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 7 

Abstract. Phenomenological models may be impressive in reproducing empirical time series but this is 8 

not sufficient to claim physical similarity with nature until comparison of similarity parameters is 9 

performed. We illustrated such a process of diagnostics of physical similarity by comparing the 10 

phenomenological dynamical paleoclimate model of Leloup and Paillard (2022) with the more physically 11 

explicit Verbitsky et al (2018) model and established that, for the late Pleistocene, there is considerable 12 

physical similarity in terms of two crucial similarity parameters: (a) the ratio of the astronomical forcing 13 

amplitude to the terrestrial ice-sheet mass influx, and (b) the ratio of amplitudes of time-dependent 14 

positive and negative feedbacks.  15 

 16 

1. Introduction 17 

In the Epilogue of his monumental book “Dynamical Paleoclimatology” Barry Saltzman (2002) 18 

reflects on mathematical modeling of ultra-slow, ice-age-like paleoclimate processes and advocates for a 19 

phenomenological approach “through the construction of low-order models in which the full behavior is 20 

projected onto the dynamics of a reduced number of …highly aggregated variables…” as an alternative to 21 

a more explicit approach when a dynamical system is derived from more sophisticated models or, ideally, 22 

directly from basic laws of physics as it has been argued by Lorenz (1970). Now, 20 years later, this 23 

dispute is still far from being settled, and dynamical paleoclimate models of both a phenomenological 24 

nature (e.g., Saltzman and Maasch, 1991, Paillard, 1998, Tziperman et al, 2006, Crucifix, 2013, Leloup 25 

and Paillard, 2022) and of a more explicit type (e.g., Talento and Ganopolski, 2021) are widely used in 26 

the field without much consideration about their physical similarity or absence thereof. In this study, the 27 

author who was earlier involved in the development of phenomenological models (e.g., Saltzman and 28 

Verbitsky, 1992, 1993, 1994) but recently proposed a dynamical ice-age model derived from the 29 

conservation laws of viscous ice media (Verbitsky et al, 2018) joins this discussion with a basic question: 30 

Do phenomenological dynamical paleoclimate models have physical similarity with nature? In fluid 31 
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dynamics, the concept of physical similarity is the cornerstone of any judgement built on model 32 

experimentations and classical similarity parameters such as the Reynolds number, the Peclet number, the 33 

Euler number, etc., describing the relative importance of different aspects of fluid flow, can be derived 34 

from fundamental conservation laws. The most basic logic of the physical-similarity approach is that such 35 

relative importance in the model must be the same as in nature. A migration from explicit conservation 36 

equations to highly integrated dynamical systems will definitely require different similarity parameters to 37 

be preserved, but this does not mean that diagnostics of physical similarity can be neglected. 38 

To establish physical similarity, regardless of the mathematical modeling approach we are going to 39 

pursue (phenomenological or explicit), we first need to assume that there exists a natural parent 40 

dynamical system that created the time series given to us as the observations. Let us assume further that 41 

this parent system is governed by n physical parameters 𝑎𝑖 such that a dependent variable of interest, x, 42 

can be expressed as function 43 

𝑥 = 𝜑(𝑎1, 𝑎2, … , 𝑎𝑖 , … , 𝑎𝑛)                                                                                                                         (1) 44 

If k parameters of 𝑎1, 𝑎2, … , 𝑎𝑖 , … , 𝑎𝑛 are parameters with independent dimensions, then, according to π-45 

theorem (Buckingham, 1914), in the dimensionless form, the phenomenon (1) can be described by 46 

𝑚 = 𝑛 − 𝑘 adimensional similarity parameters 𝛱1, 𝛱2, … , 𝛱𝑖, … , 𝛱𝑚: 47 

𝛱 = 𝛷(𝛱1, 𝛱2, … , 𝛱𝑖, … , 𝛱𝑚)                                                                                                                     (2) 48 

Two physical phenomena have physical similarity if both of them are described in the adimensional 49 

form by the same function  𝛷(𝛱1, 𝛱2, … , 𝛱𝑖, … , 𝛱𝑚) and have identical numerical values of similarity 50 

parameters 𝛱1, 𝛱2, … , 𝛱𝑖, … , 𝛱𝑚, though numerical values of the governing parameters 51 

𝑎1, 𝑎2, … , 𝑎𝑖 , … , 𝑎𝑛 may be different (e.g., Barenblatt, 2003). 52 

As we have already mentioned, our knowledge about a parent dynamical system is available to us 53 

as empirical time series. It means that one of the similarity parameters, let say 𝛱1, is adimensional time 
𝑡

𝜏
 54 

(t and τ are dimensional time and a timescale, correspondingly), and all other parameters 𝛱2, … , 𝛱𝑖, … , 𝛱𝑚 55 

are fixed to specific values. It means that an experimental time series can be described as 56 

𝛱 = 𝛷 (
𝑡

𝜏
, 𝛱2, … , 𝛱𝑖, … , 𝛱𝑚)                                                                                                                      (3) 57 

If we created a model dynamical system such that it is governed by p physical parameters 𝑏𝑖 58 

𝑥 = 𝜓(𝑏1, 𝑏2, … , 𝑏𝑖, … , 𝑏𝑝)                                                                                                                          (4) 59 
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and r parameters of 𝑏1, 𝑏2, … , 𝑏𝑖, … , 𝑏𝑝 are parameters with independent dimensions, then, again, 60 

according to π-theorem, in the dimensionless form, the model can be described by 𝑞 = 𝑝 − 𝑟 61 

adimensional similarity parameters 𝜋1, 𝜋2, … , 𝜋𝑖, … , 𝜋𝑞: 62 

𝜋 = 𝛹(𝜋1, 𝜋2, … , 𝜋𝑖, … , 𝜋𝑞)                                                                                                                       (5) 63 

For a specific time series, and for a fixed set of parameters 𝜋2, … , 𝜋𝑖, … , 𝜋𝑞, the model (5) can be 64 

presented as 65 

𝜋 = 𝛹 (
𝑡

𝜏
, 𝜋2, … , 𝜋𝑖, … , 𝜋𝑞)                                                                                                                        (6) 66 

The essence of the phenomenological approach is to fit function  𝛹 (
𝑡

𝜏
, 𝜋2, … , 𝜋𝑖, … , 𝜋𝑞) to the 67 

function 𝛷 (
𝑡

𝜏
, 𝛱2, … , 𝛱𝑖, … , 𝛱𝑚) under the “best” set of parameters 𝜋2, … , 𝜋𝑖, … , 𝜋𝑞, i.e. to equate model 68 

time series 𝛹 (
𝑡

𝜏
, 𝜋2, … , 𝜋𝑖, … , 𝜋𝑞) and natural, empirical, time series 𝛷 (

𝑡

𝜏
, 𝛱2, … , 𝛱𝑖, … , 𝛱𝑚): 69 

𝛹 (
𝑡

𝜏
, 𝜋2, … , 𝜋𝑖, … , 𝜋𝑞) = 𝛷 (

𝑡

𝜏
, 𝛱2, … , 𝛱𝑖, … , 𝛱𝑚)                                                                                    (7)  70 

It is obvious that even if the goal (7) is achieved at every 
𝑡

𝜏
 - point, we still cannot claim the model 71 

(6) to be physically similar to “nature” (3) because we cannot compare similarity parameters 72 

𝜋2, … , 𝜋𝑖, … , 𝜋𝑞 and 𝛱2, … , 𝛱𝑖, … , 𝛱𝑚 for one simple reason: we do not know enough about 73 

𝛱2, … , 𝛱𝑖, … , 𝛱𝑚. Even if we are reasonably confident about the physics involved in the natural 74 

phenomena 𝛷 (
𝑡

𝜏
, 𝛱2, … , 𝛱𝑖, … , 𝛱𝑚), and each similarity parameter 𝜋𝑖, representing a specific aspect of 75 

the phenomena, is believed to have its counterpart 𝛱𝑖 in the “real” dynamical system (i.e., q = m), we still 76 

do not know the numerical values of similarity parameters 𝛱2, … , 𝛱𝑖, … , 𝛱𝑚, and therefore we cannot 77 

judge if the  𝜋𝑖-physics in the model is as significant as the 𝛱𝑖-physics of nature. Simply speaking, merely 78 

matching a proposed phenomenological model with empirical data does not make a case for physical 79 

similarity because it does not provide an evidence that it happens for the right reason, the reason being the 80 

similarity parameters of the right value, i.e., 𝜋𝑖 = 𝛱𝑖. 81 

For example, it is undisputable that astronomical forcing plays an important role in forming 82 

Pleistocene climate variability. Variations of insolation (e.g., mid-July insolation at 65∘ N, e.g., Berger 83 

and Loutre, 1991), of the amplitude ε and dominating periods of the precession and obliquity thus create 84 
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the similarity parameter 𝛱2 =
𝜀

𝑎
 that is the ratio of the intensity of the astronomical forcing to the intensity 85 

of the terrestrial ice-sheet mass influx (ε is measured in units of a, where 𝑎 is snow accumulation minus 86 

ablation). Practically all phenomenological ice-age models incorporate astronomical forcing and 87 

terrestrial ice-sheet mass influx and therefore a corresponding similarity parameter 𝜋2 can always be 88 

constructed but we do not have the means to judge if 𝜋2 = 𝛱2.  89 

Thus, we have phenomenological models that occasionally may be successful in reproducing 90 

experimental time series, but we cannot be confident that the similarity parameters employed are fully 91 

legitimate, and, therefore, any further use of such models is rather speculative. On the other hand, most 92 

comprehensive space-resolving models are still not practical for calculating climate on Pleistocene 93 

timescales. In this situation, some insight could be found in the analysis of physical similarity of two 94 

dynamical models, the phenomenological dynamical paleoclimate model of Leloup and Paillard (2022), 95 

LP22 thereafter, that will provide us with the function 𝛹 and the dynamical paleoclimate model of 96 

Verbitsky et al (2018), VCV18 thereafter, that, indeed, cannot fully represent nature but, certainly, is 97 

more physically explicit and, therefore, will be nominated to provide us with the function 𝛷. 98 

Obviously, since the time series produced by the LP22 model and by the VCV18 model are not 99 

identical, the models are not physically similar in the full sense of the equation (7). We will demonstrate 100 

though that the answer to the physical-similarity question is not that straightforward if our dependent 101 

variable of interest 𝑥 is not necessarily a time series but a time-independent attribute such as the period of 102 

the system response to the astronomical forcing. 103 

 104 

2. Method 105 

The dimensional analysis and similarity properties of the VCV18 model have already been 106 

comprehensively described (Verbitsky and Crucifix, 2020, Verbitsky, 2022). It was demonstrated that its 107 

large-scale variability is mostly governed by two dimensionless parameters: by the ratio of the 108 

astronomical forcing amplitude ε to the terrestrial ice-sheet mass influx, 𝛱2 = 𝜀/𝑎 and by the so-called V-109 

number, 𝛱3 = 𝑉 that is the ratio of amplitudes of time-dependent positive and negative feedbacks. For 110 

example, the period P of the VCV18 system response to the astronomical forcing of period T can be 111 

written as: 112 

𝑃

𝑇
= 𝛷(𝛱2, 𝛱3)                                                                                                                                             (8) 113 
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We will now focus on the dimensional analysis of the LP22 model. It is described by two differential 114 

equations, first, for the growing ice volume, 115 

𝑑𝑣

𝑑𝑡
= −

𝐼

𝜏𝑖
+

1

𝜏𝑔
                                                                                                                                              (9) 116 

and for the waning ice volume 117 

𝑑𝑣

𝑑𝑡
= −

𝐼

𝜏𝑖
−

𝑣

𝜏𝑑
                                                                                                                                            (10) 118 

Here, v and I are normalized ice volume and astronomical forcing, correspondingly, 𝜏𝑖, 𝜏𝑔, and 𝜏𝑑 are 119 

dimensional timescales. Additionally, if 𝐼 < 𝐼0 the system switches from equation (10) to equation (9), 120 

and if 𝐼 + 𝑣 > 𝑉0, the system switches from equation (9) to equation (10). 121 

First, we will convert equations (9) and (10) into a form more convenient for our purpose: 122 

𝑑𝑣

𝑑𝑡
=

1

𝜏𝑔
(−

𝐼𝜏𝑔

𝜏𝑖
+ 1)                                                                                                                                   (11) 123 

𝑑𝑣

𝑑𝑡
=

1

𝜏𝑔
(−

𝐼𝜏𝑔

𝜏𝑖
−

𝑣𝜏𝑔

𝜏𝑑
)                                                                                                                                 (12) 124 

If (without any loss of generality) we consider astronomical forcing I as a sinusoid of amplitude ε and of  125 

period T, then dynamical properties like, for example, a period of the system response to the astronomical 126 

forcing, P, will be fully described by 6 parameters: 127 

𝑃 = 𝜓 (
𝜀𝜏𝑔

𝜏𝑖
, 𝑇, 𝑉0, 𝜏𝑔,

𝜏𝑑

𝜏𝑔
, 𝐼0)                                                                                                                      (13) 128 

If we choose period T as a parameter with independent dimensions, then, according to 𝜋-theorem: 129 

𝑃

𝑇
= 𝛹 (

𝜀𝜏𝑔

𝜏𝑖
, 𝑉0,

𝑇

𝜏𝑔
,

𝜏𝑑

𝜏𝑔
, 𝐼0)                                                                                                                          (14) 130 

The parameter 𝐼0 is settled as a constant, 𝐼0 = 0 (LP22), and the period P is not very sensitive to the 131 

choice of  
𝜏𝑑

𝜏𝑔
 as long as 𝜏𝑔 > 𝜏𝑑  , and therefore without loss of much of physical content we can set 

𝜏𝑑

𝜏𝑔
= 0 132 

(instant disintegration of an ice sheet) such that: 133 

𝑃

𝑇
= 𝛹(

𝜀𝜏𝑔

𝜏𝑖
, 𝑉0,

𝑇

𝜏𝑔
)                                                                                                                                      (15) 134 
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Finally, we notice that the period P is largely defined not by individual values of 𝑉0,
𝑇

𝜏𝑔
 but by their ratio 135 

𝑉0
𝜏𝑔

𝑇
 and therefore: 136 

𝑃

𝑇
= 𝛹(𝜋2, 𝜋3)                                                                                                                                           (16) 137 

where 𝜋2 =
𝜀𝜏𝑔

𝜏𝑖
,  𝜋3 = 𝑉0

𝜏𝑔

𝑇
 138 

Now, we are ready to discuss physical similarity. Both VCV18 and LP22 models are fairly 139 

successful in reproducing late-Pleistocene ~100-kyr-period variability, meaning that the first necessary 140 

condition of physical similarity is satisfied:  141 

 𝛹(𝜋2, 𝜋3) = 𝛷(𝛱2, 𝛱3)                                                                                                                            (17) 142 

The physical meaning of 𝜋2 =
𝜀𝜏𝑔

𝜏𝑖
 is the ratio of the astronomical forcing amplitude 

𝜀

𝜏𝑖
 to the 143 

terrestrial ice-sheet mass influx 
1

𝜏𝑔
 , i.e. it is identical to the physical meaning of 𝛱2. Numerically, for the 144 

Late Pleistocene, in LP22, 𝜋2~3, and, in VCV18, 𝛱2~2, this may be considered being reasonably close. 145 

Accordingly, we may conclude that models VCV18 and LP22 are physically similar in terms of the 146 

similarity parameter that is the ratio of the astronomical forcing amplitude to the terrestrial ice-sheet 147 

mass influx. 148 

Positive and negative feedbacks are not explicitly presented in equation (9) and the similarity 149 

parameter 𝜋3 = 𝑉0
𝜏𝑔

𝑇
 is the only implicit outcome of the interplay between positive and negative 150 

feedbacks. Yet, we may suggest with confidence that the ratio of positive-to-negative feedbacks in (9) is 151 

implicitly set to be 𝑉 = 1, because this is the only possibility that may provide a linear growth of ice 152 

volume in (9). Thus (17) can be re-written as  153 

 154 

𝛹[𝜋2, 𝜋3(𝑉)] = 𝛷(𝛱2, 𝛱3)                                                                                                                      (18) 155 

Here  𝜋3(𝑉) means that 𝜋3 is a function of 𝑉, i.e.: 156 

𝜋3 = 𝑉0
𝜏𝑔

𝑇
, 𝑖𝑓 𝑉 = 1                                                                                                                                 (19) 157 

and equation (18) can be re-written as 158 
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𝛹′(𝜋2, 𝑉) = 𝛷(𝛱2, 𝑉)                                                                                                                               (20) 159 

In VCV18, the numerical value of 𝛱3 = 𝑉 = 0.75 for the late Pleistocene, and, as we just discussed, in 160 

LP22, V = 1, i.e. close to the VCV18 value. We may therefore conclude that models VCV18 and LP22 161 

are physically similar in terms of the similarity parameter that is the ratio of amplitudes of time-162 

dependent positive and negative feedbacks. This result is remarkable because, in fact, the entire LP22 163 

model can be described by the following powerful statement: If positive and negative feedbacks of the 164 

global ice-climate system are in balance (𝑉 = 1), the period of the system response is approximately 165 

equal to 𝑉0𝜏𝑔. 166 

Importantly, the postulated V = 1 of LP22 is not constrained by any specific nature of positive or 167 

negative feedbacks. Likewise, the V-number in VCV18 is a conglomerate similarity parameter 168 

(Verbitsky, 2022) and thus it is not connected to a specific feedback’s physics. This observation makes 169 

our similarity finding even more general.  170 

It is also interesting that, since 𝛷(2, 0.75)~2, for T = 41 kyr, i.e., VCV18 makes period doubling 171 

of the obliquity-period forcing, and since 𝛹(3, 1) = 𝛷(2, 0.75), we may conclude that LP22 makes 172 

obliquity-period doubling as well.  173 

We have to emphasize however, that the V-number similarity between LP22 and VCV18 models 174 

can be observed only for the late Pleistocene period. The early Pleistocene variability is reproduced in the 175 

VCV18 model by V→0 (reduced impact of positive feedbacks) while LP22 has the assumption of V = 1 176 

unchanged. 177 

 This newly discovered physical similarity of two very different models is not intuitive and adds 178 

credibility to both of them. For the LP22 model, it is a demonstration that the model is physically viable 179 

in terms of two critical similarity parameters, and its most questionable saw-tooth variability may be 180 

supported by some physical reasoning. For VCV18, which itself does not demonstrate exceptional 181 

performance in reproducing empirical time series, physical similarity with the model most celebrated for 182 

matching empirical data, it is an encouraging sign also. Nevertheless, even though the analysis revealed 183 

more physical similarity between the two models than one may expect, the VCV18 model is not true 184 

nature, and therefore such a comparison is by no means a final verdict on the LP22 model. Yet it 185 

illustrates the importance of the physical-similarity analysis. 186 

 187 

 188 
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3. Conclusions 189 

Are phenomenological dynamical paleoclimate models physically similar to nature? We 190 

demonstrated that, though they may be remarkably accurate in reproducing empirical time series, this is 191 

not sufficient to claim physical similarity with nature until comparison of similarity parameters is 192 

performed. We illustrated such a process of diagnostics of physical similarity by comparing the LP22 193 

phenomenological dynamical paleoclimate model with the more explicit VCV18 model and established 194 

that, for the late Pleistocene, there is physical similarity in terms of two crucial similarity parameters, 195 

namely, the ratio of the astronomical forcing amplitude to the terrestrial ice-sheet mass influx and the 196 

ratio of amplitudes of time-dependent positive and negative feedbacks. We will not, indeed, have a 197 

definite answer until we learn more about “true” similarity parameters 𝛱2, … , 𝛱𝑖, … , 𝛱𝑚. 198 

But how can we learn about natural similarity parameters 𝛱2, … , 𝛱𝑖, … , 𝛱𝑚? We think that Saltzman 199 

(2002) was right when he proposed that “the essential slow physics is to be sought in the low-order 200 

models.” We suggest here that this “essential slow physics” may be an inventory of candidate similarity 201 

parameters 𝜋2, … , 𝜋𝑖, … , 𝜋𝑞. Like, for example, the Reynolds number compares inertial and viscous 202 

forces, or the Peclet number speaks to the significance of advective heat transfer relative to heat diffusion, 203 

each of these candidate similarity parameters must describe relationships that are critical for dynamical 204 

paleoclimatology. At this point, we can confidently recommend into this inventory two ratios that, we 205 

believe, largely define Pleistocene climate – the ratio of intensities of orbital and terrestrial forcings and 206 

the ratio of intensities of system’s positive and negative feedbacks (the V-number). Since our proposed 207 

similarity parameters are so general, it is difficult to imagine other similarity parameters that would not 208 

fall into these two categories, but the final say on this belongs, indeed, to the super-models. From here, 209 

we deviate from Saltzman’s (2002) proposal and instead of following his idea that more explicit models 210 

should be tuned to satisfy a best phenomenological model, we propose to use available super-models for 211 

research and evaluation of natural similarity parameters 𝛱2, … , 𝛱𝑖, … , 𝛱𝑚. This will hopefully close a gap 212 

between phenomenological and physical models. 213 
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