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Abstract. Land-atmosphere (L-A) interactions encompass the co-evolution of the land surface and overlying planetary bound-

ary layer, primarily during daylight hours. However, many studies have been conducted using monthly or entire-day-mean time

series due to the lack of sub-daily data. It has been
::
is unclear whether the inclusion of nighttime data alters the assessment of

L-A coupling or obscures L-A interactive processes. To address this question, we generate monthly (M), entire-day-mean (E),

and daytime-only-mean (D) data based on the ERA5 (5th European Centre for Medium-Range Weather Forecasts reanalysis)5

product, and evaluate the strength of L-A coupling through two-legged metrics, which partition the impact of the land states

on surface fluxes (the land leg) from the impact of surface fluxes on the atmospheric states (the atmospheric leg). Here we

show that the spatial patterns of strong L-A coupling regions among the M-, D- and E-based diagnoses can differ by as much

as 84.8
::::
more

::::
than

::
80%. The signal loss from E- to M-based diagnoses is determined by the memory of local L-A states. The

differences between E- and D-based diagnoses can be driven by physical mechanisms or the averaging algorithms. To improve10

understanding of L-A interactions, we call attention to the urgent need for more high-frequency data from both simulations and

observations for relevant diagnoses. Regarding model outputs, two approaches are proposed to resolve the storage dilemma for

high-frequency data: (1) integration of L-A metrics within Earth System Models, and (2) producing alternative daily datasets

based on different averaging algorithms.

1 Introduction15

Numerous studies have demonstrated the importance of land-atmosphere (L-A) interactions to the earth system (Findell et al.,

2011; Hu et al., 2021; Klein and Taylor, 2020; Laguë et al., 2019; Taylor et al., 2012). Manifested by the mass and energy ex-

changes between the land surface and the planetary boundary layer (PBL), L-A interactions determine
:::::::
influence the evolution of

the convective system
::::::::
convective

:::::::
systems (Hu et al., 2021; Klein and Taylor, 2020) as well as the occurrence of convective rain-

fall (Taylor et al., 2012). From a climatic perspective, the coupling processes between the land and the atmosphere can acceler-20

ate the frequency and intensity of extreme events (Dirmeyer et al., 2021; Miralles et al., 2019; Schumacher et al., 2019; Zhou
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et al., 2021) and the shift of climate regimes (Berg et al., 2017; Findell et al., 2019) under global warming. To better understand

L-A interactions, a suite of metrics has been proposed for characterizing specific physical processes across broad spatial and

temporal scales (Santanello et al., 2018). These metrics can reveal essential behaviors of L-A interactions and enhance our un-

derstanding of the coupling mechanisms (e.g., (Chen and Dirmeyer, 2017; Findell et al., 2011; Hu et al., 2021; Jach et al., 2022)25

:::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::
Chen and Dirmeyer (2017); Findell et al. (2011); Hu et al. (2021); Jach et al. (2022)). Additionally, they provide a benchmark

to evaluate the performance of earth system models in simulating L-A coupling processes (e.g., (Dirmeyer et al., 2018; Ferguson et al., 2012; Koster et al., 2006; Santanello et al., 2009)

:::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::
Dirmeyer et al. (2018); Ferguson et al. (2012); Koster et al. (2006); Santanello et al. (2009)).

However, L-A interactions alone are not always the primary determinant in the climate system (Koster et al., 2004). To

reveal hotspots where and when L-A interactions play an important role, two criteria have been proposed: 1) the state of the30

atmosphere must be highly responsive to variations in land properties, and 2) there must be physically meaningful variability

in those land properties over time (Dirmeyer, 2011; Guo et al., 2006; Koster et al., 2004). Dirmeyer (2011) proposed a metric

(M ) to characterize both features as

M =
db

da
·σa = ρ(a,b)σb. (1)

The M contains two components to estimate the coupling strength between variables a, presumed to be the driver, and b,35

the response. The coupling is significant only when b is sensitive to a (high db/da) and the variation of a (standard de-

viation of a, σa) is large. The formula is equivalent to the correlation coefficient between a and b (i.e., ρ(a,b)) multiplied

by σb. The advantage of this metric is its vast suitability in characterizing coupling mechanisms across different scales

(Chen and Dirmeyer, 2017; Guillod et al., 2014; Findell et al., 2011; Hu et al., 2021; Lorenz et al., 2015)
::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::
(Chen and Dirmeyer, 2017; Guillod et al., 2014; Hu et al., 2021; Lorenz et al., 2015)

regardless of specific variables. In terms of L-A interactions, Dirmeyer et al. (2014) divided the coupling linkage into two steps:40

:
a
::::
land

:::
leg

::::::::
capturing

:
the coupling between the land surface

::::
state

::::::::
(typically

:::::::::::
characterized

:::
by

:::
soil

:::::::::
moisture) and surface fluxes

of heat, moisture, or momentum, called the land leg, and
:::
and

::
an

::::::::::
atmospheric

:::
leg

::::::::
capturing

:
the coupling between the surface

fluxes and the atmosphere states , called the atmospheric leg (see Sect. 2.2).

The two-legged metrics (TLMs) mainly focus on relevant processes during the daytime
::::::::
processes

::::::::
operating

::
in

::::::::
response

::
to

::::::
daytime

:::::
solar

::::::
heating. However, data covering the same time window

:::::::
daylight

:::::
hours is rare in available datasets. Consequently,45

most TLM research has been based on time series of monthly or 24-hour average quantities (e.g., Dirmeyer et al. (2014); Hu

et al. (2021); Lorenz et al. (2015)). Although these studies enhance our understanding of the patterns and seasonality of L-A

coupling, it has yet to be shown whether the monthly- and entire-day-based inputs are able to
::::::::
accurately

:
capture areas with

strong daytime land-atmosphere couplingaccurately. In other words, are there significant differences among monthly-, entire-

day-, and daytime-only-based L-A coupling diagnoses? If so, are the differences exclusively due to the averaging process, or50

are there other L-A coupling mechanisms that may mislead the diagnoses of daytime L-A coupling?

In this study, the 0.25◦ spatial resolution ERA5 (the fifth ECMWF ReAnalysis
::::::::
reanalysis, (Hersbach et al., 2018)) is em-

ployed as the test bed to address these research questions. Three time series derived from ERA5 outputs, monthly-means (M),

entire-day-means (E), and daytime-only-means (D), are utilized to calculate two-legged metrics (TLMs) to evaluate L-A cou-
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pling strength. We investigate the spatial pattern differences among M-, E-, and D-based diagnoses. Primary contributors to the55

pattern mismatch are revealed, associated mechanisms are demonstrated, and implications are discussed.

2 Methods

2.1 ERA5 data

The ERA5 reanalysis provides 0.25◦-hourly data determined through assimilation of
:::::::
modeling

:::::::::
estimates

:::::::::
assimilated

:::::
with

:::::::
historical

:
observations (e.g., soil moisture, 10-m wind, 2-m humidity,

:
and temperature (Hersbach et al., 2020)). We collected60

ERA5 output
::::
over

::::
land

:::::::
(land-ice

::::::::
included)

:
every other hour from 1:00 UTC (Coordinated Universal Time) 01-Jan-2011 until

23:00 UTC 31-Dec-2020 over [180◦W–180◦E]×[65◦S–80◦N]. To be consistent with other daily data
::::::
datasets, the entire-day-

mean values (E) are obtained by averaging time steps within each day based on the UTC. For the daytime-only-mean (D), the

globe is divided into twenty-four time zones and the time is converted from UTC to LST (Local Solar Time). The time steps

between 8am and 6pm LST are averaged to generate D values. The monthly mean (M) is a monthly average of E. To meet the65

minimum length requirement (Findell et al., 2015) for monthly TLMs estimations, we collected forty years of M data from

1981 through 2020. There are two chains in the L-A coupling process. One is

:::::
There

:::
are

:::::::
multiple

:::::
ways

::
of

:::::::::
describing

:::
the

:::::::
linkages

:::::::
between

:::
the

:::::
land,

::::::
surface

::::::
fluxes,

:::
and

:::
the

::::::::::
atmosphere

::::
that

:::
the

:::::
TLM

:::
are

:::::
meant

::
to

:::::::
capture.

:::
For

::::::::
instance,

:::
the

::::
land

:::
leg

::::
can

::
be

:::::::::
structured

::
to

:::::::::
investigate

:
how the land affects convective precipitation via

::
the

:
latent heat flux. Another is

:
,
::
or

:
how the land influences the growth of the Planetary Boundary Layer

::::::::
planetary

::::::::
boundary70

::::
layer (PBL)

::::::
through

:::
the

:::::::
sensible

::::
heat

::::
flux. As it is difficult to distinguish L-A triggered convective precipitation, we select the

latter in this studyincluding ,
:::::

using
:
surface soil moisture from the 0–7 cm soil layer (θ [m3.m−3]) and sensible heat flux (H

[W.m−2]) . Moreover, to implement ERA5 validation
::
to

::::::::::
characterize

:::
the

::::
land

::::
leg.

:::::::::::
Additionally,

::
to

:::::
enable

:::::::::
validation

::
of

::::::
ERA5

:::
data

:
with ground-based observations (i.e., FLUXNET, validation results are not shown) that lacks observed PBL height

::::
lack

:::::::
observed

:::::
PBL

::::::
heights, we select the pressure at the lifting condensation level (Plcl [

::
Pa]) to represent the atmospheric state,75

specifically that of the PBL, which .
::::
Plcl can be estimated from three regular ground measurements: the surface pressure (P

[Pa]), 2-m temperature (T2m [K]), and 2-m dew-point temperature (D2m [K]) (Georgakakos and Bras, 1984), as:

Plcl = P −P
(
T2m−D2m

223.15
+ 1

)−3.5
. (2)

Plcl Pais the pressure at LCL. The three time series are grouped by season. Both long-term trends and seasonality are removed

to prevent them from obscuring the signal and altering the diagnoses,
:::::::::
following

::::::::::::::::::
Dirmeyer et al. (2012).80

2.2 Two-legged metrics

The two-legged metrics (TLMs) contain a land leg and an atmospheric leg to evaluate the two coupling links in the L-A

interaction chain (Dirmeyer et al., 2014; Santanello et al., 2018). If θ, H , and Plcl are utilized to represent the states of the land,

the surface flux, and the atmosphere, the L-A coupling metrics (Eq. 1) can be formulated to assess the two-stepped coupling
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processes as:85

L=
dH

dθ
σθ = ρ(θ,H) ·σH ,

A=
dPlcl

dH
σH = ρ(H,Plcl) ·σPlcl , (3)

T =
dH

dθ

dPlcl

dH
σθ = ρ(θ,H)ρ(H,Plcl) ·σPlcl .

L, A, and T indicate the land, the atmospheric, and the total legs, respectively. By applying to
::
Eq.

::
3
::
to

:::
the

:
M, E, and D time

series, we can get different versions of TLMs, denoted by TLMM, TLME, and TLMD, respectively. For a specific variable and90

leg, we use M, E, and D as subscripts to distinguish them (e.g., LM, LE, and LD).

2.3 Spatial pattern comparisons among M-, E-, and D-based diagnoses

It is not appropriate to directly compare the
:::
The

::::::
TLMs

:::
are

:::::::
designed

::
to

::::::::
highlight

:::::::::
differences

::
in

::::
L-A

::::::::
coupling

:::::::
strength

:::::::
between

:::::::::
geographic

:::::::
regions

:::::
and/or

::::::::
between

:::::::
different

::::::
times

::
of

::::
year

::
in
::

a
:::::
given

:::::::
region.

:::::
Those

:::::::
relative

::::::::::
differences

::::::
require

:::::::::
subjective

:::::::
decisions

::
to
:::::::::
determine

:::
the

::::::::
threshold

:::::
values

:::::::::
separating

::::::
regions

::
of

:::::::
“strong”

::::::::
coupling

::::
from

::::::
regions

:::
of

::::::
weaker

::::::::
coupling.

::::::::
However,95

:
a
:::::
direct

::::::::::
comparison

::
of
::::

the numerical values of TLMs based on different time windows of inputs (i.e., M, E, and D)
:
is
::::

not

:::::::::
appropriate

:::
for

:::::
three

:::::::
primary

::::::
reasons. First, the magnitude of the TLMs is strongly affected by the σ term (Eq. 1), and this

measure of variability can be quite different for daytime and nighttime processes. For example, HD has much larger variance

than the HE:::::::
D-based

::
H

::::
and

:::
Plcl:::::

have
:::::
much

:::::
larger

:::::::::
variances

::::
than

:::
that

::::::
based

::
on

::::
the

:::::::::::::
entire-day-mean, which systematically

enlarges the
:::
LD :::

and
:
AD. Additionally, strong L-A coupling signals can be positive or negative, suggesting that in some cases100

the magnitude of TLM
::
the

::::::
change

:::
of

::::::
TLM’s

:::::::::
magnitude (its absolute value) is the relevant quantity of interest

:::::
rather

::::
than

:::
the

::::::::
magnitude

:::
of

:::::::
changes. Finally, L-A coupling processes are not characterized by clear thresholds, but rather by relative spatial

and temporal differences.

To overcome these limitations
:::
and

:::::::
remove

:::
any

::::::::::
subjectivity

::
in

:::
our

:::::::::
assessment

:::
of

:::::::
coupling

:::::::
strength, we use quantile to assess

coupling strengths and to quantify the differences among
:::::::
quantify

:::
the

::::::
spatial

:::::::::
differences

:::::::
between

:
TLMM, TLME, and TLMD.105

For a specific TLM and a given quantile threshold, regions with absolute values of TLM over this threshold are marked for

::::
each

::
of the M, the D, and the E cases. For the AD in summer

:
a
:::::::
specific

:::::
period

:
for example, if the given threshold was

:
is
:
0.8,

grid cells with the top 20% largest |A| are marked. The ratio of the number of overlapping grid cells to the number of E-based

marked grid cells is defined as the fitting rate between AE and AD, which can reflect the difference between D- and E-based

diagnoses at different levels of coupling strength. The same approach is applied to the legs in paired comparisons of E vs M,110

M vs D, and D vs E.

2.4 Signal attenuation from TLME to TLMM

:::
The

::::::
TLMs

::::::
contain

:
a
:::::::::
correlation

::::
term

::
ρ
:::
and

::
a

:::::::
variance

::::
term

::
σ

:::
(Eq.

:::
1).

:::::
First,

::
we

:::::::::
investigate

:::
the

:::::::::
difference

::
of

:::
the

:
σ
:::::
term

:::::::
between

::
E-

:::
and

::::::::
M-based

::::::
TLMs.

:::
To

::::
keep

:::
the

:::::::
symbols

::::::
simple,

:::
we

::::::
denote

::
ai::::

and
::
bi::

(i
::
is

:::
day

::::::
index)

::
as

::::::::
detrended

::::
and

:::::::
seasonal

::::::::
removed

::::
daily

::::
time

::::::
series.

::
Aj::::

and
:::
Bj ::

(j
:
is
:::
the

::::::
month

:::::
index)

:::
are

::::::::::::
corresponding

:::::::
monthly

::::
time

::::::
series.

:::
As

:::
the

::::::::
long-term

:::::::
average

::
of

::
bi ::::

(i.e.,115
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::
b̄)

:
is
:::::
zero,

:::
the

::
σb:::

can
:::
be

::::::::
expressed

::
as

:

σb =

(
1

DMY

DMY∑
i=1

b2i − b̄2
) 1

2

=

(
1

MY

MY∑
i=1

[
b2i + b2i+1 + b2i+2 + ...+ b2i+D

D

]
j

) 1
2

:::::::::::::::::::::::::::::::::::::::::::

(4)

::
D,

:::
M ,

::::
and

::
Y

:::
are

:::
the

::::::
number

:::
of

::::
days,

:::::::
months,

:::
and

::::::
years,

::::::::::
respectively.

::::
The

:::
σB :::

can
::
be

:::::::
written

::
as

σBj =

 1

MY

MY∑
j=1

B2
j − B̄2

 1
2

=

 1

MY

MY∑
j=1

(∑D
i∈j bi

D

)2
 1

2

=

 1

MY

MY∑
j=1

[
(bi + bi+1 + bi+2 + ...+ bi+D)

2

D2

]
j

 1
2

:::::::::::::::::::::::::::::::::::::::::::::::

(5)

::
σb:::::::

contains
:::

all
:::::::
squared

:::
bi,:::

but
:::
σB::::::::

contains
::::::::
averaged

:::::::
products

:::
of

::
all

::::::::::::
combinations

::
of

:::
bi :::::

within
::

a
::::::
month.

::
It
::

is
::::

not
:::::::
difficult120

::
to

::::
proof

::::
that

:::::::::::::::::::::::::::::::
D2
∑N
i=1 b

2
i ≥ (bi + bi+1 + ...+ bN )

2.
::::

The
:::::
equal

:::::::
relation

:::::
stands

:::::
when

::::::::::::::::::
bi = bi+1 = ...= bN ,

:::::::::
indicating

::
all

:::::
daily

:::::::
variables

:::
are

:::
the

:::::
same

:::::
within

::
a

::::::
month.

::::::::::
Considering

:::
all

::::::
months,

:::
the

:::
σB::

is
:::::
larger

::
if
::
bi:::::::

follows
:::
the

:::::::
Matthew

::::::::
principle

:::::
better,

::::
that

:
is
:::::
large

:::::
values

::::::::
assemble

:::::::
together

::
in

:::::::
specific

::::::
months

::::
and

:::::
small

:::::
values

::::::::
assemble

:::::::
together

::
in

:::::
other

:::::::
months.

::
As

::
bi::

is
::
a

::::
time

:::::
series

::
of

:::::::
variables

::
in

::
a
::::::
natural

:::::::
process.

::
bi :is:::::::::

somehow
::::::::
correlated

::::
with

:::::
itself

:
at
::
a
::::::
certain

::::
time

:::::
scale,

:::
that

::
is

:::
the

:::::::
memory

::
of

:::
bi. :It:::::::

implies

:::
that

::
if

::
bi::

is
:::::
large,

::
its

::::::::::
neighbours

::::
(e.g.,

::::
bi−1::::

and
:::::
bi+1)

:::
are

::::
large

::
as

:::::
well.

:::::
Thus,

:::
the

:::::::
memory

::::::::::::
(characterized

:::
by

::::::::::::::
auto-correlation)125

:::
may

:::::::::
determine

:::
the

::::::::::
information

:::::::::
maintained

:::::
from

::
σb::

to
::::
σB ,

:
if
:::
the

:::
σb ::

is
:::::::::
considered

::
as

:::
the

:::::::
accurate

::::::::::
information

:::
we

:::::
want.

:::
The

::
ρ

::::
term

:::::
based

::
on

:::::
daily

::::
time

:::::
series

:::
can

:::
be

::::::
written

:::
as:

ρ(a,b) =

∑DMY
i=1 (ai− ā)

(
bi− b̄

)
σaσb

=

∑DMY
i=1 aibi
σaσb

.
::::::::::::::::::::::::::::

(6)

:̄
a
:::
and

::
b̄
:::
are

:::::
mean

::
of

::
ai:::

and
:::
bi,::::::::::

respectively.
:::::::::
Similarly,

::
we

::::
can

:::
get

:::::::
ρ(A,B)

::
as

ρ(A,B) =

∑MY
j=1

(
Aj − Ā

)(
Bj − B̄

)
σA ·σB

=
1

σAσB

MY∑
j=1


(∑

i∈j ai

)(∑
i∈j bi

)
D2

 .
::::::::::::::::::::::::::::::::::::::::

(7)130
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:::
The

::
ρ
:::::
term

:::::::
contains

::
σ
::::::
terms,

::::::
which

:::
has

:::::
been

:::::::::
discussed.

::
If

:::
we

:::::
focus

:::
on

:::
the

::::::::::
numerator,

:::
we

::::
can

::::
find

::::
that

:::
the

:::::::::
difference

::
of

:::::::::
numerator

:::::::
between

::
E
::::

and
:::
M

:::
has

::
a
::::::
similar

::::::::
structure

:::
as

:::
the

::
ρ

:::::::::
difference

:::::::
between

::
E
::::
and

:::
M.

:::::
Thus,

:::
we

:::::::
deduct

:::
that

::::
the

:::::::::::::
cross-covariance

::::::::
between

::
ai :::

and
::
bi::

is
:::
the

:::
key

::::::::::
contributor

::
to

:::
the

::::::::
difference

::
of

:::
the

:::
ρ’s

:::::::::
numerator

:::::::
between

::
E

:::
and

:::
M.

According to our deduction(see Supplementary Text 1), we infer that the memory of the L-A state (i.e., the auto-correlation

for a single variable and the cross-covariance for paired variables) can characterize the coupling signal attenuation due to the135

monthly smoothing of daily time series. Thus, for a single variable (i.e., the σ term), we calculate its auto-correlation function

(ACF) with a maximum lag 30 days
::::::
(within

::
a

::::::
month). Then we average the ACF values belonging to the top 25% quantile

::
as

::
an

::::::::
indicator

::
of

:::
the

::::::::::
attenuation

::::::::
resistance

:
(Supplementary Fig. S7)as an indicator of the loss rate

::::
S1a). And the attenuation

rate
::::::::
resistance is characterized by the ratio of σM to σE. For paired variables (i.e., the numerator of the ρ term N(ρ)

:
,
::::
e.g.,

:::::::::::::::::
N(ρ) =

∑DMY
i=1 aibi::

in
:::
Eq.

::
6), we calculate the cross-covariance function (CCF) instead, but with a maximum lag ±30 days.140

For negatively correlated variables, we select the mean of the lowest 25% CCF as the indicator .
:::::::::::::
(Supplementary

::::
Fig.

:::::
S1b). For

positively correlated variables, we select top 25% as the quantile threshold as the ACF case .
::::::::::::
(Supplementary

::::
Fig.

:::::
S1c). Instead

of N(ρM)/N(ρE), we use N(ρM)/(|N(ρE)|+ |N(ρM)|) to characterize associated signal attenuation
::::::::
resistance, in order to

avoid uncertainties due to phase shift from N(ρE) to N(ρM).

2.5 ∆|TLM| decomposition145

According to the form of the coupling metrics (Eq. 1), the differences among |TLMM|, |TLME|, and |TLMD| can be decom-

posed as:

∆|M | = |M2| − |M1|

= Cρ +Cσ +Cσρ

Cρ = σ1 (|ρ2| − |ρ1|)150

Cσ = |ρ1|(σ2−σ1)

Cσρ = (|ρ2| − |ρ1|)(σ2−σ1) .

::::
using

:
M1 and M2 are

::
as specific TLMs based on two different time series. ∆|M | :

:

∆|M |
::::

= |M2| − |M1|
:::::::::::

= Cρ +Cσ +Cσρ,where
::::::::::::::::::::

155

Cρ
::

= σ1 (|ρ2| − |ρ1|)
:::::::::::::

(8)

Cσ
::

= |ρ1|(σ2−σ1)
::::::::::::

Cσρ
:::

= (|ρ2| − |ρ1|)(σ2−σ1) .
::::::::::::::::::::
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:::::
∆|M | is the absolute value (coupling strength) shift from M1 to M2, which is composed of contributions from the correlation

term (Cρ), the fluctuation term (Cσ), and the joint term (Cσρ). Note that the three
::::::::::
contributing

:
terms may be either positive160

or negative. Thus, we take absolute values of them
:::
their

::::::::
absolute

:::::
values

:
to estimate their

:::::::
fractional

:
contributions to the

::::
total

:::::::
coupling

:::::::
strength

:::::
shift, ∆|M |. Taking the Cρ as an example, its contribution

:::
For

::::::::
example,

:::
the

::::::::
fractional

::::::::::
contribution

:::
of

:::
the

:::::::::
correlation

::::
term is calculated as:

|Cρ|
|Cρ|+ |Cσ|+ |Cσρ|

. (9)

2.6 Primary contributors to TLM pattern shift165

The
::
As

:::::::::
discussed

::
in

:::::::
Section

:::
2.3,

:::::::::
describing

::::::
TLMs

::::
with

::::::::
quantiles

::::::
brings

::
a
:::::
focus

::
to

::::::
spatial

:::::::
patterns

::::
and

:::::::
regions

::
of

::::::
strong

::::::::
coupling,

:::::::
relative

::
to

::::::::::
neighboring

:::::::
regions.

::::
This

::::::::
approach

::::
can

::
be

::::::::
extended

::
to

:::::::
describe

:::
the

:
shifts in spatial patterns from M1 to

M2 can be characterized by the change of quantile
:::::
using

:::::::
quantile

:::::::
changes (∆q)rather than by the

:
.
::::
This

::
is

:
a
:::::
better

:::::::::
descriptor

::
of

:::::::
changes

::
in

::::::
spatial

:::::::
patterns

::::
than

:
∆|TLM|, because the latter only quantifies the values of ∆TLM

:::::
value

:::::::
changes

:
within

a specific grid cell, which cannot reflect the relative TLM change among grid cells. Moreover, within Cρ, Cσ , and Cσρ,170

the largest contributor (Eq. 8 and 9) to ∆|TLM| may not be the dominant factor for ∆q of specific grid cell.
:::
For

::::::::
example,

:::
one

::::
grid

:::
cell

::::
has

:
a
::::::::
increase

::::
from

:::::
|M1|::

to
:::::
|M2| ::::

with
:::::::::::::::::::::::::
[Cρ = 0,Cσ = 100,Cσρ = 20],

:::
but

:::::
other

::::
grid

::::
cells

::::
has

:
a
:::::::
increase

:::::
with

::::::::::::::::::::::::
[Cρ = 0,Cσ = 100,Cσρ = 0].

:::::::::
Obviously,

:::
the

::::::
specific

::::
grid

::::
cell

:::
has

:
a
::::::::
non-zero

::::
∆q.

::::::::
However,

:::
the

:::::::::
component

::::
that

:::::::::
determines

::
q

:::::::
increase

:
is
::::

not
:::
the

:::::
largest

::::::::::
contributor

::
to

:::::
∆|M |

:::::
(i.e.,

::::
Cσ),

:::
but

:::
the

::::
Cσρ.

:
The dominant factor of a specific grid cell must be the

one without which the quantile of the grid cell has the lowest change from TLM1 to TLM2.175

To demonstrate the dominant factor leading to ∆q for a specific grid cell, we calculate ∆q in four scenarios:

∆q = q|M2|− q|M1|

∆qρ− = q|M2|−Cρ − q|M1|

∆qσ− = q|M2|−Cσ − q|M1|

∆qσρ− = q|M2|−Cσρ − q|M1|. (10)180

∆q is the q shift of a specific grid cell from |M1| to |M2|. ∆qρ− is the q shift without the contribution of the ρ term (i.e., from

|M1| to |M2| −Cρ). Similar definitions are applied for ∆qσ− and ∆qσρ− . Then we can demonstrate the dominant factor for a

specific grid cell as:

fmin
(
∆qρ− ,∆qσ− ,∆qσρ−

)
, if ∆q > 0,

fmax
(
∆qρ− ,∆qσ− ,∆qσρ−

)
, if ∆q < 0. (11)185

fmin (fmax) is a function selecting the corresponding subscript of the term with the minimum (maximum) value.
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3 Results

3.1 Spatial pattern differences among diagnoses based on TLMM, TLME, and TLMD

By using
:::::
Using

:
ERA5 hourly data, we generated three homologous time series by varied

:::
with

:::::
three

:::::::
different temporal averaging

algorithms: monthly mean (M), entire-day-mean (E), and daytime-mean (D), which
:
.
:::::
These

:::::
three

::::
time

::::::
series were used to190

estimate the coupling strength between land and
::
the

::::
land

::::
and

:::
the

:
atmosphere based on the two-legged metrics (Eq. 3, see

Sect. 2.2). Figure 1 assesses the geographic consistency between the coupling strengths determined by the three different time

series by showing the fitting rate of a suite of comparisons at different levels of quantile thresholds (see Sect. 2.3).
::
In

:::
all

:::::::
seasons,

::
A

:::
has

::
a
:::::
much

:::::
lower

::::::
fitting

:::
rate

:::::
than

::
L,

::::
and

:::
the

:::::
fitting

::::
rate

:::
of

::
T

:::
lies

::::::::
between

:::
the

::::
two.

::::
This

::
is
::

a
::::::::
reflection

:::
of

:::
the

::::
long

:::::::
memory

:::::::
inherent

:::
in

:::
the

::::
land

:::::::
relative

::
to

:::
the

::::::::::
atmosphere.

:::
In

::::::::
addition,

:::::
fitting

:::::
rates

:::::
varies

::::
with

:::::::
season,

::::
and

:::
JJA

::::
has

:::
the195

:::::
lowest

::::::
value,

::::::::
indicating

::::
that

:::
the

:::::
largest

::::::
spatial

:::::::::
difference

::::::
occurs

::
in

:::
the

:::::::
summer

::
of

:::
the

::::::::
Northern

::::::::::
Hemisphere

:::::
where

:::::
most

::::
land

:
is
:::::::

located.
:
The median of fitting rates over all legs and seasons is 69.4% if the largest 10% of TLM values are considered

physically significant, demonstrating that the determination of L-A coupling strongly depends on the averaging time period

of the input time series. Most fitting rates decrease with the rise of the quantile threshold, and the lowest fitting rate is 15.2%

(AM vs. AD in JJA for the 0.95 quantile threshold), indicating that a minor
:::
only

::
a
:::::
small portion of the most strongly coupled200

regions (the top 5%) are simultaneously diagnosed by both D and M. In all seasons, A has a much lower fitting rate than L,

and the fitting rate of T lies between the two. In addition, fitting rates are generally lower during JJA than in other seasons.

Thus, to avoid a repetitive presentation of all results
::
To

:::::
focus

:::
on

:::
the

:::::
season

::::
and

:::::::
coupling

:::
leg

::::
with

:::
the

::::::
largest

:::::::::
sensitivity

::
to

::::
time

:::::
series

::::::::
averaging

:::::::
window, we select A in summer (JJA and DJF in the Northern and Southern Hemisphere, respectively) as an

example to explore the TLM differences in the following content.205

Figure 2a illustrates the differences of strong L-A coupling regions (90% quantile as the threshold) among AM, AD, and AE

during summer
::::
each

:::::::::::
hemisphere’s

:::::::
summer

::::::
season. Although the total overlap area

:::
area

:::
of

::::::
overlap

:
(AM∩AE∩AD, pale taupe

area in Fig. 2a) accounts for approximately 50% of strong coupling regions, vast disagreement among those diagnoses still

exists especially in the Northern Hemisphere. AM suggests strong coupling in some climate transition regions (such as the

western and southern US, central Asia, northern India, eastern Sahel, and southern Australia).AE highlights some mid-latitude210

regions, such as the southwestern and southeastern US, a part of the Sahara, Arabia, central India, and northwestern China.

However, as the most accurate diagnosis, AD demonstrates that the L-A coupling is stronger in
::
the

:::::::::::
southeastern

:::
US

::::
and

::
in

high latitudes, such as the boreal forest region of Canada, and parts of northern Eurasia. Interestingly, the fraction of AM∩AD

(1.7%) is much less than that of AM∩AE (7.6%) or AE∩AD (11.5%), implying that AE is the intermediate status between

AM and AD. Therefore, we investigate the two-stepped transitions: AM→AE (M vs E) and AE→AD (E vs D) in the following215

analysis.

Figure 2b shows the quantile transition of AM→AE in summer. Two types of regions are important. One is the green/yellow

regions showing quantile shifts within the strongest coupling group, which coincide with
::
the

:::::::
regions

:::::::::
highlighted

:::
by

:
Fig. 2a.

The other is the dark blue/red regions, indicating the largest quantile changes from AM to AE. Interestingly, the quantile drops

dramatically in the center of North America, the Sahel, and central Asia. On one hand, those AM diagnosed strongly L-A220
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coupled regions agree with the findings from Koster et al. (2004) that was based on six-day averaged data. On the other hand,

the coupling strength of those regions fades significantly when E-based diagnoses are applied. For instance, the quantile for

three selected sites in these areas (red triangles in Fig. 2b) drops from > 80% (AM) to < 30% (AE). It indicates that the L-A

coupling strength may be overestimated in those climatic transition zones if multi-day average data was applied. In the next

section, we will demonstrate the mechanism resulting in such vast differences between AM and AE.225

Figure 2c displays the quantile transition of AE→AD in summer. In general, the most significant quantile shifts occur in the

Northern Hemisphere and the strongly coupled regions are diagnosed further north by AD. The Sahara and Arabia contribute

the largest quantile drop of AE→AD. Some regions show strong coupling based on both AE and AD. However, their coupling

strength is overestimated byAE, such as the southwestern US and northern Mexico, India, and northwestern China. Key regions

with increasing A quantile include the eastern US, boreal forests of Canada, northern Eurasia, and northeastern China.230

3.2 M vs E

Through analyzing the formulas of TLME and TLMM (see Supplementary Text 1
::::
Sect.

:::
2.4), we demonstrate that both the σ

term and the numerator of the ρ term (denoted by N (ρ)) attenuate from TLME to TLMM. The decreasing rate relies on the

contrast between the variation of daily elements within the same month and the variation of daily elements across months.

Furthermore, we infer that the memory of specific E time series (i.e., ACF>75%) or paired E time series (i.e., CCF>75% and235

CCF<25% for positively and negatively correlated pairs, respectively) can be an indicator characterizing the coupling signal

loss from E to M(see Sect. 2.4).
:
.

Figure 3 verifies our deduction by showing high
:::::::::
statistically

:::::::::
significant

:
correlations between the coupling signal loss rate and

the indicator regarding L-A memory. Significant
:::::
These

::::::::
significant

:
correlation coefficients suggest that our indicator adequately

explains the attenuation of the coupling signal
:::
can

:::::::
capture

:::
the

:::::
global

:::::::
pattern

::
of

::::::::
coupling

:::::
signal

::::::::::
attenuation due to monthly240

smoothing. Specifically, regions with higher auto-correlation between individual days lead to a smaller loss of information

when a daily time series is converted to a monthly time series. In the negative pair case (Fig. 3d), the indicator sensitivity to the

signal attenuation may be weakened. The primary distractors (top and bottom-right regions isolated by blue lines in Fig. 3d) are

from areas with extreme climate conditions, such as Greenland, Sahara, and Arabia (Fig. 3f). Nevertheless, the moderately large

::::::::::
significance

::
of

:::
the

:
correlation coefficient suggests that the indicator is still able to reflect the attenuation process

::::::::
magnitude.245

Surprisingly, the indicator captures not only the signal attenuation, but also phase shifts (the negative quadrant in Fig. 3e).

Through Figure 3, we demonstrate that TLMM loses L-A coupling signal as a result of smoothing the E time series and the

memory of L-A states determines the attenuation rate
::::::::::
significantly

:::::
affect

:::
the

:::::::::
attenuation

:::::::
process. Although memory is another

facet of system coupling at the seasonal scale (Dirmeyer et al., 2009, 2016, 2018; Guo et al., 2011), it is not the main focus

of TLM diagnosing the inter-daily L-A interactions. Moreover, two types of memories
:::::::
memory (auto-correlation of a single250

variable and cross-covariance of coupled variables, Supplementary Eq. S8 and S9) jointly influence the TLMM in
::
the

:
form

of the quotient
::::
(Eq.

:
6
::::
and

::
7), which increases the uncertainty of TLMM reflecting the signal of local L-A memory. Thus, we

conclude that the diagnoses based on TLMM are obscured by the varied memories of L-A state, which is not clearly represented

9



in the TLMM and is not the primary feature to be dug out
::::::
leading

::
to

::
a

:::
bias

:::
in

:::
the

:::::::::
discovered

:::
hot

::::
spots

:::
of

::::
L-A

::::::::
coupling.

:::::
Some

::::::
regions

::::
with

:::::
strong

::::
L-A

::::::::
coupling

:::
but

:::
low

::::
L-A

:::::::
memory

::::
(i.e.,

:::::
large

::::
daily

:::::::::::
fluctuations)

::::
may

::
be

::::::::::
overlooked

::
by

::::::
TLMM.255

3.3 E vs D

The value of |LD| is larger than |LE| worldwide (Supplementary Fig. S2a), and the primary contributor is the variability (Cσ ,

Fig. 4a, see Sect. ??). But the universal increase of Cσ is not always the key driver of spatial pattern differences between

LE and LD (Fig. 4c). For instance, both LE and LD suggest a portion of middle and high latitude regions of the Northern

Hemisphere with strong soil moisture-sensible heat flux (θ–H) coupling (Supplementary Fig. S3). However, different from260

LE, LD suggests stronger coupling in North America than in Eurasia, which is primarily caused by the change of ρ (Cρ and

Cσρ). This difference is caused by the time averaging algorithm of the E time series, which considers one day from 0:00 to

24:00 based on Coordinated Universal Time (UTC). Thus, the E averaging period in the Western Hemisphere starts at night

and ends on the following day. The opposite is true for the Eastern Hemisphere (left panel of Fig. 4e). However, in a large

region of North America, the nighttime soil moisture θN is more correlated to the daytime soil moisture θN of the previous day265

than the next day (Supplementary Fig. S5
::
S4). Thus the entire-day average in the Western Hemisphere dramatically flattens the

inter-daily fluctuations of soil moisture, leading to an underestimation of ρ(θ,H) by E. The right panel of Figure 4e shows

that in a selected area of North America, the difference between E- and D- based ρ(θ,H) is significantly reduced if the θE was

calculated by averaging the θD and the following θN.

Figure 4b shows that both Cσ and the Cρ can be important for ∆|A| from E to D. Cσ is likely the main contributor in270

humid regions, while the Cρ dominates arid and semi-arid areas. Figure 4d illustrates that Cσ is the primary contributor to

quantile increase in most strong A regions (yellow areas in Figure 2c). However, in fact, their quantile increase is caused by

the quantile decrease in the Sahara and Arabia (Supplementary Fig. S2b), where A is negative (Supplementary
::
the

:
second row

of Fig. S4
::
S5). As AD is universally higher than AE, the coupling strength over the Sahara and Arabia is weakened.

Generally, the land surface is the source of heating for the lower atmosphere during the day. Driven by the surface temperature275

Ts, H heats the air and grows the height of the PBL (left panel of Fig. 4f), leading to positive ρ(H,T2m) and ρ(H,Plcl).

However, the climate of the Sahara and Arabia is likely dominated by another mechanism. Over the northern Sahara, for

instance, atmospheric advection seems to be the primary driver of inter-daily variations of near-surface atmospheric states (i.e.,

both T2m and D2m) instead of the surface (middle panel of Fig. 4f, see Supplementary Text 2). A key consequence is that the

T2m is no longer a passive variable, but drives the H fluctuation (right panel of Fig. 4f), resulting in a negative ρ(H,T2m) and280

further a negative ρ(H,Plcl). In fact, both the bottom-up heating and the advection-driven heating mechanisms (left and middle

panel of Fig. 4f) affect the climate variations in this region. However, the former only occurs during the daytime, while the

latter can exist throughout a day. In comparison to E, the D averaging approach can minimize the effect of the former in L-A

diagnoses.
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4 Discussion285

We demonstrate that the use of both monthly-mean and entire-day-mean daily data may result in biases in the diagnosis of

L-A coupling. By comparing the two-legged metrics (TLM) calculated by the monthly (M), the daytime-only-mean (D), and

entire-day-mean (E) time series, we found that the coverage discrepancy of their spatial patterns of strong coupling can be as

large as 84.8% (Fig. 1). The diagnostic uncertainties introduced through monthly smoothing (i.e., differences between TLME

and TLMM) are determined by the persistence or memory of local L-A states, which may result in the overestimation of L-A290

coupling strength in some climatic transition zones (Koster et al., 2004)
:::::
where

:::::::
climatic

:::::::::::
inter-monthly

:::::::::
variations

:::
are

:::::
larger

::::
than

:::::::::::
intra-monthly

:::::::::
variations. Furthermore, we have demonstrated that integrating nighttime information in L-A diagnoses (i.e.,

TLME) may incorporate confounding effects from other mechanisms.

::::::::
Although

::::::::::::
monthly-based

:::
and

::::::::::
daily-based

:::::::::
correlation

:::::::::
coefficients

:::::::
capture

:::
the

:::::::::::
synchronized

:::::::::
fluctuations

::
of

::::
two

:::::::
variables

:::::
from

:::::::
different

:::::::::::
perspectives,

::::
their

::::::
linkage

::
is
:::
yet

:::::::
unclear.

::
In

::::
this

:::::
study,

:::
for

:::
the

::::
first

::::
time

::
as

:::
far

::
as

:::
we

:::::
know,

:::
we

:::::::::::
demonstrate

::::
how

:::
the295

:::::::::
correlation

:
is
:::::::::
weakened

::
by

:::::::
monthly

:::::::::
smoothing

::::::::::::::
mathematically.

::::::::
Moreover,

:::
we

:::::::
propose

::::::::
indicators

:::::
based

:::
on

::
the

::::::::::::::
auto-correlation

:::::::
function

:::
and

::::::::::::::
cross-correlation

:::::::
function

::::::::::
representing

::::
L-A

:::::::
memory

::
to

::::::::::
characterize

:::
the

::::::::::
information

::::
loss.

::::
And

:::::
these

::::::::
indicators

:::
are

:::
able

::
to
:::::::

capture
:::
the

::::::::::
information

::::
loss

:::::::::
worldwide

:::::::::
regardless

::
of

::::::::::
geophysical

:::
and

:::::::::::
atmospheric

:::::::::::
complexities

::::
(Fig.

:::
3).

::
In

::::::::
addition,

::::
these

:::::::::
indicators

:::
first

::::
link

:::
the

:::::::
memory

:::
of

::::
time

:::::
series

::
to

:::
the

:::::::::
correlation

::::::::::
attenuation

:::
due

:::
to

::::::
coarser

::::::::
temporal

:::::::::
smoothing,

::::::
which

:::
has

:::::::
potential

:::::::::::
implications

::
in

:::::
broad

:::::
fields.300

:::
Two

:::::::::::
mechanisms

:::::::::
obscuring

::::
L-A

::::::::
diagnoses

:::
are

::::::::::
discovered

:::
for

:::
the

:::
first

:::::
time

::
in

:::
our

::::::
study,

:::::
which

:::::
again

:::::::
reflects

:::
the

::::::
crucial

::::
need

:::
for

::::::::::::::::
daytime-only-mean

::::
data.

:::::
First,

::::::::::
atmospheric

:::::::::
advection

::::
may

::::::::
dominate

::
the

:::::
daily

::::::::::
fluctuations

::
of

::::
both

:::::::
sensible

::::
heat

::::
flux

:::
and

:::
the

::::
LCL

::::::
height

::
in

:::
the

::::::
Sahara

::::
and

:::::::
Arabia,

:::::::
resulting

::
in
::

a
:::::::
spurious

::::::::
negative

::::::::::
relationship

:::::::
between

:::
the

::::
two.

:::
In

::::::::::
comparison

::
to

::::::::::
highlighting

:::::
these

:::::
trivial

:::::::
regions

::
by

:::::
daily

:::::::::
data-based

:::::::::
diagnosis,

::::::::::::::::
daytime-only-mean

::::
data

::::
can

:::::
make

:::
the

::::::::
diagnosis

:::::::
prevent

::
the

::::::
pitfall.

:::::::
Second,

::::
the

::::::::
traditional

::::::::::::::
entire-day-mean

:::::
daily

::::
data

::
is

:::::::
obtained

:::
by

:::::::::
averaging

::::
over

:::
24

:::::
hours

:::::
based

:::
on

:::
the

:::::
UTC.

::
It305

:::::::::
emphasizes

::::::
shifted

:::::::
diurnal

:::::
cycles

:::::::::
according

::
to

:::::::::
longitude,

::::::
which

::::
may

:::::
mask

::::::
signals

::
of

::::
land

:::::
state

:::::::::
fluctuation

::
in
::::

the
:::::::
Western

::::::::::
Hemisphere,

::::
and

::::::
provide

::::::::::
inconsistent

:::::::::::
comparisons

::::
with

:::
the

::::::
Eastern

:::::::::::
Hemisphere.

Land-atmosphere interactions have been demonstrated to be a key element in understanding climate dynamics (Berg et al.,

2017; Findell et al., 2015; Humphrey et al., 2021; Koster et al., 2004; Seneviratne et al., 2010; Taylor et al., 2012). Dif-

ferent from simple causality, the land and the atmosphere are highly coupled by multiple variables that interact with each310

other (Santanello et al., 2018; Seneviratne et al., 2010), which raises difficulties for the understanding and simulation of

relevant processes (Taylor et al., 2012, 2017). To investigate the complex coupled system, we must characterize its behav-

iors under various conditions and reveal relevant physical processes. Thus, a suite of metrics has been proposed to detect

the features of a specific process (Santanello et al., 2018) based on either physical or statistical perspectives (https://www.

pauldirmeyer.com/coupling-metrics). Moreover, these
:::::
These metrics are helpful to evaluate model performances

::::::::::
performance315

either against observations or through model inter-comparisons, and further support model improvements. However, it is

rare to find datasets providing the required complete fields of high-frequency (≤ 3 hours) outputs for L-A investigations.

For instance, daily data is generally the highest frequency output provided by numerous model inter-comparison projects
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(e.g., (Eyring et al., 2016; Warszawski et al., 2014)
::::::::::::::::::::::::::::::::::::
Eyring et al. (2016); Warszawski et al. (2014)), which is not adequate to di-

agnose the performance of Earth system models (ESMs) in simulating L-A interactions. Moreover, our study demonstrates320

that even daily data may overlook some important L-A patterns due to the effects
::::::::::
perturbations

:
of other processes. The

daytime-only-mean daily data used in our study is an average of time steps within the nine hours centered on local noon,

whereas the traditional entire-day-mean daily data is obtained by averaging over 24 hours based on the UTC. Thus the latter

emphasizes shifted diurnal cycles according to longitude, which may mask signals of land state fluctuation in the Western

Hemisphere, and provide inconsistent comparisons with the Eastern Hemisphere.325

Therefore, we call for careful attention to the requirements of high-frequency data in terms of diurnal cycle investigations,

whose diagnoses can further reinforce ESM skills in predicting future climate under different scenarios. Assuredly, storage is a

bottleneck for producing and sharing high-frequency data. Thus, we propose two approaches to balance the cost of storage and

the need for high-frequency data. One approach is to integrate process-based metrics within ESMs so that the metric values

themselves can be saved as model output, rather than calculated a posteriori (Findell and Eltahir, 2003a, b; Santanello et al.,330

2009; Tawfik and Dirmeyer, 2014). Therefore the diagnosis
::::::::
diagnostic information can be easily collected at the cost of only

a little extra computing time. The other is to generate different types of daily model output for different research purposes. In

addition to daytime mean values, separate averages throughout the local morning,
::::::
midday,

:
afternoon, and nighttime would be

interesting as well
::::::::
depending

:::
on

:::
the

::::::
specific

:::::::::::
perspectives

::
of

::::::
interest

:
(Taylor et al., 2012; Guillod et al., 2015). Such averaging

algorithms must depend on the local time rather than the UTC, and the varied daytime length according to latitude and time of335

year should be considered.

5 Conclusions

This study demonstrates that the use of monthly or entire-day-mean daily data may lead to uncertainties in diagnoses of land-

atmosphere (L-A) coupling strength and interactions. The arithmetic mean of time series including the nighttime weakens the

signal of L-A coupling. And the spatial heterogeneity of such weakening effects can alter the diagnosis of coupling strength340

based on the two-legged metrics. In addition, two phenomena were discovered, which can dramatically obscure the L-A diag-

noses if the entire-day-mean daily time series is applied.
::::
One

::
is

:
a
:::::::
spurious

::::::::::
relationship

:::::::
between

::::
flux

:::
and

::::::::::
atmosphere

:::::
states

:::
led

::
by

::::::::::
atmospheric

:::::::::
advection

::
in

::::::
Sahara

:::
and

::::::
Arabia.

::::
The

:::::
other

::
is

:::
the

:::::::::::::
underestimation

::
of

::::
L-A

:::::::
coupling

:::
in

:::
the

:::::::
Western

::::::::::
Hemisphere

:::
due

::
to

:::
the

::::::::
classical

::::
daily

:::::::::
averaging

::::::::
algorithm

:::::
based

:::
on

:::
the

:::::::::::
Coordinated

::::::::
Universal

:::::
Time

::::
that

:::::
twists

:::
the

:::::::::::
segmentation

:::
of

:::
the

::::::
diurnal

:::::
cycle.

:
Through this study, we call for attention to the requirements of high-frequency data for L-A diagnoses. L-A345

metrics can be either integrated within Earth System Models to avoid huge storage for high-frequency outputs or fed by out-

puts averaging over the sub-daily period of interest. Either of the approaches can improve the accuracy of L-A diagnoses with

minimal cost of computing time and storage space.
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Figure 1. Fitting rates of different paired comparisons as a function of quantile threshold by using global data (see Sect. 2.3). The subplots

represent different seasons. The three bands (separated by dashed lines) in each subplot indicate the land leg (L), the atmospheric leg (A),

and the total (T ). Within each band; the three rows represent three paired comparisons, they are (from top to bottom) M vs E, M vs D, and E

vs D.
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Figure 2. (a) Spatial patterns of significantAM,AE, andAD (top 10% quantile of absolute values) in summer
:::
(JJA

:::
and

::::
DJF

::
for

:::::::
northern

:::
and

::::::
southern

:::::::::
hemisphere

::::::::::
respectively). Euler diagrams show the colors for specific relationships (intersections, unions, or disjoints) among AM,

AE, andAD, and the areas of colored patterns also correspond to the fractions. (b)-(c) Quantile changes (b) fromAM toAE and (c) fromAE

to AD in summer. The quantile of the A is separated into ten bins. The color of the grid cell is explained by the legend, where x- and y-axes

indicate its quantile bins of specific A. The diagram has three aspects of information. First, warm (cold) colors indicate quantile increase

(decrease) from the original A (y-axis) to the final A (x-axis). Second, the smaller the quantile difference is, the more transparent the color.

White indicates no change of quantile bin. Third, as the shifts in the large quantile bins are the main focus, we highlight this part in green

and yellow. For shifts that occur within the low quantile bins, colors fade to gray. Three red triangles are samples from three regions where

A is dramatically underestimated by monthly smoothing.
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Figure 3. Scatter plot of coupling signal loss rate when moving from TLME to TLMM as a function of an indicator reflecting the memory of

L-A states. Points represent terrestrial grid cells around the globe. (a)–(c) Loss rate of the σ term as a function of averaged auto-correlation

function (ACF) with quantile larger than 75% (see Sect. 2.4). (d)–(e) Loss rate of the numerator of the ρ term (see Sect. 2.4) as a function

of averaged cross-covariance function (CCF) within a certain quantile range (shown by the subscript, see Sect. 2.4). Dark and green values

at the top right are Person and Spearman correlation coefficients for linear and nonlinear relationships, respectively. ∗∗∗ indicates p < 0.001.

(f) Patterns with values out of the main cluster (separated by two blue lines) in (e).
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Figure 4. Comparison between TLMD and TLME. Left panel: the land leg (L); right pane: the atmospheric leg (A). Top row: fractions of the

three components of ∆|M | (|MD|−|ME|, Eqs. 8 and 9, see Sect. 2.5). Red, blue, and green indicate contributions of fluctuation, correlation,

and joint of the two (|Cσ|, |Cρ|, and |Cσρ|), respectively (see Sect. 2.5). Middle row: primary contributor to pattern shift in TLM (see

Sect. 2.6). The legend contains three pairs of colors: red, blue, and green indicate Cσ , Cρ, and Cσρ as the primary contributor, respectively.

A darker (lighter) color indicates a quantile increase (decrease) from E to D. Left panel of (e): conceptual figure showing the combinations

of daytime and nighttime that make up the E time series in the Eastern versus Western Hemisphere. Right panel of (e): histograms of the

difference between D- and E-based ρ(θ,H). Data is from the rectangle region shown in (c). The blue histogram indicates the cases with the

original θE (an average of the nighttime soil moisture θN and the following daytime soil moisture θD). Red histogram indicates the cases with

the modified θE (an average of the θD and the following θN). Left and middle panel of (f): two mechanisms driving the A. Right panel of (f):

the definition of sensible heat flux H which reflects the temperature gradient from the surface to the near-surface (2m).
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The key driver of L-A coupling signal attenuation due to monthly smoothing

First, we introduce the algorithms of both trend and seasonal cycle removal applied to the original time series. Then, we check

that the detrended-seasonal removed monthly time series is equal to the monthly mean of the detrended-seasonal removed

daily time series. Finally, we separate the two-legged metrics (TLM) into the standard deviation term (σ) and the correlation

coefficient term (ρ), and investigate the key factor leading to the difference between monthly- and entire-day-mean-based TLM.10

Detrending and removal of the seasonal cycle. Let’s consider a daily time series xi. To calculate the two-legged metrics,

both trend and seasonality must be removed from the original values. To remove the long-term trend, we generate a linear

regression model between time and the variable of interest (e.g., xi), and then perform detrending by removing model-predicted

values from original values like15

ẋi = xi− g(i)

where i is day index and ẋi is detrended time series. g(i) is the linear regression function retrieved from the xi against time.

1



To remove the seasonal cycle, we estimate the seasonality by calculating the multi-year mean of the target value at a specific

date, and then perform the removal as

x̃d,y = ẋd,y −
1

Y

Y∑
i=1

ẋd,i20

where x̃d,y is the time series after removing the seasonality. The subscript (d,y) represents time in the form of date and year,

and Y is the number of years in the averaging.

Daily and monthly time series. Here we demonstrate that detrended-seasonal removed monthly time series is equal

to the monthly mean of detrended-seasonal removed daily time series. Let’s assume a detrended daily time series data ot

(t ∈ [1,D×M ×Y ]). Here D, M , and Y are the numbers of day in a month, the number of months, and the number of25

years, respectively. The time step t can be written in the form of {day,month,year} as t= {d,m,y} (d ∈ [1,D], m ∈ [1,M ],

y ∈ [1,Y ]).Then we can get the seasonal removed daily time series Ot as

Od,m,y = od,m,y −
1

Y

Y∑
k=1

od,m,k

The detrended monthly time series pt (t can be written as {m,y}) is

pm,y =
1

D

D∑
i=1

oi,m,y30

The seasonal removed monthly time series Pt is

Pm,y = pm,y −
1

Y

Y∑
k=1

pj,k

=
1

D

D∑
i=1

oi,m,y −
1

Y

Y∑
k=1

pm,k

=
1

D

(
D∑
i=1

oi,m,y −
1

Y

D∑
i=1

Y∑
k=1

oi,m,k

)

=
1

D

D∑
i=1

(
oi,m,y −

1

Y

Y∑
k=1

oi,m,k

)

=
1

D

D∑
i=1

Oi,m,y

Differences between M- and E-based TLMs. First, let’s have a look at the σ term of the TLMs. To keep the symbols

simple, we denote ai and bi (i is day index) as detrended and seasonal removed daily time series. Aj and Bj (j is the month

2



index) are corresponding monthly time series. As the long-term average of bi (i.e., b̄) is zero, the σb can be expressed as35

σb =

(
1

DMY

DMY∑
i=1

b2i − b̄2
) 1

2

=

(
1

MY

MY∑
i=1

(
b2i + b2i+1 + b2i+2 + ...+ b2i+D

D

)
j

) 1
2

D, M , and Y are the number of days, months, and years, respectively. The σB can be written as

σBj =

 1

MY

MY∑
j=1

B2
j − B̄2

 1
2

=

 1

MY

MY∑
j=1

(∑D
i∈j bi

D

)2
 1

2

=

 1

MY

MY∑
j=1

[
(bi + bi+1 + bi+2 + ...+ bi+D)

2

D2

]
j

 1
2

The difference between σb and σB is illustrated in Fig. ??. σb contains all squared bi (dark boxes in Fig. ??), but σB contains

averaged products of all combinations of bi within a month.40

It is not difficult to proof that D2
∑N

i=1 b
2
i ≥ (bi + bi+1 + ...+ bN )

2. The equal relation stands when bi = bi+1 = ...= bN ,

indicating all daily variables are the same within a month. Considering all months, the σB is larger if bi follows the Matthew

principle better, that is large values assemble together in specific months and small values assemble together in other months.

As bi is a time series of variables in a natural process. bi is somehow correlated with itself at a certain time scale, that is the

memory of bi. It implies that if bi is large, its neighbours (e.g., bi−1 and bi+1) are large as well. Thus, the memory (characterized45

by auto-correlation) may determine the information loss from σb to σB , if the σb is considered as the accurate information we

want.

The ρ term based on daily time series can be written as:

ρ(a,b) =

∑DMY
i=1 (ai− ā)

(
bi− b̄

)
σaσb

=

∑DMY
i=1 aibi
σaσb

.

ā and b̄ are mean of ai and bi, respectively. Similarly, we can get ρ(A,B) as50

ρ(A,B) =

∑MY
j=1

(
Aj − Ā

)(
Bj − B̄

)
σA ·σB

=
1

σAσB

MY∑
j=1


(∑

i∈j ai

)(∑
i∈j bi

)
D2

 .
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The ρ term contains σ terms, which has been discussed in the previous section. If we focus on the numerator, we can find that

the difference of numerator between E and M has a similar structure as the ρ difference between E and M. Thus, we deduct

that the cross-covariance between ai and bi is the key contributor to the difference of the ρ’s numerator between E and M.

Atmosphric
:::::::::::
Atmospheric advection-dominated climate regime in Sahara55

Unlike most other places, the atmospheric leg (A) across the Sahara region is negative (Fig. S5), suggesting a negative correla-

tion between the sensible heat flux (H) and the pressure at the LCL (Plcl). This atypical signal is present
:::::::
presents in all seasons

and may be caused by a special mechanism driven by atmospheric advection. Northerly winds from the Mediterranean Sea cool

and moisten the near-surface air of the Sahara region, while southerly winds warm and dry the surface (Fig. S6a). According to

ERA5, the correlation between E-based daily northward wind speed (v10m) and the 2-m air temperature (T2m) for ten-year JJA60

data at a sample grid cell in the Sahara is 0.63 (Fig. S6b), which is much larger than that of the eastward wind case (0.12, not

shown). On the other hand, the northerly winds show a high correlation with the 2-m absolute humidity (AH), as well (-0.67,

Fig. S6b). This suggests that atmospheric advection may determine the inter-daily fluctuations of near-surface temperature and

humidity rather than the sensible heat flux from the surface. One piece of evidence is that T2m fluctuates synchronously with

H in the Sahara, with Fig. S6c showing that the auto-correlation is strongest with no time lag between variables. If the T2m65

is driven by the surface through H then the peak correlation should occur with a few hours time lag between H and T2m, as

shown for an example European grid cell in Fig. S6d.
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Figure S1. Illustration
:::::::
Examples

:
of

::::::::
calculating

::::::
memory

:::::::
indicator

:::
for the difference between σb :

σ
::::
term and σB ::

for
::
the

::::::::
numerator

::
of
:::

the
::
ρ

:::
term

::::::
(N(ρ))

::
of

:::
the

::::::::
two-legged

::::::
metrics. Small boxes indicate daily time series

::
(a)

:::
The

:::::::::::::::::
entire-day-mean-based

::::
σPlcl:::

for
::::::
instance,

::
at
:::
one

::::
grid

:::
cell

::
we

::::
first

:::::::
calculate

::
the

::::::::::::
auto-correlation

:::::::
function

:::::
(ACF)

:
of bi:::

Plcl :::
with

:::
the

::::::::
maximum

:::
lag

::
of

::
30

::::
days. And large boxes

:::
Then

:::
the

:::
top

::::
25%

::::::
quantile

::
of

::::
these

:::::::::
correlation

::::::::
coefficients

:::
are

:::::::
selected

:::
(red

::::::
dashed

::::
lines indicate monthly time series Bj ::

the
::::::::
threshold)

:::
and

:::::::
averaged

::
as

:::
the

::::::
indicator

::::::::
ACF>75%. For month j (i.e., top middle box

:
b)

:::
For

::
the

:::::
paired

::
θ
:::
and

::
H , dark small boxes indicate components

::
we

:::::::
calculate

:::
the

::::::::::::
cross-covariance

:::::::
function

:::::
(CCF)

:::
with

:::
the

::::::::
maximum

:::
lag of σb :::

±30
::::
days.

:::
As

::
the

:::::::
ρ(θ,H)

:
is
:::::::

negative,
:::
we

:::::
select

::
the

::::::
lowest

:::
25%

:::::::::
correlation

::::::::
coefficients

:::
and

::::::::
calculated

:::
the

::::
mean

:
(Eq

::::::::
CCF<25%)

::
as
:::::::

indicator. ??
:
(c)

:::::
Similar

::
to
:::

(b),
:::

but
:::::::
selecting

:::
the

:::
top

::::
25%

::::::::
correlation

:::::::::
coefficients

::
to

::::::
calculate

:::
the

:::::::
indicator.

Maps of normalized two-legged metrics (TLMs) in JJA. Top to bottom panel: land, atmospheric, and total leg. Left to right

panel: monthly-, entire-day-mean-, and daytime-only-based TLMs. To make the TLMM, TLME and TLMD comparable, we

normalize specific TLM by ni = min(max(xi/q99.9%,−1),1), where ni indicates the normalized value of xi and the q99.9%70

is the 99.9% quantile of |xi|. Gray regions indicate associated correlation is not significant (p > 0.05)
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Figure S2. (a) Difference between |LD| and |LE| in summer (JJA and DJF for the Northern and Southern Hemisphere, respectively). (b) Same

as (a) but for the atmospheric leg (A).
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Figure S3. Spatial patterns of significant LM, LE, and LD (top 90% quantile of absolute values) in summer (JJA and DJF in the Northern

and Southern Hemisphere, respectively). Euler diagrams show the colors for specific relationships (intersections, unions, or disjoints) among

LM, LE, and LD, and the areas of colored patterns indicate the fractions of them as well.
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Figure S4. (a) Cross correlation
::::::::::::

Cross-correlation function between nighttime-only-mean (N) and daytime-only-mean (D) soil moisture (θN

and θD) in a grid cell located in Canada ([82.25◦W, 47.5◦N]). (b) Same as (a), but the grid cell is taken as a reference in Russia ([122.5◦E,

68.5◦N]).
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Figure S5.
::::
Maps

::
of

:::::::::
normalized

::::::::
two-legged

::::::
metrics

::::::
(TLMs)

::
in

:::
JJA.

:::
Top

::
to
::::::
bottom

:::::
panel:

::::
land,

:::::::::
atmospheric,

:::
and

::::
total

:::
leg.

:::
Left

::
to

::::
right

:::::
panel:

:::::::
monthly-,

::::::::::::::
entire-day-mean-,

:::
and

:::::::::::::::
daytime-only-based

:::::
TLMs.

:::
To

::::
make

:::
the

::::::
TLMM,

::::::
TLME :::

and
:::::
TLMD::::::::::

comparable,
:::
we

::::::::
normalize

::::::
specific

::::
TLM

::
by

:::::::::::::::::::::::::::
ni =min(max(xi/q99.9%,−1),1),:::::

where
::
ni:::::::

indicates
:::
the

:::::::::
normalized

::::
value

::
of

::
xi::::

and
::
the

::::::
q99.9% :

is
:::

the
::::::
99.9%

::::::
quantile

::
of

::::
|xi|.

::::
Gray

:::::
regions

::::::
indicate

::::::::
associated

:::::::::
correlation

:
is
:::
not

::::::::
significant

::::::::
(p≥ 0.05)

8



0 5 10 15 20 25 30

−
2

−
1

0
1

2

Number of day (−)

(a)
v10m (m.s−1)
T2m (K)

29
8

30
0

30
2

30
4

30
6

−6 −4 −2 0 2 4 6

29
5

30
0

30
5

31
0

v10m (m.s−1)

(b)

0.
01

0
0.

01
5

0.
02

0

T2m (K)
AH (kg.m−3)

−6 −4 −2 0 2 4 6

−
0.

6
−

0.
4

−
0.

2
0.

0
0.

2
0.

4

shf.h & t2m.h

Lag (2−hourly)

C
C

F
(H

,T
2m

)

(c) Sahara
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(d) Europe

Figure S6. An example of atmospheric advection driven L-A interaction mechanism. (a) Daily 10-m northward wind speed (v10m) and T2m

for the entire day in July 2015. (b) T2m and 2m absolute humidity (AH) as a function of v10m. The illustration is based on entire-day-mean

daily values in JJA from 2011 to 2020. (c)–(d) Cross-covariance between two-hourly H (positive up) and T2m based on two grid cells in

Sahara ([12◦E, 32.75◦N]) and in Europe ([12◦E, 47.75◦N]), respectively. y-axis indicates the correlation coefficients between T2m and a

time-shifted H time series. The x-axis indicates the time steps of the H shifted. Negative (positive) values indicate lagged (ahead).

Examples of calculating memory indicator for the σ term and for the numerator of the ρ term (N(ρ)) of the two-legged metrics. (a) The

entire-day-mean-based σPlcl for instance, at one grid cell we first calculate the auto-correlation function (ACF) of Plcl with the maximum lag

of 30 days. Then the top 25% quantile of these correlation coefficients are selected (red dashed lines indicate the threshold) and averaged as

the indicator ACF>75%. (b) For the paired θ and H , we calculate the cross-covariance function (CCF) with the maximum lag of ±30 days.

As the ρ(θ,H) is negative, we select the lowest 25% correlation coefficients and calculated the mean (CCF<25%) as indicator. (c) Similar to

(b), but selecting the top 25% correlation coefficients to calculate the indicator.
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