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Supporting Information Text

The key driver of L-A coupling signal attenuation due to monthly smoothing

First, we introduce the algorithms of both trend and seasonal cycle removal applied to the original time series. Then, we check

that the detrended-seasonal removed monthly time series is equal to the monthly mean of the detrended-seasonal removed

daily time series. Finally, we separate the two-legged metrics (TLM) into the standard deviation term (σ) and the correlation10

coefficient term (ρ), and investigate the key factor leading to the difference between monthly- and entire-day-mean-based TLM.

Detrending and removal of the seasonal cycle. Let’s consider a daily time series xi. To calculate the two-legged metrics,

both trend and seasonality must be removed from the original values. To remove the long-term trend, we generate a linear

regression model between time and the variable of interest (e.g., xi), and then perform detrending by removing model-predicted

values from original values like15

ẋi = xi − g(i) (S1)

where i is day index and ẋi is detrended time series. g(i) is the linear regression function retrieved from the xi against time.
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To remove the seasonal cycle, we estimate the seasonality by calculating the multi-year mean of the target value at a specific

date, and then perform the removal as

x̃d,y = ẋd,y −
1

Y

Y∑
i=1

ẋd,i (S2)20

where x̃d,y is the time series after removing the seasonality. The subscript (d,y) represents time in the form of date and year,

and Y is the number of years in the averaging.

Daily and monthly time series. Here we demonstrate that detrended-seasonal removed monthly time series is equal to the

monthly mean of detrended-seasonal removed daily time series. Let’s assume a detrended daily time series data ot (t ∈ [1,D×
M ×Y ]). Here D, M , and Y are the numbers of day in a month, the number of months, and the number of years, respectively.25

The time step t can be written in the form of {day,month,year} as t= {d,m,y} (d ∈ [1,D], m ∈ [1,M ], y ∈ [1,Y ]).Then we

can get the seasonal removed daily time series Ot as

Od,m,y = od,m,y −
1

Y

Y∑
k=1

od,m,k (S3)

The detrended monthly time series pt (t can be written as {m,y}) is

pm,y =
1

D

D∑
i=1

oi,m,y (S4)30

The seasonal removed monthly time series Pt is

Pm,y = pm,y −
1

Y

Y∑
k=1

pj,k

=
1

D

D∑
i=1

oi,m,y −
1

Y

Y∑
k=1

pm,k

=
1

D

(
D∑
i=1

oi,m,y −
1

Y

D∑
i=1

Y∑
k=1

oi,m,k

)

=
1

D

D∑
i=1

(
oi,m,y −

1

Y

Y∑
k=1

oi,m,k

)

=
1

D

D∑
i=1

Oi,m,y (S5)

Differences between M- and E-based TLMs. First, let’s have a look at the σ term of the TLMs. To keep the symbols

simple, we denote ai and bi (i is day index) as detrended and seasonal removed daily time series. Aj and Bj (j is the month
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index) are corresponding monthly time series. As the long-term average of bi (i.e., b̄) is zero, the σb can be expressed as35

σb =

(
1

DMY

DMY∑
i=1

b2i − b̄2

) 1
2

=

(
1

MY

MY∑
i=1

(
b2i + b2i+1 + b2i+2 + ...+ b2i+D

D

)
j

) 1
2

(S6)

D, M , and Y are the number of days, months, and years, respectively. The σB can be written as

σBj
=

 1

MY

MY∑
j=1

B2
j − B̄2

 1
2

=

 1

MY

MY∑
j=1

(∑D
i∈j bi

D

)2
 1

2

=

 1

MY

MY∑
j=1

[
(bi + bi+1 + bi+2 + ...+ bi+D)

2

D2

]
j

 1
2

(S7)

The difference between σb and σB is illustrated in Fig. S1. σb contains all squared bi (dark boxes in Fig. S1), but σB contains

averaged products of all combinations of bi within a month.40

It is not difficult to proof that D2
∑N

i=1 b
2
i ≥ (bi + bi+1 + ...+ bN )

2. The equal relation stands when bi = bi+1 = ...= bN ,

indicating all daily variables are the same within a month. Considering all months, the σB is larger if bi follows the Matthew

principle better, that is large values assemble together in specific months and small values assemble together in other months.

As bi is a time series of variables in a natural process. bi is somehow correlated with itself at a certain time scale, that is the

memory of bi. It implies that if bi is large, its neighbours (e.g., bi−1 and bi+1) are large as well. Thus, the memory (characterized45

by auto-correlation) may determine the information loss from σb to σB , if the σb is considered as the accurate information we

want.

The ρ term based on daily time series can be written as:

ρ(a,b) =

∑DMY
i=1 (ai − ā)

(
bi − b̄

)
σaσb

=

∑DMY
i=1 aibi
σaσb

. (S8)

ā and b̄ are mean of ai and bi, respectively. Similarly, we can get ρ(A,B) as50

ρ(A,B) =

∑MY
j=1

(
Aj − Ā

)(
Bj − B̄

)
σA ·σB

=
1

σAσB

MY∑
j=1


(∑

i∈j ai

)(∑
i∈j bi

)
D2

 . (S9)
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The ρ term contains σ terms, which has been discussed in the previous section. If we focus on the numerator, we can find that

the difference of numerator between E and M has a similar structure as the ρ difference between E and M. Thus, we deduct

that the cross-covariance between ai and bi is the key contributor to the difference of the ρ’s numerator between E and M.

Atmosphric advection-dominated climate regime in Sahara55

Unlike most other places, the atmospheric leg (A) across the Sahara region is negative (Fig. S4), suggesting a negative corre-

lation between the sensible heat flux (H) and the pressure at the LCL (Plcl). This atypical signal is present in all seasons and

may be caused by a special mechanism driven by atmospheric advection. Northerly winds from the Mediterranean Sea cool

and moisten the near-surface air of the Sahara region, while southerly winds warm and dry the surface (Fig. S6a). According to

ERA5, the correlation between E-based daily northward wind speed (v10m) and the 2-m air temperature (T2m) for ten-year JJA60

data at a sample grid cell in the Sahara is 0.63 (Fig. S6b), which is much larger than that of the eastward wind case (0.12, not

shown). On the other hand, the northerly winds show a high correlation with the 2-m absolute humidity (AH), as well (-0.67,

Fig. S6b). This suggests that atmospheric advection may determine the inter-daily fluctuations of near-surface temperature and

humidity rather than the sensible heat flux from the surface. One piece of evidence is that T2m fluctuates synchronously with

H in the Sahara, with Fig. S6c showing that the auto-correlation is strongest with no time lag between variables. If the T2m65

is driven by the surface through H then the peak correlation should occur with a few hours time lag between H and T2m, as

shown for an example European grid cell in Fig. S6d.
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Figure S1. Illustration of the difference between σb and σB . Small boxes indicate daily time series of bi. And large boxes indicate monthly

time series Bj . For month j (i.e., top middle box), dark small boxes indicate components of σb (Eq. S6).
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Figure S2. (a) Difference between |LD| and |LE| in summer (JJA and DJF for the Northern and Southern Hemisphere, respectively). (b) Same

as (a) but for the atmospheric leg (A).
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Figure S3. Spatial patterns of significant LM, LE, and LD (top 90% quantile of absolute values) in summer (JJA and DJF in the Northern

and Southern Hemisphere, respectively). Euler diagrams show the colors for specific relationships (intersections, unions, or disjoints) among

LM, LE, and LD, and the areas of colored patterns indicate the fractions of them as well.
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Figure S4. Maps of normalized two-legged metrics (TLMs) in JJA. Top to bottom panel: land, atmospheric, and total leg. Left to right panel:

monthly-, entire-day-mean-, and daytime-only-based TLMs. To make the TLMM, TLME and TLMD comparable, we normalize specific

TLM by ni =min(max(xi/q99.9%,−1),1), where ni indicates the normalized value of xi and the q99.9% is the 99.9% quantile of |xi|.

Gray regions indicate associated correlation is not significant (p > 0.05)
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Figure S5. (a) Cross correlation function between nighttime-only-mean (N) and daytime-only-mean (D) soil moisture (θN and θD) in a grid

cell located in Canada ([82.25◦W, 47.5◦N]). (b) Same as (a), but the grid cell is taken as a reference in Russia ([122.5◦E, 68.5◦N]).

9



0 5 10 15 20 25 30

−
2

−
1

0
1

2

Number of day (−)

(a)
v10m (m.s−1)
T2m (K)

29
8

30
0

30
2

30
4

30
6

−6 −4 −2 0 2 4 6

29
5

30
0

30
5

31
0

v10m (m.s−1)

(b)

0.
01

0
0.

01
5

0.
02

0

T2m (K)
AH (kg.m−3)

−6 −4 −2 0 2 4 6

−
0.

6
−

0.
4

−
0.

2
0.

0
0.

2
0.

4

shf.h & t2m.h

Lag (2−hourly)

C
C

F
(H

,T
2m

)

(c) Sahara

−6 −4 −2 0 2 4 6

−
0.

4
−

0.
2

0.
0

0.
2

0.
4

shf.h & t2m.h

Lag (2−hourly)

C
C

F
(H

,T
2m

)
(d) Europe

Figure S6. An example of atmospheric advection driven L-A interaction mechanism. (a) Daily 10-m northward wind speed (v10m) and T2m

for the entire day in July 2015. (b) T2m and 2m absolute humidity (AH) as a function of v10m. The illustration is based on entire-day-mean

daily values in JJA from 2011 to 2020. (c)–(d) Cross-covariance between two-hourly H (positive up) and T2m based on two grid cells in

Sahara ([12◦E, 32.75◦N]) and in Europe ([12◦E, 47.75◦N]), respectively. y-axis indicates the correlation coefficients between T2m and a

time-shifted H time series. The x-axis indicates the time steps of the H shifted. Negative (positive) values indicate lagged (ahead).
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Figure S7. Examples of calculating memory indicator for the σ term and for the numerator of the ρ term (N(ρ)) of the two-legged metrics.

(a) The entire-day-mean-based σPlcl for instance, at one grid cell we first calculate the auto-correlation function (ACF) of Plcl with the

maximum lag of 30 days. Then the top 25% quantile of these correlation coefficients are selected (red dashed lines indicate the threshold)

and averaged as the indicator ACF>75%. (b) For the paired θ and H , we calculate the cross-covariance function (CCF) with the maximum lag

of ±30 days. As the ρ(θ,H) is negative, we select the lowest 25% correlation coefficients and calculated the mean (CCF<25%) as indicator.

(c) Similar to (b), but selecting the top 25% correlation coefficients to calculate the indicator.
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