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Abstract. This work shows that passive radio-frequency identification (RFID) tags can be used as low-cost contactless sensors, 10 

to measure the variations in snow water equivalent (SWE) of a snowpack.  RFID tags are produced massively to remotely 

identify industrial goods, hence are available commercially off-the-shelf at very low-cost. The introduced measurement system 

consists of a vertical profile of RFID tags installed before the first snowfall, interrogated continuously by a 865–868 MHz 

reader that remains above the snowpack. The system deduces the SWE variations from  the increase of phase delay induced 

by the new layers of fresh snow which slows the propagation of the waves. The method is tested both in a controlled laboratory 15 

environment, and outdoors on the French national reference center of Col de Porte, to cross-check the results against a solid 

reference dataset (cosmic rays, precipitation weighting, temperature monitoring, and snow pit surveys). The technical 

challenges solved concern multipathing interferences, snowmelt acceleration during reheats, measurement discontinuity, and 

wet snow influence. This non-contact and non-destructive RFID technique can estimate the SWE of dry snow,  with the 

accuracy of ±3−30 kg/m2 depending on the number of tags and antennas. In addition, the system can monitor the snow 20 

temperature with 1 °C accuracy and spatialization, using dedicated sensors embedded in the tags. 

1 Introduction 

Measuring the snow water equivalent (SWE) of the snowpack is important for a variety of applications. At the scale of the 

hydrological basin, water resources and hydropower management use the SWE to estimate the reservoir of liquid water 

contained in the snow. At a smaller scale, avalanche risk monitoring or structural health monitoring of large buildings can also 25 

benefit from SWE monitoring. Snow and meteorological research also needs to monitor the snowpack to understand its 

physical processes. The SWE is one of the main macro properties of snow (Fierz et al., 2009). It is expressed as a surface 

density SWE=zρ (in kg/m2) and depends on the snow density ρ and to the snow depth z .  

 

Several methods exist to estimate the SWE (Kinar and Pomeroy, 2015; Pirazzini et al., 2018). A common in-situ measurement 30 

technique is the snow course which entails taking multiple samples of the snowpack at multiple locations. However, this 

method is destructive, requires a lot of human resources and does not provide continuous measurements. Alternatively, 

https://doi.org/10.5194/egusphere-2022-761
Preprint. Discussion started: 22 August 2022
c© Author(s) 2022. CC BY 4.0 License.



2 

 

automatic SWE monitoring is achievable through the use of snow pillows. A large variety of non-destructive methods allow 

for more time-efficient measurements, such as satellite data (Tedesco, 2015), ultrasonic probes for snow depth (e.g., Ryan et 

al., 2008), total snow weight on the ground, or cosmic ray neutron sensing (Gugerli et al., 2019) (Table 1). Among them, 35 

radiofrequency methods allow measurements at depth, exploiting the influence of the macro snow properties of its dielectric 

constant. Radiofrequency technologies include local probing through the resonant frequency of antennas (Kinar and Pomeroy, 

2015; Techel and Pielmeier, 2011). However, probing makes measurement of a few cm3 of snow only, it is partially 

destructive, and it not adapted for continuous measurement. Other radiofrequency instruments allow to characterize the snow 

around them, such as the GPS interferometry (Larson et al., 2009), the scatterometry (Adodo et al., 2018; Picard et al., 2018), 40 

and ground-penetrating radar (GPR) (Bradford et al., 2009). GPR measures the wave propagation delay in a volume of the 

snowpack, to retrieve the SWE, and recently the liquid water content, the snow depth and the average density. However, GPR 

requires expensive surveying instruments and expert processing, and can become difficult to interpret on irregular terrains. 

Buried GPS or upward GPR were also introduced for monitoring the entire snowpack based on changes in phase delay (Schmid 

et al., 2015). Nevertheless, these instruments remain expensive, and their powering and potential maintenance under snow can 45 

become complex. Furthermore, buried GPS or upward GPRs can monitor the SWE on one location, but are hardly scalable for 

spatially dense monitoring. A comparison of new-generation sensors for SWE monitoring (cosmic rays, multi-frequency radar, 

gamma ray monitoring, buried GNSS) showed that no method is perfect (Royer et al., 2021), therefore improvements in SWE 

monitoring methods are still needed. 

 50 

We propose to sense SWE and snow temperature using RFID tags. Tags were initially used to identify goods remotely (Ngai 

et al., 2008; Tzeng et al., 2008). The RFID industry produces tags in very large quantities—18 billion tags and over 30% 

growth in 2021 (Halliday, 2022)— allowing for low-cost tags (typ. 0.01–20 €) and reading devices (typ. 2 k€). Therefore, tags 

can be used in dense arrays of wireless sensors or dispatched over large areas. A tag is basically an antenna and an ultra-low-

power microchip, powered wirelessly by a reading device. When interrogated, the tag communicates its identification number 55 

to the reader using either backscattering or coupling physical principles (868 MHz backscattering in this study). Recently, tags 

were augmented with the capabilty to sense their environment (reviewed by Costa et al., 2021), using either a sensor connected 

to the tag (Hamrita and Hoffacker, 2005), the tag antenna as a sensor (Bhattacharyya et al., 2009), or the properties of the wave 

propagation for localization or contactless sensing (Nikitin et al., 2010; Liu et al., 2012). In earth science,  RFID tags have 

been increasingly used to monitor various surface processes (reviewed by Le Breton et al. 2021b), such as coarse sediment 60 

transportation in rivers (Nichols, 2004; Lamarre et al., 2005), temperature fluctuations of the soil (Luvisi et al., 2016; Deng et 

al., 2020), soil moisture (Pichorim et al., 2018; Wang et al., 2020), landslide displacement (Le Breton et al., 2019; Charléty et 

al., 2022a, 2022b) and rock displacement (Le Breton et al., 2021a). The few RFID studies related to snow or frost show that 

tags are readable below snow under certain conditions (Le Breton, 2019) and should not suffer from long-term deterioration 

due to cyclic freezing/thawing (Gutierrez et al., 2013). The communication quality is however altered by transmission through 65 

snow, reflection at the snow-air interface, and multipathing interferences (Le Breton, 2019) and by the presence of snow/frost 
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on the tags (Nummela et al., 2008). Wagih and Shi (2021) exploited this last influence to sense—in the laboratory—the quantity 

of frost deposit on the tags antenna. However antenna-based sensing can characterize only the material touching the tag or a 

few millimeters away, and not the total volume of a snowpack. On the opposite, contactless sensing might provide information 

in the volume, by monitoring the changes in the signal propagation between the tag and the reader (see the review of Le Breton 70 

et al., 2021b). To date, contactless sensing was used to detect the presence and position of a human body through qualitative 

changes in the signal (e.g., Ruan et al., 2015; Chen et al., 2020).  

 

We use contactless sensing instead to quantify the changes along time of a medium’s physical properties—the snow water 

equivalent (SWE). The method introduced monitors the phase delay of a wave propagating between an RFID reader and several 75 

tags. Indeed, a Radiofrequency signal transmitting across snow slows down as the snow density increase (e.g., Le Breton et 

al., 2019). The SWE variations can therefore be estimated from the phase delay variation, on a snowpack that is dry or almost 

dry, as with buried GPR or GNSS. Besides, we also use tags as small temperature sensors (like, for example, Bagshaw et al., 

2018), to monitor the vertical temperature repartition of the snowpack. This study not only introduces a new concept of RFID 

contactless sensing, but it is the first study that validates it in a real environment on the long term. 80 

 

This article shows that given their previous placement before the snow fall, RFID tags provide a simple way to measure 

temperature and SWE variations locally. The tags that are wireless, have low thermal signature, and use either long-lasting or 

no batteries. Compared to SWE monitoring techniques such as GPR, GPS or cosmic ray sensing, RFID has the potential to 

provide spatialized data of SWE and temperature. Section 0 first describes the theory and instruments. Section 0 validate the 85 

principles and presents the processing steps applied, with preliminary observations in the laboratory and on the Col de Porte 

reference field. Finally, section 0 shows the final results of SWE and temperature measurements using the RFID system, and 

validate it against reference measurements over the entire 2019–2020 snow season at Col de Porte. 

2 Method and instruments 

2.1 Theory: from phase delay to SWE 90 

This section presents the basic theory of microwave propagation in a dielectric medium (Balanis, 2012), applicable for snow 

in the 800-1000 MHz range. Electromagnetic wave propagation in snow depends mostly on its dielectric permittivity 

 𝜀 = (𝜀 , + 𝑗𝜀 ,,)𝜀0 

with 𝜀0 the constant dielectric permittivity of vacuum (=8.854×10–12 Farad / m) and 𝜀 ,,𝜀 ,, the relative in-phase and quadrature 

permittivity of the snow propagating medium, respectively. The in-phase and quadrature permittivity influence respectively 

the wave velocity and attenuation. We name “permittivity” the relative in-phase dielectric permittivity. At the second order, 95 

the permittivity 𝜀𝑠
,
 of dry snow at 10–1000 MHz depends on its density 𝜌 (in kg/m3) using: 
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   𝜀𝑠
, = 1 + 𝑎𝜌𝑥+ 𝑏𝜌2 

with empirical constants approximately a=1.7x10-3 m3∙kg-1, and b=0.7 x10-6 m6∙kg-2 (Tiuri et al., 1984).  

We approximate the propagation as rays, and snow as linear, isotropic and homogeneous. That is partly valid up to about 

2 GHz, for which we assume a negligible influence of scattering (Bradford et al., 2009). Snow can be considered as 

nonmagnetic (μ=μ0) with a negligible conductivity (𝜎 ′ ≈ 0, 𝜎 ′′ ≈ 0) within 10–12−10-6 S/m for dry snow (Mellor, 1977), and 100 

we approximate it as a low-loss dielectric medium (𝜎𝑒𝑓𝑓 ≪ 𝜀𝑒𝑓𝑓𝜔) The wave velocity 𝑣 can then be expressed as function of 

the snow permittivity 𝜀′ and the velocity in a vacuum 𝑐 (≈ 2.998∙108 m/s) (Bradford et al., 2009) 

 𝑣 =
𝑐

√𝜀 ,
 

Roughly speaking, a snow density within 100−600 kg/m3 would have a permittivity within 1.1–2.3 (i.e., a relative velocity of 

0.65–0.95). Additionally, the phase 𝜙 (in radians) of a wave of frequency f (in Hz), propagating two ways through a medium 

over a distance z (in meters) equals: 105 

𝜙 = −
4𝜋𝑓

𝑣
𝑧 

Therefore, when a homogeneous layer of dry snow of permittivity ε’ replaces a layer of air, the phase varies as: 

𝛿𝜙 = 𝜙𝑠𝑛𝑜𝑤 − 𝜙𝑎𝑖𝑟 = −
4𝜋𝑓

𝑐
(1 − √𝜀′)𝑧 

Using the approximation of snow permittivity (2) in a homogeneous medium leads to: 

Considering a range of relatively low density of snow (50–500 kg/m3) and the smaller importance of the quadratic term in (2), 

we approximate this equation with a first order Taylor expansion: 

To validate the approximation, we compute the relative error of the Taylor approximation computed using (8). The error 110 

remains below 0.5% for density of 0 to 500 kg/m3 , which is negligible compared to the uncertainty in the density measurement 

and on the phase.  

𝛿𝜙 = −
4𝜋𝑓

𝑐𝑎𝑖𝑟
(1 − √1 + 𝑎𝜌𝑥+ 𝑏𝜌2) 𝑧 

𝛿𝜙 = −
2𝜋𝑓

𝑐
𝑎𝜌𝑧 
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𝛿𝜙 − 𝛿𝜙𝑎𝑝𝑝𝑟𝑜𝑥
𝛿𝜙

= 1 −
𝑎𝜌

2√1 + 𝑎𝜌 + 𝑏𝜌2 − 1
 

Knowing that 𝑆𝑊𝐸 = 𝑧𝜌 , the variation of snow-water equivalent ∆𝑆𝑊𝐸 due to the multiple layers of snow that add-up during 

a snowfall relates to the cumulative phase variation ΔΦ, which is measured by the RFID system: 

For indication, a phase variation of −2 π corresponds to a SWE variation of +102 kg/m2, at 865.7 MHz frequency. In addition, 115 

the system used in this study measures the phase wrapped between [0, π], with an offset 𝜙0, so that  𝜙𝑚𝑒𝑎𝑠(𝑡) = 𝜙(𝑡) +

𝜙0(𝑡) − 𝑘𝜋 with k an unknown integer, requiring some precautions. First, we assume the phase offset ϕ0 to be stable during 

the time of observation, after using precautions described in (Le Breton et al., 2017). Then, the unwrapping of the phase 

requires continuous measurements to avoid any ambiguity which could occur if the phase varied by more than ±π/2 between 

two consecutive measurements. 120 

To estimate the SWE using (9), we make the hypothesis that the variation of phase is only due to the slowness of an additional 

snow layer, which requires to reduce three influence factors. First, we reduce the influence of snow on the tag antenna—which 

can alter the phase if its properties change a few centimeters close to the tag (Dobkin and Weigand, 2005)— by observing only 

the tags close to the ground (3−18 cm high). This has also the advantage to reduce the influence of snow settlement. Second, 

we select only the periods when the snowpack is dry or almost dry. When tags are in the snowpack, it corresponds to either a 125 

snow temperature T <0 °C or a stable phase delay. Third, we quantify then reduce the influence of multipathing interferences 

that occurs from reflections at layer boundaries, by combining data from multiple tags and antennas at different locations. 

Other effects of the propagation, such as scattering in the snowpack or on snowflakes, were negligible. 

2.2 Instrumentation 

Two experiments are presented, in a laboratory and outdoors. Both experiments measured the increase in phase delay caused 130 

by a new layer of dry snow formed between a reader antenna (above snow) and a tag (below snow). The reader (SR420 from 

Impinj) emitted and received a radiofrequency signal at 865.7 MHz, through a slot antenna in the laboratory (Impinj Threshold, 

8 dBi), and through two patch antennas outdoors (Kathrein, 12 dBi). The tags (Survivor B from Confidex) are passive in 

essence, but the models we used are assisted by a tiny battery (with several years lifetime) which increases the tag sensitivity 

and read range. Each tag includes an antenna which converts the RF wave into a current, to wake up and power the microcircuit 135 

embedded in the tag. The microcircuit has ultra-low power requirements (<10 μW when interrogated), and embeds a 

temperature sensor. During both experiments, the reader interrogates each tag during 30 ms, sequentially, following a standard 

RFID protocol (EPC-Gen2, Dense Miller 8). When requested by the reader, a tag communicates its unique identifier and its 

temperature, by backscattering and modulating the signal amplitude. For each tag, the reader also measures the phase difference 

𝛥𝑆𝑊𝐸 = −
𝑐

2𝜋𝑓𝑎
𝛥𝜙 
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of arrival (more simply the «phase», measured between 0-π rad) from the incoming radiofrequency signal. The retrieved data 140 

is averaged every minute for each combination of tag, antenna and frequency available. The variation of phase is later converted 

in a variation of SWE and cumulate over time (see section 4 and eq. (9)). Besides, each tag also measures its temperature with 

an internal sensor, allowing to monitor the snow temperature on multiple locations. The temperature accuracy is provided as 

± 1 °C by the constructor (after calibration) and has 0.5 °C numerical resolution.  

In the laboratory experiment, we placed one reader antenna and one tag on the two sides of a 40x40cm polystyrene box, 145 

respectively 1 m above and 5 cm below the box (Fig. 1). New layers of dry snow were progressively added in the box to form 

a snow block with an increasing thickness, until reaching approximately 25 cm. We operated the whole experiment in a dry 

and cold chamber (-5 °C). The snow had been previously collected outdoors, kept dry in the chamber, and sieved to add each 

new layer. After adding each layer, we equalized the snow surface to be planar, then we measured the total thickness and the 

total weight of the snow block, allowing to estimate its density. The experiment was repeated with three snow densities (230, 150 

275, 330 kg/m3). 

 

To confirm the method in the field, we installed a continuous monitoring during the 2019–2020 winter, at Col de Porte, France 

(alt. 1325 m). In the experiment, we planted two vertical arrays of tags on the ground. Each array comprised 12 and 11 tags 

with 15 cm vertical spacing between each tag, starting at 3 cm and 8 cm above ground, respectively (see Fig. 2, b-c). The tags 155 

were interrogated continuously from two antennas placed above the tags at 3 m height, from 2019-10-22 to 2020-03-27. We 

first focused on four snowfall events during which the top layers of snow remained entirely dry, then computed the SWE over 

the whole winter. 

 

Col de Porte is the French reference site for snow measurements and instrument testing (Lejeune et al., 2019), operated by the 160 

center for snow study (CEN) of Météo France. The numerous instruments and manual surveys on this site provided an 

exhaustive dataset on the snowpack and its environment during the experiment (see Fig. 3). The precipitation was measured 

by automatic weighting, and used to estimate the variation of SWE caused by a new snow layer during a snowfall. The snow 

height was measured with different methods: an automatic laser instrument, manual surveys in the snow pits, and manual 

visualization on a pole near the RFID tags. The SWE was estimated automatically every day with the cosmic ray method. The 165 

air temperature was measured with a meteorologic station, and the snow surface temperature with infrared sensors. A webcam 

pictured the measurement sites every hour, which we used to validate local snow melting.  

 

 170 
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3 Preliminary observations and processing 

3.1 Snow layers simulated in laboratory 

The method is first validated in a laboratory experiment, where we added cumulative new layers of snow between a tag and a 

reader antenna. Each new layer of snow increased the SWE estimated from the RFID phase delay (Fig. 4), with a slope that 175 

depends on snow density. The densities of 230, 270 and 335 kg/m3 correspond to dielectric permittivity’s of 1.43, 1.51 and 

1.64, respectively (Tiuri et al., 1984). The cumulated variation of SWE estimated from the RFID phase (Fig. 4, solid lines) 

appears in line with the SWE estimated from snow weighting measurement over the complete cumulated layers (Fig. 4, dashed 

lines). 

The SWE estimated from the phase, however, oscillates around the expected linear trend, reducing the accuracy of the method 180 

on thin snow layers. The estimated variation of SWE remained within ±10 kg/m2 of the value obtained by snow weighting 

(Fig. 4, dashed and solid line, respectively). This deviation oscillates with a spatial period of about half a wavelength 

(135−145 mm in snow for the densities considered)  which corresponds to expected fringes of interferences from the wave 

reflected on the air-snow interface (Le Breton, 2019).  

As a conclusion, uncorrected RFID phase delay should measure large SWE variations over 50 kg/m2, corresponding to phase 185 

shift > π. At these values, the relative error should be <20% and decrease with the SWE increase. However, estimating small 

changes in SWE (<10 kg/m2) requires a method to mitigate the multipathing bias, which we introduce in the next section. 

3.2 Snowfalls outdoors 

During the outdoor experiment, we have selected four periods of snowfall occurring during the winter of 2019–2020 (11–

12 Dec., 12–13 Dec., 10 Jan., 27–28 Feb.) for which we assume that both the falling snow and the snowpack are dry. The snow 190 

dryness is checked from independent snow measurements of surface temperature, and from complementary RFID indicators 

of tag temperature ≤ 0 °C (Fig. 10). For each period, and for each combination of tag below snow and reader antennas, we 

estimate the progressive increase of SWE from the variations of phase delay, using (9). The resulting estimation of SWE is 

compared with the cumulated precipitation’s weight and the snow depth on Fig. 5.  

The SWE estimated from the RFID phase on each tag/antenna couple (Fig. 5, colored points), evolves mostly in coherence 195 

with the cumulated precipitations (black squares). However, the different curves of uncorrected SWE indicator exhibit a bias 

up to 30 kg/m2 compared to the cumulated precipitation. The bias is different for each event, tag and each antenna, thus we 

attribute it to multipathing on the ground, snow interfaces, tags and supports. For example, on 12 Dec., the 18-cm and 23-cm-

high tags provide biased SWE only from the antenna 1. Furthermore, the amplitude bias of [+ 0.5, -0.9] (11 Dec. at 18 cm and 

27 Feb. at 33 cm, resp.) is consistent with the multipathing bias of [+0.5, -2.5] rad shown by Le Breton (2019). We reduce this 200 

bias to 0 to −1.5 kg/m2 by computing a median of the measurement made from the two reader antennas and the five tags below 

the snowpack (Fig. 5 continuous black line). The single outlier of −7.7 kg/m2  on period 2 can be explained by a wind of 
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40 km/h that may have distributed the snow differently on the RFID installation and on the precipitation sensors.  Table 2 

presents the synthetic SWE, errors, and density estimations observed in these periods. 

3.3 Processing the SWE over the snow season 205 

We finally compute the SWE over a complete winter (2019–2020) at the Col de Porte. It required more processing steps, in 

order to handle the small data gaps (given the ±π phase ambiguity), the periods of wet snow (which also increases the phase 

delay), the thermal influence of the tags support (which has accelerated the snow melting twice), and the settlement of the 

snow.  

The first step, the phase unwrapping, cumulates the phase variations over time to solve its ±n×π ambiguity. To avoid ambiguity, 210 

the phase should therefore not vary by more than π/2 between two consecutive measurements (equivalent to 51 mm of SWE 

in dry conditions), requiring continuous measurements. The main challenge of the unwrapping is to handle the short data gaps. 

These are caused by simultaneous destructive interferences and high liquid water content surrounding the tag, that both reduce 

the RF signal amplitude (Le Breton et al., 2019, 2017; Occhiuzzi et al., 2013). We used an automatic unwrapping, and corrected 

a few remaining ambiguity issues using the phase from nearby tags in case of gaps on a tag. For verification, we also ensured 215 

that the unwrapped phase came back near its initial value at the end of the season. The resulting indicator of SWE variations 

per single tag is shown on Fig. 6, along the measurement of SWE based on cosmic rays and on manually weighting the snow 

pits (Lejeune et al., 2019). Besides, the figure shows the snow depth (measured with a laser, in the pits, and from a visual pole), 

the lowest temperature of each day (of the air, of the tags above snow, and of the snow surface), and the daily precipitations 

(with the estimation of solid to liquid ratio). The resulting raw unwrapped indicator of SWE variations obtained from the three 220 

tags (Fig. 6a, continuous lines in light colors)  correlate visually with the reference SWE, yet more processing steps are 

necessary for the final result. 

 

The second step mitigates the role of wet snow, that would modify the phase delay and would not be differentiated from an 

increase of SWE. Liquid water affects the phase delay both by slowing the wave transmitted through the snowpack (e.g., 225 

Bradford et al., 2009; Tiuri et al., 1984) and by coupling with the tag antenna (Caccami et al., 2015; Le Breton et al., 2017; Le 

Breton, 2019). We identified the dry snow period from their constant or slowly evolving phase delay—occurring typically 

from midnight to 7:00. In contrast, the phase delay was constantly changing with wet snow, due to its unstable snow liquid 

water content (wet snow either melts or refreeze). We removed these wet snow periods,  for example on 24/12, on 02/02, and 

most days in the presence of sunlight. Sometimes, the snowpack did not dry for 24h or more, for example after important wet 230 

precipitations. In this case, we removed the entire wet period. We made an exception for the final snow melt occurring after 

March 3rd. In this period the snowpack was almost always wet: the phase delay did not stabilize, and the temperature of the 

tag below snow remained at zero. We nevertheless wanted to provide an estimator, knowing that it would be slightly 

overestimated. To estimate the SWE with the best possible accuracy, we selected the driest hour of each day, as the local 

minimum of phase delay and air temperature. It occurred typically around 7:00. To finish this step, we averaged the SWE 235 
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estimator over windows of 6 hours, using only the selected data. As a perspective, an algorithm might be developed to select 

the dry snow periods automatically, using several input parameters such as phase, signal amplitude, or temperature. 

Alternatively wet snow might be estimated and corrected for in the future, as already done with techniques for buried GPS or 

GPR (Schmid et al., 2015; Koch et al., 2019) or for moisture-sensing tags (Occhiuzzi et al., 2013; Caccami and Marrocco, 

2018; Pichorim et al., 2018; Wang et al., 2020; Wagih and Shi, 2021). 240 

 

The third step mitigates the acceleration of snowmelt caused by the installation. It occurred twice in the winter (from 2019-

12-14 to 2019-12-19 and from 2020-02-01 to 2020-02-03), after strong wet precipitations combined with an air temperature 

that remained > 0 °C during several days (Fig. 6), limiting the nightly refreezing. The influence was likely due to the thermal 

bridge and preferential melt water snow path, caused by the tag support. The resulting increase of snowmelt was observed by 245 

picture (Fig. 7), by a non-reversible offset formed both between the RFID and reference SWE (Fig. 6), and by the offset 

between the snow depth and the tag temperature variations (Fig. 10). To mitigate this effect, we distinguished the three periods 

(1) from 2019-10-23 to 2019-10-28, (2) from 2019-12-19 to 2019-12-30, and (3) from 2020-02-03 to 2020-02-06. In the 

periods 2 and 3, we fixed the SWE to the value of a reference manual pit survey, marked as ref in Fig. 8. This technical issue 

should be resolved on a future installation by placing tags close to the ground. 250 

 

The fourth and last step mitigates the multipathing bias using multiple tags. Indeed, changes in the snowpack modify the 

multipathing interferences, altering the phase and amplitude of RFID signals (Le Breton, 2019). Using a singe tag and antenna, 

we have previously observed a multipathing bias up to 10–30 kg/m2, in laboratory and outdoor events respectively. Averaging 

the data from 18 couples of tags and antennas reduced the bias from 30 to 3 kg/m2 outdoors. Therefore we averaged the data 255 

from the tags under the snowpack, and chose only the tags close to the ground to avoid a bias due to the settlement of the snow 

below the tag. The period 1 had several episodes with no snow or little snow, therefore we used a single tag (the lowest one, 

3cm height) to integrate the SWE variations of most of the snowpack. The accuracy using a single tag (30 kg/m3 at worst, see 

section 3.2) still appeared good enough to estimate the SWE variations (50 to 150 kg/m3 during the period 1). In the periods 2 

and 3, we averaged the SWE on the first three tags at 3 cm, 8 cm and 18 cm height to improve the accuracy. 260 

To summarize, we observed and mitigated four main challenges. Combining data from multiple tags and antennas both helped 

to solve the phase ambiguity during short data gaps, and reduced the multipathing bias. Two recalibrations have corrected the 

offset due to snowmelt near the tag support during reheats (this issue should vanish in future installations). Selecting the time 

windows with the driest snowpack reduced the influence of wet snow. These processing steps lead to the final SWE estimator, 

shown in the next section. 265 
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8 SWE and temperature results 

The final SWE estimated by RFID (Fig. 8, in red) appears consistent with the cosmic ray and snow pit measurements (in gray 

and black). Additionally, the RFID estimator seems to provide more realistic results than the cosmic ray method during 

snowmelt periods: the cosmic ray estimates both soil and snow water in shallow snowpacks leading to an overestimation during 

snowmelt (Sigouin and Si, 2016) as seen around November 27th after mid-March. Given the accuracy of the reference method 270 

(which have their own limitations) and the spatial heterogeneity in the snowpack, we consider the results close enough to 

validate the RFID method. The accuracy estimated within 3−30 kg/m2 in the preliminary result—depending on the number of 

tag-antenna couples—appears visually consistent with the final data obtained.. 

 

To confirm the range of snow density measurable with this method, Fig. 9 synthetize the result of different experiments with 275 

dry snow: laboratory simulations, controlled experiments on old snow (Le Breton, 2019) and fresh snowfalls. The method 

works for a density ranging from 70 kg/m3 to 400 kg/m3, with an error below ±10%, and is very likely to work also for higher 

densities. This error is reasonable, compared with the 5% numeric precision of the empiric formula we used to relate 

permittivity with snow density (Tiuri et al., 1984) (2), and with the ±9% spreading between the different empiric formulas of 

the literature (Di Paolo et al., 2018). In conclusion, the RFID method can measure the variations of SWE of a dry snowpack, 280 

and we tested it for 70–400 kg/m3 density. The largest error is ±30 kg/m3 with a single tag and antenna location, and 3 kg/m2 

using multiple positions. 

 

As a side result, temperature measurements are shown on Fig. 10 for each tag up to 0.78 m, along with the average temperature 

of the tags > 0.8 m (always above snow), the air temperature, and the snow surface temperature. The temperature of tags  above 285 

snow correlates well with the air temperature. Tag temperature is higher than air temperature in the sunlight and lower in the 

night due to radiative heat transfer, to temporary snow/ice accumulation on the tags, and to heat conduction through the tag 

support. When tags are in the snowpack, their temperature remains ≤ 0 °C and does not correlate with air temperature, as 

expected. The reccurent stabilization of the temperature at 0 °C occurring on several tags (for example on March 10th up to 

38 cm) indicates that the snowpack is partially wet near the tag. During these periods, we compared the temperature measured 290 

and confirmed, around 0 °C, the ±1 °C accuracy given by the manufacturer. Tags close to the ground remained around 0 °C 

most of the time, indicating that the snow near the ground stays wet: again, this behavior is expected due to the heat transfer 

coming from the ground. However, the snow wetness near the ground should remain small most of the time because the heat 

flux coming from the ground is small compared to the heat needed to melt the water. After March 23rd, once the snowpack has 

melt entirely near the tags, the temperature of the lowest tags increases above 0 °C, as expected. These results confirm that 295 

RFID tags can monitor and spatialize the temperature, with 1 °C accuracy, opening another perspective for RFID tags to 

monitor the snowpack (e.g., Bagshaw et al., 2018). 

https://doi.org/10.5194/egusphere-2022-761
Preprint. Discussion started: 22 August 2022
c© Author(s) 2022. CC BY 4.0 License.



11 

 

8 Conclusions 

We introduced a method based on commercial off-the-shelf RFID devices that can estimate the variation of the SWE from 

phase measurements, under dry snow conditions, spatial variability of tags and reader antennas, and continuous measurements. 300 

In a preliminary study, we validated the method in the laboratory and with four selected outdoor snowfalls with 1 minute time 

resolution. We then proposed a processing workflow for long-term observations, that mitigates short data gaps, wet snow, 

multipath interference and offsets due to thermal influence. We validated the method by estimating the SWE of dry snow over 

an entire winter, with ±3–30 kg/m2 accuracy (accuracy improves with more tags and antennas) and 6h time resolution (time 

resolution is larger because of the periods of wet snow removd each day). We also introduced RFID tags as a way to measure 305 

the snowpack temperature, with the accuracy of ±1 °C (manufacturer value, confirmed here at 0 °C). 

The corrected results were very coherent with reference measurements of SWE (snow pits and cosmic ray) and with the 

temperature of air or snow surface, during the entire season. During prolonged snow melting periods, the RFID seemed to 

estimate the SWE variations more accurately than the reference cosmic ray method installed on the site. 

From the perspective of snow research, we introduced a method to monitor the snowpack SWE and temperature. It has the 310 

advantage to use low-cost commercial off-the-shelf devices, deployable rapidly without needing to design or manufacture 

RFID devices. From the perspective of RFID research, we demonstrated the ability to characterize a material over its volume 

using contactless sensing with an array of tags.  The method exploits jointly two approaches of RFID sensing: dedicated sensors 

for temperature and contactless sensing for SWE, to better interpret the monitored process. We also demonstrated one step 

further the ability of using RFID as an effective platform for outdoor sensing applications, in very harsh natural conditions.  In 315 

the future, the method could be enhanced to monitor the snow liquid water content, to spatialize the measurements over large 

areas with a mobile reader, or to monitor other materials such as concrete or soil 
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Table 1: Methods to estimate SWE, compared with the introduced RFID method. 465 

Method Direct measurement Area Manual/auto Comments References 

Sampling Weight cm 2 manual Destructive, time 

consuming. 

(Kinar and Pomeroy, 2015) 

 

Pillow Weight m2 auto  (Beaumont, 1965; Kinar and 

Pomeroy, 2015) 

Cosmic ray Neutron counting m2 auto  (Schattan et al., 2019; Royer et 

al., 2021) 

Gamma ray 

scintillator 

Radioactive emissions m2 auto Safety issues if a 

source is used. 

(Royer et al., 2021) 

 

Models Snow depth, T°C … m2 auto  (Essery et al., 2013) 

Probe Permittivity (detuning) cm 2 manual  (Sihvola and Tiuri, 1986; Kendra 

et al., 1994; Denoth, 1994) 

Radar Permittivity (delay) m2 manual/auto   (Schmid et al., 2014; Royer et al., 

2021) 

GNSS Permittivity (delay) m-km2 auto  (Koch et al., 2014, 2019; Royer et 

al., 2021) 

Satellite Permittivity, gravity … km2 auto Various methods (Tedesco et al., 2014) 

RFID Permittivity (delay) dm2 auto Low-cost passive 

T°C sensor 

This study 

 

Table 2: Synthesis of the variations of measurements between the start and end of each observed snowfall period. The columns 

represent, during (1–3) the different periods considered: (4–6) the cumulated variation of snow depth and SWE, (7) RMS error of 

all single-tag measurement compared with precipitations, (8) Error between the SWE from multi-tag median and the precipitations. 

(9–10) the density of the new layer is also estimated, only for the periods 1half and 3 which occurred >24 hours after the previous 470 
snowfall. In other periods, the density computation is not applicable (na) due to compaction. 

Period Start End 

Δh 
 

m 

ΔSWE  
precip 
kg∙m-2 

ΔSWE 
RFID 
kg∙m-2 

RFID error 
1x RMS 

Single tag 
RFID Error 
Multi-tags 

Density 
from precip. 

kg/m3  

Density 
from RFID 

kg/m3 

1half 11/12 12:00 11/12 21:00 0.14 17.4 15.8 6.5 -1.5 116 128 

1 11/12 12:00 12/12 10:00 0.08 5.7 5.5 2.1 -0.2 na na 

2 12/12 18:00 13/12 08:00 0.15 44.5 36.8 5.6 -7.7 na na 

3 10/01 03:00 10/01 09:30 0.07 4.6 4.6 3.6 0 65 65 

4 27/02 11:00 27/02 16:00 0.06 16.1 14.6 11 -1.5 na na 
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 475 

Fig. 1: Experimental setup to measure the effect of a new layer of snow, simulated in a laboratory. The dry snow layer between the 

tag and the reader antenna increases the phase delay of the Radiofrequency signal. 
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Fig. 2: Experimental setup to measure the SWE variations outdoors. 480 
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Fig. 3: Site of col de Porte, with the position of the reference instruments highlighted. Modified from Lejeune et al. (2019) 

 

 485 

Fig. 4: Cumulated variations of SWE estimated from the measured snow density (dashed line) and from the RFID phase 

measurement (solid lines connecting round points), as function of the thickness of the snow block (9 layers for 275 kg/m3, 7 layers 

for 335 kg/m3, and 230 kg/m3). Three densities of dry snow are considered.        
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 490 

 

 

Fig. 5: Cumulated variation of SWE estimated during four snowfall events of the 2019–2020 winter for which we expect purely dry 

fresh snow. SWE is expressed both as the surfacic mass of snow (kg/m2) and as its equivalent water column thickness (in mm). The 495 
two phase values shown for the same tag are measured from two antennas, 1 (top color) and 2 (bottom color). The data is presented 

along with the SWE estimated from cumulated precipitations (obtained by automatic weighting) and the snow depth (by a laser 

sensor) measured on site. 

 

1 
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 500 

Fig. 6: Raw indicator of SWE variations, with their equivalent variation of phase delay, for the snowpack located above the tags at 

3, 8 and 18 cm from the ground. We removed the periods of wet snowpack (peaks on the raw SWE indicators), and only the 

colored markers are accounted to estimate the SWE. SWE is also measured with automatic cosmic ray neutron counting and with 

snow pit surveys. The figure also shows the snow depth, daily minimum temperature, and precipitations.  In the grayed periods, a 

reheat accelerated the snowpack melting around the tags support. 505 
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Fig. 7: Photography of the monitoring installation taken from the webcam, on 23/03 at midday, the which confirms that the snowpack 

has melted faster around the tag supports, and that there is no more snow around the tags on 23/03. 

 510 

 

Fig. 8: Measurements for the three periods of (top) SWE with RFID keeping only driest snowpack time windows, cosmic rays and 

snow pit survey. (bottom) Snow depth measured at three locations using a laser sensor, manual surveying and a visual pole. In the 
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first period, the data comes only from the 3 cm high tag, due to the lower snow depth. In the following periods, the data is 

averaged from the three lowest tags (3 cm, 8 cm and 18 cm). In each period, we calibrated the SWE RFID estimation with a 515 
reference SWE based on a manual measurement, indicated by an arrow.  

 

 

 

Fig. 9: Comparison of the density of the new layer in each observation (knowing its thickness), estimated either from the weight and 520 
volume of a snow sample, or from the RFID phase difference. The gray zone represents ±11% around the ideal value. This confirms 

the ability to measure different types of dry snow, from light fresh snow to heavier compacted snow. 
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Fig. 10: Measurement of temperature made on each tag, from 0 to 0.78 m above ground, as well as the average temperature of tags 525 
above 0.8 m, the air temperature measured by meteorologic station, and the temperature of the snow (or soil) surface measured by 

infrared. The y-axis ranges from -12 °C to +22 °C on each graph. 
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