
Response to the editorial comments for the Manuscript entitled “On Parameter Bias in 

Earthquake Sequence Models using Data Assimilation.” 

 

The authors are thankful to the editor for his insightful guidance in making us improve the 

quality of the manuscript and for considering us for possible publication in the esteemed journal 

of ‘Nonlinear Processes in Geophysics’. The authors are thankful to the reviewers for their 

helpful comments. Following the comments of the reviewers, the necessary changes are made 

in the revised manuscript. 

 

Comments from Reviewer 1  

 

 

Comment 1: 

Synthetic observations are produced by sampling from the synthetic truth and adding an 

observational error from a Gaussian distribution with standard deviation. However, the real 

observations could be affected by instrumental noise, missing data, spikes, etc, and a short 

time step of four time units may no longer be applicable. I understand that the authors lack 

real observations. But they should at least discuss this limitation in Section 5. 

 

 

Response: 

The authors thank the reviewer for the comment. Indeed, the assumption of data availability 

(once every four-time units) and the assumptions on the standard deviation and distribution of 

the observational error may not be valid when assimilating real data. We have mentioned this 

as a limitation in our discussion (page 21, line 348-356) as: 

 

An additional point worth mentioning is the use of synthetic observations for fault displacement 

and velocities for data assimilation in this study. In realistic applications, the assumptions that 

we have considered with respect to data assimilation frequency and the standard deviation and 

distribution of the observational errors may not be valid. However, 

if we know the distribution of the measurement errors, we can use that information in choosing 

the relevant likelihood function that can greatly affect our fault estimates. Fault shear stress 

observations are usually not available, and if they are, they are subject to large errors. In 

contrast, fault velocities can be observed fairly accurately using GPS, as discussed by Van 

Dinther et al. (2019), who demonstrate that stress measurements are useful despite of their 

large errors. Following van Dinther et al (2019), we emphasize the need for additional 

sensitivity studies to understand the implications of data gaps, outliers, and instrumental noise 

before our proposed methods can be used on real data. 

 

 

 

Comment No. 2: 

 

In introduction, please review some previous studies where either the frictional parameters 

have been estimated as part of the data assimilation or assumed to be perfectly known. 

 

Response: 

The authors have included some references which estimates frictional parameters using data 

assimilation and are mentioned in the manuscript as (page 2, line 35-37): 

 



‘On the other hand, Van Dinther et al. (2019) and Diab-Montero et al. (2022) assumed the 

frictional parameters to be known and used an ensemble Kalman filter to estimate the fault 

states.’  

 

Comment No. 3: 

 

Section 2.1: Please specify how to quantitively determine the observation noise error. Please 

review some data assimilation frameworks and explain the reason why this framework is 

selected. 

 

Response: 

Observational errors can be determined by comparing observations of velocity or displacement 

with independent observations of these variables. This text is added to the manuscript. In the 

introduction, we motivate the choice for using ensemble-based data assimilation methods 

especially particle filters (page 2, line 38-44). For a further review of data assimilation 

frameworks, we refer the reader to the recent book by Evensen et al (2022). This reference has 

been added to the respective text in the introduction as (line 40-41, page 2): 

 

For further discussion of available data-assimilation methods, we refer the reader to Evensen 

et al. (2022). 

 

 

Comment No. 4: 

 

Equation 4: What does j mean? Is it a typo? 

 

Response: 

The authors appreciate the reviewer’s comments. It is a typo and it should be i which is the 

number of realization. It has been corrected in the manuscript. 

 

Comment No. 5: 

Line 89: In the presence of filter degeneracy, how to guarantee that one or few particles with 

high weight are sufficiently representative as the input? 

 

Response: 

In degeneracy, the weight of one particle is close to one while the weight of all the other 

particles is close to zero. In this case, a single particle represents the filtered distribution, which 

results in an extremely poor approximation. Hence it is important to avoid filter degeneracy by 

(i) adding jitter in the prior distribution and (ii) using resampling step in particle filter. In the 

present work, we have included both to avoid filter degeneracy. 

 

Comment No. 6: 

Line 96: The sequential importance resampling process duplicates particles with high weight. 

Please explain its physical meaning in data assimilation. 

 

Response: 

The authors appreciate the reviewers' comments. In this implementation of the particle filter, 

the sequential importance resampling attributes higher weight to particles that are closer to the 

observations. This is done by multiplying the prior by the likelihood, which can be considered 

a weight function (in this study, a Lorentz function). Then, in the resampling step, the 



importance resampling process removes those particles which have low weight in the 

distribution and thereby retains only those particles which have a higher weight. These are then 

duplicated according to their weight, in such a way that the number of particles remains 

constant. This ensures an approximation of the prior distribution that is less sensitive to particle 

degeneracy. We have mentioned this in text from line 102-105 in page 4. 

 

 

Comment No. 7: 

Section 2.2: The model of forwarding simulation is important to data assimilation. In this study, 

a zero-dimensional (0D) model is considered. However, 1D, 2/3D models are also available. 

Please specify the reason why 0D model is selected. More details of its pros and cons are 

expected. 

 

Response:  

The authors appreciate the comment of the reviewer. We have explained the reason of choosing 

a simplified model for this study in detail from line 357-366 (page 21) in the discussion of the 

manuscript as: 

 

It is also very important to highlight the reason behind selecting a zero dimensional (0D) model 

for this study.  Simplified fault slip models are computational efficient tools that help us to 

understand the physics behind the earthquake dynamics. A study by Li et al. (2021) compares 

the simulation of earthquakes in 0D, 1D, 2D, and 3D models and finds that lower- 

dimension models (0D and 1D) qualitatively represent the same dynamics as 2D and 3D 

models. Although 0D models cannot simulate the full complexity of the earthquake physics, 

they have the advantage that they are computationally inexpensive and provide the user with 

a tractable conceptual description of earthquake physics and the importance of 

the friction parameter.  In our case, we were interested in investigating the effect of frictional 

parameter  bias  on  the estimated fault states in earthquake cycle models. Hence in the present 

work, we investigated a simplified version of 

a Burridge-Knopoff spring-block slide model in a simplified 0D form. Eventually, to accurately 

simulate  the  behavior of real earthquake faults, 1D, 2D and 3D simulation models will be 

required (e.g., Li et al., 2021). 

 

Comment No. 8: 

Line 149: What if in the region a-b>0? 

 

Response:  

The parameter combination (a – b) < 0 corresponds to steady state slip rate-weakening 

properties causing an unstable rapid slip (frictionally unstable), while (a – b)> 0 corresponds 

to the steady state velocity- strengthening behaviour, causing a stable slip (frictionally stable). 

Since we are primarily interested in frictionally unstable earthquake cycles, we have focused 

on parameter combination for (a – b) < 0. According to Ruina (1983), if a velocity-

strengthening system experiences a slip instability, the motion will be rapidly dampened down 

to a state of stability. A velocity-weakening system, on the other hand, will no matter how 

carefully driven, always exhibit growing oscillations and reach a state of regular stick slip 

(Scholz (2019)). The velocity-strengthening behaviour is thus intrinsically stable. For this 

reason, we have not investigated the case of (a-b) > 0 in this study.  

Comment No. 9: 



Section 3.2: The assimilation step may have an important effect on the results. In this study a 

very short time step is adopted. Please provide more discussions on its effect. If a longer time 

step is used, can a small parameter bias still be compensated?  

 

Response:  

 

Having large assimilation steps can also have a detrimental effect on the data assimilation 

process as it can miss characteristic variations of the earthquake cycle. A parameter bias can 

have a substantial effect on the evolution of the state variables, which may be difficult to correct 

if the assimilation step is large. Hence a short time step is to be chosen that allows the 

assimilation to capture the important characteristics of the earthquake cycle. 

 

Comment 10: 

Discussion: I appreciate the authors’ efforts in stating the limitations of this study, but here I 

expect more discussion on their results and comparison with previous studies (without data 

assimilation). 

 

Response:  

 

We extended the discussion with a section that discusses our results in relation to previous 

studies without data assimilation (line 330-339, page 21)  as: 

 

Typically, earthquake forecasting is approached in a probabilistic manner (e.g., Marzocchi et 

al., 2017). Kinematic inversions of earthquake global positioning system (GPS) data have been 

used to estimate frictional properties in afterslip areas (Miyazaki et al., 2004; Hsu et al., 2006), 

but not for estimation of the earthquake dynamics themselves. As outlined by Van Dinther et al 

(2019), data assimilation for earthquake sequences has the advantage that it can take into 

account measurement and model errors, non-Gaussian probabilities and sequential updating 

as data becomes available. The results of this study demonstrate how, for a highly simplified 

representation of earthquake cycles, non-linear data assimilation provides a means to account 

for both measurement errors and parameter biases. It also highlights how observations can be 

included as they become available. While particle filters are not computationally efficient, they 

can propagate the full error distribution which makes them attractive for estimation and 

forecasting of highly nonlinear processes like earthquake generation. 

 
 

 

Comments from Reviewer 2  

 

 

Comment 1: 

The study uses particle filter as the data assimilation method to solve the problem. But it 

would be good to inform the reader which other data assimilation methods were previously 

used in studies related to earthquake modelling and if those were successful. If not, which 

were the main issues and why a particle filter would suit better in this problem compared to 

those. This would mainly situate the reader on the importance of your choice on the method 

for this  study. 

 

Response: 

https://earth-planets-space.springeropen.com/articles/10.5047/eps.2013.08.002#ref-CR19
https://earth-planets-space.springeropen.com/articles/10.5047/eps.2013.08.002#ref-CR7


Several different data assimilation methods have been used previously for estimating states for 

earthquake models. It has been reported in the manuscript (line 25-27, page 2) as: 

 

‘Few studies have introduced data assimilation for the purpose of earthquake forecasting (e.g., 

Van Dinther et al., 2019; Werner et al., 2011; Hirahara and Nishikiori, 2019; Hori et al., 2014; 

Llenos and McGuire, 2011)’. 

 

 

However, the data assimilation methods used in these references have not been explicitly 

mentioned in the manuscript. This has been modified as follows from line 32-40 in Page 2 as: 

 

Several studies have considered uncertainties in parameters using data assimilation in 

earthquake-cycle models (e.g. Kano et al., 2010, 2013; Fakuda et al., 2009; Werner et al., 

2011). Kano et al. (2013) and Kano et al. (2010) used an adjoint-based data assimilation 

method to estimate frictional parameters of afterslip. Fakuda et al. (2009) used a Markov chain 

Monte Carlo (MCMC) based  method for estimating fault friction parameters. On the other 

hand, Van Dinther et al. (2019) and Diab-Montero et al. (2022) assumed the frictional 

parameters to be known and used an ensemble Kalman filter to estimate the fault states. In our 

present study, we have used particle filters which is also an ensemble based data assimilation 

method and is highly efficient for non-linear systems with a non-Gaussian prior distribution. 

Ensemble Kalman  filters are not very efficient in encountering non Gaussian characteristics. 

This is the reason for choosing a particle filter for this study. 

 

Comment 2: 

Equations 4 and 5: What does j mean? 

 

Response: 

The authors are thankful to the reviewer for the comment. J is a typo, and it should be i which 

is the number of particles or realization. It has been corrected in the manuscript. 

 

Comment 3: 

The authors use a Lorentz function instead of a Gaussian to prevent filter degeneracy. In 

addition, a SIR step is used to further avoid this issue. Were these enough to avoid filter 

degeneracy or the system still presents the problem? 

 

Response: 

The authors are thankful to the reviewer for the comment. Yes, the system did not face any 

filter degeneracy issues. We introduce a resampling step known as sequential importance 

resampling (SIR). This resampling discards particles with very low weights, while duplicating 

particles with high weights. Additionally, we introduced jitter in the prior distribution to avoid 

degeneracy. 

 

 

Comment 4: 

The authors mention that real earthquakes are far from being periodic but, as they have 

considered a 0D model, their system generates periodic cycles. I wonder how far from a real 

state this 0D model is and why this study has not used a 1D model, in which at least a 

minimum spatial dimension would be considered. It will be interesting to address in the 

manuscript why the 0D model was chosen in this case. 

 



Response: 

The authors are thankful to the reviewer for the comment. We have addressed this comment by 

adding a paragraph on the use of 0D, 1D and higher models for studying earthquake cycles. It 

has been mentioned in the discussion as (line 357-366 in page 21 in text): 

 

It is also very important to highlight the reason behind selecting a zero dimensional (0D) model 

for this study.  Simplified fault slip models are computational efficient tools that help us to 

understand the physics behind the earthquake dynamics. A study by Li et al. (2021) compares 

the simulation of earthquakes in 0D, 1D, 2D, and 3D models and finds that lower- 

dimension models (0D and 1D) qualitatively represent the same dynamics as 2D and 3D 

models. Although 0D models cannot simulate the full complexity of the earthquake physics, 

they have the advantage that they are computationally inexpensive and provide the user with 

a tractable conceptual description of earthquake physics and the importance of 

the friction parameter.  In our case, we were interested in investigating the effect of frictional 

parameter  bias  on  the estimated fault states in earthquake cycle models. Hence in the present 

work, we investigated a simplified version of 

a Burridge-Knopoff spring-block slide model in a simplified 0D form. Eventually, to accurately 

simulate  the  behavior of real earthquake faults, 1D, 2D and 3D simulation models will be 

required (e.g., Li et al., 2021). 

 

 

Comment 5: 

I suggest different colors for the trajectories in the phase diagram in Figure 2, as it is hard to 

distinguish between them. 

 

Response: 

This comment has been incorporated and the color has been changed in the figure. 

 

 

Comment 6: 

4 time steps in this model correspond to which portion of a seismic event? Please, describe it 

in the manuscript to situate the reader on the frequency of the assimilation steps, as 

earthquake cycles may not be a subject well understood by many. 

 

Response: 

Having large assimilation steps can also have a detrimental effect on the data assimilation 

process as it can miss characteristic variations of the earthquake cycle. A parameter bias can 

have a substantial effect on the evolution of the state variables, which may be difficult to correct 

if the assimilation step is large. Hence a short time step is to be chosen that allows the 

assimilation to capture the important characteristics of the earthquake cycle. An additional text 

has been added in the manuscript (line 207-210, page 9) to educate the readers behind selecting 

this time step as follows: 

 

Large assimilation steps can adversely affect data assimilation, as they can miss variations in 

earthquake evolution. Thus, it is necessary to choose a short time step. In the present study, 

observations were sampled at 4 time units with the standard deviation of observation error as 

σβ is 0.6 for fault shear stress and 1.15 for slip velocity observations. 

 

Comment 7: 



Have you tested the impact of the use of less particles in the filter? If so, it would be good to 

share these results as well. 

 

Response: 

The authors are thankful to the reviewer for the comment. Yes, the authors have used 50 and 

100 particles for this study. However, using a smaller number of particles, the system faces 

filter degeneracy issues. The authors added a sentence to describe these results. We have 

addressed this comment by adding the following text in the manuscript (line 340-347, page 21) 

as: 

 

Another point of attention is the selection of the number of particles required for a correct 

sampling of the prior.  On the one hand, increasing the number of particles can improve 

estimation accuracy but limited computational resources can make this impractical. On the 

other hand, having a lower number of particles increases the risk of filter degeneracy. In this 

study, we initially used 50 and 100 particles, but we increased the number of particles 

to 1000 to avoid degeneracy. Realization of 1000 particles may be computationally expensive 

for models that are more complex than the model used here.  Improved sampling techniques, 

for example using a proposal density function, or using a particle flow (e.g. Hu and Van 

Leeuwen, 2021) could help to reduce computational costs while maintaining the advantage of  

a nonlinear filtering method. 

 

 

Comment 8: 

How do the orders of magnitude of the observation errors compare to the states? Are those 

the typical magnitude of the real measurement errors? 

 

Response: 

The observational errors of the synthetic observations used in the study have been mentioned 

in the text (line 215-216, page 10).  To obtain error estimates for each measurement type, the 

method explained in the study by Van Dinther (2019) were used where latest state-of-the-art 

values from the literature were considered. These errors were then downscaled to our model 

setup using the analogue scaling relation developed in Corbi et al.2013 (Van Dinther (2019)).  

 

 

Comment 9: 

It would be good to explain in the label of Figure 5 what each of the lines in the pdf 

represent. 

 

The red line represents the posterior pdf, the grey line represents the prior pdf, the magenta 

line shows where the observation stands, and the black line is the true state. This explanation 

has been added in the manuscript. 

 

Comment 10: 

The authors mention that by using different assimilation settings, it is possible to inflate the 

ensemble. But it seems that the ensemble spread is not exactly the problem, as the state-

parameter estimation presents much better results than the other tests which have an 

improved ensemble spread. Can the authors explain more clearly the effects of the spread on 

this specific seismic system? 

 

Response: 



The authors are thankful to the reviewer for the comment. In the case of state parameter 

estimation, the prior distribution contains particles with different parameter values (covering 

the entire spectrum from  = 0.1 to 0.8) as shown in Figure 9 (a-e). Hence for the data 

assimilation to be effective there is no need to inflate the ensemble spread to cover the 

(observation or) the true state. As seen from Fig 9, the range of the prior encompasses the shear 

stress value of the observation. On the other hand, in state estimation, the parameter  is 

constant, which would require inflation of the ensemble to encompass the value of the 

observation. 

 

Comment 11: 

Figure 8b): What happens after nearly every 250 time steps, in which the periodic behaviour 

is lost by a double peak? What is the influence of the double resampling in these patterns? 

 

Response: 

In Figure 8b, which represents the double resampling experiment, we observe a double peak 

at 250 time steps. The data assimilation analysis does not fit the observations well. A similar 

mismatch is observed after approximately 500 time steps in this experiment. We thank the 

reviewer for pointing this out. At these moments, the double resampling effectively increases 

the spread in the particles to such an extent, that the constraint to the shear stress observations 

becomes less strong. The double resampling is not as effective in increasing the ensemble 

spread as the increased model error is (Fig 8a). We added a sentence to the text to describe 

this. We have addressed this comment by adding text as follows in the manuscript (line 269-

274, page 17): 

 

It is also important to highlight that in Fig.8b, which represents the double resampling 

experiment, we observe a double peak at 250 time steps. At this time step, the data assimilation 

analysis does not fit the observations well. A similar mismatch is 

observed after approximately 500 time steps in this experiment. At these moments, the double 

resampling effectively increases the spread in the particles to such an extent, that the constraint 

to the shear stress observations becomes less strong. Hence, we can conclude that though 

double resampling can be useful in retaining important particles in the prior distribution, it is 

not as effective in increasing the ensemble spread as the increased model error (Fig.8a). 

 

 

Comment 12: 

Still on Figure 8, it seems that Fig 8a) presents better results than Fig 8c), which makes me 

wonder if the double resampling is really helping the systeI.  

 

Response: 

Indeed, the increased model error in Fig 8a appears to be more effective than the double 

resampling. We changed the text to reflect this and thank the reviewer for this observation. We 

have addressed this comment by adding text (line 274-279, page 17) in the manuscript. 

 

Comment 13: 

The results for the state-parameter estimation are indeed promising and I congratulate the 

authors for this, but I would expect a comparison of these results with any other study (if they 

exist) using 1D models with or without data assimilation.  The manuscript lacks information 

on other results found by studies which used other data assimilation methods and/or models 

with different dimensions. 

 



Response 

 

Data assimilation in earthquake cycle models is still in its infancy. We are not aware of other 

studies that considers a model similar to the earthquake cycle model that we have used in this 

study. In the discussion, we have added a section which talks about the use of simplified and 

higher dimensional models for studying earthquakes. (line 357-366). 
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