa-15

tially varying downward irradiance over mountainous terrain.
Based on a high-resolution digital elevation model, this com-
bined method first defines a set of sub-grid land units (“tiles”)
by clustering together sites characterized by similar terrain–
radiation interactions (e.g., areas with similar slope orienta-20

tion, terrain, and sky view factors). Then, based on terrain
parameters characteristic for each tile, correction terms are
computed to account for the effects of local 3D topography
on shortwave radiation over each land unit. We develop and
test this procedure based on a set of Monte Carlo ray-tracing25

simulations approximating the true radiative transfer process
over three-dimensional topography. Domains located in three

distinct geographic regions (Alps, Andes, and Himalaya) are
included in this study to allow for independent testing of the
methodology over surfaces with differing topographic fea- 30

tures. We find that accounting for the sub-grid spatial vari-
ability of solar irradiance originating from interactions with
complex topography is important as these effects led to sig-
nificant local differences with respect to the plane-parallel
case, as well as with respect to grid-cell-scale average topo- 35

graphic corrections. We further quantify the importance of
the topographic correction for a varying number of terrain
clusters and for different radiation terms (direct, diffuse, and
reflected radiative fluxes) in order to inform the application
of this methodology in different ESMs with varying sub-grid 40

tile structure. We find that even a limited number of sub-grid
units such as 10 can lead to recovering more than 60% of
the spatial variability of solar irradiance over a mountainous
area.

1 Introduction 45

The presence of three-dimensional topography exerts an im-
portant control on the amount of solar radiation received by
land. Over complex terrain, the incoming solar beam not only
undergoes scattering and absorption within the atmospheric
column but is also further modulated by the relative orienta- 50

tion of land surfaces and the potential shading and reflection
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2 E. Zorzetto et al.: Effects of land heterogeneity

effects of neighboring slopes (Sirguey, 2009; Lenot et al.,
2009; Lamare et al., 2020; Picard et al., 2020). The effect of
surface roughness was recently shown to have important ef-
fects over snow-covered surfaces, leading to a net decrease
in surface reflectivity (Larue et al., 2020).5

Together, these effects lead to a spatially heterogeneous
distribution of the radiative fluxes received by the surface. In
turn, this heterogeneity can have important consequences for
the local energy and water balance and interact with other
spatially varying land processes such as evaporation (Brut-10

saert, 2013), snow melting (McCabe and Clark, 2005; Bales
et al., 2006; Sirguey et al., 2009), and vegetation dynamics
(Granger and Schulze, 1977; Gu et al., 2002).

Representing these processes at increasingly fine scales is
the goal of state-of-the-art land components of Earth sys-15

tem models (ESMs) (i.e., land models). However, global cir-
culation models (GCMs) routinely compute shortwave ra-
diative fluxes based on plane-parallel (PP) radiative transfer
schemes, which do not account for the effect of topography.
This discrepancy poses a challenge for adequately capturing20

sub-grid-scale processes in land models.
Several models have been proposed to account for the in-

teraction of downward solar irradiance with complex topog-
raphy, accounting for slope orientation and shading effects
(Isard, 1986; Hay and McKay, 1985; Duguay, 1993) and the25

effect of surrounding slopes (Dozier, 1980; Dubayah et al.,
1990; Dozier and Frew, 1990).

A recently developed radiation parameterization was de-
veloped to predict radiative fluxes over mountainous terrain
via multiple linear regression (Chen et al., 2006; Lee et al.,30

2011). This approach (henceforth termed LLH) links flux
corrections over mountains to a set of grid-cell-average ter-
rain variables, which summarize the three-dimensional na-
ture of the land surface and are used as predictors for short-
wave fluxes. The LLH parameterization for shortwave radi-35

ation over mountains has been implemented in Global Cli-
mate Models (GCMs) and the Weather Research and Fore-
casting (WRF) model; it has been extensively tested over the
Tibetan Plateau and the western United States (Liou et al.,
2007; Essery and Marks, 2007; Gu et al., 2012; Lee et al.,40

2013, 2015, 2019).
However, it is expected that sub-grid variability of these

topographic effects may play a relevant role given the het-
erogeneous nature of surface reflectivity and topographic
features at scales smaller than the typical GCM grid cell.45

The importance of accounting for sub-grid-scale topography
when correcting shortwave radiative fluxes over mountains
was recently pointed out by an application of LLH to the
DOE E3SM Exascale Earth System Model, varying model
resolution over a range of scales relevant for land processes50

(Hao et al., 2021).
This problem is especially relevant since in recent years

the development of land models has increasingly been fo-
cused on the description of sub-grid variability of terrain
properties (Tesfa and Leung, 2017; Chaney et al., 2018). For55

example, in the current iteration of the Geophysical Fluid
Dynamics Laboratory (GFDL) land model, this objective is
achieved by summarizing grid cell heterogeneity in sets of
land units (termed “tiles”) characterized by approximately
homogeneous physical features (Shevliakova et al., 2009; 60

Milly et al., 2014; Zhao et al., 2018; Dunne et al., 2020),
including elevation, land cover, soil properties, and other en-
vironmental variables (Chaney et al., 2018). In the GFDL
land model, such a sub-grid representation has not been
yet tailored to describing the interaction of shortwave radi- 65

ation with topography. The objective of this work is bridging
this discrepancy and developing a sub-grid parameterization
for the effects of radiation over complex topography in the
GFDL land model.

The sub-grid model structure is constructed using a hi- 70

erarchical multivariate clustering approach (Chaney et al.,
2016, 2018) to partition land domains in a set of clusters
or tiles. Tiles are here defined as land units characterized
by homogeneous topographic effects with respect to down-
ward shortwave radiation. Thus, the terrain variables used for 75

clustering land surfaces encode the physical mechanisms de-
termining the spatial variability of radiative fluxes, such as
shading and reflection from nearby slopes.

This clustering approach provides a parsimonious way to
include high-resolution terrain information in global ESM 80

simulations while limiting the number of sub-grid element
employed. For each terrain tile, characterized by homoge-
neous terrain properties, we then develop an average correc-
tion to the downward solar fluxes to account for the effects
of local topography. This approach thus bridges the gap be- 85

tween the scale at which radiation and other physical pro-
cesses are represented in the GFDL ESM and allows us to
study how the sub-grid heterogeneity of these processes im-
pacts the long-term evolution of the coupled physical system.

In the following, we present this new methodology and 90

test it over three mountainous sites located in different ge-
ographic regions (Alps, Andes, Himalayas), showing how
model resolution and number of tiles impact the performance
of the methodology. Given the wide range of spatial scale
involved in the description of sub-grid topography, we eval- 95

uate the performance of the parameterization across scales,
focusing in particular on the possible nonlinear dependence
of incident radiation on topographic features and validating
the model over independent sites.

The paper is organized as follows: we first review the ex- 100

isting parameterization for radiation over rugged terrain (Lee
et al., 2011) and tailor it to our problem. This in turn re-
quires training a model to predict topography-driven correc-
tions for radiative fluxes based on terrain properties. Finally,
we present the clustering algorithm used to divide the do- 105

main study in tiles, so as to compute local flux corrections
over homogeneous regions.

The approach is then validated using different domains
for independent training and testing of the methodology
(Sect. 3.2), exploring the effects of terrain resolution and 110
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possible consequences of nonlinear radiation–topography in-
teractions. Finally, we explore how different tiling structures
with increasing resolution improve the representation of the
spatially varying radiation fields over mountains (Sect. 3.4).
We close by discussing assumptions and limitations of the5

proposed methodology and suggesting future developments.

2 Methods

In order to properly account for the effects of land hetero-
geneity on the radiative transfer in ESMs, key variables must
be obtained from high-resolution terrain datasets and prop-10

erly summarized in order to capture their fine-scale effects
on shortwave radiation fluxes. To this end, here we start by
defining the radiative and terrain variables used to predict ra-
diation over 3D topography. Then, we describe (i) the Monte
Carlo ray-tracing algorithm used for training and testing the15

predictive model, (ii) the terrain-clustering algorithm used to
classify land units based on the local topographic effects on
radiation fluxes, and (iii) the predictive models used to link
terrain properties to radiative fluxes in each land cluster. To-
gether, these three steps provide a framework for computing20

fine-scale corrections to the shortwave radiation received by
sub-grid land units in the GFDL land model.

2.1 Characterizing shortwave radiation over
mountainous terrain

A parameterization explicitly accounting for the effects of25

3D topography on the shortwave radiation budget was pro-
posed by Lee et al. (2011) based on the results of Monte
Carlo photon-tracing simulations (Chen et al., 2006). Here
we adopt a similar approach and, following the formalism
introduced by Lee et al. (2011), classify the shortwave ra-30

diation incident at a target point at the surface into five
distinct components: the direct and diffuse downward solar
fluxes (Fdir and Fdif), and their terrain-reflected counterparts
(Frdir, Frdif), which represent, respectively, direct beam or
diffuse photons reaching the target site after a single reflec-35

tion from neighboring terrain. Finally, a coupled flux compo-
nent (Fcoup) consists of photons first reflected by the surface
and then either back-scattered by the atmosphere or reflected
multiple times by the surface before reaching the target site.
For a flat surface Frdir,Frdif = 0, while Fdir,Fdif,Fcoup 6= 0 in40

general. We note that in the GFDL land model, diffuse radi-
ation received by a flat surface with albedo α (Fdif,[LM|α])
corresponds here to the sum of Fdif and Fcoup. We note
that these quantities can be computed separately by first
computing the diffuse flux corresponding to a black surface45

(Fdif,[LM|α=0]), in which case the coupled flux is zero, and by
then computing the coupled flux for the actual land surface
as Fcoup = Fdif,[LM|α]−Fdif,[LM,α=0]. Conversely, the diffuse
flux can be obtained as Fdif = Fdif,[LM|α=0]. Based on this
formalism, the normalized flux differences between the tra-50

Figure 1. Conceptual representation of the five flux components
used to characterize the nature of downward shortwave fluxes over
rugged terrain, following the formalism used by Chen et al. (2006)
and Lee et al. (2011). The figure includes the direct radiation flux
(a) and diffuse radiation (b), consisting of photons which are ab-
sorbed at the surface target P after undergoing atmospheric scat-
tering. Direct-reflected (c) and diffuse-reflected (d) fluxes represent
photons that are reflected once at the surface. Finally, the coupled
(e) flux component includes light undergoing multiple reflections at
the surface or reflection at the surface and then atmospheric scatter-
ing. For all components, the figure shows paths incident at a point
P at the surface.

ditional plane-parallel (PP) case and the topography-aware
case (3D) are the object of our analysis, which can be used to
correct the shortwave radiative balance in ESMs. Following
Lee et al. (2011), these quantities are expressed as follows.
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F
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dir

F
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F
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F
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(1) 55

Here the direct-reflected and diffuse-reflected components
are normalized with respect to the corresponding non-
reflected flux component since they are equal to zero in the
plane-parallel case (Lee et al., 2011). These quantities are de-
fined in Eq. (1) for a given surface albedo value. While direct 60

and diffuse component are independent of surface albedo, the
reflected flux components are linearly dependent on albedo.
Finally, the coupled flux is nonlinearly dependent on surface
albedo. A schematic representation of these flux components
is reported in Fig. 1. Predicting these five fi terms over land 65

tiles representing heterogeneous terrain properties is the ob-
jective here. To this end, a predictive model linking the fi
terms to tile terrain properties is necessary. To train such a
model, we use ray-tracing simulations, which are discussed
next. 70
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Figure 2. Location of the three land domains selected for this study. For each location, the 90 m resolution digital elevation used in the study
is shown.

2.2 A Monte Carlo ray-tracing algorithm

Due to the complex interactions involved, topographic effects
on shortwave radiation are generally studied based on Monte
Carlo (MC) ray-tracing techniques, which approximate the
three-dimensional radiative transfer process by tracking the5

fate of a large number of photons (Miesch et al., 1999; Chen
et al., 2006; Mayer et al., 2010).

Here, in order to develop a predictive model for the
3D radiation correction terms, we employed a MC algo-
rithm (sometimes referred to as photon-tracing or ray-tracing10

algorithm) to approximate the true physics of radiation–
topography interactions. These high-resolution simulations
are used to calibrate the predictive models for topographic
effects over each tile and to validate the proposed parame-
terization. The MC scheme explicitly describes the interac-15

tion of downwelling shortwave radiation with a 3D surface
corresponding to a region characterized by complex topogra-
phy. The algorithm was implemented in a software package,
which is made available online (Zorzetto, 2022a). The MC
method has been widely used to study radiation interaction20

with 3D surfaces (Chen et al., 2006; Lee et al., 2011; Mayer,

2009; Mayer et al., 2010; Villefranque et al., 2019; Larue
et al., 2020). The MC model adopted here broadly follows
previous models developed by Chen et al. (2006) and Mayer
(2009). 25

In our MC algorithm, photons are randomly released at the
top of atmosphere (TOA) and travel in a direction determined
by the Sun’s zenith θ0 and azimuth φ0 angles. After a path of
random length, which depends on the optical properties of
the medium, the photon encounters scattering or absorption 30

based on the single-scattering albedo properties of the atmo-
spheric constituents (Fu and Liou, 1992; Liou, 2002). In the
present simulation, we used for each site optical properties
computed from the RRTMGP radiation code (Pincus et al.,
2019) using the GFDL AM4 model (Zhao et al., 2018). We 35

note that the Monte Carlo model is run offline, prescribing
the atmospheric profile and solar position in each model run.
The atmospheric column used in the model is composed of
34 layers characterized by optical properties, which encode
the absorption and Rayleigh scattering of photons by gas 40

molecules. We limit our analysis to aerosol-free and clear-
sky conditions, similar to previous studies (Chen et al., 2006;
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Figure 3. Schematic representation of the land clustering workflow. The land elevation map (a) is used to compute the variables of interest
(sky and terrain view factors and functions of terrain slope and aspect, d) which are then used in the hierarchical clustering steps, yielding a
map of homogeneous land units needed to parameterize radiation–topography interactions. The delineation of channel networks (e), water-
sheds (b, c), and hillslopes (f) follows the approach developed by (Chaney et al., 2018). The resulting spatial distribution of hillslope clusters
and land tiles (corresponding to the two stages of land clustering) are shown in (g) and (h), respectively.

Lee et al., 2011). Therefore, atmospheric properties are com-
pletely determined by optical depths and single-scattering
albedo at each level (Liou, 2002). The lower boundary of
the simulation domain is derived from high-resolution (90 m)
terrain model derived from the Shuttle Radar Topography5

Mission (SRTM) dataset (Farr et al., 2007). SRTM elevation
fields are used to construct a three-dimensional surface char-
acterized by triangular mesh elements characterized by uni-
form albedo and Lambertian reflection. In the following we
refer to “pixel” as the image elements of the high-resolution10

input digital elevation maps, to clarify the difference with
land model grid cell and land model sub-grid units, termed
“tiles” in the following.

In each MC simulation, photons are tracked from the
TOA until they are absorbed or leave the simulation domain. 15

For each photon, interactions with atmospheric constituents
(scattering or absorption) and with land surface elements (ab-
sorption or reflection) are used to characterize the nature of
radiation incident over surface elements. Tracking the path
of each photon, the downward irradiance is then decomposed 20
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Figure 4. Normalized differences in downward fluxes obtained running Monte Carlo simulations using the real topography and a flat domain,
respectively (µ0 = 0.40, φ0 = π/2). Maps are shown using an equal-area Mollweide projection.

into the five flux terms introduced in Sect. 2.1. If E0 is the ra-
diation incident at the TOA with a cosine of the zenith angle
µ0 = cosθ0, then the horizontal distribution of solar irradi-
ance received by the land surface is given by (Mayer, 2009)

Ek,l = E0 cosθ0
1
N

A

Ak,l

N
(s)
k,l∑
i=1

wi, (2)5

where wi is the energy of the ith incident photon, N is the
total number of photons tracked in the simulation over a do-

main with area A, and N (s)
k,l is the number of photons ab-

sorbed by the surface within grid cell (k, l) with area hor-
izontal plane surface area Ak,l . Photons are released with 10

unit energy at the TOA and lose a fraction of this energy
through absorption in each atmospheric layer (Mayer, 2009)
or through absorption at the ground. Therefore, Eq. (2) eval-
uates the spatial distribution of solar irradiance based on the
density of photons that are absorbed at the surface. While a 15

3D mesh is used in the Monte Carlo simulations, the area of
the cell A(k,l) is defined as the area of the cell on the horizon-
tal plane. Equation (2) expresses the radiation received by a
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Figure 5. Terrain variables computed for the same domain shown in the previous figure (eastern Alps). Solar incidence angle was computed
for µ0 = 0.40, φ0 = π/2. Maps are shown using an equal-area Mollweide projection.

single land surface cell as a fraction of the radiation flux at
the top of the surface E0 by summing the energy wi of all
the photons absorbed by the surface over that area. Since the
interactions of each photon are tagged (e.g., keeping track
of atmospheric scattering and any previous reflections at the5

surface) the radiation received can be directly classified in
one of the five flux components, as defined in Eq. (1).

For two independent domains located in the Alps and Peru
(Fig. 2), the MC calculations were repeated for six solar
zenith angle values (cosθ0 ∈ {0.1,0.25,0.4,0.55,0.7,0.85}),10

four solar azimuth angles (φ0 ∈ {0,π/2,π,3π/2}), and a uni-
form surface reflectivity value set to αs = 0.3. While only
two domains are used for MC calculations due to the com-
putational expense of this procedure, an additional domain
located in high mountain Asia (Fig. 2) is used to further test15

the results of the spatial clustering over areas with different
topographic features.

2.3 Predicting radiative fluxes over complex terrain

Over mountainous regions, the local irradiance at the sur-
face can exhibit significant departures from its areal-average 20

value at spatial scales routinely resolved in ESMs due to the
complexity of topography and surface properties. In order to
develop a simple parameterization to explain the magnitudes
of these departures over mountains areas, we need predictor
variables encoding the interaction between downward radia- 25

tion and topographic features. For this purpose, here we de-
fine a set of relevant variables following previous work by
Chen et al. (2006) and Lee et al. (2011). The terrain vari-
ables used to predict downward fluxes are (i) the sky view
factor Vd, which represents the ratio of diffuse sky irradiance 30

at a point on an unobstructed horizontal surface under the
assumption of isotropic diffuse radiation (Dozier and Frew,
1990; Helbig et al., 2009); (ii) the terrain configuration Ct,
which quantifies the contribution to the irradiance at a point
originated by reflections from surrounding mutually visible 35

slopes; and (iii) the solar incident angle µi , which is the
angle between the direct solar beam and the normal to the
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Figure 6. Histograms of the direct radiation correction fdir between the 3D and PP cases at varying zenith angles and spatial averaging scales
for the Peru and eastern Alps domains.

surface. These terrain variables are derived from the Shuttle
Radar Topography Mission (SRTM, Farr et al., 2007) high-
resolution (90 m) terrain information.

In order to compute the sky view factor, we use the rapid
procedure proposed by Dozier and Frew (1990), whereby the5

unobstructed fraction of sky hemisphere is approximated as

Vd '
1

2π

2π∫
0

[
cosθssin2Hφ + sinθs cos(φ−φs)

(
Hφ − sinHφ cosHφ

)]
dφ, (3)

for a point with slope θs, aspect φs, and horizon angle
Hφ (i.e., angular distance between zenith and local horizon
along the generic azimuth direction φ). The terrain config-10

uration, which quantifies the reflected radiation received by
surrounding slopes in direct sight, can then be obtained as
Ct ' (1+ cosθs)/2−Vd following the approach by (Dozier
and Frew, 1990).

While fields of Vd and Ct can be computed offline for any15

given elevation map, the Sun’s incidence angle on a surface
does depend on the Sun’s position through the local zenith

and azimuth angles (θ0,φ0)

µi/cosθs = cosθ0+ sinθs tanθ0 cos(φs−φ0)

= µ0+ sinθ0 (Ssa sinφ0+Csa cosφ0) , (4)

where topographic information is encoded in the two terms 20

Ssa = sinθs sinφs/cosθs and Csa = sinθs cosφs/cosθs. Here
µi is the cosine of the solar incidence angle (i.e., angle be-
tween the incoming direct light beam and the normal to the
land surface), while µ0 is the cosine of the solar zenith an-
gle (i.e., the incidence angle with respect to a horizontal 25

plane). Additionally, for parameterizing the effect of topog-
raphy on diffuse radiation, we use a standardized elevation
hn = (h−µh)/σh obtained by normalizing elevation based
on its grid cell average µh and standard deviation σh.

For the purpose of parameterizing solar fluxes, we divide 30

these terrain variables by the local terrain slope obtaining the
normalized variables µ̃i = µi/cosθs, Ṽd = Vd/cosθs, and
C̃t = Ct/cosθs as recommended by (Lee et al., 2013). Note
that while Vd ∈ [0,1], the ratio Ṽd = Vd/cosθs can some-
times be larger than 1. In previous work (Lee et al., 2011) 35

these terrain predictors are averaged over an area representa-
tive of an entire model grid cell and used as predictors to de-
rive average correction terms fi for the five flux components
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Figure 7. Coefficient of determination R2 for the two different predictive models: multiple linear regression (MLR, blue lines) and random
forest regression (RFR, red lines). Results are reported for varying averaging scales and cosines of the solar zenith angle (µ0). The models
were trained over the Peru site and tested over the same site (SS, continuous lines) and over the independent eastern Alps site for cross
validation (CV, dashed lines).

introduced in Sect. 2.1. Here, high-resolution fields of these
predictor variables are first computed based on the original
90 m digital elevation maps. These fields are then employed
to inform the partitioning of the land domain into a set of tiles
for which we expect topography to have a similar effect on5

radiation. This step is achieved using a hierarchical cluster-
ing methodology described next. Based on this partitioning,
relations to predict the topographic effects on radiation (the
fi’s) will be applied to each tile independently.

2.4 Hierarchical clustering of terrain properties10

In order to capture the spatial variability of radiative fluxes,
here we employ a hierarchical multivariate clustering ap-
proach (HMC) which was recently introduced to study
the role of heterogeneity in hydrological and land models
(Chaney et al., 2016, 2018). Here we tailor HMC to the case15

of shortwave radiative fluxes by performing the land clus-
tering based on terrain properties (namely µ̃i , Ṽd, and C̃t),
which are known to modulate the downwelling radiation over
mountains as discussed in the previous section.

The land fraction of the study sites, which are chosen to 20

represent an ESM grid cell that is typical in size, is first di-
vided into a maximum of three components: soil, glacier,
and lake. The soil fraction is then subdivided into a set of
tiles characterized by homogeneous terrain properties rel-
evant for capturing the effects of topography on radiative 25

transfer. Additionally, lake and glacier areas, where present,
are treated as individual separate tiles. We note that in the
domains selected for this study, lake and glacier areas con-
stitute a small fraction of the total grid cell area. When ap-
plying the methodology to areas where glaciers cover a large 30

fraction of the grid cell, it may be useful to also partition
glacier areas into multiple clusters. This can be done follow-
ing the same methodology described here, since for the pur-
pose of radiation–terrain interactions the only relevant pa-
rameter would be the average albedo of each cluster (land or 35

glacier). In our approach, the land clustering is based on four
terrain variables: normalized sky view factor, terrain config-
uration, Ssa , and Csa . Note that these variables are indepen-
dent of the Sun’s position. Once the direction of the incoming
beam is given (φ0 and cosθ0), average values of Ssa and Csa 40
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over any given tile uniquely identify the solar incident angle
for each point on the land surface by means of Eq. (4).

A conceptual summary of this clustering procedure is de-
scribed in Fig. 3. The digital elevation map (Fig. 3a) is used
to compute the drainage network (Fig. 3e) necessary to par-5

tition the domain in basins (Fig. 3b, c) based on a threshold
area of 1× 105m2. Basins are in turn subdivided into hill-
slopes (Fig. 3f) following Chaney et al. (2018): each basin is
divided into up to three contiguous hillslope elements, corre-
sponding to the left side, right side, and headwaters.10

Then, hillslope elements are aggregated into k “charac-
teristic hillslopes” via k-means clustering (MacQueen et al.,
1967) in the four-dimensional space of the variables Ṽd, C̃t,
Ssa , and Csa . This enables us to obtain land units character-
ized by similar radiation–topography interactions. Figure 3g15

shows the spatial distribution of these characteristic hillslope
clusters for the case k = 5.

Finally, each of these k land units is further partitioned into
p sub-units by a second application of the k-means clustering
algorithm based on the four variables Ṽd, C̃t, Ssa , and Csa . In20

Fig. 3h we show the result of this procedure, which yields 25
tiles in this example.

In this application any areas covered by glaciers or lakes
are treated as separate land units. Therefore, in the current
configuration the number of tiles (nt) used to describe land25

heterogeneity within a single land model grid cell varies be-
tween k ·p and k ·p+ 2 depending on the presence of lake
and glacier units. The reason for the first step (subdivision of
land in characteristic hillslopes) originates from the desire of
partitioning land in hydrologically coherent units. In the con-30

text of shortwave radiation received by land, it is important
to understand what the effects and the benefits of this multi-
level clustering are. Therefore, we will test the methodology
for different tile configurations over the same domains.

A natural test for the ability of the tiled grid to reproduce35

the actual spatial distribution of solar radiation can be per-
formed as follows. We here test the results for multiple HMC
configurations obtained by varying the number of character-
istic hillslopes (k), as well as the number of land units within
each characteristic hillslope (p). For illustration purposes, we40

consider the following two cases: a fixed value of k = 5 and
a varying p and the opposite (varying k, setting p = 5). This
experiment leads to a set of grid configurations with a num-
ber of tiles per grid cell varying from 5 to 1000, with dif-
ferent weights given to the first level (partitioning of land in45

hillslopes) and the second level, in which each characteris-
tic hillslope is further subdivided into p homogeneous land
units contributing to the overall number of tiles nt. This ex-
periment thus elucidates the relative performance of the two
different levels of the hierarchical clustering approach in cap-50

turing the spatial heterogeneity of the domain.
Therefore, based on this procedure, the land model grid

cells are subdivided into a number of tiles nt. A maximum of
two additional tiles can be included representing lake and a
glacier areas if these are present in a given grid cell. Glacier55

boundaries are determined using the GLIMS database (Raup
et al., 2007). Each tile is characterized by statistically homo-
geneous values of the variables of interest for 3D radiative
transfer. Over each tile t = 1, . . .,nt, we then compute the av-
erage value of each predictor variable. For a generic variable 60

2 ∈
{
Ṽd, C̃t,Ssa,Csa

}
we have

〈2〉t =

∑np
i=1Ai2i1t,i∑np
i=1Ai1t,i

, (5)

with the < ·>t operator representing the operation of aver-
age over the points classified as part of tile t, 1t is the indi-
cator function selecting tile t (1t,i = 1 if pixel i of the high- 65

resolution terrain map belongs to tile t, 1t,i = 0 otherwise).
Ai and2i are the area and value of the property2 computed
for the ith pixel in a high-resolution terrain map with np pix-
els. For the solar incidence angle, once the solar position is
known we can write its average value over a tile t as 70

〈µ̃i〉t = µ0+ sinθ0 (〈Ssa〉t sinφ0+〈Csa〉t cosφ0) . (6)

Therefore, the average values of these quantities over each
tile represent the “characteristic” value of the properties over
that tile and can be used to summarize the effect of multi-
scale radiative transfer over mountainous regions. 75

2.5 A predictive model for the flux correction terms

The final step needed in order to parameterize the effect of
complex topography on incident shortwave radiation is spec-
ifying a predictive model to link the terrain variables defined
in Sect. 2.3 to the five flux components (Sect. 2.1). This step 80

will enable us to extend the results of costly ray-tracing sim-
ulations at the global scale and provide predictive equations
that can be directly applied to high-resolution terrain maps as
well as to the local averages from the tiling structure defined
in Sect. 2.4. 85

Here we focus on two different approaches, namely a mul-
tiple linear regression model (MLR, based on the previous
LLH parameterization) and an alternative approach based on
random forest regression (RFR). We explore these two dis-
tinct families of statistical models in order to evaluate the po- 90

tential role on nonlinearity for different radiation flux terms,
keeping in mind that MLR, the simpler statistical model, is in
general to be preferred due to the greater ease of interpreta-
tion it provides and its reduced computational expense when
employed in Earth system models. 95

MC photon-tracing simulations are performed at the na-
tive 90 m resolution of terrain products available. In the fol-
lowing analysis, results are coarsened at a range of spatial
scales up to 10 km in order to test the robustness of the pro-
posed parameterization to the spatial scale of the terrain vari- 100

able used as predictors, and explore potential dependencies
of radiation–topography interaction on the spatial scale con-
sidered. In each case, both MC simulation results and ter-
rain properties are averaged at the same spatial resolution in
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Figure 8. Histograms of the distribution of 3D–PP incident radiation differences for varying number of tiles. Average 3D correction over
each tile (orange) compared with the frequency distribution of the high-resolution field (blue histograms). Results are shown for the eastern
Alps domain, for a given solar angle (µ0 = 0.4).

order to train and test the predictive model at that specific
spatial scale. MC simulations corresponding to the 3D case
(i.e., over a three-dimensional surface) and over a flat surface
(plane-parallel case, PP) were subtracted in order to compare
the “true” flux deviations as defined in Eq. (1). Additionally,5

given the finite extension of the domain used in the MC sim-
ulations, spurious effects may be present due to the periodic
boundary conditions imposed, especially for the lower values
of solar zenith angle. To mitigate this issue, only the central
part of each simulation domain (of size ∼ 1◦× 1◦) is used to10

train the predictive model. A fraction of size 0.2 times the

linear dimension of the domain in discarded at each bound-
ary.

The MC simulations were repeated for varying zenith an-
gles (from µ0 = 0.1 to µ0 = 0.85) and four azimuth angles. 15

The results for each azimuth are pulled together so that a
single predictive model for each zenith angle is derived. For
application to ESMs, the results should be interpolated when
predictions for a generic zenith angle are needed.

After training each model for each solar zenith angle and 20

flux component, we obtain a set of predictive equations link-
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Figure 9. Effect of a different number of tiles for modeling the sub-grid variability of terrain properties over the study site. (a, b) Spatial
distribution of the tiles representing homogeneous land units. Note that for this domain, in addition to the nt land clusters, there are two
additional tiles corresponding to glaciers (tile 0) and lakes (tile 1), so that the resulting number of land units is 7 and 27 for (a) and (b),
respectively. (c, d) Spatial distribution of the terrain view factor (C̃t) locally averaged over each tile.

ing the fi’s (i.e., the normalized deviation between 3D and
PP case) to the terrain predictors at the same spatial scale:

fdir = gdir,m,cosθ0,1x

(
〈Ṽd〉1x, 〈µ̃i〉1x

)
, (7)

fdif = gdif,m,cosθ0,1x

(
〈Ṽd〉1x, 〈µ̃i〉1x, 〈hn〉1x

)
, (8)

frdir = grdir,m,cosθ0,1x

(
〈Ṽd〉1x, 〈C̃t〉1x, 〈µ̃i〉1x

)
, (9)5

frdif = grdif,m,cosθ0,1x

(
〈Ṽd〉1x, 〈C̃t〉1x

)
, (10)

fcoup = gcoup,m,cosθ0,1x

(
〈Ṽd〉1x, 〈C̃t〉1x, 〈µ̃i〉1x

)
, (11)

where g represents the parametric relations linking flux cor-
rection terms to terrain variables for different predictive mod-
els (m=MLR or m= RFR). These equations are derived10

for each flux component, solar zenith angle cosθ0, and spa-
tial scale 1x. We note that these equations were derived
for a single surface reflectivity value. The direct and dif-
fuse flux components are independent of albedo. Reflected
fluxes are linearly dependent on albedo, meaning that the pre-15

dicted value can be rescaled by the surface albedo. Finally,
gcoup is nonlinearly dependent on the surface albedo, mean-
ing that predictions for different albedo values can, e.g., be

obtained by interpolation (Lee et al., 2011). Once the fi di-
mensionless predictions are available, the dimensional value 20

of shortwave fluxes over rugged terrain can finally be ob-
tained from Eq. (1). In general, simply applying a correction
to the downward radiation received by land will not ensure
energy conservation. This is expected in general, as some of
the 3D topographic effects parameterized here would in gen- 25

eral lead to energy fluxes between neighboring land model
grid cells. A procedure was proposed by (Lee et al., 2015)
that can be used to address this issue. In this approach, an
effective albedo α3D is computed for each land grid cell,
such that a grid cell characterized by this α3D and forced by 30

plane-parallel radiation (PP) absorbs the same amount of ra-
diation as in the case of a surface characterized by actual land
albedo α, while forced by the 3D-corrected downward radi-
ation fluxes. By returning the 3D albedo (which effectively
represents the reflectivity of a “rough” but flat land surface) 35

to the atmosphere, energy is conserved while accounting for
the 3D topographic correction.
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Figure 10. Normalized differences between 3D and PP direct fluxes for high-resolution predictions and predictions for different numbers of
tiles (k = 5,25,250), obtained setting a fixed number of hillslopes and varying the number of units for each hillslope (k = 5). CE1

3 Results and discussion

3.1 Spatial distribution of solar irradiance

A representative output obtained from Monte Carlo ray-
tracing simulations for the eastern Alps (EastAlps in Fig. 2)
domain is portrayed in Fig. 4, featuring the spatial distribu-5

tion of differences between 3D topography and the PP case
for a given incoming solar beam direction, while fields of
the corresponding terrain variables for the same domain are
reported in Fig. 5.

The direct flux appears to be prominently modulated by10

the presence of topography, with the distribution of shaded
slopes following that of solar incident angles computed based
on the solar angles for the current simulation (Fig. 5). In the
case of the diffuse flux, differences between the 3D and PP
simulations are less apparent, while a similar behavior is ob-15

served for the reflected flux components.
From visual inspection of these simulation results, it is ap-

parent that the spatial variation in the direct flux is primarily
controlled by the solar incident angle. The diffuse flux, on
the other hand, shows a spatial variability primarily consis-20

tent with that of the sky view factor, as expected based on
previous studies (Chen et al., 2006). Reflected and coupled
flux spatial variability appear to be more complex, potentially

controlled by the terrain configuration. This exploratory anal-
ysis reveals that, with the sole exception of the direct flux 25

component, variations in downward fluxes are arguably not
explained by a single linear relation but can in general in-
volve multiple terrain predictors and potentially nonlinear ef-
fects. This hypothesis will be tested in the next section by
examining the skill of a linear and nonlinear model when de- 30

scribing these relationships.
For the direct flux, histograms of the normalized differ-

ences between PP and 3D simulations are featured in Fig. 6,
where the simulation results have been aggregated at a range
of increasing spatial averaging scales. For low solar zenith 35

angles, the frequency distribution of fdir tends to have an
atom at −1, a lower boundary value corresponding to the
case of complete shade. This is clearly a limitation for the
linear model approach, since this behavior imposes a non-
linear relation between fdir and terrain variables (solar inci- 40

dent angle and sky view). However, averaging the results at
increasing spatial scales we see this effect progressively di-
minishes, as the probability of a complete shade decreases.
For both the domains examined in Fig. 6, this behavior is
similar and similarly decreases with the cosine of the solar 45

zenith angle. We note that at spatial scales larger than ap-
proximately 5 km the effect disappears. We note that it is a
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this range of scales that previous parameterization of 3D ra-
diation over mountains were trained (Lee et al., 2011).

3.2 Model evaluation: sensitivity to the spatial scale
and role of nonlinear effects

To quantify the sensitivity of the proposed methodology on5

the resolution of terrain data, we aggregate the MC-simulated
radiation fields and corresponding terrain variables fields at
increasing spatial scales (Ls ∈ {0.5,1,2,3,5,10} km), and
in each case the predictive models are fit as described in
Sect. 2.5, comparing the relative performance of multiple lin-10

ear regressor and random forest predictions.
As shown in Fig. 7, the difference between RFR and MLR

prediction skills is most relevant for the direct and direct-
reflected flux components in the case of low solar zenith an-
gles, and are also significant in the case of diffuse and cou-15

pled fluxes. In these two latter cases, the difference between
RFR and MLR skills persists for all µ0 values and is thus
not limited to cases where the Sun is relatively low on the
horizon, as is the case for direct and direct-reflected fluxes.
The reflected diffuseCE2 component is quite linear, as shown20

by the small difference between random forest and linear re-
gressor predictive skills. For the direct-reflected flux this only
happens for large enough values of the cosine of the solar
zenith angle (µ0 > 0.55).

The predictive model for the direct flux shows high val-25

ues of coefficients of determination (R2), with similar per-
formance for RFR and MLR, indicating that a linear model
is well suited to describe this quantity. The only discrepancy
is observed for very low solar angles (µ0 = 0.1), a case in
which RFR outperforms the MLR. We believe this is pri-30

marily due to the effect of completely shaded areas in the
domain, which are characterized by sharp transitions better
described by an ensemble of decision trees due to the non-
linear behavior. We note that this effect is relevant only for
comparatively small spatial scales (Ls < 3 km) and low solar35

angles and similarly impacts the direct-reflected flux, which
as expected is modulated by the amount of direct light re-
ceived at the surface. In the case of larger spatial averaging
scales and larger solar angles, the MLR describes the direct
flux with great accuracy. Moreover, the poorer model perfor-40

mance at the low solar angles is mitigated by the fact that
these conditions (e.g., dusk and dawn) generally account for
a small fraction of the irradiance received by land over most
geographic locations and times of the year.

Reflected direct and reflected diffuse fluxes also exhibit a45

clear linear dependence on the terrain predictors, with MLR
and RFR having similar R2 values at all averaging scales and
solar angles, with the only difference between the two ap-
proaches again appearing for the reflected direct flux for very
small solar angles.50

Appreciable differences between MLR and RFR are ob-
served for diffuse and coupled fluxes. In these cases, it ap-
pears that diffuse radiation is better described by a nonlinear

model, as is the case for irradiance originating from multiple
reflections at the ground and atmospheric scattering (fcoup). 55

In these cases, consistent with previous findings by (Lee
et al., 2011), the predictive ability of linear models is lower.

These out-of-sample results were obtained using training
data from the Peru domain and testing data from the east-
ern Alps domain. For completeness, we also ran the opposite 60

configuration (switching training and testing domains) and
found similar results.

In all cases in which predictive skills of MLR and RFR
diverge, we observe that when comparing in-sample and out-
of-sample performance the loss of predictive skill is larger in 65

the case of RFR. This finding is not surprising. Given the ad-
ditional model complexity of the RFR approach with respect
to MLR, our analysis confirms that it is more prone to over-
fitting the calibration dataset. Once this overfitting tendency
is accounted for, our analysis selects the MLR as model of 70

choice since applications of the methodology do inevitably
require extrapolation of the results to new domains.

Based on these results, we generally recommend the adop-
tion of the linear regression models at least for direct and re-
flected fluxes, given the good performance and model sim- 75

plicity. Applications of RFR are in principle possible in
ESMs, and it has been shown here to have good predictive
performance for this specific problem. However, this comes
at the cost of a lower interpretability, and based on the present
analysis here RFR is not the model of choice, given the lim- 80

ited increase in predictive skill with respect to MLR, espe-
cially when tested in cross validation.

3.3 Nonlinearity and effect of averaging for the direct
flux

The direct flux component is characterized by a nonlinear 85

behavior in the case of completely shaded areas.
This behavior should be taken into account in our model,

as averaging terrain properties over tiles with varying char-
acteristic size and spatial configuration would lead in gen-
eral to changes in the average predicted fdir for a given tile if 90

model predictions are averaged over areas that include partial
shades in the high-resolution true field. One possible way to
capture this behavior is to predict fdir first over an entire grid
cell to obtain its average value and then impose the ruleCE4

that tile-by-tile predictions must match the average value of 95

the direct flux correction over the entire grid cell (〈f̃dir〉). This
can be achieved through the following transformation for a

generic tile i = 1, . . .nt. We define the corrected value ˜f (i)dir as

f̃
(i)
dir = 〈fdir〉+

(
〈f̃dir〉− f̃

(min)
dir

) f
(i)
dir −〈fdir〉

〈fdir〉− f
(min)
dir

. (12)

This correction was obtained by imposing the rule that 100

the f̃dir values predicted by the model for each tile con-
serve the grid-cell-average value, by correcting the origi-
nal value 〈fdir〉 =

∑nt
i=1pif

(i)
dir , with pi the fractional area of
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Figure 11. Normalized differences between 3D and PP diffuse fluxes for high-resolution predictions and predictions for different numbers
of hillslopes (k = 5,25,250) setting a fixed number of tiles and hillslopes (k = 5). CE3

the grid cell assigned to tile i. This transformation also pre-
serves the minimum value over the grid cells, meaning that
f̃
(min)
dir = f

(min)
dir =minnt

i=1f
(i)
dir . For other flux variables this

correction is not necessary if a linear model is used for pre-
dicting their average values over tiles (as done here).5

Figure 8 shows the frequency distribution of corrections
for the various flux terms that vary in their number of tiles.
In particular, for the direct flux the distribution of tile-by-tile
estimates is shown to converge with the histograms of the
full high-resolution results for nt = 250 tiles. Thus, applica-10

tion of the correction given in Eq. (12) allows us to preserve
the grid-cell-average correction while adequately represent-
ing the sub-grid-scale variability of fdir.

3.4 Model sensitivity to the number of tiles used

The predictive model can be used to produce tile-by-tile esti-15

mate of flux differences and compare results with those pre-
dicted for the original high-resolution terrain map. We repeat
this analysis for different configurations of the hierarchical
clustering scheme to test the sensitivity of the results to the
number of tiles used to characterize domain heterogeneity.20

While the MC simulations were performed over two domains
only, here we perform the clustering analysis over all three
domains, comparing predictions obtained by applying the 3D

radiation corrections to the original high-resolution terrain
data with the same approach to the sub-grid tiling structures 25

for a varying number of land clusters. We expect a larger
number of tiles to lead to a better representation of the flux
component over rugged terrain. However, a number of tiles
that is too high would not be feasible for running ESMs over
large domains or the entire globe. 30

An example of the spatial distribution of tiles obtained by
applying the HMC algorithm is reported in Fig. 9 for the east-
ern Alps domain, where the land domain is partitioned into
5 and 25 clusters. Two additional tiles are used to represent
lakes and glaciers, which are present over this domain, albeit 35

accounting for a small fraction of the surface. Once the tiled
grid is defined using the HMC method, local averages of ter-
rain parameters can be computed directly over each land unit.
For example, the lower panels in Fig. 9 show the spatial dis-
tributions of the terrain view factor C̃t) averaged over each 40

tile, showing that the larger number of tiles greatly improves
the representation of the spatial variability of topography.

We then tested the ability of the tiled grid when repro-
ducing the actual spatial distribution of solar radiation by
first examining the results obtained by separately varying the 45

number of characteristic hillslopes k (while keeping p fixed)
and comparing the results with the results for variable p and



16 E. Zorzetto et al.: Effects of land heterogeneity

Figure 12. Convergence to the high-resolution terrain properties (slope orientation, sky view, and terrain view) obtained by increasing the
number of tiles used in the parameterization. Two different tiling schemes are shown, obtained by fixing the number of hillslopes (k = 5) and
varying that of sub-grid units p (continuous lines) or by fixing p = 5 and varying k (dashed lines). Results are reported for terrain variables.

fixed k. This analysis is intended to test the robustness of the
method to different sub-grid land partitioning schemes.

Figures 10 and 11 show how increasing the number of land
tiles improves the description of the direct flux and diffuse
flux components, respectively, over the eastern Alps domain.5

Note that the same disaggregation of the domain in tiles is
used for predicting the distribution of both variables. Even
in the case of a fairly low number of tiles (e.g., five tiles in
Figs.10b and 11b) the sub-grid structure is able to capture

the main feature of both direct and diffuse radiation fields, 10

even though their variations are known to be controlled by
different terrain properties (primarily aspect and sky view, re-
spectively, as can be seen by the spatial distribution of direct
and diffuse fluxes in the high-resolution results). For both
fdir and fdif, the tile-by-tile predictions appear to converge 15

to the original high-resolution field when increasing the num-
ber of tiles (results for 25 and 250 tiles are shown in the lower
panels of Figs. 10 and 11). Note that this result is quite sig-
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Figure 13. Convergence to the high-resolution radiation fields (direct, diffuse, reflected direct, and reflected diffuse differences between 3D
and PP cases). Results are obtained by increasing the number of tiles used in the parameterization. Two different tiling schemes are shown
obtained by fixing the number of hillslopes (k = 5) and varying that of sub-grid units p (continuous lines) or fixing p = 5 and varying k
(dashed lines). Results are reported for normalized flux differences.

nificant, since for the domain examined here the number of
points needed to obtain the high-resolution field without us-
ing a clustering approach would be on the order of 106 (for a
1◦×1◦ grid cell at the native 90m resolution of SRTM data).

To obtain a more quantitative description of the conver-5

gence to the high-resolution fields, we show how spatial
statistics of the radiation fields (spatial standard deviation σx ,
skewness γx , and kurtosis ξx) vary with increasing tile count

with respect to the same statistics computed for the reference
high-resolution field. 10

For all the terrain predictors (Fig. 12) we find that when
increasing the number of tiles, the spatial variability of ter-
rain predictors converges to that of original high-resolution
fields as expected. However, this convergence appears to be
faster for the solar incidence angle when compared to Ṽd and 15

C̃t. Higher-order statistics of the spatial fields (skewness and
kurtosis) also tend to converge to the high-resolution field
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Figure 14. Downward radiation differences between 3D and PP fluxes for high-resolution predictions (a, c) and predictions using five tiles
(b, d) for each flux component. Results are shown for a representative case of clear-sky conditions, and cosθ0 = 0.4 is used for direct flux
(a, b) and reflected direct flux (c, d).

values, albeit with a larger variability. While spatial standard
deviation is generally used as a metric for assessing spatial
variability, examining skewness and kurtosis helps to make
sure the entire distribution of tile-by-tile results converges
to the high-resolution benchmark, since they better capture5

asymmetry and extremes in tile values. However, we note
that these metrics are not very meaningful for the smallest
number of tiles shown in Fig. 12) due to the small sample
size. However, the fact that for a large enough number of tiles
(e.g., nt > 20) these metrics appear to converge to the true10

values increases our confidence that the hierarchical cluster-
ing scheme provides a good description of the topography
heterogeneity.

For the flux variables (Fig. 13) we find a similar behavior,
with convergence of the spatial standard deviation being gen-15

erally faster than that of higher-order statistics. In this case,
the convergence is faster for the direct flux and slower for
all other flux component, as expected since Fdir is primar-
ily controlled by µ̃i , while the other flux components show a
relevant dependence on either the sky view factor or terrain20

configurations.
To further analyze the configuration of the tiling structure

used, we also tested different tiling configurations obtained
by fixing the number of characteristic hillslopes (k = 5) and

varying the number of lower-level land units in each hills- 25

lope (p) or conversely varying k with p = 5 fixed. Results
from both of these approaches are reported in Figs. 12 and
13. We find that generally convergence is faster using a larger
p, i.e., dividing each characteristic slope in a larger number
of tiles as opposed to increasing the number of character- 30

istic hillslopes. This is not surprising. However, differences
are generally small, and therefore the model proposed ap-
pears flexible and can in principle be applied with tiling that
has been predefined in order to also accommodate for other
physical processes. 35

3.5 Magnitude of predicted fluxes over varying
atmospheric conditions

The presence of clouds adds considerable complexity to the
problem of radiation–topography interactions and has not
been considered in our work. A complete understanding of 40

3D land–atmosphere interactions would require us to ex-
tend our analysis to a large range of atmospheric conditions,
which would be computationally costly, requiring a large
number of ray-tracing simulations, and would arguably lead
to a more complex parameterization requiring a larger num- 45

ber of parameters to estimate 3D topographic radiation cor-
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Figure 15. The same as Fig. 14 for diffuse, reflected diffuse, and coupled flux components.

rections. Previous work such as (Lee et al., 2011) also fo-
cused on clear-sky conditions. Although obtained assuming
fixed atmospheric properties, the 3D terrain corrections for
radiation fluxes have been formulated in dimensionless form
(Eq. 1) so that they can be applied as a first-order correction5

to radiation received by land over varying atmospheric con-
ditions. In different atmospheric conditions (clear vs. cloudy
sky), the relative magnitude of the five radiation flux compo-
nents can vary substantially. To show the magnitude of these
changes, here we compute the magnitude of the flux 3D ef-10

fects in dimensional form for the case of “clear sky” (i.e.,
aerosols but not clouds) and “total sky”, i.e., atmospheric
column with cloud cover and aerosol. These computations

were made using the Fu–Liou radiative transfer scheme (Fu
and Liou, 1992) using a standard midlatitude summer atmo- 15

spheric profile.
Results for clear-sky conditions are shown in Figs. 14 and

15, while the case of cloudy sky is shown in Fig. 16. While
the overall downward flux is smaller in the case of cloudy
sky, the direct and reflected direct fluxes are zero, mean- 20

ing that the entire downward flux is comprised of diffuse,
reflected diffuse, and coupled components. For the coupled
flux, the spatial variations are similar in the two cases, with
the most frequent values in the range−2 to 8Wm−2. For dif-
fuse fluxes the clear-sky case is characterized by larger mag- 25



20 E. Zorzetto et al.: Effects of land heterogeneity

Figure 16. Downward radiation differences between 3D and PP fluxes for high-resolution predictions (a, c, e) and predictions using five tiles
(b, d, f) for each flux component. Results are shown for a representative case of cloudy-sky conditions and cosθ0 = 0.4. Direct and reflected
direct fluxes are zero in this case.

nitude of 3D topographic effects, and this difference is even
more marked in the case of reflected diffuse fluxes.

3.6 Compatibility with existing sub-grid tiling schemes

The approach proposed in this paper to design a sub-grid
structure was developed keeping in mind the necessity of de-5

scribing not only radiation but also other physical processes
at the sub-grid scale. The GFDL model, as with several
current-generation ESMs, resolves each sub-grid tile as a sin-
gle “column” coupled with the atmosphere. Therefore, these

tiles should be flexible enough to meet the constraints posed 10

by different physical processes. In our case, a single-level
terrain clustering would suffice for the purpose of parame-
terizing 3D radiation–topography interactions. However, the
multi-level clustering used here is flexible enough to accom-
modate multiple physical processes. For example, the outer- 15

level clustering (i.e., the partition of the domain in k char-
acteristic hillslopes) is designed to obtain hydrologically co-
herent units so that processes like runoff and groundwater
flow can be resolved in each homogeneous land unit (Chaney
et al., 2018). Here we include this flexible sub-grid struc- 20
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Figure 17. Comparison between grid average estimates of fdir ob-
tained by averaging the tile-by-tile corrections and by applying the
predictive model for fdir to the grid-cell-average terrain parameter
predictors. Results are shown for the eastern Alps site for µ0 vary-
ing from 0.1 to 0.85 and solar azimuth φ = π/2.

ture, and in our sensitivity study (Fig. 13) we compare differ-
ent specifications of k and p (number of characteristic hill-
slopes and number of inner clusters within each hillslope,
respectively) to test the sensitivity of our parameterization
to these changes in sub-grid structure, finding that our re-5

sults are robust to the specific tile structure selected. Finally,
it is possible that other variables may need to be added to
the clustering to account for sub-grid heterogeneity of other
processes (e.g., land use or soil properties). This can be di-
rectly done with the framework used here at the price of an10

increase in the number of tiles used. Producing an effective
global-scale model grid able to meet these demands is pos-
sible but requires inevitable tradeoffs. The analysis in this
paper contributes to this effort by quantifying the number of
tiles needed over mountainous terrain for the sole purpose of15

capturing the spatial variability in shortwave radiation. We
note that in the case of the GFDL ESM, the model infras-
tructure is already suited for grids of this type, which can be
characterized by an uneven number of sub-grid units in dif-
ferent grid cells depending on the local terrain properties. At20

the model start, the land grid cells can be distributed among
available processors based on the estimated workload needed
for each of the cells, assuming that computational cost is
proportional to the number of sub-grid units. Therefore, the
work per processor is roughly the same, and the imbalance25

resulting from this uneven grid structure is minimized.

3.7 Comparison with grid-cell-average correction

The parameterization developed here can in principle be ap-
plied both to high-resolution terrain partitioned into tiles
and to the original grid cell area. However, our analysis of 30

the model goodness of fit (Fig. 7) shows that the predictive
models at different spatial resolutions (i.e., spatial averaging
scales) show varying performance that improves with spatial
scale. Therefore, according to this analysis, the model pre-
dictions for 3D effects over an entire grid cell have the best 35

performance. However, this comes at the cost of losing in-
formation about the sub-grid scales. Based on these consid-
erations, it would be desirable to have a model with the best
accuracy over an entire grid cell that is at the same time able
to describe tile-by-tile spatial variations in radiation fluxes 40

received at the surface. In order for this to be possible, the
parameterization developed here should be able to yield the
same results when (i) applied to each tile separately and then
averaged over the grid cell and (ii) applied to the grid aver-
age terrain predictors. We found that the parameterizations 45

proposed here have this property for four flux components
(diffuse, coupled, and reflected fluxes) but not for the direct
flux. This is because the behavior of the parameterization in
the case of completely shaded areas (for which fdir assumes
the lower bound value −1) is not constant across averaging 50

scales due to the varying area of hill shades. We show this
behavior in Fig. 17, where once averaged over an entire grid
cell, the results of the tile-by-tile parameterization for the
direct flux appear to overestimate the grid-cell-average 3D
topographic effect with respect to the grid-cell-average es- 55

timate of fdir. This discrepancy can be resolved by the use
of Eq. (12) which, once applied to the direct flux, allows us
to impose the tile-by-tile correction to match the grid-cell-
average correction. The result of this correction is shown
in Fig. 17. Therefore, once this correction is employed for 60

the direct flux, this approach can at the same time conserve
the area-average effect while providing information about the
sub-grid variability of the radiative fluxes.

3.8 Discussion of the dependence on albedo and its
spatial variability 65

The methodology described here has been developed for a
surface with a uniform and fixed albedo value. For apply-
ing the methodology to an ESM, the radiation corrections
which are albedo dependent (reflected and coupled fluxes)
should be evaluated for the specific surface albedo value as 70

discussed in Sect. 2.5. However, in the presence of surfaces
with spatially varying reflectivity, it is inevitable that differ-
ent land tiles in the same grid cell will be characterized by
different albedo values. For example, this can happen in the
case of partial snow cover or in the case of different veg- 75

etation types along a gradient in elevation. While here the
3D radiation correction is applied to each tile independently,
it is expected that reflected and coupled fluxes should in-
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clude contributions from nearby tiles characterized by dif-
ferent albedo values. At present our methodology does not
explicitly address these interactions between tiles with differ-
ent albedo. We note here two main difficulties in constructing
such a model. First, its validation would require an extensive5

set of costly MC simulations to train the model over surfaces
with varying reflectivity. Second, explicitly accounting for
the reflectivity of nearby slopes may require a more com-
plex statistical model, and it would not be easy task given the
complex geometry of the tile structure adopted in our work.10

Solving these two important challenges should be object of
future research.

4 Conclusions

Here we describe a methodology to compute solar fluxes over
mountainous terrain, accounting for the sub-grid variability15

of topographic properties within a characteristic ESM grid
cell. Topographic parameters modulating the incident solar
irradiance, combined with results from Monte Carlo radia-
tion simulation over 3D surface, are used to train a predic-
tive model and cluster land surface based on topography–20

radiation interactions. The methodology as presented here is
tailored to a tiling structure scheme recently introduced in the
GFDL land model LM4.1 to describe the heterogeneity of
hydrological properties. However, we believe this approach
could be suitable for applications to other land surface mod-25

els, as the clustering technique used here allows for a par-
simonious description of the spatially varying solar fluxes.
For this reason, we tested the sensitivity of the approach to
the number of tiles used over independent sites characterized
by complex topography. The results appear consistent over30

different geographical domains and indicate that even a lim-
ited number of tiles can reproduce a significant fraction of
the spatial variability observed in the high-resolution fields.
This result is particularly relevant when compared with stan-
dard approaches focused on increasing the land model reso-35

lution without adopting a clustering-based approach to con-
struct a sub-grid land structure. Increasing the number of
tiles improves not only the representation of spatial variances
but also the convergence of higher-order statistics. However,
even when using a lower number of tiles, the results remain40

consistent with previously developed grid-cell-average cor-
rections (i.e., the methodology can ensure that the grid-cell-
average correction is downward radiation is conserved) and
thus are to be considered an improvement with respect to
current plane-parallel radiative transfer. Here we found that45

even a limited number of tiles (nt = 10) recovers a large frac-
tion (> 60%) of the spatial variance of irradiance over high-
elevation mountain domains. However, we find that a larger
number of sub-grid units (on the order of nt = 100) would
lead to a further significant improvement. Further increasing50

the number of tiles above nt = 100 would lead to more mod-
est improvements at the price of a much larger number of

tiles required, as shown by the convergence analysis. There-
fore, an optimal number of tiles could be between 10 and
100. Using such a large number of tiles in a global model 55

would be ambitious at present due to its computational cost.
However, we note that a global grid can be constructed by
coarsening the sub-grid tile structure in an area with little or
no topography and using more tiles in areas of complex ter-
rain. Following this approach, constructing a global grid with 60

a global average number of tiles between 5 and 20 (over land
1◦× 1◦ grid cells) is certainly in reach.

The current methodology, as well as previous studies on
the topic (e.g., Chen et al., 2006; Lee et al., 2011), em-
ployed Monte Carlo simulations based on clear-sky condi- 65

tions. Studying the effects of aerosols and cloud on the radia-
tive transfer over complex terrain remains an open research
avenue. In particular, the presence of spatially varying cloud
cover could profoundly influence the spatial distribution of
irradiance over mountainous terrain. However, in addition to 70

the numerical challenges connected to the radiative transfer
problem, including a spatially varying cloud cover would in-
evitably increase the number of parameters needed to param-
eterize the radiation received by the surface, thus posing a
relevant parameterization challenge. 75

Studying the relationship between terrain predictors and
irradiance differences between 3D and PP cases allowed us
to quantify the importance of nonlinear effects and the rel-
ative skill of linear models and random forest predictors in
capturing these relationships. We found that nonlinear ef- 80

fects are relevant primarily at the finer spatial scales and de-
crease drastically with spatial averages at increasing spatial
scales. This result is consistent with previous investigations
at coarser spatial scales based on linear models.

Based on our simulation study over a set mountainous 85

domains, we quantified the difference in downward fluxes
originating from topographic effects with respect to those
obtained from traditional plane-parallel radiative transfer
schemes for varying numbers of sub-grid tiles. Our re-
sults support the implementation of this methodology in the 90

GFDL ESMs, which will be pursued as the next step to eval-
uate the effects of this correction of water and energy fluxes
at the surface.

Code and data availability. The code used in this project
is available in a Zenodo repository with the following 95

DOI: https://doi.org/10.5281/zenodo.7714735 (Zorzetto,
2022a). The preprocessing software used to construct
the land database for the GFDL land model v4.1 is in-
cluded as supplementary material in the Zenodo repository
https://doi.org/10.5281/zenodo.7720281(Zorzetto, 2023). 100

A model dataset necessary to run the analysis is avail-
able in a Zenodo repository with the following DOI:
https://doi.org/10.5281/zenodo.6975857 (Zorzetto, 2022b).
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Remarks from the language copy-editor

CE1 As the requests for changes in the text here do not seem to relate to any corrections made by Copernicus and as they
may affect the content, please give an explanation of why this needs to be changed. We have to ask the handling editor
for approval. Thanks.

CE2 This would only be hyphenated if it is were an adjective describing a following noun, with both of the terms together
describing the word “component”. This is not the case here. You could either leave “reflected diffuse” unhyphenated or you
could use an en-dash (–) if the meaning of the phrase is “reflected and diffuse”. The same applies to “reflected direct”.
CE3 As the requests for changes in the text here do not seem to relate to any corrections made by Copernicus and as they
may affect the content, please give an explanation of why this needs to be changed. We have to ask the handling editor for
approval. Thanks.
CE4 “To impose” in the sense used here requires a noun as an object. If “the rule” is not appropriate, please provide an
alternative.
CE5 Please note slight edit.
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