
Reply to Referee #2 comments on “Daytime-only-mean data can
enhance understanding of land-atmosphere coupling”
Zun Yin on behalf of co-authors

This paper demonstrates that the averaging approach employed by models (in this case, ERA5) in generating output

diagnostics has an impact on what can be inferred from those diagnostics in the context of land-atmosphere coupling

strength. Intuitively, such an impact makes perfect sense. I agree with the authors’ call to modeling centers to provide

relevant land-atmosphere coupling diagnostics at higher time resolution for improved analysis of land-atmosphere cou-

pling.

AR: Thank you so much for your review and comments. We very much appreciate your agreement with our vision. Please

check our point-by-point replies below. Referee’s comments are in bold; authors’ responses are in regular; and modifications

in the manuscript are in blue.

All this being said, I must recommend major revision for this paper. The analysis strategy used is far from intuitive,

and after reading the paper several times, I’m left unconvinced that the particular strategy used here is optimal (though

I don’t pretend to know what the optimal strategy is). It almost goes without saying that daytime-only data can get at

the two-legged metric better than full-day or full-month data; still, I can’t wrap my head around the idea that the

quantile approach is the best way to tell us what we want to know (see comment 2 below).

AR: The quantile analysis is selected because of two features of the two-legged metrics (TLM): (1) The coupling strength

estimated by TLM is reflected by the relative spatial difference rather than the numerical values of TLM, because there are not

fundamental threshold values that distinguish regions of strong coupling from regions of week coupling. The primary aim of

TLM is to discover hot spots where land and atmosphere are strongly coupled over the globe. Therefore, the spatial pattern

(i.e., relative difference) of TLM is more important than the sole values of TLM in grid cells. (2) The magnitudes of a TLM,

dominanted by the standard deviation term (i.e., ρ in Eq. 1), based on different timing periods are essential different. For

instance, the daily amplitude of entire-day-mean sensible heat flux is systematically smaller than that of daytime-only-mean

sensible heat flux. Therefore, the TLMs based on the raw values of daytime-mean (D), entire-day-mean (E), and monthly-mean

(M) cannot be directly compared to demonstrate how the spatial patterns shift from one diagnosis to another.

The quantile approach can reflect the spatial patterns of TLM and provide the possibility of patterns comparison between

TLMs based on different time smoothing data. In fact, other climate-relevant studies have successfully utilized the quantile

approach to compare estimates based on different algorithms. For example, because satellite-based and modeled estimations

are not suitable to compare to gauge measurements directly, the quantile approach was employed for relevant bias correction
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or downscaling in the form of a probability density function (PDF) (Guo et al., 2018; Vrac et al., 2012; Xie et al., 2017).

More importantly, the spatial differences highlighted by quantile analysis prompted the discovery of two physical mechanisms

obscuring L-A diagnoses in this study (Sect. 3.3 and Fig. 4 in the main text). These findings prove that the quantile analysis is

useful for spatial difference investigation in our case.

As the main concern of the L-A coupling is the daytime period, we assume that the D data are more reliable than the E and the

M. Again, we found two mechanisms disturbing the L-A coupling diagnoses. However, these disturbances can be dramatically

reduced if daytime-only data are utilized, confirming that the D is more reliable for L-A diagnoses than the E.

In the revision, we will explicitly explain the features of TLM and the reason for applying the quantile approach, as:

The TLMs are designed to highlight differences in L-A coupling strength between geographic regions and/or between different

times of year in a given region. Those relative differences require subjective decisions to determine the threshold values

separating regions of “strong” coupling from regions of weaker coupling. However, direct comparison of the numerical values

of TLMs based on different time windows of inputs (i.e., M, E, and D) is not appropriate for three primary reasons. First, the

magnitude of the TLMs is strongly affected by the σ term (Eq. 1), and this measure of variability can be quite different for

daytime and nighttime processes. For example, HD has much larger variance than the HE, which systematically enlarges the

AD. Additionally, strong L-A coupling signals can be positive or negative, suggesting that the change of TLM’s magnitude (its

absolute value) is the relevant quantity of interest rather than the magnitude of changes. Finally, L-A coupling processes are

not characterized by clear thresholds, but rather by relative spatial and temporal differences.

To overcome these limitations and remove any subjectivity in our assessment of coupling strength, we use quantile to assess

coupling strengths and quantify the spatial differences between TLMM, TLME, and TLMD.

1. Because the quantile analysis approach is not intuitive, further exposition in the Methods section would go a long

way toward making this study more comprehensible. Perhaps the authors have spent so much time thinking about the

analysis approach that it comes as second nature to them, but they should know that this won’t be the case for the

average reader. Significant additional explanation is needed. For example, I’m guessing that quantiles are based on all

land (non land-ice) points across the globe. True? Please clarify. Also, are the quantiles computed separately for each

season? If so, why are southern hemisphere JJA points mixed in with northern hemisphere JJA points in determining

the quantiles? One would think that seasonal variations in the diagnostics would be hemisphere-specific.

AR: The quantile analysis was applied over land defined by the ERA5 data (e.g., land-sea fraction larger than 0.5), so land-

ice is included. Moreover, the quantile analysis was firstly applied based on seasons (Fig. 1). After demonstrating the largest

discrepancies existing in summer, we conducted the following analysis focusing on summer only (JJA and DJF for Northern

and Southern Hemisphere, respectively). We will clarify these points in the text as:

We collected ERA5 output over land (land-ice included) every other hour from 1:00 UTC...

To focus on the season and coupling leg with the largest sensitivity to time series averaging window, we select A in summer

(JJA and DJF in the Northern and Southern Hemisphere, respectively) as an example to explore the TLM differences in the
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following content. Figure 2: (a) Spatial patterns of significantAM,AE, andAD (top 10% quantile of absolute values) in summer

(JJA and DJF for northern and southern hemisphere respectively).

2. Assuming that I do know what the authors are doing, I have some misgivings about what the quantile approach

can tell us. Would consideration of only northern hemisphere extratropical points (probably a much cleaner approach,

given seasonality) give the same results? Would a continental-scale analysis (e.g., North America only) give the same

results? There’s no way of knowing a priori; one can only speculate. Also, consider two highly hypothetical scenarios:

AR: We compared the quantile analysis over specific regions (i.e., the extratropical region in Northern Hemisphere and the

North America) and over the globe in Figure R1, R2, R3, and R4. Generally, there is no significant differences in terms of

spatial patterns in L-A strongly couple seasons. The patterns fade in DJF in these global analysis because the L-A coupling

is weak in Northern Hemisphere in winter. And the quantile analysis at global scale can help us to ignore those L-A weakly

coupling regions, which is more advanced than the regional analysis. All in all, the key results based on the quantile analysis

will not be very sensitive to changes in the analysis region or the quantile threshold.

a) The TLM values produced with all three averaging approaches are perfectly valid (i.e., are perfectly consistent

with each other) except over 20% of the Earth (defined by vegetation type, location on the globe, or whatever). In that

20%, the monthly averaging approach inappropriately assigns a very high coupling strength when the actual coupling

strength is very low. In this hypothetical example, the monthly averaging approach would look very bad at the high

extreme, as it should, but it would also look bad (20% off) everywhere else, when this example’s assumptions say that it

actually works just fine. This seems to be a basic limitation of the quantile approach.

AR: The key aim of this study and the quantile analysis is to demonstrate whether diagnoses based on different time smoothing

data can provide the same spatial patterns. As mentioned in the hypothesis, spatial difference will be found between M- and D-

based (for example) diagnoses by quantile analysis because monthly data fails reflect the high extreme (the top 20% in reality

is not fully equal to the top 20% in M-based TLM). Therefore, our aim has been reached. Specifically, through showing spatial

differences, we demonstrate that at least one of the diagnosis contains bias. According to our assumption (D-based diagnosis is

more accurate than E- and M-based diagnosis), we can conclude that the monthly averaging approach inappropriately assigns

coupling strength somewhere.

b) In a separate hypothetical example, suppose that 80% of the globe experiences no land-atmosphere feedback of any

relevance at all. In this case, quantile differences found between the averaging approaches within this lower 80% would

have no practical meaning, and there’d be no point, e.g., in plotting quantile changes.

AR: First, we demonstrated that L-A coupling existed in a broad regions where the ρ term in TLMs is significant (colored re-

gions in Fig. S4), unless the referee believes that a significant correlation does not mean coupling at all. Even if the assumption

holds, we provided spatial difference analysis (the fitting rate) based on different quantile thresholds (from 50% to 95% Fig. 1).

As there is no specific threshold to determine whether L-A feedback exists or not, we let the readers interpret the result by

selecting the threshold by themselves. Nevertheless, we think the top 10% TLMs indicates that the coupling reaches a certain

3



strength, which was used as the threshold in Figure 2a.

I’m not saying that these scenarios are realistic; I’m just saying that it’s easy to come up with scenarios that call into

question the understanding that can be gained from a quantile-based analysis. The authors should provide significant

discussion about the limitations of dealing with quantiles like this.

AR:In fact, the quantile analysis can reach our aim in both scenarios proposed above. True. Many scenarios can be proposed

to debate that the quantile analysis may over/underestimate coupling strength at a certain level. However, the key aim of the

quantile analysis is to demonstrate whether spatial differences exist between different diagnoses. Thus we think the quantile

analysis is suitable for our study unless a case showing that two diagnoses have the same spatial patterns but result in spatial

pattern differences in quantile analysis.

3. I disagree with the conclusion on lines 234-236, in reference to the Koster et al. study. That study did not use the

two-legged approach to quantify coupling; it simply quantified the impact of soil moisture variations on precipitation

variability at the multi-day time-scale. For the particular coupling characterization it was after, the calculation was

exact and was not limited in any way by daytime-only vs. all-day vs. multi-day considerations. The results of the present

study are best considered in relation to studies that use the two-legged metric.

AR: We agree with the referee that TLM and Koster’s approach provide L-A interaction diagnoses from different angles and

different temporal scales. We will modify the manuscript accordingly to focus on a broad topic regarding monthly smoothing,

as:

..., which may result in the overestimation of L-A coupling strength in some climatic transition zones where climatic inter-

monthly variations are larger than intra-monthly variations.

4. Section 2.4 came off as opaque to me. What does the “top 25% quantile” refer to - if it refers to the ACF values, why

are the lower values being ignored? Why is the ratio of the sigmas relevant? What is meant by “numerator of the rho

term”? Why is the relevance of the ratio of the N terms? Also, though I can kind of guess what are the authors getting

at when they talk about signal attenuation in the first place, I can’t be sure. A major rewrite is needed here.

AR: We apologize for failing to include relevant details in the main text. The relevant information was available in the supple-

mental materials, but we fully agree with the author that the main text should be interpretable without needing to refer to the

supplement. We will move this material to the main text in the revision. Moreover, the σM/σE does not indicate attenuation rate

but the rate of information maintenance. In the revised manuscript, “attenuation resistance” is used to replace “attenuation rate”.

In Sect. 2.4, we will add,

The TLMs contain a correlation term ρ and a variance term σ (Eq. ??). First, we investigate the difference of the σ term

between D- and M-based TLMs. To keep the symbols simple, we denote ai and bi (i is day index) as detrended and seasonal

removed daily time series. Aj and Bj (j is the month index) are corresponding monthly time series. As the long-term average
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of bi (i.e., b̄) is zero, the σb can be expressed as
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σb contains all squared bi, but σB contains averaged products of all combinations of bi within a month. It is not difficult

to proof that D2
∑N

i=1 b
2
i ≥ (bi + bi+1 + ...+ bN )

2. The equal relation stands when bi = bi+1 = ...= bN , indicating all daily

variables are the same within a month. Considering all months, the σB is larger if bi follows the Matthew principle better, that

is large values assemble together in specific months and small values assemble together in other months. As bi is a time series

of variables in a natural process. bi is somehow correlated with itself at a certain time scale, that is the memory of bi. It implies

that if bi is large, its neighbours (e.g., bi−1 and bi+1) are large as well. Thus, the memory (characterized by auto-correlation)

may determine the information maintained from σb to σB , if the σb is considered as the accurate information we want.

The ρ term based on daily time series can be written as:
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ā and b̄ are mean of ai and bi, respectively. Similarly, we can get ρ(A,B) as
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The ρ term contains σ terms, which has been discussed. If we focus on the numerator, we can find that the difference of

numerator between E and M has a similar structure as the ρ difference between E and M. Thus, we deduct that the cross-

covariance between ai and bi is the key contributor to the difference of the ρ’s numerator between E and M.

According to our deduction, we infer that the memory of the L-A state (i.e., the auto-correlation for a single variable and the

cross-covariance for paired variables) can characterize the coupling signal attenuation due to the monthly smoothing of daily

time series. Thus, for a single variable (i.e., the σ term), we calculate its auto-correlation function (ACF) with a maximum lag

30 days (within a month). Then we average the ACF values belonging to the top 25% quantile as an indicator of the attenuation

resistance. And the attenuation resistance is characterized by the ratio of σM to σE. For paired variables (i.e., the numerator

of the ρ term N(ρ), e.g., N(ρ) =
∑DMY

i=1 aibi in Eq. R3), we calculate the cross-covariance function (CCF) instead, but with

a maximum lag ±30 days. For negatively correlated variables, we select the mean of the lowest 25% CCF as the indicator.

For positively correlated variables, we select top 25% as the quantile threshold as the ACF case. Instead of N(ρM)/N(ρE), we

use N(ρM)/(|N(ρE)|+ |N(ρM)|) to characterize associated signal attenuation resistance, in order to avoid uncertainties due to

phase shift from N(ρE) to N(ρM).

5. The correlations in Figure 3 are undoubtedly statistically significant, but they are far from “high” (line 185) or even

“moderately large” (line 191). Those in panels (a) and (b) indicate only a 10% explanation of variance, and those in

the remaining panels indicate well less than half the variance explained. The text, though, presents these fields as clear

indications that the authors have identified the main controls on various quantities (“Significant correlation coefficients

suggest that our indicator adequately explains the attenuation...”). To be honest, I got very little out of Figure 3 and the

associated discussion.

AR: We agree that some adjectives such as “high”, “moderately large” are subjective. In the revised manuscript, we will use

“significant” instead. Through Figure 3 we, for the first time as far as we know, demonstrated why information is missing

through monthly smoothing and how to characterize the degree of missing by an understandable concept. As far as we knew,

what the difference between daily correlation and monthly correlation represent has not been clearly answered yet. Through

analyzing their formulas (see our reply to the previous comment), we demonstrate how the correlation information is weakened

by monthly smoothing mathematically. Based on this analysis, we propose the indicator ACF% representing L-A memory to

characterize the information loss. Although the indicator is not perfect, it is the best way to compress memory information (an

array of correlation coefficients) into one value currently. More importantly, Figure 3 shows that the indicator is able to capture

the information loss worldwide regardless of geophysical and atmospheric complexities. In addition, this indicator firstly links

the time series memory to the correlation attenuation due to coarser temporal smoothing, which has potential implications in

broad fields.

In the revision, the novel indicator and its advantages will be added in the discussion, as:

Although monthly-based and daily-based correlation coefficients capture the synchronized fluctuations of two variables from

different perspectives, their linkage is yet unclear. In this study, for the first time as far as we know, we demonstrate how the

correlation is weakened by monthly smoothing mathematically. Moreover, we propose indicators based on the auto-correlation
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function and cross-correlation function representing L-A memory to characterize the information loss. And these indicators are

able to capture the information loss worldwide regardless of geophysical and atmospheric complexities (Fig. 3). In addition,

these indicators first link the memory of time series to the correlation attenuation due to coarser temporal smoothing, which

has potential implications in broad fields.

6. Would it be appropriate to at least mention that the daytime-only diagnostics may produce different results from

midday-only diagnostics (e.g., 10AM-2PM)? Presumably not much coupling occurs at dusk and dawn. I’m not suggest-

ing that midday diagnostics be examined in this paper; it’s just that the overall problem of optimal averaging time goes

beyond simply comparing all-day diagnostics to daytime-only diagnostics.

AR: Thanks for the proposal. We agree that the diagnoses based on different sub-time periods of the daytime may have sig-

nificant differences. However, in comparison to the vast differences between the daytime and the nighttime, the diagnostic

difference induced by different sub-time periods of the daytime is not the primary question, but is worth exploring in the

following studies. Moreover, it is difficult to assume that midday-only data can further improve the diagnostics, because the

key period of interest may vary with the specific process. For instance, the soil moisture in early morning may be coupled

with the convective precipitation in the afternoon or early evening. Therefore, the optimal averaging time should be carefully

investigated according to the process of interest.

In the revision, we will modify the text, as:

In addition to daytime mean values, separate averages throughout the local morning, midday, afternoon, and nighttime would

be interesting as well depending on the specific perspectives of interest (Taylor et al., 2012; Guillod et al., 2015).
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Figure R1. Spatial patterns of significant LM, LE, and LD (top 10% quantile of absolute values) of different seasons in the extratropic region

of the Northern Hemisphere. Euler diagrams show the colors for specific relationships (intersections, unions, or disjoints) among LM, LE,

and LD. (a), (b), (e), and (f) are screenshots from the global quantile analysis. (c), (d), (g), and (h) are based on quantile analysis of the

illustrated region.
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Figure R2. Spatial patterns of significant AM, AE, and AD (top 10% quantile of absolute values) of different seasons in the extratropic region

of the Northern Hemisphere. Euler diagrams show the colors for specific relationships (intersections, unions, or disjoints) among AM, AE,

and AD. (a), (b), (e), and (f) are screenshots from the global quantile analysis. (c), (d), (g), and (h) are based on quantile analysis of the

illustrated region.
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Figure R3. Spatial patterns of significant LM, LE, and LD (top 10% quantile of absolute values) of different seasons in the North America.

Euler diagrams show the colors for specific relationships (intersections, unions, or disjoints) among LM, LE, and LD. (a), (b), (e), and (f) are

screenshots from the global quantile analysis. (c), (d), (g), and (h) are based on quantile analysis of the illustrated region.
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Figure R4. Spatial patterns of significant AM, AE, and AD (top 10% quantile of absolute values) of different seasons in the North America.

Euler diagrams show the colors for specific relationships (intersections, unions, or disjoints) among AM, AE, and AD. (a), (b), (e), and (f) are

screenshots from the global quantile analysis. (c), (d), (g), and (h) are based on quantile analysis of the illustrated region.
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