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Abstract. This work shows that passive radio-frequency identification (RFID) tags can be used as low-cost 

contactless sensors, to measure the variations in snow water equivalent (SWE) of a snowpack.  RFID tags are 15 

produced massively to remotely identify industrial goods, hence are available commercially off-the-shelf at very 

low-cost. The introduced measurement system consists of a vertical profile of RFID tags installed before the first 

snowfall, interrogated continuously by a 865–868 MHz reader that remains above the snowpack. The system 

deduces the SWE variations from  the increase of phase delay induced by the new layers of fresh snow which slows 

the propagation of the waves. The method is tested both in a controlled laboratory environment, and outdoors on 20 

the French national reference center of Col de Porte, to cross-check the results against a solid reference dataset 

(cosmic rays, precipitation weighting, temperature monitoring, and snow pit surveys). The technical challenges 

solved concern multipathing interferences, snowmelt acceleration during reheats, measurement discontinuity, and 

wet snow influence. This non-contact and non-destructive RFID technique can estimate the SWE of dry snow,  

with the accuracy of ±3−30 kg/m2 depending on the number of tags and antennas. In addition, the system can 25 

monitor the snow temperature with 1 °C accuracy and spatialization, using dedicated sensors embedded in the tags. 

1 Abstract[MLB1].[TE2] The amount of water contained in a snowpack, known as snow water equivalent (SWE), is 

used to anticipate the amount of snowmelt water that could supply hydroelectric power plants, water reservoirs, or 

sometimes cause flooding. This work introduces a wireless, non-destructive method for monitoring the SWE of a 

dry snowpack. The system is based on an array of low-cost passive radiofrequency identification (RFID) tags, 30 
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placed under the snow and read at 865–868 MHz by a reader located above the snow. The SWE was deduced from 

the phase delay of the tag’s backscattered response, which increases with the amount of snow traversed by the 

radiofrequency wave. Temperature was measured by the tag’s internal sensor. Measurements taken in the 

laboratory, during snowfall events and over 4.5 months at the Col de Porte test field, were consistent with reference 

measurements of cosmic rays, precipitation, and snow pits. SWE accuracy was ±18 kg/m2 throughout the season 35 

(averaged over 3 tags) and ±3 kg/m2 during dry snowfall events (averaged over data from 2 antennas and 4 or 5 

tags). The overall uncertainty compared to snow weighting was ±10% for snow density in the range 61−390 kg/m3. 

The main limitations observed were measurement bias caused by wet snow (which we discarded) and the need for 

phase unwrapping. The method has a number of advantages: it allows continuous measurement (1 min sampling 

rate in dry snow), it can provide complementary measurement of tag temperature, it does not require the reception 40 

of external data and it open the way towards spatialized measurements. The results presented also demonstrate that 

an RFID system can be used to remotely monitor the permittivity of a low-loss dielectric material with scientific-

level accuracy, using propagation-based sensing. 

 

 45 

1 Introduction 

Measuring the snow water equivalent (SWE) of the snowpack is important for a variety of applications. At the 

scale of the hydrological basin, water resources and hydropower management use the SWE to estimate the reservoir 

of liquid water contained in the snow. At a smaller scale, avalanche risk monitoring or structural health monitoring 

of large buildings can also benefit from SWE monitoring. Snow and meteorological research also needs to monitor 50 

the snowpack to understand its physical processes. The SWE is one of the main macro properties of snow (Fierz et 

al., 2009). It is expressed as a surface density SWE=zρ (in kg/m2) and depends on the snow density ρ and to the 

snow depth z .  

 

Several methods exist to estimate the SWE (Kinar and Pomeroy, 2015; Pirazzini et al., 2018). A common in-situ 55 

measurement technique is the snow course which entails taking multiple samples of the snowpack at multiple 

locations. However, this method is destructive, requires a lot of human resources and does not provide continuous 
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measurements. Alternatively, automatic SWE monitoring is achievable through the use of snow pillows. A large 

variety of non-destructive methods allow for more time-efficient measurements, such as satellite data (Tedesco, 

2015), ultrasonic probes for snow depth (e.g., Ryan et al., 2008), total snow weight on the ground, or cosmic ray 60 

neutron sensing (Gugerli et al., 2019) (Table 1). Among them, radiofrequency methods allow measurements at 

depth, exploiting the influence of the macro snow properties of its dielectric constant. Radiofrequency technologies 

include local probing through the resonant frequency of antennas (Kinar and Pomeroy, 2015; Techel and Pielmeier, 

2011). However, probing makes measurement of a few cm3 of snow only, it is partially destructive, and it not 

adapted for continuous measurement. Other radiofrequency instruments allow to characterize the snow around 65 

them, such as the GPS interferometry (Larson et al., 2009), the scatterometry (Adodo et al., 2018; Picard et al., 

2018), and ground-penetrating radar (GPR) (Bradford et al., 2009). GPR measures the wave propagation delay in 

a volume of the snowpack, to retrieve the SWE, and recently the liquid water content, the snow depth and the 

average density. However, GPR requires expensive surveying instruments and expert processing, and can become 

difficult to interpret on irregular terrains. Buried GPS or upward GPR were also introduced for monitoring the 70 

entire snowpack based on changes in phase delay (Schmid et al., 2015). Nevertheless, these instruments remain 

expensive, and their powering and potential maintenance under snow can become complex. Furthermore, buried 

GPS or upward GPRs can monitor the SWE on one location, but are hardly scalable for spatially dense monitoring. 

A comparison of new-generation sensors for SWE monitoring (cosmic rays, multi-frequency radar, gamma ray 

monitoring, buried GNSS) showed that no method is perfect (Royer et al., 2021), therefore improvements in SWE 75 

monitoring methods are still needed. 

 

We propose to sense SWE and snow temperature using RFID tags. Tags were initially used to identify goods 

remotely (Ngai et al., 2008; Tzeng et al., 2008). The RFID industry produces tags in very large quantities—

18 billion tags and over 30% growth in 2021 (Halliday, 2022)— allowing for low-cost tags (typ. 0.01–20 €) and 80 

reading devices (typ. 2 k€). Therefore, tags can be used in dense arrays of wireless sensors or dispatched over large 

areas. A tag is basically an antenna and an ultra-low-power microchip, powered wirelessly by a reading device. 

When interrogated, the tag communicates its identification number to the reader using either backscattering or 

coupling physical principles (868 MHz backscattering in this study). Recently, tags were augmented with the 

capabilty to sense their environment (reviewed by Costa et al., 2021), using either a sensor connected to the tag 85 

(Hamrita and Hoffacker, 2005), the tag antenna as a sensor (Bhattacharyya et al., 2009), or the properties of the 

wave propagation for localization or contactless sensing (Nikitin et al., 2010; Liu et al., 2012). In earth science,  
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RFID tags have been increasingly used to monitor various surface processes (reviewed by Le Breton et al. 2021b), 

such as coarse sediment transportation in rivers (Nichols, 2004; Lamarre et al., 2005), temperature fluctuations of 

the soil (Luvisi et al., 2016; Deng et al., 2020), soil moisture (Pichorim et al., 2018; Wang et al., 2020), landslide 90 

displacement (Le Breton et al., 2019; Charléty et al., 2022a, 2022b) and rock displacement (Le Breton et al., 2021a). 

The few RFID studies related to snow or frost show that tags are readable below snow under certain conditions (Le 

Breton, 2019) and should not suffer from long-term deterioration due to cyclic freezing/thawing (Gutierrez et al., 

2013). The communication quality is however altered by transmission through snow, reflection at the snow-air 

interface, and multipathing interferences (Le Breton, 2019) and by the presence of snow/frost on the tags (Nummela 95 

et al., 2008). Wagih and Shi (2021) exploited this last influence to sense—in the laboratory—the quantity of frost 

deposit on the tags antenna. However antenna-based sensing can characterize only the material touching the tag or 

a few millimeters away, and not the total volume of a snowpack. On the opposite, contactless sensing might provide 

information in the volume, by monitoring the changes in the signal propagation between the tag and the reader (see 

the review of Le Breton et al., 2021b). To date, contactless sensing was used to detect the presence and position of 100 

a human body through qualitative changes in the signal (e.g., Ruan et al., 2015; Chen et al., 2020).  

 

We use contactless sensing instead to quantify the changes along time of a medium’s physical properties—the snow 

water equivalent (SWE). The method introduced monitors the phase delay of a wave propagating between an RFID 

reader and several tags. Indeed, a Radiofrequency signal transmitting across snow slows down as the snow density 105 

increase (e.g., Le Breton et al., 2019). The SWE variations can therefore be estimated from the phase delay 

variation, on a snowpack that is dry or almost dry, as with buried GPR or GNSS. Besides, we also use tags as small 

temperature sensors (like, for example, Bagshaw et al., 2018), to monitor the vertical temperature repartition of the 

snowpack. This study not only introduces a new concept of RFID contactless sensing, but it is the first study that 

validates it in a real environment on the long term. 110 

 

This article shows that given their previous placement before the snow fall, RFID tags provide a simple way to 

measure temperature and SWE variations locally. The tags that are wireless, have low thermal signature, and use 

either long-lasting or no batteries. Compared to SWE monitoring techniques such as GPR, GPS or cosmic ray 

sensing, RFID has the potential to provide spatialized data of SWE and temperature. Section 0 first describes the 115 

theory and instruments. Section 0 validate the principles and presents the processing steps applied, with preliminary 



5 

 

observations in the laboratory and on the Col de Porte reference field. Finally, section 0 shows the final results of 

SWE and temperature measurements using the RFID system, and validate it against reference measurements over 

the entire 2019–2020 snow season at Col de Porte. 

2 The snow water equivalent (SWE) of a snowpack represents the amount of water it contains (Fierz et al., 120 

2009[TE3]). SWE is used to anticipate the snowmelt water that will feed hydropower plants, fill water reservoirs, and 

potentially cause floods. It is also used to anticipate the risk of avalanches, to monitor the weight of snow on 

building, and for snow research. Many methods exist to monitor SWE but all have drawbacks (for review: Kinar 

and Pomeroy, 2015; Pirazzini et al., 2018; Royer et al., 2021). The methods based on sampling the snowpack 

(Denoth, 1984; Techel and Pielmeier, 2011) are destructive, require significant human resources and do not provide 125 

continuous measurements. Their automation, such as through the use of snow pillows (Beaumont, 1965), is 

technically complex. Snow models and satellite observations (Essery et al., 2013; Helbig et al., 2021; Tedesco et 

al., 2014) have a limited spatiotemporal resolution or suffer from limited accuracy. Radiation-based field methods 

(review, Royer et al., 2021) can conveniently and non-destructively monitor the SWE of a volume of snow. Among 

them, cosmic ray neutron probe (CRNP) (Kodama et al., 1979; Schattan et al., 2017) and gamma ray monitoring 130 

(GMON) (Choquette, Y. et al., 2013) are proven and mature methods, but they require specific instruments that are 

not only expensive but also complex to operate and calibrate (Royer et al., 2021). The dielectric permittivity of 

snow depends on its density and wetness, resulting in a direct relation between SWE and the delay of microwave 

transmission in the snow. Ground-penetrating radars can measure SWE from this delay (Bradford et al., 2009; 

Schmid et al., 2014, 2015), but they are expensive and their data is complex to process. GNSS (Koch et al., 2019, 135 

2014) is a more convenient, light, compact, and low-cost method (Royer et al., 2021). Nevertheless, GNSS estimate 

the SWE with a daily sampling rate (Koch et al., 2019), needs GNSS satellite reception (Royer et al., 2021), and 

has a spatial resolution limited by the number of receivers.  

Radiofrequency identification (RFID) technology also uses microwaves to identify goods equipped with 

passive tags. Passive RFID tags are produced by several billion units every year, allowing for low-cost tags (typ. 140 

€0.01–€20) and reading devices (typ. €2 k). A passive tag is basically an antenna and an ultra-low-power microchip. 

It is powered by a continuous wave (typ. around 865 MHz) emitted by the reader, which it modulates and 

backscatters to communicate to the reader. Recently, tags were developed with the capacity to sense their 

environment (reviewed by Costa et al., 2021), resulting in various applications in earth science (for review, see Le 

Breton et al., 2022). For example, tags were used to measure the temperature of the soil with an embedded sensor 145 

(Luvisi et al., 2016), and the presence of frost on the tag antenna through its change of impedance (Wagih and Shi, 



6 

 

2021). Tags can also be localized by measuring the variations of phase delay over time, between the reader and the 

tag (review by Xu et al., 2023). This technique was used to measure landslide displacements (Le Breton et al., 

2019; Charléty et al., 2022, 2023). Finally, Le Breton (2019) measured variations in the phase when the RFID 

signal transmits through snow and related this variation to snow density and thickness. 150 

 Therefore, we expect that an array of passive RFID tags placed under the snow may monitor SWE, using 

phase delay measurements. It may have a higher spatiotemporal resolution and lower cost than existing methods. 

We tested this hypothesis in the laboratory, during short snowfall events and throughout an entire season outdoors. 

2 Method and instruments 

2.1 Theory: from phase delay to SWE 155 

This section presents the basic theory of microwave propagation in a dielectric medium (Balanis, 2012), applicable 

for snow in the 800-1000 MHz range. Electromagnetic wave propagation in snow depends mostly on its dielectric 

permittivity 

The velocity of electromagnetic wave propagation in snow depends on the real part of its relative permittivity 

(Tedesco, 2015) that we call simply “permittivity”. At the second order, the permittivity 𝜀𝑠
,
 of dry snow at 10–160 

1000 MHz depends on its density 𝜌 (in kg/m3) as follows: 

   𝜀 = (𝜀 , + 𝑗𝜀 ,,)𝜀0𝜀𝑠
, = 1 + 𝑎𝜌 + 𝑏𝜌2 

with 𝜀0 the constant dielectric permittivity of vacuum (=8.854×10–12 Farad / m) and 𝜀 ,,𝜀 ,, the relative in-phase and 

quadrature permittivity of the snow propagating medium, respectively. The in-phase and quadrature permittivity 

influence respectively the wave velocity and attenuation. We name “permittivity” the relative in-phase dielectric 

permittivity. At the second order, the permittivity 𝜀𝑠
,
 of dry snow at 10–1000 MHz depends on its density 𝜌 (in 165 

kg/m3) using: 

with the following approximate values for the empirical constants, a=1.7x10-3 m3∙kg-1, and b=0.7 x10-6 m6∙kg-2 

(Tiuri et al., 1984). Each snow layer is considered, linear, isotropic, homogeneous, nonmagnetic (μ=μ0), with a 

negligible scattering at 865 MHz. The dry snow has a very small conductivity (Mellor, 1977) and can be considered 

as a low-loss dielectric medium (Bradford et al., 2009). The wave velocity 𝑣 can then be expressed as a function 170 

of the snow permittivity 𝜀′ and the velocity in a vacuum 𝑐 (≈ 2.998∙108 m/s) (Balanis, 2012): 
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 𝜀𝑠
, = 1 + 𝑎𝜌𝑥+ 𝑏𝜌2𝑣 =

𝑐

√𝜀 ,
 

with empirical constants approximately a=1.7x10-3 m3∙kg-1, and b=0.7 x10-6 m6∙kg-2 (Tiuri et al., 1984).  

We approximate the propagation as rays, and snow as linear, isotropic and homogeneous. That is partly valid up to 

about 2 GHz, for which we assume a negligible influence of scattering (Bradford et al., 2009). Snow can be 

considered as nonmagnetic (μ=μ0) with a negligible conductivity (𝜎 ′ ≈ 0, 𝜎 ′′ ≈ 0) within 10–12−10-6 S/m for dry 175 

snow (Mellor, 1977), and we approximate it as a low-loss dielectric medium (𝜎𝑒𝑓𝑓 ≪ 𝜀𝑒𝑓𝑓𝜔) The wave velocity 

𝑣 can then be expressed as function of the snow permittivity 𝜀′ and the velocity in a vacuum 𝑐 (≈ 2.998∙108 m/s) 

(Bradford et al., 2009) 

 𝑣 =
𝑐

√𝜀 ,
 

Roughly speaking, a dry snow density within 100−600 kg/m3 would have a permittivity within 1.1–2.3 (i.e., a 

relative velocity of 0.65–0.95). AdditionallyWith the ray approximation, the phase 𝜙 (in radians) of a wave of 180 

frequency f (in Hz), propagating two ways through a medium over a distance zd (in meters) equals: 

𝜙 = −
4𝜋𝑓

𝑣
𝑧 =

4𝜋𝑓

𝑣
𝑑 

Therefore,We represent the phase with the same sign as the time delay, for simplicity. Combining (1), (2) and (3), 

the phase variation when a homogeneous layer of dry snow of permittivity ε’ replaces a layer of air, the phase 

varies can be approximated as: 

Using the approximation of snow permittivity (2) in a homogeneous medium leads to: 185 

A first-order Taylor expansion on the density gives: 

𝛿𝜙 = 𝜙𝑠𝑛𝑜𝑤 − 𝜙𝑎𝑖𝑟 = −
4𝜋𝑓

𝑐
(1 − √𝜀′)𝑧 =

4𝜋𝑓

𝑐
(1 − √1 + 𝑎𝜌 + 𝑏𝜌2) 𝑑 

𝛿𝜙 = −
4𝜋𝑓

𝑐𝑎𝑖𝑟
(1 − √1 + 𝑎𝜌𝑥+ 𝑏𝜌2) 𝑧𝛿𝜙 =

2𝜋𝑓

𝑐
𝑎𝜌𝑑 
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Considering a range of relatively low density of snow (50–500 kg/m3) and the smaller importance of the quadratic 

term in (2), we approximate this equation with a first order Taylor expansion: 

The expansion brings an error < 0.5% for 0–500 kg/m3 density, which is negligible compared to SWE measurement 

uncertainty in general. Knowing that 𝑆𝑊𝐸 = 𝜌𝑧, with z the snow depth, the variation ∆𝑆𝑊𝐸 due to the presence 190 

of multiple layers of snow, relates to the cumulative phase variation ΔΦ: 

A phase shift of π represents a SWE of 102 kg/m2. In practice, the RFID reader measures the phase  𝜙𝑚𝑒𝑎𝑠(𝑡) =

𝜙(𝑡) + 𝜙0(𝑡) − 𝑘𝜋, with an offset 𝜙0 and an unknown integer k causing a kπ ambiguity—2kπ with most recent 

readers (Miesen et al., 2013). Appropriate instrumentation and processing workflow, presented in Sect. 2.2 and 2.3, 

reduce the unwanted variations of 𝜙0(𝑡) and solve the phase ambiguity.  195 

2.2 Instrumentation in the laboratory and outdoors 

The experimental setup was designed to measure the increase in phase delay caused by the layers of dry snow 

formed between a reader antenna above the snow, and a tag below the snow. The SR420 reader (Impinj) emits and 

receives a radiofrequency signal at selected frequencies (865.7, 866.3, 866.9 and 867.5 MHz), through an antenna. 

A slot antenna [MLB4]was used in the laboratory (Model IPJ-A0311-EU1, 5 dBi gain, linear polarization, 50°/100° 200 

Beamwidth at –3 dB), and two patch antennas were used outdoors (Model Kathrein 52020251, 12.5 dBi gain, linear 

polarization, 42°/42° Beamwidth at –3 dB, IP65). The tags (Survivor B, from Confidex, 2014) measure 155 × 26 

× 14.5 mm and weigh 32 g each (see appendix 3). These tags are essentially passive, but the models used in this 

study were assisted by a tiny battery [MLB5](with several years’ lifetime) to increase sensitivity and read-range. 

These devices are termed “battery-assisted” or “semi-passive” tags. The method is suitable for use with any passive 205 

backscattering tag (either battery-powered or batteryless), but not with active tags for which the phase is not 

synchronized between the receiver and the emitter. Each tag includes an antenna which converts the RF wave into 

a current, waking-up the microcircuit contained in the tag. The microcircuit (EM4325, from EM Microelectronic-

Marin) has ultra-low power requirements (<10 μW when interrogated), and embeds an integrated temperature 

sensor with ±2.0 °C initial accuracy over −40°C to 60°C (Confidex, 2014), and ±0.25°C resolution and accuracy 210 

over −7 to 0°C after calibration (see appendix 2). The material was chosen to reduce thermal influence on the phase 

(Le Breton et al., 2017). During acquisition, the reader interrogates each tag sequentially for 30 ms, following a 

𝛿𝜙 = −
2𝜋𝑓

𝑐
𝑎𝜌𝑧𝛥𝑆𝑊𝐸 =

𝑐

2𝜋𝑓𝑎
𝛥𝜙 
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standard RFID protocol (EPC-Gen2, 2015). When requested by the reader, a tag communicates its unique identifier 

and any other data from its memory by backscattering and modulating the signal amplitude. For each tag, the reader 

measures the Phase Difference of Arrival between [MLB6]the two modulated states of the incoming signal compared to 215 

the continuous wave emitted (Nikitin et al., 2010). Here, this is termed the “phase”. The modulated tag reflection 

therefore distinguishes the static reflection from the environment and any signal from the tags that are not being 

interrogated. Phase measurement is possible with backscattering communication because, unlike with classical 

wireless communications, the reader can easily synchronize the emitted and received waves. 

In the laboratory experiment, one reader antenna and one tag were placed 1 m above and 0.05 m below a 0.4 × 220 

0.4 m polystyrene box, respectively (Fig. 1). Step by step, layers of dry snow were added to the box, to form an 

increasingly thick snow block, from no snow to approximately 0.24 m deep snow. The whole experiment was 

performed in a cold room (-5 °C). The snow, collected outdoors was kept dry. It was sieved to add each new layer 

to the box. After adding each layer, the snow surface was smoothed before measuring its thickness and the weight 

of the entire snow block to estimate its density. The experiment was repeated with a snow density of 230, 275 and 225 

330 kg/m3, and a maximum snow depth of 0.24, 0.237 and 0.245 m, respectively. The snow density was increased 

by repeatedly sieving the same snow but changing the mesh size. 

The continuous field monitoring was installed during winter 2019–2020 at Col de Porte, France (alt. 1325 m). Col 

de Porte is the French reference site for snow measurements and instrument testing (Lejeune et al., 2019[TE7]), and is 

operated by Météo-France’s center for snow study (CEN). The numerous instruments present and manual surveys 230 

conducted on this site provided an exhaustive dataset describing the snowpack and its environment throughout the 

experiment (Fig. 2). Precipitation was measured by automatic weighing gauge, and used to estimate the variation 

in SWE caused by snowfall events. The snow height was measured by a number of methods: automatic laser 

instruments, manual surveys in snow pits, and manual inspection of a pole near the RFID tags. The SWE was 

estimated automatically every day with a CRNP. The air temperature was measured by a meteorologic station, and 235 

the snow surface temperature was monitored by infrared sensors. A webcam collected images of the measurement 

sites every hour, which were used to monitor the melt surrounding individual tags. 

In the field installation, two vertical arrays of tags—comprising 12 and 11 tags each—were planted on the ground. 

The tags were placed 4−169 cm and 8−158 cm above ground, respectively, with 0.15-cm spacing (see Fig. 3). The 

tags were supported by a 0.05-m-diameter and 1.70-m-high PVC tube, equipped with multiple 0.15-m-long and 240 

0.02-m-thick horizontal plastic arms. The arms were supported from below and the PVC tubes were maintained by 
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rigging strings, to avoid movement. The two reader antennas were placed above the tags, 4 m from the ground. The 

reader antennas were supported by a metallic arm attached to a large vertical metallic pole, 3 m from the tag support. 

The acquisition lasted from 2019-10-22 to 2020-03-27. Experiments initially focused on four snowfall events, 

during which the top layers of snow remained entirely dry, then the SWE was computed over the whole winter, 245 

using the workflow described below. 

 

Fig. To1: Laboratory setup to simulate new layers of snow, and validate the SWE estimation from the change of phase delay between 

the tag and the reader antenna. 

 250 
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Fig. 2: Site of Col de Porte, highlighting the positions of the reference instruments. Modified from Lejeune et al. (2019) 
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[TE8]255 

Fig. approximation, we3: Outdoor experimental RFID setup at Col de Porte. 
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2.3 Workflow to compute the relative error of the Taylor approximation computed using (8).SWE 260 

outdoors 

The SWE was computed over the season using the following steps. The choices and adaptations specific to this 

study are marked in italics and further discussed in Sect. 4. 

1) Data selection. Phase data were separated for each combination of tag, reader antennas and frequencies 

available, to select the data to be processed. The tags covered by the snow are selected from their daily 265 

temperature variation that is smaller than with tags in the air (Reusser and Zehe, 2011) (see temperature 

data on Fig. A3). 

We selected for individual events of dry snowfall based on dry snow criteria (step 3), on (1) 2019-12-11, 

(2)2019-12-12/13, (3) 2020-01-10 and (4) 2020-02-27. We used only the tags covered by snow, at heights 

of 4−23 cm for events 1 and 3, and at heights of 4−34 cm for events 2 and 4 (Sect. 3.2).  270 

We split the season in three periods, starting on (1) 2019-10-23 (2) 2019-12-19 (3) 2020-02-03. We used 

tags at height of 4 cm for the period 1, and at heights of 4−19 cm for the periods 2−3 (Sect.3.3). 

2) Phase unwrapping. The phase was unwrapped to cumulate phase variations over time to solve its kπ 

ambiguity (equivalent to k×102 kg/m2 of SWE for dry snow), with the hypothesis of data continuity. 

We combined the phases of the four frequencies available. We also removed the fast variations of phase 275 

using a complex domain averaging over 3 minutes, unwrapped the smoothed phase, then reintroduced these 

variations (see Charléty et al., 2023). 

3) Dry snow selection. The periods of dry snow were selected to ensure that the snow permittivity was 

influenced only by its density (needed for eq. 6) and not by its liquid water content (Tiuri et al., 1984[TE9]). 

For most of the season, we identified and removed wet snow periods from their phase delay which 280 

displayed rapid and non-mononotous fluctuations over the day, typically from 08:00 to 24:00. It was also 

validated from, the temperature of the snow surface < 0°C measured by infrared and by tags close to the 

surface, and from air temperature <0°C when precipitation occurred. After 2020-03-03, the snowpack 

rarely refroze completely during the night, so we picked only the period of driest snowpack (with a local 

phase maximum), typically 06:30–07:00.[MLB10] We also identified the four individual events of dry snowfall. 285 

4) SWE conversion. The variation of phase was converted into a variation of dry snow SWE using eq. (6) 

5) Recalibration in case of technical issues. Sometimes, recalibration may be required to compensate for 

a technical issue (Charléty et al., 2023). The alteration of the snowpack just above the tags can cause a  

local SWE offset and would need to be compensated. In addition, after a long data gap due to technical 
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issues, the phase ambiguity might need to be resolved. In this case, the variation of k  occurring during the 290 

gap could be estimated with an independant method which accuracy is below half the ambiguity.  

However, we recalibrated twice the SWE to compensate for accelerated melting around the tag supports 

during warm periods with rainfall (see appendix 5). This recalibration resulted in three distinct periods in 

Fig. 6, with two periods recalibrated based on snow pit measurements (marked as “ref”). We encountered 

no data gap causing ambiguity issues here. 295 

6) Spatial averaging. The error remains below 0.5%caused by multipathing interferences can be reduced 

by computing the mean data between the different tags and antennas. 

We used the tags selected in step 1, measured from two antennas during the snowfall events, and from one 

antenna, with the highest signal strength, during the season. 

7) Time averaging. Data were averaged at the desired sampling duration. 300 

We kept the 1 min time sampling for the snowfall events (Fig. 5). We averaged over 12 h for the entire 

season to account for the discarded periods of wet snow (Fig. 6). 

The tag temperature sensors were also calibrated at 0°C when surrounded by wet snow (see appendix 2).[MLB11] 

 

 305 
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3 Results of SWE measurements 

3.1 Laboratory experiments  

Laboratory results confirmed that the variation in SWE estimated from the RFID phase (Fig. 4, solid line) was 310 

consistent with the SWE estimated from snow weights, over the complete cumulated layers (Fig. 4, dashed lines). 

This result was verified for snow density of 0 to 500230, 275 and 335 kg/m3 ,, corresponding to snow permittivity 

of 1.43, 1.51 and 1.64, respectively (eq. 1). The estimated SWE oscillated depending on the snow depth, within 

±10 kg/m2 of the value obtained by weighing the snow. The spatial period corresponded to half a wavelength in 

the snowpack (0.135–0.145 m for the highest–lowest density, respectively), which strongly suggests that it results 315 

from fringes of multipath interference caused by reflection of waves at the air-snow interface (Le Breton, 

2019[TE12]). In conclusion, the method worked well under controlled conditions, with ±10 kg/m2 accuracy for a single 

tag-antenna combination, and an error that could mostly be attributed to multipathing. 

  

Fig. is negligible4: Cumulated variations of SWE obtained from RFID phase measurement (solid lines) and weighing (dashed line), 320 
as a function of the thickness of the snow block, for three densities. 
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3.2 Snowfall events 

For each dry snowfall event selected, the depth of snow and the cumulated precipitation—which equals the SWE 325 

when no melting occurs—were compared to the RFID measurements made every minute (Fig. 5). The SWE 

estimated from a single tag-antenna combination exhibited dispersion up to ±30 kg/m2. The dispersion was different 

for each event, each tag and each antenna, suggesting that the method is sensitive to tag position, antenna position 

and the snowpack’s geometry. For example, on 2019-12-11, the 18-cm and 23-cm-high tags provided biased SWE 

only from antenna 1. The dispersion is consistent with the expected influence of multipathing (see discussion, and 330 

appendix 6). The average SWE estimated from all the tags and antennas (Fig. 5, black line) was very close to the 

cumulated precipitation (black squares), with a full-amplitude error up to ±3 kg/m2 (details on appendix 1). In 

conclusion, the RFID array prove efficient to measure SWE accurately with 1 min resolution during short periods.  

 

Fig. 5: Increase of SWE measured over the course of four dry snowfall events, using single tags and antennas from the RFID array 335 
(see Fig. 3) (in color), the median value of the array (black line) and precipitation measured by weighting gauge (gray squares). The 

snow depth measured by laser is also displayed.  
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3.3 Entire season 

Over the entire season, the SWE estimated by RFID (Fig. 6, in red) is consistent with the CRNP and snow pit 340 

measurements (in gray and black). During snowmelt periods, around 2019-11-27 and after 2020-03-08, RFID 

sensing appeared to be more accurate than CRNP, which is influenced by water present in the soil (Sigouin and Si, 

2016[TE13]). Given the accuracy of CRNP (which has its own limitations) and the spatial heterogeneity in the snowpack, 

we considered the results close enough to validate the RFID method. We measured an uncertainty in the density 

measurement and on the phase. of ±18 kg/m2 compared to snow pit (see appendix 1). 345 

 

 

Fig. 6: SWE measurements for the three periods with RFID (top), keeping only the driest snowpack time windows. CRNP and snow 

pit survey (bottom.) Snow depth was measured at three locations using a laser sensor, manual surveying and a visual pole. During 

the first period, the data were derived only from the 4 cm high tag, due to the shallow snow depth. In subsequent periods, the data 350 
from the three lowest tags (4 cm, 8 cm and 19 cm) were averaged. For each period, the SWE RFID estimation was calibrated relative 

to a reference SWE based on a manual measurement, indicated by the “ref” arrow.[MLB14] 
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 355 

3.4 SWE measurement accuracy compared to weighting 

The difference between the SWE measured by RFID and by weighing was ±10 kg/m2 in the laboratory, 

±3 kg/m2 during short snowfalls, and ±18 kg/m2 during the last two periods of the season (details on Fig. A1). We 

did not compare the measurements with CRNP values, as we considered it not to be accurate enough to represent 

ground truth data. Laboratory measurements were not the most accurate, because the single combination of tag and 360 

antenna made them more sensitive to multipathing. On the contrary, the most accurate measurements occurred 

during snowfall, with an averaging over 4−5 tags and 2 antennas. Therefore, increasing the number of tags and 

antennas is the most important factor when seeking to increase accuracy, with most inaccuracies caused by 

multipathing. 

The snow density (Fig. 7), computed as the SWE normalized relative to the snow depth, indicates that the  365 

RFID measurements occurred on 61−390 kg/m3 snow density. The role of settling (Helfricht et al., 2018) was 

partially compensated in the density calculation,  by removing the trend of snow depth decrease (visible on events 

1 and 4) obtained after precipitation. Both RFID and weighting SWE used the same snow depth, so the relative 

error is unchanged. Overall, RFID measurements fitted within a 10% relative uncertainty compared to weighting, 

for 61 kg/m3 to 390 kg/m3 density. 370 
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 375 

 

Fig. 7: Comparison of snow density estimated from the SWE obtained by weighting or by RFID SWE (for a known thickness). The 

RFID method works with fresh and compacted snow, from 65 kg/m3 to 390 kg/m3 density. 
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4 Discussion 380 

Table 1: Evaluating RFID method using criterias of Royer (2021) 

𝛿𝜙−𝛿𝜙𝑎𝑝𝑝𝑟𝑜𝑥

𝛿𝜙
= 1 −

𝑎𝜌

2√1+𝑎𝜌+𝑏𝜌2−1
Criteria  

(8)RFID SWE performances in this study 

Uncertainty ±10% and ±18 kg/m2 compared with weighing 

SWEmax 3000 kg/m2 (theoretical value, for 6% volume liquid water content) 

Other measured data T°C vertical gradient— may also measure liquid water content in the future 

Depends on external data  No. No need for satellite reception, ancillary data, or data from an external station 

Typical sampling rate Continuous — except for wet snow that currently bias measurements 

Area of snow measured <1 m2 

Price Should be similar to GNSS 

Power consumption 7 W with 1 min sampling — may be optimized 

Advantages Mass-market availability of the hardware (vs. CRNP&GMON) 

Tag array improves accuracy and enables spatialization (vs. all) 

Works both with deep and shallow snowpack (vs. CRNP&GMON) 

Limitations Requires continuous measurements for phase unwrapping. 

Biased by wet snow —may be corrected in the future 

Maturity  RFID hardware and software in the field are reliable. 

Developments needed on the tag array and on data processing automatization 

Knowing that 𝑆𝑊𝐸 = 𝑧𝜌 , the variation of snow-water equivalent ∆𝑆𝑊𝐸 due to the multiple layers of snow that 

add-up during a snowfall relates to the cumulative phase variation ΔΦ, which is measured by the RFID system: 

𝛥𝑆𝑊𝐸 = −
𝑐

2𝜋𝑓𝑎
𝛥𝜙 
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For indication, a phase variation of −2 π corresponds to a SWE variation of +102 kg/m2, at 865.7 MHz frequency. 

In addition, the system used in this study measures the phase wrapped between [0, π], with an offset 𝜙0, so that  385 

𝜙𝑚𝑒𝑎𝑠(𝑡) = 𝜙(𝑡) + 𝜙0(𝑡) − 𝑘𝜋 with k an unknown integer, requiring some precautions. First, we assume the 

phase offset ϕ0 to be stable during the time of observation, after using precautions described in (Le Breton et al., 

2017). Then, the unwrapping of the phase requires continuous measurements to avoid any ambiguity which could 

occur if the phase varied by more than ±π/2 between two consecutive measurements. 

To estimate the SWE using (9), we make the hypothesis that the variation of phase is only due to the slowness of 390 

an additional snow layer, which requires to reduce three influence factors. First, we reduce the influence of snow 

on the tag antenna—which can alter the phase if its properties change a few centimeters close to the tag (Dobkin 

and Weigand, 2005)— by observing only the tags close to the ground (3−18 cm high). This has also the advantage 

to reduce the influence of snow settlement. Second, we select only the periods when the snowpack is dry or almost 

dry. When tags are in the snowpack, it corresponds to either a snow temperature T <0 °C or a stable phase delay. 395 

Third, we quantify then reduce the influence of multipathing interferences that occurs from reflections at layer 

boundaries, by combining data from multiple tags and antennas at different locations. Other effects of the 

propagation, such as scattering in the snowpack or on snowflakes, were negligible. 

2.2 Instrumentation 

Two experiments are presented, in a laboratory and outdoors. Both experiments measured the increase in phase 400 

delay caused by a new layer of dry snow formed between a reader antenna (above snow) and a tag (below snow). 

The reader (SR420 from Impinj) emitted and received a radiofrequency signal at 865.7 MHz, through a slot antenna 

in the laboratory (Impinj Threshold, 8 dBi), and through two patch antennas outdoors (Kathrein, 12 dBi). The tags 

(Survivor B from Confidex) are passive in essence, but the models we used are assisted by a tiny battery (with 

several years lifetime) which increases the tag sensitivity and read range. Each tag includes an antenna which 405 

converts the RF wave into a current, to wake up and power the microcircuit embedded in the tag. The microcircuit 

has ultra-low power requirements (<10 μW when interrogated), and embeds a temperature sensor. During both 

experiments, the reader interrogates each tag during 30 ms, sequentially, following a standard RFID protocol (EPC-

Gen2, Dense Miller 8). When requested by the reader, a tag communicates its unique identifier and its temperature, 

by backscattering and modulating the signal amplitude. For each tag, the reader also measures the phase difference 410 

of arrival (more simply the «phase», measured between 0-π rad) from the incoming radiofrequency signal. The 

retrieved data is averaged every minute for each combination of tag, antenna and frequency available. The variation 
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of phase is later converted in a variation of SWE and cumulate over time (see section 4 and eq. (9)). Besides, each 

tag also measures its temperature with an internal sensor, allowing to monitor the snow temperature on multiple 

locations. The temperature accuracy is provided as ± 1 °C by the constructor (after calibration) and has 0.5 °C 415 

numerical resolution.  

In the laboratory experiment, we placed one reader antenna and one tag on the two sides of a 40x40cm polystyrene 

box, respectively 1 m above and 5 cm below the box (Fig. 1). New layers of dry snow were progressively added in 

the box to form a snow block with an increasing thickness, until reaching approximately 25 cm. We operated the 

whole experiment in a dry and cold chamber (-5 °C). The snow had been previously collected outdoors, kept dry 420 

in the chamber, and sieved to add each new layer. After adding each layer, we equalized the snow surface to be 

planar, then we measured the total thickness and the total weight of the snow block, allowing to estimate its density. 

The experiment was repeated with three snow densities (230, 275, 330 kg/m3). 

 

To confirm the method in the field, we installed a continuous monitoring during the 2019–2020 winter, at Col 425 

de Porte, France (alt.  

We compared the RFID performance to other non-destructive SWE monitoring methods described as mature 

by Royer et al. (2021): CRNP, GMON and GNSS. We omitted multifrequency radar because its signal does not 

transmit in wet snow due to a severe attenuation at 24 GHz. The uncertainty of ±10% and ±18 kg/m2 between RFID 

and weighing was similar to that obtained with the other methods, between 9% and 15% (Royer et al., 2021). 430 

However, estimating the uncertainty is difficult because the snowpack is heterogeneous, and because no data 

represents the ground truth, rigorously speaking (Royer et al., 2021). The sampling rate used was <1 s in the raw 

data (the reader interrogates a tag every 30 ms), 1 min during snowfall events to reduce random noise, and 12 h 

during the full season due to the discarded wet snow period (wet snow could be corrected in the future, as discussed 

later). The 1 min sampling rate is considerably better than the typical 1-day rate possible with CRNP, GMON and 435 

GNSS. The maximum SWE measurable might be around 3000 kg/m2, based on our theoretical estimation (discussed 

below). The complementary measurements include vertical temperature gradient measured by the tags. It might 

also include the liquid water content in the future, based on signal attenuation measurements (Koch et al., 2014) 

(discussed below). The RFID method is not dependent on external data, it thus outperforms the other methods 

which need either satellite reception (Koch et al., 2019), cosmic ray flux reference data, or atmospheric humidity 440 

and barometric pressure (Sigouin and Si, 2016). The area covered was <1 m2, comparable with the GNSS method 
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but much less than the GMON and CRNP methods, which sense the snowpack all around. Sensing the snowpack 

over a larger area is generally preferable to avoid localized snowpack variability (e.g., local snowmelt caused by 

the installation, and natural differences due to wind, topography, shade, etc.). Local sensing could be useful, 

however, if it was spatialized. The price of a fully operational system is currently unknown because it is not yet 445 

commercialized. We can only say that the reading station accounts for most of the cost, and that the cost of tags is 

negligible. We can reasonably anticipate a price within the range of existing methods, i.e., from €8 k to €17 k in 

2021 for the sensor alone (Royer et al., 2021) (excluding installation, power, telecommunication, maintenance, 

etc.). The method has three advantages. First, the RFID hardware is a commodity, produced at industrial scale 

using interoperable standards, like GNSS, but in contrast to GMON and CRNP. This ensures a better balance 450 

between cost, reliability and long-term availability than likely with custom sensors. Second, the fact that an array 

of tags can easily be used increases the accuracy, and may enable spatialization. Third, the measurements are not 

biased by soil moisture, unlike GMON and CRNP, making the method more suitable for monitoring shallow snow 

depths when melt snow infiltrates the soil (using RFID measurements when snow is refreezing to reduce melt snow 

bias). The method has two limitations today[MLB15]. First, the phase must be unwrapped to deal with ambiguity. This 455 

requires an efficient, and potentially complex, unwrapping algorithm (Charléty et al., 2023), and continuous 

measurements to avoid large swathes of missing data during which the SWE could vary by more than ±102 kg/m2. 

Second, measurements are biased by wet snow, which led us to discard this data. These limitations, discussed in 

the next paragraphs, might be mitigated in the future. RFID hardware is mature, and the acquisition system (for 

instance provided by Géolithe) has been continuously improved as part of its use to monitor several landslides since 460 

2017 (Le Breton et al., 2019; Charléty et al., 2022, 2023). More developments could improve the tag array, fully 

automatize data processing, reduce power consumption, and mitigate the method's limitations aforementioned. In 

conclusion, the RFID method matches modern non-destructive snow sensing methods, providing several 

advantages: no external data needed, high temporal resolution, temperature gradient data, large industry, not 

affected by soil moisture. Its limitations (it needs phase unwrapping and it is biased by snow wetness—could be 465 

mitigated in the future. 

The issue of multipathing interference, for example, was mitigated in this study using tag arrays. 

Multipathing is a major challenge with RFID, because interferences from the waves reflected by the environment 

can reduce the received signal strength (Lazaro et al. 2009[TE16]) and alter the phase (Arnitz et al., 2012). In addition, the 

snowpack strongly influences multipath patterns, sometimes even perturbing GNSS reflectometry (Larson et al., 470 

2009[TE17]) and GPRs (Espin-Lopez and Pasian, 2021; Kulsoom et al., 2021). A few centimeters of snowpack can modify 
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the phase and signal strength of fixed tags above the ground up to ±1.5 rad and ±10 dB (Le Breton, 2019) (See 

Fig. A7). A first potential mitigation approach is to remove or hide reflectors (e.g., Lucas et al., 2017). Removing 

the vertical tag array would reduce the number of reflectors, but the snow would still create strong interference. 

Another mitigation approach could be to model the entire environment (e.g., Hechenberger et al., 2022) to correct 475 

the phase. However, this is highly complex and dependent on the environment model, and we found no mention of 

any such approach in RFID localization methods (Xu et al., 2023). Another mitigation approach would be to 

increase the bandwidth (Arnitz et al., 2012), but RFID bandwidth is narrow, within 1.8 MHz to 26 MHz for 

frequencies around 900 MHz, depending on regional regulations (e.g., ETSI-EN 302-208; FCC part 15). Finally, 

multipathing can be mitigated using an array of tags and reader antennas (e.g., Grebien et al., 2019). This is the 480 

option we used here. During snowfall events outdoors, we reduced the measurement bias from 30 kg/m2 to3 kg/m2 

by averaging measurements over 8 to 10 combinations of tags and antennas in different locations. Over the entire 

season, qualitatively, the SWE measured was more stable when averaged over 3 tags in periods 2&3, than over a 

single tag in period 1 (Fig. 6). In conclusion, using an array of tags and reader antennas efficiently mitigates RFID 

multipathing uncertainty. 485 

The wet snow bias, in contrast, has yet to be mitigated. The increase of liquid water content in the snow 

can increase its permittivity (e.g., Bradford et al., 2009; Tiuri et al., 1984), increasing the phase delay and leading 

to overestimation of the SWE. For example, for a snow density of 500 kg/m3, a liquid content increasing to 6% 

would increase the permittivity from 2 to 2.7, resulting in a +35% overestimation of the SWE. In addition, liquid 

water near the tag can increase the phase by changing the impedance of its antenna (Caccami et al., 2015; Le Breton 490 

et al., 2017). This effect would result in strong phase changes if ice melting occurs on the tag (Wagih and Shi, 

2021). The combination of both effects explains the peaks of phases that occurred almost every day with sun light, 

or with wet precipitation (visible on Fig. A5). We manually discarded these data to retain the best possible SWE 

accuracy. Should we keep the discarding method in the future, the picking of wet periods could be automated based 

on a combination of signal loss (e.g., Koch et al., 2019), stable 0 °C temperature (e.g., Cheng et al., 2020; Dafflon 495 

et al., 2022; Reusser and Zehe, 2011), and phase peak recognition. Alternatively, the liquid water content present 

in the snowpack might be measured from the signal attenuation (e.g., Koch et al., 2014), to allow its influence on 

the phase to be corrected. In conclusion, the uncertainty due to wet snow is one of the main limitations of the RFID 

method, which led us to discard the data from periods when the snow was wetter. This issue could be overcome in 

the future. 500 
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Phase ambiguity and unwrapping is another typical issue with RFID localization and sensing based on the 

phase. First, it requires an adequate unwrapping algorithm that is not influenced by short spurious noise in the 

phase (Charléty et al., 2023). In our experience, despite the use of advanced algorithms, some unwrapping issues 

can remain (phase jumps of ±π). These are easily identified and corrected by human intervention—we made three 

corrections in our time series over the season. To overcome this need for manual intervention, one possible solution 505 

would be to exploit the tag array in the unwrapping algorithm. A second issue is that for unwrapping to proceed 

correctly, the phase must not vary by more than its ambiguity between two consecutive measurements (equivalent 

to ΔSWE ±102 kg/m2 with modern readers). The method therefore requires continuous acquisition, without large 

data gaps. If some data is missing, the phase ambiguity would have to be solved using an independent method to 

estimate the unmeasured SWE variation with an uncertainty of less than ±102 kg/m2. Absolute localization methods 510 

based on tag arrays (Xu et al., 2023) could also be investigated. In conclusion, the phase ambiguity is a limitation 

of the RFID method, because it requires a robust unwrapping algorithm and continuous data. 

In contrast, measuring the snow temperature gradient using sensors in the tags (see data on appendix 2) is 

a definite advantage. We measured an accuracy of ±0.25 °C within −7°C to 0 °C, after calibration, and saw no 

visible drift at 0°C for 3 months (see appendix 1). That is in line with the 3σ accuracy of ±0.2°C to ±1°C near 0°C, 515 

and of 0.5°C to 1.5°C within −10°C to 30°C, on hundreds of battery-assisted tags (Jedermann et al., 2009). It is 

also similar to the accuracy after calibration of ±0.2°C near 37°C with commercial batteryless tags (Camera and 

Marrocco, 2021). In the snow, except for a few studies that reported a better accuracy or spatial resolution (e.g., 

Dafflon et al., 2022; Cheng et al., 2020), most studies used vertical temperature data that was measured with similar 

performances,to estimate other physical indicators of the snowpack. Therefore, our temperature data may also be 520 

used to estimate the snow depth (Reusser and Zehe, 2011), water content (Marchenko et al., 2021), heat transfer 

(Brandt and Warren, 1997), thermal diffusivity (Oldroyd et al., 2013), and latent heat (Burns et al., 2014). [MLB18] 

 The SWE remained <350 kg/m2 in this study. We can estimate the maximum SWE measurable using the 

basic theory of microwave propagation in snow (e.g., Koch et al., 2014; Le Breton, 2019; Steiner et al., 2019). Its 

value is limited by the tag’s maximum read-range in the snowpack (see the influences on the read range on: Le 525 

Breton et al., 2022). This value depends mostly on the RFID hardware (Nikitin and Rao, 2006) and on the signal 

attenuation by the snow liquid water content (Koch et al., 2014). A snow with 500 kg/m3 density and 6% of its 

volume containing liquid water would have a permittivity of 2.63+0.053 j (Tiuri et al., 1984). The attenuation 

coefficient  𝛼 =
1

2𝑐

𝜀,,

√𝜀,
2𝜋𝑓 (Bradford et al., 2009) (in m-1), equivalent to 𝐿𝑑𝐵 = −

20

ln⁡(10)
𝛼 (in dB/m), leads to a  
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reduction of signal strength 𝛥𝑃𝑑𝐵 = 𝐿𝑑𝐵 × 2⁡ℎ =  6.6 dB × h in this snow. At normal incident angle, the loss due 530 

to reflection at the air-snow interface (around 0.5 dB) is much smaller than bulk attenuation. The other factors 

(multipathing, antenna coupling, reflectors within the snowpack) should be secondary compared to propagation 

attenuation if an appropriate tag array design is used . The maximum read-range in snow rmax, snow is computed 

relatively to the maximum read-range in air rmax, air using (
𝑟𝑚𝑎𝑥,𝑎𝑖𝑟

𝑟𝑚𝑎𝑥,𝑠𝑛𝑜𝑤
)
4

= 10
∆𝑃𝑑𝐵
10  . The maximum SWE is the antenna 

height for which the power budget available in air equals the loss in the snowpack. These calculations result in a 535 

maximum theoretical SWE of 3000 kg/m2 (6 m snow depth) for a battery-assisted tag readable at 60 m in the air 

(e.g., Survivor B), and 2250 kg/m2 for a batteryless tag readable at 27 m in the air (e.g., Survivor M780). The real 

maximum SWE may be lower in practice, but nevertheless remains in the range of the GNSS limit of 2000 kg/m2 

(Royer et al. 2021[TE19]).[MLB20] 

Permittivity sensing had been demonstrated  with RFID tags, either by measuring the variations in tag 540 

antenna impedance (Bhattacharyya et al., 2010; Manzari and Marrocco, 2014; Caccami et al., 2015; Caccami and 

Marrocco, 2018) or by connecting a sensor to the tag (e.g., Fonseca et al., 2018). But these methods can characterize 

only the material in contact with the tag. Besides, their accuracy was lower than standard scientific instruments, 

due to the tag's limitations. In terms of accuracy, only the localization of tags in the air by the reader (see review: 

Xu et al., 2023) could match the accuracy of the standard techniques such as GNSS. Like localization, our sensing 545 

method is based on wave propagation, occurring, however, in another medium than air. We demonstrated that such 

method can measure the permittivity of material bulk, remotely, with scientific-level accuracy.  

Finally, any tag can be used with this method. It needs only a reader that can read the phase of the received 

signal. If the read range—frequency-dependent in wet snow—is sufficient, the method should also work with 

harmonic tags (Mondal et al., 2019) already used under  the snow (Mike Stanford, 1994; Grasegger et al., 2016), 550 

and with chipless tags (Barbot and Perret, 2018).  

5 Conclusions[MLB21] 

We introduced a method to sense the snow water equivalent of a snowpack, which works with standard 

radiofrequency identification devices. Its performance was similar to mature, non-destructive, scientific-level snow 

sensing methods (GNSS, gamma ray monitoring and cosmic ray neutron counting), with the accuracy of ±10% or 555 

±18 kg/m2 (see all criteria listed in Table 1). 
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In terms of advantages, the RFID method is fully independent and does not require external data or devices 

(e.g., GNSS reception, temperature and pressure sensors, incoming cosmic ray fluxes). It measures data 

continuously with a high temporal resolution <1 min in dry snow. Provided the usage of temperature-sensing tags, 

it can also measure the snow temperature gradient, with the accuracy of ±0.25 °C at around 0 °C. It is not affected 560 

by soil moisture content. The long-term availability of the devices is supported by the large RFID industry. 

The main limitation of the RFID method is its uncertainty when dealing with wet snow. This uncertainty led 

us to discard wetter snow periods, but it may be corrected in the future using independent liquid water content 

estimations. The need for continuous data to avoid phase ambiguity (equivalent to ±102 kg/m2 SWE) is also 

inconvenient. This difficulty can potentially be solved with advanced localization techniques, but further 565 

investigation would be needed. 

In terms of RFID sensing, we showed that an array of tags can sense a material’s bulk permittivity remotely 

using propagation-based sensing. The results presented demonstrate that RFID propagation-based sensing systems 

can achieve the accuracy of scientific-level instruments. 

Future developments should aim to improve tag array design, correct the bias caused by wet snow, investigate 570 

phase solving methods, and automate data processing. 

6 Acknowledgments 

1325 m). In the experiment, we planted two vertical arrays of tags on the ground. Each array comprised 12 and 11 

tags with 15 cm vertical spacing between each tag, starting at 3 cm and 8 cm above ground, respectively (see Fig. 2, 

b-c). The tags were interrogated continuously from two antennas placed above the tags at 3 m height, from 2019-575 

10-22 to 2020-03-27. We first focused on four snowfall events during which the top layers of snow remained 

entirely dry, then computed the SWE over the whole winter. 

 

Col de Porte is the French reference site for snow measurements and instrument testing (Lejeune et al., 2019), 

operated by the center for snow study (CEN) of Météo France. The numerous instruments and manual surveys on 580 

this site provided an exhaustive dataset on the snowpack and its environment during the experiment (see Fig. 3). 

The precipitation was measured by automatic weighting, and used to estimate the variation of SWE caused by a 

new snow layer during a snowfall. The snow height was measured with different methods: an automatic laser 
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instrument, manual surveys in the snow pits, and manual visualization on a pole near the RFID tags. The SWE was 

estimated automatically every day with the cosmic ray method. The air temperature was measured with a 585 

meteorologic station, and the snow surface temperature with infrared sensors. A webcam pictured the measurement 

sites every hour, which we used to validate local snow melting.  

 

 590 

 

3 3 Preliminary observations and processing 

3.1 3.1 Snow layers simulated in laboratory 

The method is first validated in a laboratory experiment, where we added cumulative new layers of snow between 

a tag and a reader antenna. Each new layer of snow increased the SWE estimated from the RFID phase delay 595 

(Fig. 4), with a slope that depends on snow density. The densities of 230, 270 and 335 kg/m3 correspond to 

dielectric permittivity’s of 1.43, 1.51 and 1.64, respectively (Tiuri et al., 1984). The cumulated variation of SWE 

estimated from the RFID phase (Fig. 4, solid lines) appears in line with the SWE estimated from snow weighting 

measurement over the complete cumulated layers (Fig. 4, dashed lines). 

The SWE estimated from the phase, however, oscillates around the expected linear trend, reducing the accuracy of 600 

the method on thin snow layers. The estimated variation of SWE remained within ±10 kg/m2 of the value obtained 

by snow weighting (Fig. 4, dashed and solid line, respectively). This deviation oscillates with a spatial period of 

about half a wavelength (135−145 mm in snow for the densities considered)  which corresponds to expected fringes 

of interferences from the wave reflected on the air-snow interface (Le Breton, 2019).  

As a conclusion, uncorrected RFID phase delay should measure large SWE variations over 50 kg/m2, 605 

corresponding to phase shift > π. At these values, the relative error should be <20% and decrease with the SWE 

increase. However, estimating small changes in SWE (<10 kg/m2) requires a method to mitigate the multipathing 

bias, which we introduce in the next section. 
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3.2 Snowfalls outdoors 

During the outdoor experiment, we have selected four periods of snowfall occurring during the winter of 2019–610 

2020 (11–12 Dec., 12–13 Dec., 10 Jan., 27–28 Feb.) for which we assume that both the falling snow and the 

snowpack are dry. The snow dryness is checked from independent snow measurements of surface temperature, and 

from complementary RFID indicators of tag temperature ≤ 0 °C (Fig. 10). For each period, and for each 

combination of tag below snow and reader antennas, we estimate the progressive increase of SWE from the 

variations of phase delay, using (9). The resulting estimation of SWE is compared with the cumulated 615 

precipitation’s weight and the snow depth on Fig. 5.  

The SWE estimated from the RFID phase on each tag/antenna couple (Fig. 5, colored points), evolves mostly in 

coherence with the cumulated precipitations (black squares). However, the different curves of uncorrected SWE 

indicator exhibit a bias up to 30 kg/m2 compared to the cumulated precipitation. The bias is different for each event, 

tag and each antenna, thus we attribute it to multipathing on the ground, snow interfaces, tags and supports. For 620 

example, on 12 Dec., the 18-cm and 23-cm-high tags provide biased SWE only from the antenna 1. Furthermore, 

the amplitude bias of [+ 0.5, -0.9] (11 Dec. at 18 cm and 27 Feb. at 33 cm, resp.) is consistent with the multipathing 

bias of [+0.5, -2.5] rad shown by Le Breton (2019). We reduce this bias to 0 to −1.5 kg/m2 by computing a median 

of the measurement made from the two reader antennas and the five tags below the snowpack (Fig. 5 continuous 

black line). The single outlier of −7.7 kg/m2  on period 2 can be explained by a wind of 40 km/h that may have 625 

distributed the snow differently on the RFID installation and on the precipitation sensors.  Table 2 presents the 

synthetic SWE, errors, and density estimations observed in these periods. 

3.2 3.3 Processing the SWE over the snow season 

We finally compute the SWE over a complete winter (2019–2020) at the Col de Porte. It required more processing 

steps, in order to handle the small data gaps (given the ±π phase ambiguity), the periods of wet snow (which also 630 

increases the phase delay), the thermal influence of the tags support (which has accelerated the snow melting twice), 

and the settlement of the snow.  

The first step, the phase unwrapping, cumulates the phase variations over time to solve its ±n×π ambiguity. To 

avoid ambiguity, the phase should therefore not vary by more than π/2 between two consecutive measurements 

(equivalent to 51 mm of SWE in dry conditions), requiring continuous measurements. The main challenge of the 635 

unwrapping is to handle the short data gaps. These are caused by simultaneous destructive interferences and high 
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liquid water content surrounding the tag, that both reduce the RF signal amplitude (Le Breton et al., 2019, 2017; 

Occhiuzzi et al., 2013). We used an automatic unwrapping, and corrected a few remaining ambiguity issues using 

the phase from nearby tags in case of gaps on a tag. For verification, we also ensured that the unwrapped phase 

came back near its initial value at the end of the season. The resulting indicator of SWE variations per single tag is 640 

shown on Fig. 6, along the measurement of SWE based on cosmic rays and on manually weighting the snow pits 

(Lejeune et al., 2019). Besides, the figure shows the snow depth (measured with a laser, in the pits, and from a 

visual pole), the lowest temperature of each day (of the air, of the tags above snow, and of the snow surface), and 

the daily precipitations (with the estimation of solid to liquid ratio). The resulting raw unwrapped indicator of SWE 

variations obtained from the three tags (Fig. 6a, continuous lines in light colors)  correlate visually with the 645 

reference SWE, yet more processing steps are necessary for the final result. 

 

The second step mitigates the role of wet snow, that would modify the phase delay and would not be differentiated 

from an increase of SWE. Liquid water affects the phase delay both by slowing the wave transmitted through the 

snowpack (e.g., Bradford et al., 2009; Tiuri et al., 1984) and by coupling with the tag antenna (Caccami et al., 2015; 650 

Le Breton et al., 2017; Le Breton, 2019). We identified the dry snow period from their constant or slowly evolving 

phase delay—occurring typically from midnight to 7:00. In contrast, the phase delay was constantly changing with 

wet snow, due to its unstable snow liquid water content (wet snow either melts or refreeze). We removed these wet 

snow periods,  for example on 24/12, on 02/02, and most days in the presence of sunlight. Sometimes, the snowpack 

did not dry for 24h or more, for example after important wet precipitations. In this case, we removed the entire wet 655 

period. We made an exception for the final snow melt occurring after March 3rd. In this period the snowpack was 

almost always wet: the phase delay did not stabilize, and the temperature of the tag below snow remained at zero. 

We nevertheless wanted to provide an estimator, knowing that it would be slightly overestimated. To estimate the 

SWE with the best possible accuracy, we selected the driest hour of each day, as the local minimum of phase delay 

and air temperature. It occurred typically around 7:00. To finish this step, we averaged the SWE estimator over 660 

windows of 6 hours, using only the selected data. As a perspective, an algorithm might be developed to select the 

dry snow periods automatically, using several input parameters such as phase, signal amplitude, or temperature. 

Alternatively wet snow might be estimated and corrected for in the future, as already done with techniques for 

buried GPS or GPR (Schmid et al., 2015; Koch et al., 2019) or for moisture-sensing tags (Occhiuzzi et al., 2013; 

Caccami and Marrocco, 2018; Pichorim et al., 2018; Wang et al., 2020; Wagih and Shi, 2021). 665 
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The third step mitigates the acceleration of snowmelt caused by the installation. It occurred twice in the winter 

(from 2019-12-14 to 2019-12-19 and from 2020-02-01 to 2020-02-03), after strong wet precipitations combined 

with an air temperature that remained > 0 °C during several days (Fig. 6), limiting the nightly refreezing. The 

influence was likely due to the thermal bridge and preferential melt water snow path, caused by the tag support. 670 

The resulting increase of snowmelt was observed by picture (Fig. 7), by a non-reversible offset formed both 

between the RFID and reference SWE (Fig. 6), and by the offset between the snow depth and the tag temperature 

variations (Fig. 10). To mitigate this effect, we distinguished the three periods (1) from 2019-10-23 to 2019-10-28, 

(2) from 2019-12-19 to 2019-12-30, and (3) from 2020-02-03 to 2020-02-06. In the periods 2 and 3, we fixed the 

SWE to the value of a reference manual pit survey, marked as ref in Fig. 8. This technical issue should be resolved 675 

on a future installation by placing tags close to the ground. 

 

The fourth and last step mitigates the multipathing bias using multiple tags. Indeed, changes in the snowpack 

modify the multipathing interferences, altering the phase and amplitude of RFID signals (Le Breton, 2019). Using 

a singe tag and antenna, we have previously observed a multipathing bias up to 10–30 kg/m2, in laboratory and 680 

outdoor events respectively. Averaging the data from 18 couples of tags and antennas reduced the bias from 30 to 

3 kg/m2 outdoors. Therefore we averaged the data from the tags under the snowpack, and chose only the tags close 

to the ground to avoid a bias due to the settlement of the snow below the tag. The period 1 had several episodes 

with no snow or little snow, therefore we used a single tag (the lowest one, 3cm height) to integrate the SWE 

variations of most of the snowpack. The accuracy using a single tag (30 kg/m3 at worst, see section 3.2) still 685 

appeared good enough to estimate the SWE variations (50 to 150 kg/m3 during the period 1). In the periods 2 and 

3, we averaged the SWE on the first three tags at 3 cm, 8 cm and 18 cm height to improve the accuracy. 

To summarize, we observed and mitigated four main challenges. Combining data from multiple tags and antennas 

both helped to solve the phase ambiguity during short data gaps, and reduced the multipathing bias. Two 

recalibrations have corrected the offset due to snowmelt near the tag support during reheats (this issue should vanish 690 

in future installations). Selecting the time windows with the driest snowpack reduced the influence of wet snow. 

These processing steps lead to the final SWE estimator, shown in the next section. 
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4 8 SWE and temperature results 

The final SWE estimated by RFID (Fig. 8, in red) appears consistent with the cosmic ray and snow pit 

measurements (in gray and black). Additionally, the RFID estimator seems to provide more realistic results than 695 

the cosmic ray method during snowmelt periods: the cosmic ray estimates both soil and snow water in shallow 

snowpacks leading to an overestimation during snowmelt (Sigouin and Si, 2016) as seen around November 27th 

after mid-March. Given the accuracy of the reference method (which have their own limitations) and the spatial 

heterogeneity in the snowpack, we consider the results close enough to validate the RFID method. The accuracy 

estimated within 3−30 kg/m2 in the preliminary result—depending on the number of tag-antenna couples—appears 700 

visually consistent with the final data obtained.. 

 

To confirm the range of snow density measurable with this method, Fig. 9 synthetize the result of different 

experiments with dry snow: laboratory simulations, controlled experiments on old snow (Le Breton, 2019) and 

fresh snowfalls. The method works for a density ranging from 70 kg/m3 to 400 kg/m3, with an error below ±10%, 705 

and is very likely to work also for higher densities. This error is reasonable, compared with the 5% numeric 

precision of the empiric formula we used to relate permittivity with snow density (Tiuri et al., 1984) (2), and with 

the ±9% spreading between the different empiric formulas of the literature (Di Paolo et al., 2018). In conclusion, 

the RFID method can measure the variations of SWE of a dry snowpack, and we tested it for 70–400 kg/m3 density. 

The largest error is ±30 kg/m3 with a single tag and antenna location, and 3 kg/m2 using multiple positions. 710 

 

As a side result, temperature measurements are shown on Fig. 10 for each tag up to 0.78 m, along with the average 

temperature of the tags > 0.8 m (always above snow), the air temperature, and the snow surface temperature. The 

temperature of tags  above snow correlates well with the air temperature. Tag temperature is higher than air 

temperature in the sunlight and lower in the night due to radiative heat transfer, to temporary snow/ice accumulation 715 

on the tags, and to heat conduction through the tag support. When tags are in the snowpack, their temperature 

remains ≤ 0 °C and does not correlate with air temperature, as expected. The reccurent stabilization of the 

temperature at 0 °C occurring on several tags (for example on March 10th up to 38 cm) indicates that the snowpack 

is partially wet near the tag. During these periods, we compared the temperature measured and confirmed, around 

0 °C, the ±1 °C accuracy given by the manufacturer. Tags close to the ground remained around 0 °C most of the 720 

time, indicating that the snow near the ground stays wet: again, this behavior is expected due to the heat transfer 
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coming from the ground. However, the snow wetness near the ground should remain small most of the time because 

the heat flux coming from the ground is small compared to the heat needed to melt the water. After March 23rd, 

once the snowpack has melt entirely near the tags, the temperature of the lowest tags increases above 0 °C, as 

expected. These results confirm that RFID tags can monitor and spatialize the temperature, with 1 °C accuracy, 725 

opening another perspective for RFID tags to monitor the snowpack (e.g., Bagshaw et al., 2018). 

 8 Conclusions 

We introduced a method based on commercial off-the-shelf RFID devices that can estimate the variation of the 

SWE from phase measurements, under dry snow conditions, spatial variability of tags and reader antennas, and 

continuous measurements. In a preliminary study, we validated the method in the laboratory and with four selected 730 

outdoor snowfalls with 1 minute time resolution. We then proposed a processing workflow for long-term 

observations, that mitigates short data gaps, wet snow, multipath interference and offsets due to thermal influence. 

We validated the method by estimating the SWE of dry snow over an entire winter, with ±3–30 kg/m2 accuracy 

(accuracy improves with more tags and antennas) and 6h time resolution (time resolution is larger because of the 

periods of wet snow removd each day). We also introduced RFID tags as a way to measure the snowpack 735 

temperature, with the accuracy of ±1 °C (manufacturer value, confirmed here at 0 °C). 

The corrected results were very coherent with reference measurements of SWE (snow pits and cosmic ray) and 

with the temperature of air or snow surface, during the entire season. During prolonged snow melting periods, the 

RFID seemed to estimate the SWE variations more accurately than the reference cosmic ray method installed on 

the site. 740 

From the perspective of snow research, we introduced a method to monitor the snowpack SWE and temperature. 

It has the advantage to use low-cost commercial off-the-shelf devices, deployable rapidly without needing to design 

or manufacture RFID devices. From the perspective of RFID research, we demonstrated the ability to characterize 

a material over its volume using contactless sensing with an array of tags.  The method exploits jointly two 

approaches of RFID sensing: dedicated sensors for temperature and contactless sensing for SWE, to better interpret 745 

the monitored process. We also demonstrated one step further the ability of using RFID as an effective platform 

for outdoor sensing applications, in very harsh natural conditions.  In the future, the method could be enhanced to 

monitor the snow liquid water content, to spatialize the measurements over large areas with a mobile reader, or to 

monitor other materials such as concrete or soil 
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Appendix 2: Temperature measurements 

The temperature data was first calibrated, by setting the temperature to 0 °C on tags covered by wet snow. In wet 

snow, these tags displayed tag a constant temperature near 0°C (indicating wet snow), preceded and followed by 

distinct patterns of temperature variations compared to the highest tags in the air. It occurred on 2019-12-14 and 1035 

2020-03-10 during more than 8h, for the eight tags up to 53 cm. A second calibration step was performed on the 

other tags, between 2019-11-11 and 2019-11-14 at 20:00−06:00 each day when the snow was low, by fitting their 

intercept of a linear regression with the tags previously calibrated at 0°C. 

In terms of accuracy, the tag’s microcircuit manufacturer indicates a maximum error of ±2 °C before calibration, 

and ±1.2 °C after offset calibration, for temperatures within the range −40 °C to +60 °C. In our hands, the error 1040 
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before calibration was ±0.8 °C within the range −7 °C to 0°C. Calibration reduced the uncertainty to ±0.25 °C (Fig. 

A2), which corresponds to the numerical resolution (see Fig. 10). No drift or random noise was visible.  

 

Fig. A2:  Difference in the temperature ΔT measured by the tags at a height of 83-163 cm, and their average measurement after 

calibrating the offset. The data was measured during the period of the second calibration step. It shows that there is no need for a 1045 
2-point calibration (=the measurement slope) on each individual tag. 

 

The tag temperature  was plotted alongside the air temperature, and the snow surface temperature (Fig. A3 

for each tag up to 0.64 m[TE22], then average for all tags >0.68 m [TE23](always above snow)). The temperature recorded by 

tags above the snow level correlated well with the air temperature. Tag temperature was higher than air temperature 1050 

in the sunlight and lower at night due to radiative heat transfer, temporary snow/ice accumulation on tags, and to 

heat conduction through the tag support. For tags present in the snowpack, temperatures remained ≤ 0 °C, and no 

correlation with air temperature was observed. The temperature measurements confirmed that snow melted around 

the tag poles just before 2019-12-19 and 2020-02-03. Indeed, on 2019-12-21, the snow depth was indicated as 

<0.18 m based on the tag’s temperature; measurement with a laser sensor indicated a depth of 0.25 m. On 2020-1055 

02-06, the snow depth determined based on tag temperature was <0.33 m; and 0.6 m according to the laser sensor. 

The snow depth offset thus appears to have accumulated after both accelerated melting events. As another indicator, 

a stable temperature near 0 °C indicates that the snowpack is partially wet near the measuring tag (for example on 

2020-03-10, up to 38 cm). During these periods, the temperature measured remained within 0 °C ±1 °C, which is 
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consistent with the accuracy given by the manufacturer. Tags close to the ground remained around 0 °C most of 1060 

the time, indicating that snow near the ground stays wet. Again, this behavior is expected to be due to heat transfer 

from the ground. However, the snow near the ground should remain only slightly wet most of the time because the 

heat flux coming from the ground is small compared to the heat needed to melt frozen water. After 2020-03-23, 

once the snowpack had entirely melted near the tags, the temperature of the lowest tags increased above 0 °C, as 

expected. These results confirm that RFID tags can monitor and spatialize temperatures,  opening another 1065 

perspective for the use of RFID tags to monitor the snowpack (e.g., Bagshaw et al., 2018). 

 

 

Fig. A3: Temperature measured by RFID tags, from 0.04 to 0.64 m [TE24]above ground, and the average of tags above 0.68 height. The 

air and snow surface temperatures were measured by independent instruments. The lines in blue represent T=0 °C ±0.3 °C. 1070 
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Appendix 3: Detail on the tags 

For this study we used Survivor B battery-powered tags because we were accustomed to these devices, and because 

of their long read-range. A picture of the tag, and the inside after removing its casing, is shown in Fig. A4. We 

want to emphasize that (1) the method presented works with any backscattering RFID tag, provided the signal’s 

phase can be read, and (2) the method works also works without battery, but only with a lower read-range. Readers 1075 

who wish to reproduce the experiments could use any tag with a long read-range, whether batteryless or 

battery−assisted. 

 

Fig. A4: The commercial tag used in the study, (a) in its casing, and (b) without its casing. The battery is optional, but was used here 

to maximize read-range performance. The method can be replicated with any batteryless tag for the SWE. It requires specific sensing 1080 
tags (with or without battery) to monitor temperature, available from any RFID reseller. 
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Appendix 4: Interim results and wet snow periods 

We present interim results and detail some corrections required compute the SWE over the whole winter season 

(2019–2020) at the Col de Porte. The raw indicator of SWE variations is shown in Fig. A5 after unwrapping, but 1085 

before removing wet snow periods, recalibrating due to melting, and averaging multiple tags. The SWE 

measurement based on cosmic rays data is also presented, with manually weighting of the snow pits (Lejeune et 

al., 2019). In addition, the snow depth (measured with a laser, in the pits, and from a visual pole), the lowest 

temperatures for each day (air, tags above snow, and snow surface), and the daily precipitation (with an estimation 

of the solid-to-liquid ratio) are indicated. The solid-to-liquid ratio of precipitation was obtained by estimating 1090 

wether the precipitation should contain 0%, 50% or 100% liquid water, based on air temperature, snow radiations 

and expertise, for each hour of precipitation. The resulting quantities of liquid and solid water was cumulated every 

the day. The unwrapped indicator of SWE variations obtained from the three tags (Fig. A5.a, continuous lines in 

light colors) correlated visually with the reference SWE. As expected, the unwrapped phase returned to close to its 

initial value  at the end of the season. 1095 

The presence of liquid water in the snow also modifies the phase delay, and would not be differentiated from an 

increase of SWE. Liquid water affects the phase delay both by slowing the wave transmitted through the snowpack 

(e.g., Bradford et al., 2009; Tiuri et al., 1984) and by coupling with the tag antenna (Caccami et al., 2015; Le Breton 

et al., 2017; Dey et al., 2019). We identified dry snow periods from their constant or slowly evolving phase delay—

occurring typically from 00:00 to 07:00. In contrast, the phase delay changed constantly with wet snow, due to its 1100 

unstable snow liquid water content (wet snow either melts or refreezes).  

 

 

 

 1105 
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Fig. A5No. EGU21-15305). Copernicus Meetings. https://doi.org/10.5194/egusphere-egu21-15305 
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Table 1: Methods to estimate SWE, compared with the introduced RFID method. 

Method Direct measurement Area Manual/auto Comments References 

Sampling Weight cm 2 manual Destructive, time 

consuming. 

(Kinar and Pomeroy, 2015) 

 

Pillow Weight m2 auto  (Beaumont, 1965; Kinar and 

Pomeroy, 2015) 

Cosmic ray Neutron counting m2 auto  (Schattan et al., 2019; Royer et 

al., 2021) 
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Gamma ray 

scintillator 

Radioactive emissions m2 auto Safety issues if a 

source is used. 

(Royer et al., 2021) 

 

Models Snow depth, T°C … m2 auto  (Essery et al., 2013) 

Probe Permittivity (detuning) cm 2 manual  (Sihvola and Tiuri, 1986; Kendra 

et al., 1994; Denoth, 1994) 

Radar Permittivity (delay) m2 manual/auto   (Schmid et al., 2014; Royer et al., 

2021) 

GNSS Permittivity (delay) m-km2 auto  (Koch et al., 2014, 2019; Royer et 

al., 2021) 

Satellite Permittivity, gravity … km2 auto Various methods (Tedesco et al., 2014) 

RFID Permittivity (delay) dm2 auto Low-cost passive 

T°C sensor 

This study 

 

Table 2: Synthesis of the variations of measurements between the start and end of each observed snowfall period. The columns 

represent, during (1–3) the different periods considered: (4–6) the cumulated variation of snow depth and SWE, (7) RMS error of 1185 
all single-tag measurement compared with precipitations, (8) Error between the SWE from multi-tag median and the precipitations. 

(9–10) the density of the new layer is also estimated, only for the periods 1half and 3 which occurred >24 hours after the previous 

snowfall. In other periods, the density computation is not applicable (na) due to compaction. 

Period Start End 

Δh 

 

m 

ΔSWE  

precip 

kg∙m-2 

ΔSWE 

RFID 
kg∙m-2 

RFID error 
1x RMS 

Single tag 
RFID Error 
Multi-tags 

Density 
from precip. 

kg/m3  

Density 
from RFID 

kg/m3 

1half 11/12 12:00 11/12 21:00 0.14 17.4 15.8 6.5 -1.5 116 128 

1 11/12 12:00 12/12 10:00 0.08 5.7 5.5 2.1 -0.2 na na 

2 12/12 18:00 13/12 08:00 0.15 44.5 36.8 5.6 -7.7 na na 

3 10/01 03:00 10/01 09:30 0.07 4.6 4.6 3.6 0 65 65 

4 27/02 11:00 27/02 16:00 0.06 16.1 14.6 11 -1.5 na na 
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Fig. 1: Experimental setup to measure the effect of a new layer of snow, simulated in a laboratory. The dry snow layer between the 

tag and the reader antenna increases the phase delay of the Radiofrequency signal. 

 1195 
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Fig. 2: Experimental setup to measure the SWE variations outdoors. 
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Fig. 3: Site of col de Porte, with the position of the reference instruments highlighted. Modified from Lejeune et al. (2019) 1200 

 

 

Fig. 4: Cumulated variations of SWE estimated from the measured snow density (dashed line) and from the RFID phase 

measurement (solid lines connecting round points), as function of the thickness of the snow block (9 layers for 275 kg/m3, 7 layers 

for 335 kg/m3, and 230 kg/m3). Three densities of dry snow are considered.        1205 
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 1210 

Fig. 5: Cumulated variation of SWE estimated during four snowfall events of the 2019–2020 winter for which we expect purely dry 

fresh snow. SWE is expressed both as the surfacic mass of snow (kg/m2) and as its equivalent water column thickness (in mm). The 

two phase values shown for the same tag are measured from two antennas, 1 (top color) and 2 (bottom color). The data is presented 

along with the SWE estimated from cumulated precipitations (obtained by automatic weighting) and the snow depth (by a laser 

sensor) measured on site. 1215 
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Fig. 6: Raw indicator of SWE variations, with their equivalent variation of phase delay, for the snowpack located above the tags at 

34, 8 and 1819 cm from the ground. We removed the Periods of wet snowpack (peaks on the raw SWE indicators),) were removed, 

and only the colored markers are accounted to estimatewere considered when estimating the SWE. The SWE iswas also measured 1220 
withby automatic cosmic ray neutron counting and withfrom snow pit surveys. The figure also shows the snow depth, daily minimum 

air temperature, and precipitations. precipitation. In the grayed periods, a reheat accelerated the snowpack melting around the 

tagstag support. 
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 1225 

Fig. 7: PhotographyAppendix [MLB25]5: Recalibration due to reheat 

The step 5 in the Sect. 2.3 workflow was introduced to mitigate the acceleration of snowmelt caused by the 

installation. This effect occurred twice during the winter (from 2019-12-14 to 2019-12-19 and from 2020-02-01 to 

2020-02-03), after strong wet precipitation combined with an air temperature that remained >0 °C over several 

days (Fig. A5), limiting the nightly refreezing. The influence was likely due to the thermal bridge and preferential 1230 

melt-water path through the snow, caused by the tag support. The resulting increase in snowmelt was observed on 

photographs (Fig. A6), on the non-reversible offset formed both between the RFID and the reference SWE 

(Fig. A5), and on the offset between the snow depth and the variations in tag temperature (Fig. A3). To mitigate 

this effect, we distinguished the three periods starting on (1) 2019-10-23 (2) 2019-12-19 (3) 2020-02-03. In 

periods 2 and 3, we recalibrated the SWE by adding an offset to fit the value of a reference manual pit survey, 1235 

marked as ref in Fig. 6 (on 2019-12-30 for period 2 and 2020-02-06 for period 3). 
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Fig. A6: Photograph of the monitoring installation taken from the webcam, on 2020-03-23/03 at midday, the which confirms12:00, 

confirming that the snowpack hashad melted faster around the tag supports, and that there iswas no more snow around the tags on 1240 
23/03this date. 
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Fig. 8: Measurements for the three periods of (top) SWE with RFID keeping only driest snowpack time windows, cosmic rays and 

snow pit survey. (bottom) Snow depth measured at three locations using a laser sensor, manual surveying and a visual pole. In the 1245 
first period, the data comes only from the 3 cm high tag, due to the lower snow depth. In the following periods, the data is 

averaged from the three lowest tags (3 cm, 8 cm and 18 cm). In each period, we calibrated the SWE RFID estimation with a 

reference SWE based on a manual measurement, indicated by an arrow.  
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Fig. 9: Comparison of the density of the new layer in each observation (knowing its thickness), estimated either from the weight and 

volume of a snow sample, or from the RFID phase difference. The gray zone represents ±11% around the ideal value. This confirms 

the ability to measure different types of dry snow, from light fresh snow to heavier compacted snow. 
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Fig. 10: Measurement of temperature made on each tag, from 0 to 0.78 m above ground, as well as the average temperature of tags 

above 0.8 m, the air temperature measured by meteorologic station, and the temperature of the snow (or soil) surface measured by 

infrared. The y-axis ranges from -12 °C to +22 °C on each graph. 

Appendix 6: Illustration of multipathing 1260 

A simple experiment was done, in a similar configuration to the Col de Porte but at a different site, with dry snow. 

Instead of placing a vertical array of tags, the same tag was moved vertically in and above the snow (See Fig. A7c). 
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The difference between the measured phase and the theoretical phase in free space (Fig. A7a), and the signal 

strength received (Fig A7b) revealed a clear oscillation. The period is half a wavelength (≈17.4 cm in the air). Its 

influence on the phase and received signal strength reaches up to ±2 rad and ±10 dB (with one peak at −45 dB 1265 

inside the snow). These results illustrate the effect of multipathing, and its spatial variability. A communication on 

this topic is in preparation. 

 

 

 1270 

Fig. A7: Simple experiment to illustrate multipathing. A tag was moved above and under dry snow, with the reader located above 

the snow. The results present (a) the difference between the theorical phase in free space and the measured phase, (b) the received 

signal strength. 

 


