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Abstract. The amount of water contained in a snowpack, known as snow water equivalent (SWE), is used to 

anticipate the amount of snowmelt water that could supply hydroelectric power plants, water reservoirs, or 

sometimes cause flooding. This work introduces a wireless, non-destructive method for monitoring the SWE of a 

dry snowpack. The system is based on an array of low-cost passive radiofrequency identification (RFID) tags, 

placed under the snow and read at 865–868 MHz by a reader located above the snow. The SWE was deduced from 15 

the phase delay of the tag’s backscattered response, which increases with the amount of snow traversed by the 

radiofrequency wave. Temperature was measured by the tag’s internal sensor. Measurements taken in the 

laboratory, during snowfall events and over 4.5 months at the Col de Porte test field, were consistent with reference 

measurements of cosmic rays, precipitation, and snow pits. SWE accuracy was ±18 kg/m2 throughout the season 

(averaged over 3 tags) and ±3 kg/m2 during dry snowfall events (averaged over data from 2 antennas and 4 or 5 20 

tags). The overall uncertainty compared to snow weighting was ±10% for snow density in the range 61−390 kg/m3. 

The main limitations observed were measurement bias caused by wet snow (which we discarded) and the need for 

phase unwrapping. The method has a number of advantages: it allows continuous measurement (1 min sampling 

rate in dry snow), it can provide complementary measurement of tag temperature, it does not require the reception 

of external data and it open the way towards spatialized measurements. The results presented also demonstrate that 25 

an RFID system can be used to remotely monitor the permittivity of a low-loss dielectric material with scientific-

level accuracy, using propagation-based sensing. 
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1 Introduction 

The snow water equivalent (SWE) of a snowpack represents the amount of water it contains (Fierz et al., 30 

2009). SWE is used to anticipate the snowmelt water that will feed hydropower plants, fill water reservoirs, and 

potentially cause floods. It is also used to anticipate the risk of avalanches, to monitor the weight of snow on 

building, and for snow research. Many methods exist to monitor SWE but all have drawbacks (for review: Kinar 

and Pomeroy, 2015; Pirazzini et al., 2018; Royer et al., 2021). The methods based on sampling the snowpack (A. 

Denoth et al., 1984; Techel and Pielmeier, 2011) are destructive, require significant human resources and do not 35 

provide continuous measurements. Their automation, such as through the use of snow pillows (Beaumont, 1965), 

is technically complex. Snow models and satellite observations (Essery et al., 2013; Helbig et al., 2021; Tedesco 

et al., 2014) have a limited spatiotemporal resolution or suffer from limited accuracy. Radiation-based field 

methods (review, Royer et al., 2021) can conveniently and non-destructively monitor the SWE of a volume of 

snow. Among them, cosmic ray neutron probe (CRNP) (Kodama et al., 1979; Schattan et al., 2017) and gamma 40 

ray monitoring (GMON) (Choquette, Y. et al., 2013) are proven and mature methods, but they require specific 

instruments that are not only expensive but also complex to operate and calibrate (Royer et al., 2021). The dielectric 

permittivity of snow depends on its density and wetness, resulting in a direct relation between SWE and the delay 

of microwave transmission in the snow (Mätzler, 1987). Ground-penetrating radars can measure SWE from this 

delay (Bradford et al., 2009; Schmid et al., 2014, 2015), but they are expensive and their data is complex to process. 45 

GNSS (Koch et al., 2019, 2014) is a more convenient, light, compact, and low-cost method (Royer et al., 2021). 

Nevertheless, GNSS estimate the SWE with a daily sampling rate (Koch et al., 2019), needs GNSS satellite 

reception (Royer et al., 2021), and has a spatial resolution limited by the number of receivers.  

Radiofrequency identification (RFID) technology also uses microwaves to identify goods equipped with 

passive tags. Passive RFID tags are produced by several billion units every year, allowing for low-cost tags (typ. 50 

€0.01–€20) and reading devices (typ. €2 k). A passive tag is basically an antenna and an ultra-low-power microchip. 

It is powered by a continuous wave (typ. around 865 MHz) emitted by the reader, which it modulates and 

backscatters to communicate to the reader. Recently, tags were developed with the capacity to sense their 

environment (reviewed by Costa et al., 2021), resulting in various applications in earth science (for review, see Le 

Breton et al., 2022). For example, tags were used to measure the temperature of the soil with an embedded sensor 55 

(Luvisi et al., 2016), and the presence of frost on the tag antenna through its change of impedance (Wagih and Shi, 

2021). Tags can also be localized by measuring the variations of phase delay over time, between the reader and the 

tag (review by Xu et al., 2023). This technique was used to measure landslide displacements (Le Breton et al., 
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2019; Charléty et al., 2022, 2023). Finally, Le Breton (2019) measured variations in the phase when the RFID 

signal transmits through snow and related this variation to snow density and thickness. 60 

 Therefore, we expect that an array of passive RFID tags placed under the snow may monitor SWE, using 

phase delay measurements. It may have a higher spatiotemporal resolution and lower cost than existing methods. 

We tested this hypothesis in the laboratory, during short snowfall events and throughout an entire season outdoors. 

2 Method and instruments 

2.1 Theory: from phase delay to SWE 65 

The velocity of electromagnetic wave propagation in snow depends on the real part of its relative permittivity 

(Tedesco, 2015) that we call simply “permittivity”. At the second order, the permittivity 휀𝑠
,
 of dry snow at 10–

1000 MHz depends on its density 𝜌 (in kg/m3) as follows: 

   휀𝑠
, = 1 + 𝑎𝜌 + 𝑏𝜌2 

with the following approximate values for the empirical constants, a=1.7x10-3 m3∙kg-1, and b=0.7 x10-6 m6∙kg-2 

(Tiuri et al., 1984). Each snow layer is considered, linear, isotropic, homogeneous, nonmagnetic (μ=μ0), with a 70 

negligible scattering at 865 MHz. The dry snow has a very small conductivity (Mellor, 1977) and can be considered 

as a low-loss dielectric medium (Bradford et al., 2009). The wave velocity 𝑣 can then be expressed as a function 

of the snow permittivity 휀′ and the velocity in a vacuum 𝑐 (≈ 2.998∙108 m/s) (Balanis, 2012): 

 𝑣 =
𝑐

√휀 ,
 

Roughly speaking, dry snow with density within 100−600 kg/m3 would have a permittivity within 1.1–2.3 (i.e., a 

relative velocity of 0.65–0.95). With the ray approximation, the phase 𝜙 (in radians) of a wave of frequency f (in 75 

Hz), propagating two ways through a medium over a distance d (in meters) equals: 

𝜙 =
4𝜋𝑓

𝑣
𝑑 

We represent the phase with the same sign as the time delay, for simplicity. Combining (1), (2) and (3), the phase 

variation when a homogeneous layer of dry snow replaces a layer of air can be approximated as: 
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A first-order Taylor expansion on the density gives: 

The expansion brings an error < 0.5% for 0–500 kg/m3 density, which is negligible compared to SWE measurement 80 

uncertainty in general. Knowing that 𝑆𝑊𝐸 = 𝜌𝑧, with z the snow depth, the variation ∆𝑆𝑊𝐸 due to the presence 

of multiple layers of snow, relates to the cumulative phase variation ΔΦ: 

A phase shift of π represents a SWE of 102 kg/m2. In practice, the RFID reader measures the phase  𝜙𝑚𝑒𝑎𝑠(𝑡) =

𝜙(𝑡) + 𝜙0(𝑡) − 𝑘𝜋, with an offset 𝜙0 and an unknown integer k causing a kπ ambiguity—2kπ with most recent 

readers (Miesen et al., 2013). Appropriate instrumentation and processing workflow, presented in Sect. 2.2 and 2.3, 85 

reduce the unwanted variations of 𝜙0(𝑡) and solve the phase ambiguity.  

2.2 Instrumentation in the laboratory and outdoors 

The experimental setup was designed to measure the increase in phase delay caused by the layers of dry snow 

formed between a reader antenna above the snow, and a tag below the snow. The SR420 reader (Impinj) emits and 

receives a radiofrequency signal at selected frequencies (865.7, 866.3, 866.9 and 867.5 MHz), through an antenna. 90 

A slot antenna was used in the laboratory (Model IPJ-A0311-EU1, 5 dBi gain, linear polarization, 50°/100° 

Beamwidth at –3 dB), and two patch antennas were used outdoors (Model Kathrein 52020251, 12.5 dBi gain, linear 

polarization, 42°/42° Beamwidth at –3 dB, IP65). The tags (Survivor B, from Confidex, 2014) measure 155 × 26 

× 14.5 mm and weigh 32 g each (see appendix 3). These tags are essentially passive, but the models used in this 

study were assisted by a tiny battery (with several years’ lifetime) to increase sensitivity and read-range. These 95 

devices are termed “battery-assisted” or “semi-passive” tags. The method is suitable for use with any passive 

backscattering tag (either battery-powered or batteryless), but not with active tags for which the phase is not 

synchronized between the receiver and the emitter. Each tag includes an antenna which converts the RF wave into 

a current, waking-up the microcircuit contained in the tag. The microcircuit (EM4325, from EM Microelectronic-

𝛿𝜙 = 𝜙𝑠𝑛𝑜𝑤 − 𝜙𝑎𝑖𝑟 =
4𝜋𝑓

𝑐
(1 − √1 + 𝑎𝜌 + 𝑏𝜌2) 𝑑 

𝛿𝜙 =
2𝜋𝑓

𝑐
𝑎𝜌𝑑 

𝛥𝑆𝑊𝐸 =
𝑐

2𝜋𝑓𝑎
𝛥𝜙 
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Marin) has ultra-low power requirements (<10 μW when interrogated), and embeds an integrated temperature 100 

sensor with ±2.0 °C initial accuracy over −40°C to 60°C (Confidex, 2014), and ±0.25°C resolution and accuracy 

over −7 to 0°C after calibration (see appendix 2). The material was chosen to reduce thermal influence on the phase 

(Le Breton et al., 2017). During acquisition, the reader interrogates each tag sequentially for 30 ms, following a 

standard RFID protocol (EPC-Gen2, 2015). When requested by the reader, a tag communicates its unique identifier 

and any other data from its memory by backscattering and modulating the signal amplitude. For each tag, the reader 105 

measures the Phase Difference of Arrival between the two modulated states of the incoming signal compared to 

the continuous wave emitted (Nikitin et al., 2010). Here, this is termed the “phase”. The modulated tag reflection 

therefore distinguishes the static reflection from the environment and any signal from the tags that are not being 

interrogated. Phase measurement is possible with backscattering communication because, unlike with classical 

wireless communications, the reader can easily synchronize the emitted and received waves. 110 

In the laboratory experiment, one reader antenna and one tag were placed 1 m above and 0.05 m below a 0.4 × 

0.4 m polystyrene box, respectively (Fig. 1). Step by step, layers of dry snow were added to the box, to form an 

increasingly thick snow block, from no snow to approximately 0.24 m deep snow. The whole experiment was 

performed in a cold room (-5 °C). The snow, collected outdoors was kept dry. It was sieved to add each new layer 

to the box. After adding each layer, the snow surface was smoothed before measuring its thickness and the weight 115 

of the entire snow block to estimate its density. The experiment was repeated with a snow density of 230, 275 and 

330 kg/m3, and a maximum snow depth of 0.24, 0.237 and 0.245 m, respectively. The snow density was increased 

by repeatedly sieving the same snow but changing the mesh size. 

The continuous field monitoring was installed during winter 2019–2020 at Col de Porte, France (alt. 1325 m). Col 

de Porte is the French reference site for snow measurements and instrument testing (Lejeune et al., 2019), and is 120 

operated by Météo-France’s center for snow study (CEN). The numerous instruments present and manual surveys 

conducted on this site provided an exhaustive dataset describing the snowpack and its environment throughout the 

experiment (Fig. 2). Precipitation was measured by automatic weighing gauge, and used to estimate the variation 

in SWE caused by snowfall events. The snow height was measured by a number of methods: automatic laser 

instruments, manual surveys in snow pits, and manual inspection of a pole near the RFID tags. The SWE was 125 

estimated automatically every day with a CRNP. The air temperature was measured by a meteorologic station, and 

the snow surface temperature was monitored by infrared sensors. A webcam collected images of the measurement 

sites every hour, which were used to monitor the melt surrounding individual tags. 
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In the field installation, two vertical arrays of tags—comprising 12 and 11 tags each—were planted on the ground. 

The tags were placed 4−169 cm and 8−158 cm above ground, respectively, with 0.15-cm spacing (see Fig. 3). The 130 

tags were supported by a 0.05-m-diameter and 1.70-m-high PVC tube, equipped with multiple 0.15-m-long and 

0.02-m-thick horizontal plastic arms. The arms were supported from below and the PVC tubes were maintained by 

rigging strings, to avoid movement. The two reader antennas were placed above the tags, 4 m from the ground. The 

reader antennas were supported by a metallic arm attached to a large vertical metallic pole, 3 m from the tag support. 

The acquisition lasted from 2019-10-22 to 2020-03-27. Experiments initially focused on four snowfall events, 135 

during which the top layers of snow remained entirely dry, then the SWE was computed over the whole winter, 

using the workflow described below. 

 

Fig. 1: Laboratory setup to simulate new layers of snow, and validate the SWE estimation from the change of phase delay between 

the tag and the reader antenna. 140 
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Fig. 2: Site of Col de Porte, highlighting the positions of the reference instruments. Modified from Lejeune et al. (2019) 
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145 

Fig. 3: Outdoor experimental RFID setup at Col de Porte. 
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2.3 Workflow to compute SWE outdoors 150 

The SWE was computed over the season using the following steps. The choices and adaptations specific to this 

study are marked in italics and further discussed in Sect. 4. 

1) Data selection. Phase data were separated for each combination of tag, reader antennas and frequencies 

available, to select the data to be processed. The tags covered by the snow are selected from their daily 

temperature variation that is smaller than with tags in the air (Reusser and Zehe, 2011) (see temperature 155 

data on Fig. A3). 

We selected for individual events of dry snowfall based on dry snow criteria (step 3), on (1) 2019-12-11, 

(2)2019-12-12/13, (3) 2020-01-10 and (4) 2020-02-27. We used only the tags covered by snow, at heights 

of 4−23 cm for events 1 and 3, and at heights of 4−34 cm for events 2 and 4 (Sect. 3.2).  

We split the season in three periods, starting on (1) 2019-10-23 (2) 2019-12-19 (3) 2020-02-03. We used 160 

tags at height of 4 cm for the period 1, and at heights of 4−19 cm for the periods 2−3 (Sect.3.3). 

2) Phase unwrapping. The phase was unwrapped to cumulate phase variations over time to solve its kπ 

ambiguity (equivalent to k×102 kg/m2 of SWE for dry snow), with the hypothesis of data continuity. 

We combined the phases of the four frequencies available. We also removed the fast variations of phase 

using a complex domain averaging over 3 minutes, unwrapped the smoothed phase, then reintroduced these 165 

variations (see Charléty et al., 2023). 

3) Dry snow selection. The periods of dry snow were selected to ensure that the snow permittivity was 

influenced only by its density (needed for eq. 6) and not by its liquid water content (Tiuri et al., 1984). 

For most of the season, we identified and removed wet snow periods from their phase delay which 

displayed rapid and non-mononotous fluctuations over the day, typically from 08:00 to 24:00. It was also 170 

validated from, the temperature of the snow surface < 0°C measured by infrared and by tags close to the 

surface, and from air temperature <0°C when precipitation occurred. After 2020-03-03, the snowpack 

rarely refroze completely during the night, so we picked only the period of driest snowpack (with a local 

phase maximum), typically 06:30–07:00. We also identified the four individual events of dry snowfall. 

4) SWE conversion. The variation of phase was converted into a variation of dry snow SWE using eq. (6) 175 

5) Recalibration in case of technical issues. Sometimes, recalibration may be required to compensate for 

a technical issue (Charléty et al., 2023). The alteration of the snowpack just above the tags can cause a  

local SWE offset and would need to be compensated. In addition, after a long data gap due to technical 
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issues, the phase ambiguity might need to be resolved. In this case, the variation of k  occurring during the 

gap could be estimated with an independant method which accuracy is below half the ambiguity.  180 

However, we recalibrated twice the SWE to compensate for accelerated melting around the tag supports 

during warm periods with rainfall (see appendix 5). This recalibration resulted in three distinct periods in 

Fig. 6, with two periods recalibrated based on snow pit measurements (marked as “ref”). We encountered 

no data gap causing ambiguity issues here. 

6) Spatial averaging. The error caused by multipathing interferences can be reduced by computing the 185 

mean data between the different tags and antennas. 

We used the tags selected in step 1, measured from two antennas during the snowfall events, and from one 

antenna, with the highest signal strength, during the season. 

7) Time averaging. Data were averaged at the desired sampling duration. 

We kept the 1 min time sampling for the snowfall events (Fig. 5). We averaged over 12 h for the entire 190 

season to account for the discarded periods of wet snow (Fig. 6). 

The tag temperature sensors were also calibrated at 0°C when surrounded by wet snow (see appendix 2). 

 

 

 195 
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3 Results of SWE measurements 

3.1 Laboratory experiments  

Laboratory results confirmed that the variation in SWE estimated from the RFID phase (Fig. 4, solid line) was 

consistent with the SWE estimated from snow weights, over the complete cumulated layers (Fig. 4, dashed lines). 200 

This result was verified for snow density of 230, 275 and 335 kg/m3, corresponding to snow permittivity of 1.43, 

1.51 and 1.64, respectively (eq. 1). The estimated SWE oscillated depending on the snow depth, within ±10 kg/m2 

of the value obtained by weighing the snow. The spatial period corresponded to half a wavelength in the snowpack 

(0.135–0.145 m for the highest–lowest density, respectively), which strongly suggests that it results from fringes 

of multipath interference caused by reflection of waves at the air-snow interface (Le Breton, 2019). In conclusion, 205 

the method worked well under controlled conditions, with ±10 kg/m2 accuracy for a single tag-antenna 

combination, and an error that could mostly be attributed to multipathing. 

  

Fig. 4: Cumulated variations of SWE obtained from RFID phase measurement (solid lines) and weighing (dashed line), as a function 

of the thickness of the snow block, for three densities. 210 
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3.2 Snowfall events 

For each dry snowfall event selected, the depth of snow and the cumulated precipitation—which equals the SWE 

when no melting occurs—were compared to the RFID measurements made every minute (Fig. 5). The SWE 215 

estimated from a single tag-antenna combination exhibited dispersion up to ±30 kg/m2. The dispersion was different 

for each event, each tag and each antenna, suggesting that the method is sensitive to tag position, antenna position 

and the snowpack’s geometry. For example, on 2019-12-11, the 18-cm and 23-cm-high tags provided biased SWE 

only from antenna 1. The dispersion is consistent with the expected influence of multipathing (see discussion, and 

appendix 6). The average SWE estimated from all the tags and antennas (Fig. 5, black line) was very close to the 220 

cumulated precipitation (black squares), with a full-amplitude error up to ±3 kg/m2 (details on appendix 1). In 

conclusion, the RFID array prove efficient to measure SWE accurately with 1 min resolution during short periods.  

 

Fig. 5: Increase of SWE measured over the course of four dry snowfall events, using single tags and antennas from the RFID array 

(see Fig. 3) (in color), the median value of the array (black line) and precipitation measured by weighting gauge (gray squares). The 225 
snow depth measured by laser is also displayed.  
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3.3 Entire season 

Over the entire season, the SWE estimated by RFID (Fig. 6, in red) is consistent with the CRNP and snow pit 

measurements (in gray and black). During snowmelt periods, around 2019-11-27 and after 2020-03-08, RFID 230 

sensing appeared to be more accurate than CRNP, which is influenced by water present in the soil (Sigouin and Si, 

2016). Given the accuracy of CRNP (which has its own limitations) and the spatial heterogeneity in the snowpack, 

we considered the results close enough to validate the RFID method. We measured an uncertainty of ±18 kg/m2 

compared to snow pit (see appendix 1). 

 235 

 

Fig. 6: SWE measurements for the three periods with RFID (top), keeping only the driest snowpack time windows. CRNP and snow 

pit survey (bottom.) Snow depth was measured at three locations using a laser sensor, manual surveying and a visual pole. During 

the first period, the data were derived only from the 4 cm high tag, due to the shallow snow depth. In subsequent periods, the data 

from the three lowest tags (4 cm, 8 cm and 19 cm) were averaged. For each period, the SWE RFID estimation was calibrated relative 240 
to a reference SWE based on a manual measurement, indicated by the “ref” arrow. 
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3.4 SWE measurement accuracy compared to weighting 245 

The difference between the SWE measured by RFID and by weighing was ±10 kg/m2 in the laboratory, 

±3 kg/m2 during short snowfalls, and ±18 kg/m2 during the last two periods of the season (details on Fig. A1). We 

did not compare the measurements with CRNP values, as we considered it not to be accurate enough to represent 

ground truth data. Laboratory measurements were not the most accurate, because the single combination of tag and 

antenna made them more sensitive to multipathing. On the contrary, the most accurate measurements occurred 250 

during snowfall, with an averaging over 4−5 tags and 2 antennas. Therefore, increasing the number of tags and 

antennas is the most important factor when seeking to increase accuracy, with most inaccuracies caused by 

multipathing. 

The snow density (Fig. 7), computed as the SWE normalized relative to the snow depth, indicates that the  

RFID measurements occurred on 61−390 kg/m3 snow density. The role of settling (Helfricht et al., 2018) was 255 

partially compensated in the density calculation,  by removing the trend of snow depth decrease (visible on events 

1 and 4) obtained after precipitation. Both RFID and weighting SWE used the same snow depth, so the relative 

error is unchanged. Overall, RFID measurements fitted within a 10% relative uncertainty compared to weighting, 

for 61 kg/m3 to 390 kg/m3 density. 

 260 
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 265 

Fig. 7: Comparison of snow density estimated from the SWE obtained by weighting or by RFID SWE (for a known thickness). The 

RFID method works with fresh and compacted snow, from 65 kg/m3 to 390 kg/m3 density. 
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4 Discussion 

Table 1: Evaluating RFID method using criterias of Royer (2021) 270 

Criteria  RFID SWE performances in this study 

Uncertainty ±10% and ±18 kg/m2 compared with weighing 

SWEmax 3000 kg/m2 (theoretical value, for 6% volume liquid water content) 

Other measured data T°C vertical gradient— may also measure liquid water content in the future 

Depends on external data  No. No need for satellite reception, ancillary data, or data from an external station 

Typical sampling rate Continuous — except for wet snow that currently bias measurements 

Area of snow measured <1 m2 

Price Should be similar to GNSS 

Power consumption 7 W with 1 min sampling — may be optimized 

Advantages Mass-market availability of the hardware (vs. CRNP&GMON) 

Tag array improves accuracy and enables spatialization (vs. all) 

Works both with deep and shallow snowpack (vs. CRNP&GMON) 

Limitations Requires continuous measurements for phase unwrapping. 

Biased by wet snow —may be corrected in the future 

Maturity  RFID hardware and software in the field are reliable. 

Developments needed on the tag array and on data processing automatization 

 

We compared the RFID performance to other non-destructive SWE monitoring methods described as mature 

by Royer et al. (2021): CRNP, GMON and GNSS. We omitted multifrequency radar because its signal does not 

transmit in wet snow due to a severe attenuation at 24 GHz. The uncertainty of ±10% and ±18 kg/m2 between RFID 

and weighing was similar to that obtained with the other methods, between 9% and 15% (Royer et al., 2021). 275 

However, estimating the uncertainty is difficult because the snowpack is heterogeneous, and because no data 
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represents the ground truth, rigorously speaking (Royer et al., 2021). The sampling rate used was <1 s in the raw 

data (the reader interrogates a tag every 30 ms), 1 min during snowfall events to reduce random noise, and 12 h 

during the full season due to the discarded wet snow period (wet snow could be corrected in the future, as discussed 

later). The 1 min sampling rate is considerably better than the typical 1-day rate possible with CRNP, GMON and 280 

GNSS. The maximum SWE measurable might be around 3000 kg/m2, based on our theoretical estimation (discussed 

below). The complementary measurements include vertical temperature gradient measured by the tags. It might 

also include the liquid water content in the future, based on signal attenuation measurements (Koch et al., 2014) 

(discussed below). The RFID method is not dependent on external data, it thus outperforms the other methods 

which need either satellite reception (Koch et al., 2019), cosmic ray flux reference data, or atmospheric humidity 285 

and barometric pressure (Sigouin and Si, 2016). The area covered was <1 m2, comparable with the GNSS method 

but much less than the GMON and CRNP methods, which sense the snowpack all around. Sensing the snowpack 

over a larger area is generally preferable to avoid localized snowpack variability (e.g., local snowmelt caused by 

the installation, and natural differences due to wind, topography, shade, etc.). Local sensing could be useful, 

however, if it was spatialized. The price of a fully operational system is currently unknown because it is not yet 290 

commercialized. We can only say that the reading station accounts for most of the cost, and that the cost of tags is 

negligible. We can reasonably anticipate a price within the range of existing methods, i.e., from €8 k to €17 k in 

2021 for the sensor alone (Royer et al., 2021) (excluding installation, power, telecommunication, maintenance, 

etc.). The method has three advantages. First, the RFID hardware is a commodity, produced at industrial scale 

using interoperable standards, like GNSS, but in contrast to GMON and CRNP. This ensures a better balance 295 

between cost, reliability and long-term availability than likely with custom sensors. Second, the fact that an array 

of tags can easily be used increases the accuracy, and may enable spatialization. Third, the measurements are not 

biased by soil moisture, unlike GMON and CRNP, making the method more suitable for monitoring shallow snow 

depths when melt snow infiltrates the soil (using RFID measurements when snow is refreezing to reduce melt snow 

bias). The method has two limitations today. First, the phase must be unwrapped to deal with ambiguity. This 300 

requires an efficient, and potentially complex, unwrapping algorithm (Charléty et al., 2023), and continuous 

measurements to avoid large swathes of missing data during which the SWE could vary by more than ±102 kg/m2. 

Second, measurements are biased by wet snow, which led us to discard this data. These limitations, discussed in 

the next paragraphs, might be mitigated in the future. RFID hardware is mature, and the acquisition system (for 

instance provided by Géolithe) has been continuously improved as part of its use to monitor several landslides since 305 

2017 (Le Breton et al., 2019; Charléty et al., 2022, 2023). More developments could improve the tag array, fully 
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automatize data processing, reduce power consumption, and mitigate the method's limitations aforementioned. In 

conclusion, the RFID method matches modern non-destructive snow sensing methods, providing several 

advantages: no external data needed, high temporal resolution, temperature gradient data, large industry, not 

affected by soil moisture. Its limitations (it needs phase unwrapping and it is biased by snow wetness—could be 310 

mitigated in the future. 

The issue of multipathing interference, for example, was mitigated in this study using tag arrays. 

Multipathing is a major challenge with RFID, because interferences from the waves reflected by the environment 

can reduce the received signal strength (Lazaro et al., 2009) and alter the phase (Arnitz et al., 2012). In addition, 

the snowpack strongly influences multipath patterns, as seen with GNSS reflectometry (Larson et al., 2009) and 315 

GPRs (Espin-Lopez and Pasian, 2021; Kulsoom et al., 2021). A few centimeters of snowpack can modify the phase 

and signal strength of fixed tags above the ground up to ±1.5 rad and ±10 dB (Le Breton, 2019) (See Fig. A7). A 

first potential mitigation approach is to remove or hide reflectors (e.g., Lucas et al., 2017). Removing the vertical 

tag array would reduce the number of reflectors, but the snow would still create strong interference. Another 

mitigation approach could be to model the entire environment (Hechenberger et al., 2022) to correct the phase, 320 

using propagation models in a snowpack (Proksch et al., 2015). However, this is highly complex and dependent on 

the environment model, and we found no mention of any such approach in RFID localization methods (Xu et al., 

2023). Another mitigation approach would be to increase the bandwidth (Arnitz et al., 2012), but RFID bandwidth 

is narrow, within 1.8 MHz to 26 MHz for frequencies around 900 MHz, depending on regional regulations (e.g., 

ETSI-EN 302-208; FCC part 15). Finally, multipathing can be mitigated using an array of tags and reader antennas 325 

(e.g., Grebien et al., 2019). This is the option we used here. During snowfall events outdoors, we reduced the 

measurement bias from 30 kg/m2 to3 kg/m2 by averaging measurements over 8 to 10 combinations of tags and 

antennas in different locations. Over the entire season, qualitatively, the SWE measured was more stable when 

averaged over 3 tags in periods 2&3, than over a single tag in period 1 (Fig. 6). In conclusion, using an array of 

tags and reader antennas efficiently mitigates RFID multipathing uncertainty. 330 

The wet snow bias, in contrast, has yet to be mitigated. The increase of liquid water content in the snow 

can increase its permittivity (e.g., Bradford et al., 2009; Tiuri et al., 1984), increasing the phase delay and leading 

to overestimation of the SWE. For example, for a snow density of 500 kg/m3, a liquid content increasing to 6% 

would increase the permittivity from 2 to 2.7, resulting in a +35% overestimation of the SWE. In addition, liquid 

water near the tag can increase the phase by changing the impedance of its antenna (Caccami et al., 2015; Le Breton 335 

et al., 2017). This effect would result in strong phase changes if ice melting occurs on the tag (Wagih and Shi, 
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2021). The combination of both effects explains the peaks of phases that occurred almost every day with sun light, 

or with wet precipitation (visible on Fig. A5). We manually discarded these data to retain the best possible SWE 

accuracy. Should we keep the discarding method in the future, the picking of wet periods could be automated based 

on a combination of signal loss (e.g., Koch et al., 2019), stable 0 °C temperature (e.g., Cheng et al., 2020; Dafflon 340 

et al., 2022; Reusser and Zehe, 2011), and phase peak recognition. Alternatively, the liquid water content present 

in the snowpack might be measured from the signal attenuation (e.g., Koch et al., 2014), to allow its influence on 

the phase to be corrected. In conclusion, the bias due to wet snow led us to discard the data from periods when the 

snow was wetter, and this limitation could be overcome in the future. 

Phase ambiguity and unwrapping is another typical issue with RFID localization and sensing based on the 345 

phase. First, it requires an adequate unwrapping algorithm that is not influenced by short spurious noise in the 

phase (Charléty et al., 2023). In our experience, despite the use of advanced algorithms, some unwrapping issues 

can remain (phase jumps of ±π). These are easily identified and corrected by human intervention—we made three 

corrections in our time series over the season. To overcome this need for manual intervention, one possible solution 

would be to exploit the tag array in the unwrapping algorithm. A second issue is that for unwrapping to proceed 350 

correctly, the phase must not vary by more than its ambiguity between two consecutive measurements (equivalent 

to ΔSWE ±102 kg/m2 with modern readers). The method therefore requires continuous acquisition, without large 

data gaps. If some data is missing, the phase ambiguity would have to be solved using an independent method to 

estimate the unmeasured SWE variation with an uncertainty of less than ±102 kg/m2. Absolute localization methods 

based on tag arrays (Xu et al., 2023; Le Breton and Grunbaum, 2023) could also be investigated. In conclusion, the 355 

phase ambiguity is a limitation of the RFID method, because it requires a robust unwrapping algorithm and 

continuous data. 

In contrast, measuring the snow temperature gradient using sensors in the tags (see data on appendix 2) is 

a definite advantage. We measured an accuracy of ±0.25 °C within −7°C to 0 °C, after calibration, and saw no 

visible drift at 0°C for 3 months (see appendix 1). That is in line with the 3σ accuracy of ±0.2°C to ±1°C near 0°C, 360 

and of 0.5°C to 1.5°C within −10°C to 30°C, on hundreds of battery-assisted tags (Jedermann et al., 2009). It is 

also similar to the accuracy after calibration of ±0.2°C near 37°C with commercial batteryless tags (Camera and 

Marrocco, 2021). In the snow, except for a few studies that reported a better accuracy or spatial resolution (e.g., 

Dafflon et al., 2022; Cheng et al., 2020), most studies used vertical temperature data that was measured with similar 

performances,to estimate other physical indicators of the snowpack. Therefore, our temperature data may also be 365 
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used to estimate the snow depth (Reusser and Zehe, 2011), water content (Marchenko et al., 2021), heat transfer 

(Brandt and Warren, 1997), thermal diffusivity (Oldroyd et al., 2013), and latent heat (Burns et al., 2014).  

 The SWE remained <350 kg/m2 in this study. We can estimate the maximum SWE measurable using the 

basic theory of microwave propagation in snow (e.g., Koch et al., 2014; Le Breton, 2019; Steiner et al., 2019). Its 

value is limited by the tag’s maximum read-range in the snowpack (see the influences on the read range on: Le 370 

Breton et al., 2022). This value depends mostly on the RFID hardware (Nikitin and Rao, 2006) and on the signal 

attenuation by the snow liquid water content (Koch et al., 2014). A snow with 500 kg/m3 density and 6% of its 

volume containing liquid water would have a permittivity of 2.63+0.053 j (Tiuri et al., 1984). The attenuation 

coefficient  𝛼 =
1

2𝑐

𝜀,,

√𝜀,
2𝜋𝑓 (Bradford et al., 2009) (in m-1), equivalent to 𝐿𝑑𝐵 = −

20

ln(10)
𝛼 (in dB/m), leads to a  

reduction of signal strength 𝛥𝑃𝑑𝐵 = 𝐿𝑑𝐵 × 2ℎ =  6.6 dB × h in this snow. At normal incident angle, the loss due 375 

to reflection at the air-snow interface (around 0.5 dB) is much smaller than bulk attenuation. The other factors 

(multipathing, antenna coupling, reflectors within the snowpack) should be secondary compared to propagation 

attenuation if an appropriate tag array design is used . The maximum read-range in snow rmax, snow is computed 

relatively to the maximum read-range in air rmax, air using (
𝑟𝑚𝑎𝑥,𝑎𝑖𝑟

𝑟𝑚𝑎𝑥,𝑠𝑛𝑜𝑤
)
4

= 10
∆𝑃𝑑𝐵
10  . The maximum SWE is the antenna 

height for which the power budget available in air equals the loss in the snowpack. These calculations result in a 380 

maximum theoretical SWE of 3000 kg/m2 (6 m snow depth) for a battery-assisted tag readable at 60 m in the air 

(e.g., Survivor B), and 2250 kg/m2 for a batteryless tag readable at 27 m in the air (e.g., Survivor M780). The real 

maximum SWE may be lower in practice, but nevertheless remains in the range of the GNSS limit of 2000 kg/m2 

(Royer et al., 2021). 

Permittivity sensing had been demonstrated  with RFID tags, either by measuring the variations in tag 385 

antenna impedance (Bhattacharyya et al., 2010; Manzari and Marrocco, 2014; Caccami et al., 2015; Caccami and 

Marrocco, 2018) or by connecting a sensor to the tag (e.g., Fonseca et al., 2018). But these methods can characterize 

only the material in contact with the tag. Besides, their accuracy was lower than standard scientific instruments, 

due to the tag's limitations. In terms of accuracy, only the localization of tags in the air by the reader (see review: 

Xu et al., 2023) could match the accuracy of the standard techniques such as GNSS. Like localization, our sensing 390 

method is based on wave propagation, occurring, however, in another medium than air. We demonstrated that 

propagation-based sensing can measure the permittivity of material bulk, remotely, with scientific-level accuracy. 

In future, this method could also be applied to other materials, such as vegetation (Le Breton et al., 2023).  
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Finally, any tag can be used with this method. It needs only a reader that can read the phase of the received 

signal. If the read range—frequency-dependent in wet snow—is sufficient, the method should also work with 395 

harmonic tags (Mondal et al., 2019) already used under  the snow (Mike Stanford, 1994; Grasegger et al., 2016), 

and with chipless tags (Barbot and Perret, 2018).  

5 Conclusions 

We introduced a method to sense the snow water equivalent of a snowpack, which works with standard 

radiofrequency identification devices. Its performance was similar to mature, non-destructive, scientific-level snow 400 

sensing methods (GNSS, gamma ray monitoring and cosmic ray neutron counting), with the accuracy of ±10% or 

±18 kg/m2 (see all criteria listed in Table 1). 

In terms of advantages, the RFID method is fully independent and does not require external data or devices 

(e.g., GNSS reception, temperature and pressure sensors, incoming cosmic ray fluxes). It measures data 

continuously with a high temporal resolution <1 min in dry snow. Provided the usage of temperature-sensing tags, 405 

it can also measure the snow temperature gradient, with the accuracy of ±0.25 °C at around 0 °C. It is not affected 

by soil moisture content. The long-term availability of the devices is supported by the large RFID industry. 

The main limitation of the RFID method is its uncertainty when dealing with wet snow. This uncertainty led 

us to discard wetter snow periods, but it may be corrected in the future using independent liquid water content 

estimations. The need for continuous data to avoid phase ambiguity (equivalent to ±102 kg/m2 SWE) is also 410 

inconvenient. This difficulty can potentially be solved with advanced localization techniques, but further 

investigation would be needed. 

In terms of RFID sensing, we showed that an array of tags can sense a material’s bulk permittivity remotely 

using propagation-based sensing. The results presented demonstrate that RFID propagation-based sensing systems 

can achieve the accuracy of scientific-level instruments. 415 

Future developments should aim to improve tag array design, correct the bias caused by wet snow, investigate 

phase solving methods, and automate data processing. 
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Appendix 1: Uncertainty between SWE measured by RFID and weighting 

  

Fig. A1: Difference between the SWE measured by RFID and by weighing, in the laboratory, during snowfall events, and throughout 

the season (periods 2 and 3 are used, because snow pit weighing surveys were available). ΔSWE represents the variation in SWE 

measured with the same calibration. Darker curves represent earlier measurements. 630 

 

Appendix 2: Temperature measurements 

The temperature data was first calibrated, by setting the temperature to 0 °C on tags covered by wet snow. In wet 

snow, these tags displayed tag a constant temperature near 0°C (indicating wet snow), preceded and followed by 

distinct patterns of temperature variations compared to the highest tags in the air. It occurred on 2019-12-14 and 635 

2020-03-10 during more than 8h, for the eight tags up to 53 cm. A second calibration step was performed on the 

other tags, between 2019-11-11 and 2019-11-14 at 20:00−06:00 each day when the snow was low, by fitting their 

intercept of a linear regression with the tags previously calibrated at 0°C. 
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In terms of accuracy, the tag’s microcircuit manufacturer indicates a maximum error of ±2 °C before calibration, 

and ±1.2 °C after offset calibration, for temperatures within the range −40 °C to +60 °C. In our hands, the error 640 

before calibration was ±0.8 °C within the range −7 °C to 0°C. Calibration reduced the uncertainty to ±0.25 °C (Fig. 

A2), which corresponds to the numerical resolution (see Fig. 10). No drift or random noise was visible.  

 

Fig. A2:  Difference in the temperature ΔT measured by the tags at a height of 83-163 cm, and their average measurement after 

calibrating the offset. The data was measured during the period of the second calibration step. It shows that there is no need for a 645 
2-point calibration (=the measurement slope) on each individual tag. 

 

The tag temperature  was plotted alongside the air temperature, and the snow surface temperature (Fig. A3 

for each tag up to 0.64 m, then average for all tags >0.68 m (always above snow)). The temperature recorded by 

tags above the snow level correlated well with the air temperature. Tag temperature was higher than air temperature 650 

in the sunlight and lower at night due to radiative heat transfer, temporary snow/ice accumulation on tags, and to 

heat conduction through the tag support. For tags present in the snowpack, temperatures remained ≤ 0 °C, and no 

correlation with air temperature was observed. The temperature measurements confirmed that snow melted around 

the tag poles just before 2019-12-19 and 2020-02-03. Indeed, on 2019-12-21, the snow depth was indicated as 

<0.18 m based on the tag’s temperature; measurement with a laser sensor indicated a depth of 0.25 m. On 2020-655 

02-06, the snow depth determined based on tag temperature was <0.33 m; and 0.6 m according to the laser sensor. 

The snow depth offset thus appears to have accumulated after both accelerated melting events. As another indicator, 
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a stable temperature near 0 °C indicates that the snowpack is partially wet near the measuring tag (for example on 

2020-03-10, up to 38 cm). During these periods, the temperature measured remained within 0 °C ±1 °C, which is 

consistent with the accuracy given by the manufacturer. Tags close to the ground remained around 0 °C most of 660 

the time, indicating that snow near the ground stays wet. Again, this behavior is expected to be due to heat transfer 

from the ground. However, the snow near the ground should remain only slightly wet most of the time because the 

heat flux coming from the ground is small compared to the heat needed to melt frozen water. After 2020-03-23, 

once the snowpack had entirely melted near the tags, the temperature of the lowest tags increased above 0 °C, as 

expected. These results confirm that RFID tags can monitor and spatialize temperatures,  opening another 665 

perspective for the use of RFID tags to monitor the snowpack (e.g., Bagshaw et al., 2018). 
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Fig. A3: Temperature measured by RFID tags, from 0.04 to 0.64 m above ground, and the average of tags above 0.68 height. The 

air and snow surface temperatures were measured by independent instruments. The lines in blue represent T=0 °C ±0.3 °C. 670 

Appendix 3: Detail on the tags 

For this study we used Survivor B battery-powered tags because we were accustomed to these devices, and because 

of their long read-range. A picture of the tag, and the inside after removing its casing, is shown in Fig. A4. We 

want to emphasize that (1) the method presented works with any backscattering RFID tag, provided the signal’s 

phase can be read, and (2) the method works also works without battery, but only with a lower read-range. Readers 675 

who wish to reproduce the experiments could use any tag with a long read-range, whether batteryless or 

battery−assisted. 

 

Fig. A4: The commercial tag used in the study, (a) in its casing, and (b) without its casing. The battery is optional, but was used here 

to maximize read-range performance. The method can be replicated with any batteryless tag for the SWE. It requires specific sensing 680 
tags (with or without battery) to monitor temperature, available from any RFID reseller. 
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Appendix 4: Interim results and wet snow periods 

We present interim results and detail some corrections required compute the SWE over the whole winter season 

(2019–2020) at the Col de Porte. The raw indicator of SWE variations is shown in Fig. A5 after unwrapping, but 685 

before removing wet snow periods, recalibrating due to melting, and averaging multiple tags. The SWE 

measurement based on cosmic rays data is also presented, with manually weighting of the snow pits (Lejeune et 

al., 2019). In addition, the snow depth (measured with a laser, in the pits, and from a visual pole), the lowest 

temperatures for each day (air, tags above snow, and snow surface), and the daily precipitation (with an estimation 

of the solid-to-liquid ratio) are indicated. The solid-to-liquid ratio of precipitation was obtained by estimating 690 

wether the precipitation should contain 0%, 50% or 100% liquid water, based on air temperature, snow radiations 

and expertise, for each hour of precipitation. The resulting quantities of liquid and solid water was cumulated every 

the day. The unwrapped indicator of SWE variations obtained from the three tags (Fig. A5.a, continuous lines in 

light colors) correlated visually with the reference SWE. As expected, the unwrapped phase returned to close to its 

initial value  at the end of the season. 695 

The presence of liquid water in the snow also modifies the phase delay, and would not be differentiated from an 

increase of SWE. Liquid water affects the phase delay both by slowing the wave transmitted through the snowpack 

(e.g., Bradford et al., 2009; Tiuri et al., 1984) and by coupling with the tag antenna (Caccami et al., 2015; Le Breton 

et al., 2017; Dey et al., 2019). We identified dry snow periods from their constant or slowly evolving phase delay—

occurring typically from 00:00 to 07:00. In contrast, the phase delay changed constantly with wet snow, due to its 700 

unstable snow liquid water content (wet snow either melts or refreezes).  

 

 

 

 705 
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Fig. A5: Raw indicator of SWE variations, with their equivalent variation of phase delay, for the snowpack located above the tags 

at 4, 8 and 19 cm from the ground. Periods of wet snowpack (peaks on the raw SWE indicators) were removed, and only the colored 

markers were considered when estimating the SWE. The SWE was also measured by automatic cosmic ray neutron counting and 710 
from snow pit surveys. The figure also shows the snow depth, daily minimum air temperature, and precipitation. In the grayed 

periods, a reheat accelerated snowpack melting around the tag support. 
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Appendix 5: Recalibration due to reheat 

The step 5 in the Sect. 2.3 workflow was introduced to mitigate the acceleration of snowmelt caused by the 715 

installation. This effect occurred twice during the winter (from 2019-12-14 to 2019-12-19 and from 2020-02-01 to 

2020-02-03), after strong wet precipitation combined with an air temperature that remained >0 °C over several 

days (Fig. A5), limiting the nightly refreezing. The influence was likely due to the thermal bridge and preferential 

melt-water path through the snow, caused by the tag support. The resulting increase in snowmelt was observed on 

photographs (Fig. A6), on the non-reversible offset formed both between the RFID and the reference SWE 720 

(Fig. A5), and on the offset between the snow depth and the variations in tag temperature (Fig. A3). To mitigate 

this effect, we distinguished the three periods starting on (1) 2019-10-23 (2) 2019-12-19 (3) 2020-02-03. In 

periods 2 and 3, we recalibrated the SWE by adding an offset to fit the value of a reference manual pit survey, 

marked as ref in Fig. 6 (on 2019-12-30 for period 2 and 2020-02-06 for period 3). 

 725 

 

Fig. A6: Photograph of the monitoring installation taken from the webcam, on 2020-03-23 at 12:00, confirming that the snowpack 

had melted faster around the tag supports, and that there was no more snow around the tags on this date. 
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Appendix 6: Illustration of multipathing 730 

A simple experiment was done, in a similar configuration to the Col de Porte but at a different site, with dry snow. 

Instead of placing a vertical array of tags, the same tag was moved vertically in and above the snow (See Fig. A7c). 

The difference between the measured phase and the theoretical phase in free space (Fig. A7a), and the signal 

strength received (Fig A7b) revealed a clear oscillation. The period is half a wavelength (≈17.4 cm in the air). Its 

influence on the phase and received signal strength reaches up to ±2 rad and ±10 dB (with one peak at −45 dB 735 

inside the snow). These results illustrate the effect of multipathing, and its spatial variability. A communication on 

this topic is in preparation. 

 

 

 740 

Fig. A7: Simple experiment to illustrate multipathing. A tag was moved above and under dry snow, with the reader located above 

the snow. The results present (a) the difference between the theorical phase in free space and the measured phase, (b) the received 

signal strength. 

 


