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Abstract. We assess the representation of Elevated Moist Layers (EMLs) in ERA5 reanalysis, the IASI L2 retrieval Climate

Data Record (CDR) and the AIRS-based CLIMCAPS-Aqua L2 retrieval. EMLs are free tropospheric moisture anomalies that

typically occur in the vicinity of deep convection in the tropics. EMLs significantly effect the spatial structure of radiative

heating, which is considered a key driver for meso-scale dynamics, in particular convective aggregation. To our knowledge,

the representation of EMLs in the mentioned data products have not been explicitly studied, a gap we address in this work. We5

assess the different datasets’ capability of capturing EMLs by collocating them with 2146 radiosondes launched from Manus

Island within the Western Pacific warmpool, a region where EMLs occur particularly often. We identify and characterise mois-

ture anomalies in the collocated datasets in terms of moisture anomaly strength, vertical thickness and altitude. By comparing

the distributions of these characteristics, we deduce what specific EML characteristics the datasets are capturing well and

what they are missing. Distributions of ERA5 moisture anomaly characteristics match those of the radiosonde dataset quite10

well and remaining biases can be removed by applying a 1 km moving average to the radiosonde profiles. We conclude that

ERA5 is a suitable reference dataset for investigating EMLs. We find that the IASI L2 CDR is subject to stronger smoothing

than ERA5 with moisture anomalies being on average 13 % weaker and 28 % thicker than collocated ERA5 anomalies. The

CLIMCAPS L2 product shows significant biases in its mean vertical humidity structure compared to the three other investi-

gated datasets. These biases manifest as an underestimation of mean moist layer height of about 1.3 km compared to the three15

other datasets, a general mid-tropospheric moist bias and an upper tropospheric dry bias. Biases found in the all-sky scenes

do not change significantly when limiting the analysis to clear-sky scenes. We calculate radiatively driven vertical velocities

ωrad derived from longwave heating rates to estimate the dynamical effect of the moist layers. Moist-layer-associated ωrad

values derived from GRUAN soundings range between 2 to 3 hPa hour−1 while mean meso-scale pressure velocities from the

EUREC4A field campaign range between 1 to 2 hPa hour−1, highlighting the dynamical significance of EMLs. Subtle differ-20

ences in the representation of moisture and temperature structures in ERA5 and the satellite datasets create large relative errors

in ωrad on the order of 40 to 80 % with reference to GRUAN, indicating limited usefulness of these datasets to assess the

dynamical impact of EMLs.
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1 Introduction

The vertical structure of water vapor in the troposphere is a key driver for meso-scale processes, such as the development and25

maintenance of convective systems. In particular, it determines the vertical structure of radiative heating due to water vapor’s

strong ability to absorb and emit infrared (IR) radiation. The spatial structure of radiative heating in the vicinity of convection

is capable of driving circulations that contribute to the maintenance of the convection (Muller and Bony, 2015; Wing et al.,

2017; Schulz and Stevens, 2018; Muller et al., 2022). Hence, understanding the vertical structure of water vapor is key for our

understanding of convective aggregation, which remains a large contributor of uncertainty to climate projections (Bony et al.,30

2015).

A common meso-scale phenomenon affecting the vertical humidity structure in the tropics are Elevated Moist Layers (EMLs)

in the lower to mid-troposphere, which frequently occur either in the vicinity of deep convection or in association with extra-

tropical dry air intrusions (Villiger et al., 2022). EMLs can extend horizontally over several hundred kilometers and have

lifetimes of about a day (Stevens et al., 2017; Johnson et al., 1996). In the convection-dominated regions near the intertropical35

convergence zone (ITCZ), especially over the Western Pacific warmpool, EMLs are particularly common and manifest as a

secondary maximum of relative humidity (RH) in the climatological profile near the melting level at around 5 km altitude

(Romps, 2014).

It is important to capture EMLs in observational and reanalysis datasets, which serve as reference for modelling studies

(Lang et al., 2021; Eyring et al., 2016; Teixeira et al., 2014; Ferraro et al., 2015; Brands et al., 2013; Jiang et al., 2012). In40

particular, Lang et al. (2021) highlight the importance of reducing uncertainties in clear-sky mid-tropospheric humidity in

global storm resolving models that yield significant differences in the models’ radiation budgets. Hence, having suitable global

and longterm satellite and reanalysis datasets to assess such model differences is of great value.

In a case study, Stevens et al. (2017) found strong limitations of passive satellite based humidity retrievals to resolve an

EML, suggesting a somewhat fundamental EML blindspot for such observations. This is particularly surprising for the ad-45

vanced hyperspectral IR instruments such as AIRS (atmospheric infrared sounder) or IASI (infrared atmospheric sounding

interferometer), which offer rich vertical information content about temperature and water vapor. In our recent study (Prange

et al., 2021), we found a physical explanation for the apparent EML blindspot, suggesting that the limited temperature infor-

mation available with the particular retrieval setup deployed by Stevens et al. (2017) is responsible for the inability to resolve

the EML with IASI. In the same article, we showed that EMLs do not pose an inherent blindspot for hyperspectral IR retrievals50

based on simulated observations.

In this work we follow up our previous analysis with an evaluation of EMLs in operational hyperspectral IR retrieval products

based on the IASI and AIRS instruments. With hyperspectral IR observations being a significant data contribution to reanalysis

products (e.g. Cardinali, 2009; Dahoui et al., 2017) we also assess EMLs in ERA5 (ECMWF reanalysis v5). To our knowledge,

EMLs have not been explicitly studied based on any of these data products. We address this gap in this study.55

The Western Pacific warmpool region is particularly suited to study EMLs because of the frequent occurence of deep con-

vection. Hence, as reference dataset we use the GRUAN (global climate observing system upper air network) radiosondes
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launched on Manus Island from 2011 to 2014. We collocate the datasets within 50 km in space and 30 minutes in time to

make the data directly comparable. We first assess the mean profiles of humidity, temperature and static stability to quantify

the mean atmospheric state in the study region for the different datasets. We then apply the moisture anomaly identification60

and characterization method of Prange et al. (2021) to statistically quantify the EMLs of the collocated datasets. This method

allows for a dedicated comparison of EML characteristics such as EML strength, thickness and height. It also enables a direct

quantification of the moisture anomalies’ effect on the radiative heating rate, the spatial structure of which is a key driver for

the meso-scale dynamics of the atmosphere. We do this quantification by calculating moist-layer-associated radiatively driven

vertical velocities, which we compare to meso-scale measurements of pressure velocities from the EUREC4A (elucidating the65

role of clouds-circulation coupling in climate) field campaign (Stevens et al., 2021).

2 Data

We investigate the vertical moisture characteristics of GRUAN radiosonde data, ERA5 reanalysis and of two satellite retrieval

products based on the IASI and AIRS instruments. In the following, we highlight the most important properties of these datasets

for the context of this work. This includes brief descriptions of the datasets’ spatial and temporal sampling characteristics, a70

brief summary of their underlying algorithms and our own processing steps. Fig. 1 provides a spatial overview of the research

region and the typical sampling over one day. Note that one processing step we apply to all datasets, except GRUAN, is to filter

out datapoints over land to assure homogeneous surface conditions.

Figure 1. Maps show the geographical location of Manus Island and spatial sampling over one day (2012-03-28) of the four investigated

datasets. The satellite data is split into ascending and descending node data. Radiosonde pathways are shown as lines. Their mean position is

indicated by gray crosses that are used as collocation locations. The transparent gray circle visually indicates the collocation radius of 50 km.

2.1 GRUAN radiosondes

The GRUAN (global climate observing system reference upper air network) measurement program consists of a network of75

about 30 quality controlled radiosonde measurement sites around the world to detect trends in essential climate variables such

as temperature and humidity (Seidel et al., 2009; Dirksen et al., 2014). Here we pick out the GRUAN site on Manus Island,
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where radiosondes were launched from January 2011 to July 2014, run by the Atmospheric Radiation Measurement program

(Ackerman and Stokes, 2003). This is a particularly suited reference dataset for the scope of our work for two reasons. Firstly,

Manus Island is located at about 2° S in the Western Pacific warmpool, a region where EMLs are expected to occur frequently80

due to their link to deep convective events. Secondly, the standard radiosonde launch times at 0 and 12 UTC with a local time

shift of UTC + 10 h turn out to coincide well with IASI overpasses at the fixed equator crossing time (ECT) of the MetOp

satellites at around 9:30 local time.

The GRUAN sounding data used in this work is obtained from the RS92-GDP.2 data archive. Uncertainty estimates are 6 %

for relative humidity (RH) and between 0.15 to 0.6 K for temperature depending on daytime and altitude (Dirksen et al., 2014).85

When binning the launch times of the full sounding dataset into hourly intervals, about 60 % of the soundings occur around the

0 and 12 UTC launch times. A significant anomaly in radiosonde launch times occured from 24 September 2011 to 31 March

2012 with launches every 3 hours as part of the DYNAMO campaign (Yoneyama et al., 2013).

As a first step of preparing the GRUAN sounding data for our processing, relative humidity values are transformed from

being defined with respect to the saturation vapor pressure above water (GRUAN standard) to a mixed phase approach as90

described by ECMWF (2018). We then linearly interpolate the sounding dataset to a fixed altitude grid ranging from 0 m at

the surface to 15 km altitude at 10 m intervals. In case of missing values in the original data we interpolate over intervals of

up to 100 m and leave the missing values for larger intervals. We then deduce H2O volume mixing ratios (VMRs) from RH,

temperature and pressure.

2.2 ERA595

We use the ECMWF Reanalysis v5 (ERA5) high resolution atmospheric data on a 31 km spaced horizontal grid, on 137 vertical

levels and in hourly intervals. Detailed descriptions of spatial and temporal discretisation of ERA5 are provided in the overview

paper and in the IFS (version Cy41r2) documentation (Hersbach et al., 2020; ECMWF, 2016).

We use a total of 21 ERA5 pixels around Manus Island as depicted in Fig. 1. The data is originally stored on a T639

spectral grid or a reduced gaussian grid depending on the variable. We transform the grids of all variables to a 0.25 ° evenly100

spaced latitude/longitude grid using bilinear interpolation. We deduce H2O VMR as our main humidity quantity from the

specific humidity that is originally provided in ERA5. We deduce altitudes for each ERA5 profile by assuming a hydrostatic

atmosphere and using the fixed pressure grid and the temperature profiles as input.

2.3 IASI L2 Climate Data Record

The IASI Level 2 retrieval dataset used in this work is called the "IASI All Sky Temperature and Humidity Profiles - Climate105

Data Record Release 1.1 - Metop-A and -B" and is provided by EUMETSAT (2022). We use only data from MetOp-A. We refer

to this dataset as the IASI L2 CDR in the frame of this study. The dataset is aimed to be a consistently reprocessed longterm

dataset based on the most recent version of the statistical piecewise linear regression (PWLR) EUMETSAT retrieval algorithm.

The also available purely operational IASI L2 retrieval data is subject to significant jumps over the years due to algorithm
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updates (EUMETSAT, 2017). Since the algorithm of the period between 2011 to 2014 is not representative of today’s standard,110

we use the reprocessed IASI L2 CDR.

Details about the IASI L2 CDR are provided in the product user guide (EUMETSAT, 2022). Here we summarize some

of its main properties. The retrieval algorithm makes use of IASI spectra and radiances observed by the microwave sounders

AMSU-A (Advanced Microwave Sounding Unit-A) and MHS (Microwave Humidity Sounder) onboard of the same satellite to

also retrieve information about atmospheric temperature and humidity in the presence of clouds. A retrieval pixel at nadir has a115

diameter of about 50 km and is made up of a 2× 2 array of IASI pixels. To train the PWLR retrieval algorithm, global sensing

data of 4 days of each month of the years 2015 and 2016 are matched with ERA5 temperature, humidity and ozone profiles

on 137 vertical levels. Cloudy scenes are included in the training step of the algorithm to allow for the retrieval of atmospheric

quantities in all-sky scenes. The retrieval is conducted on 137 atmospheric levels and an additional surface level. All-sky

retrievals are conducted for atmospheric temperature and specific humidity profiles as well as for surface temperature and total120

column water vapor. A cloud fraction estimate is also provided based on AVHRR (Advanced Very High Resolution Radiometer)

data that is integrated over the retrieval’s field of view. The dataset also comes with uncertainty estimates for temperature and

humidity profile retrievals that reflect the mean uncertainty of the surface level and the mid-troposphere (EUMETSAT, 2022).

These uncertainties are provided in units of Kelvin in temperature and dew point temperature. As recommended in the user

guide, we filter cases considered highly defective with uncertainties > 4 K. This filtering only removes about 1 % of data.125

The only variable we add in our own processing is the height associated with the retrieval’s vertical levels. For this purpose

we assume a hydrostatic atmosphere and use profiles of pressure and temperature as input.

2.4 CLIMCAPS-Aqua L2 product

The CLIMCAPS-Aqua Level 2 product (Community Long-term Infrared Microwave Combined Atmospheric Product System)

is based on AIRS spectra and AMSU-A radiances. The processing uses a sophisticated step-wise optimal estimation procedure130

following the formalism of Rodgers (2000) of various atmospheric quantities such as temperature, moisture, cloud heights and

fractions and concentrations of trace gas species O3, CO, CH4, CO2, HNO3 and SO2. The retrieval is conducted on about

50 km spatial pixels at nadir (150 km at scan edge). One pixel is referred to as field of regard (FOR) and is made up of 9 (3×3)

AIRS field of views (FOVs). The retrieval procedure and a characterisation of retrieval errors are described by Smith and

Barnet (2019). In an evaluation of the CLIMCAPS observing capability it is found that CLIMCAPS has sensitivity to multiple135

narrow tropospheric layers in temperature and humidity, a promising premise for our study (Smith and Barnet, 2020).

We limit our use of available CLIMCAPS variables to the retrieved surface temperature, temperature and humidity profiles,

the total cloud fraction, the geopotential height and the respective quality control flags and error estimates. Temperature profiles

are provided on 100 fixed vertical pressure levels from the surface to the top of atmosphere, specific humidity on 66 levels from

the surface to about 50 hPa. Since surface pressure is not a retrieval quantity and instead MERRA2 reanalysis surface pressures140

are used as input to the retrieval, we calculate surface values of humidity following the boundary layer adjustment procedure

that is described in the CLIMCAPS science application guide (Smith et al., 2021). Surface values of humidity are important

for our method of analysing moisture anomaly characteristics that is described in Sect. 4.
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The quality control flags are provided for each variable on all vertical levels. They subdivide the retrieval into "Best", "Good"

and "Rejected" quality. We filter cases where the specific humidity quality control flag of the level closest to MERRA2 surface145

pressure is labeled "Rejected" and cases with more than 10 "Rejected" vertical levels in humidity between 900 to 100 hPa.

These criteria are quite stringent as they filter about 90 % of the data. However, we do not aim to analyse data that is already

flagged as being of deficient quality.

A significant difference between the IASI L2 product and the CLIMCAPS product lies in the estimation of the total cloud

fraction and the way cloudy scenes are handled. While for the IASI L2 product, cloud fraction is estimated based on an150

independent instrument (AVHRR), CLIMCAPS estimates cloud fraction based on a subset of cloud sensitive AIRS channels.

CLIMCAPS does so for each AIRS FOV and provides a derived FOR-integrated total cloud fraction, i.e. over 3× 3 FOVs. To

retrieve atmospheric quantities in cloudy conditions the CLIMCAPS and IASI retrieval products deploy conceptually different

methods. While the IASI product attempts retrieval through the cloud, CLIMCAPS deploys a cloud clearing technique where

information from the 3× 3 AIRS FOV spectra are combined to represent the atmospheric state around the clouds throughout155

the total retrieval FOR. We specifically compare the retrievals’ capabilities to resolve vertical moisture structures in all-sky and

clear-sky conditions in Sect. 5.1 and 5.2.

2.5 Collocation procedure

We collocate the datasets pairwise in space and time to assure direct comparability of the investigated scenes. This is done

using a collocation toolkit that is freely available as part of the “typhon” collection of Python functions for atmospheric science160

(https://www.radiativetransfer.org/tools/).

We conduct the collocation for four dataset pairs, namely ERA5/GRUAN, IASI/GRUAN, IASI/ERA5 and CLIMCAP-

S/ERA5. With GRUAN being the gold standard reference dataset, we use it as reference where sufficient collocations are

available. The standard launch times at 12 UTC am/pm in conjunction with a local time difference on Manus of UTC+10 h

yield launches at local times of about 10 am/pm, matching up well with the IASI equator crossing time of about 09:30 am/pm.165

Unfortunately for the AIRS based CLIMCAPS retrieval, there is a systematic offset in GRUAN radiosonde launch time and

the equator crossing time of the Aqua satellite at around 01:30 am/pm, yielding almost no collocations between GRUAN and

CLIMCAPS. However, since we find ERA5 to represent EMLs reasonably well (see Sect. 5.1), we use ERA5 as a reference

for CLIMCAPS and as an additional reference for IASI.

As spatial and temporal collocation criteria we use 50 km and 30 minutes. These criteria are rather conservative since the170

EMLs of interest are meso-scale phenomena that can extend horizontally over several hundred kilometers and have lifetimes

of about a day. The temporal criterion of 30 minutes is also chosen due to the expected 30 minute offset of IASI overpasses

and regular radiosonde launches. In addition, 30 minutes assures temporal collocation with ERA5, which has hourly sampling.

Since the spatial resolution of ERA5 is higher than the spatial collocation criterion of 50 km we usually find multiple pixels of

ERA5 to matchup with another dataset. In these cases, we randomly select one of the matching pixels to assure that datapoints175

are only used once.
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Applying these collocation criteria and the dataset specific filtering criteria described above we obtain 1921 ERA5/GRUAN

collocations, 648 IASI/GRUAN collocations, 37491 IASI/ERA5 collocations and 2500 AIRS/ERA5 collocations.

3 Climatological mean

To get a first overview of the vertical structure of humidity and temperature in the vicinity of Manus Island and possible biases180

between the different datasets we take a look at the mean profiles over the four years of available data. Fig. 2 shows (a) water

vapor volume mixing ratio (H2O VMR), (b) relative humidity (RH), (c) the deviation of potential temperature (Θ) from a moist

adiabat and (d) the static stability calculated as

s =−T

Θ
dΘ
dp

(1)

Higher values in s correspond to a more stable stratification.185

Since all datasets can be collocated with ERA5 data, we base the analysis of the mean profiles on the collocation datasets

with reference to ERA5 to assure good comparability. This leaves us with three different subsets of ERA5 data that collocate

with the other respective data products. We investigated how the mean profiles of ERA5 vary among these subsets and find

the variation to not be significant compared to differences between the data products (not shown). Hence, for the ERA5 mean

profiles depicted in Fig. 2, we choose the collocations with reference to IASI since they contain the most cases.190

The mean vertical humidity structure depicted in Fig. 2a+b shows the typical moist conditions throughout the troposphere

that are expected in a deep convective region. RH values rarely drop below 70 % in any of the datasets. A trimodal verti-

cal RH structure is apparent in all datasets with maxima near the surface, in the mid-troposphere and near the tropopause.

This vertical structure is in line with previous studies of the vertical distribution of humidity, clouds and detrainment in the

ITCZ region (Johnson et al., 1996, 1999; Mapes and Zuidema, 1996; Posselt et al., 2008; Romps, 2014). Here, we target the195

mid-tropospheric humidity structure as the primary research object, where the presence of an RH maximum highlights the

climatological significance of EMLs in our research region.

Comparing the mean RH profiles of the different datasets, the particular good agreement of ERA5 and IASI sticks out. Since

the IASI L2 retrieval is trained based on ERA5 data, it is not surprising that the means of the two datasets are so similar. The

additional good agreement with GRUAN shows that the datasets are not only self-consistent but also close to reference data.200

However, good agreement in the mean is not indicative of the datasets’ capability to resolve vertical moisture variability, which

we investigate seperately in Sect. 5.1.

AIRS on the other side shows significant biases in RH against the other three datasets. The mid-tropospheric peak in RH

is shifted towards a significantly lower altitude while the lower RH peak of the boundary layer is shifted a bit upwards. This

yields a moist bias of AIRS between about 600 to 800 hPa. In the upper troposphere, a dry bias is observed. Taking the plots of205

H2O VMR (Fig. 2a) and Θ (Fig. 2b) into consideration, the mid-tropospheric bias in RH can be attributed to both a positive bias

in humidity and a negative bias in temperature. The upper tropospheric dry bias in RH is mostly caused by a bias in humidity

since Θ shows no clear bias against the other three datasets in the upper troposphere. AIRS also shows some unphysical RH
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and Θ variability in the upper troposphere. This is particularly apparent in static stability since vertical gradients associated

with this variability are strong between vertical levels. We suggest that this variability may be caused by a numerical artifact210

that is described in the CLIMCAPS science application guide (Smith et al., 2021). There, the authors find an unphysical zigzag

pattern in the temperature profile retrieval error that increases in magnitude with height and they attribute this pattern to their

employed data compression methods.

We highlight differences in the vertical structure of potential temperature Θ between the datasets by subtracting a moist

adiabat (Fig. 2c). We adopt this methodology of comparing the tropical vertical temperature structure across different datasets215

from Keil et al. (2021), who applied this to CMIP6 data, ERA5 and long-term tropical radiosonde data. It offers an interesting

view since the moist adiabat estimates the thermal structure in the tropics set by moist convection quite well. As a difference to

Keil et al. (2021), we subtract the same moist adiabat from all datasets and initiate it at the 800 hPa level of the GRUAN mean

Θ profile instead of 700 hPa. This allows for a better assessment of biases between the datasets and a comparison at lower

levels at the cost of losing some ability to assess the profiles’ resemblance of a moist adiabat, which is fine for our purpose.220

We find similar vertical structures in Θ−Θmoist as Keil et al. (2021) in their radiosonde and ERA5 results with negative

deviations throughout the free troposphere and strongly increasing positive deviations towards the tropopause. We also repro-

duce the vertical bias structure between ERA5 and radiosonde data of Keil et al. (2021) with almost no bias up to 550 hPa and

then an increase to an almost constant 0.6 K bias up to the tropopause. Taking a look at the static stability profiles (Fig. 2d) of

ERA5 and GRUAN we see that they are in good agreement, except for a distinct increase in stability of ERA5 around 550 hPa,225

which is not present in the radiosonde data and causes the bias in Θ of the two datasets aloft. The stability bump found in

ERA5 at this level appears plausible due to diabatic cooling associated with melting of ice particles at this level. As outlined

in Sect. 1, previous studies showed that preferred detrainment of moist air from deep convection due to increased stability near

the melting level are what causes the mid-tropospheric humidity peak beneath the stable layer (Johnson et al., 1996; Stevens

et al., 2017; Villiger et al., 2022). Hence, it is surprising to find the stable layer at 550 hPa less pronounced in GRUAN than230

in the ERA5 data. The IASI L2 retrieval shows a slightly increased stability around 550 hPa compared to the radiosonde data,

but not as strong of a bump as ERA5. On the other side, the AIRS CLIMCAPS retrieval shows a significant stability increase

at around 650 hPa, which coincides with the lower mid-tropospheric RH maximum compared to the other datasets.
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Figure 2. Mean profiles of (a) H2O volume mixing ratio (VMR), (b) relative humidity (RH), (c) deviation of potential temperature (Θ) from

moist adiabat (Θmoist) based on mean Θ at 700 hPa of GRUAN data and (d) the static stability s in the vicinity of Manus Island based on the

four investigated datasets. Only collocated data with ERA5 is used. For the ERA5 profiles, collocated data with IASI is used.

4 Moisture anomaly identification and characterisation

To assess vertical humidity structures in different datasets, comparing their mean profiles only gives limited information.235

Positive and negative anomalies can average out and sharp gradients are smoothed. Hence, we assess the representation of

Elevated Moist Layers (EMLs) by identifying them in each dataset and characterising them on a case-by-case basis. We do so

through metrics that describe the moist layer strength, vertical thickness and height. Quantifying these properties of vertical

moisture structures in the different datasets before applying averaging operators yields more targeted information about vertical

moisture variability than averaging directly.240

Fig. 3a shows an example of a radiosonde humidity profile and the identified moisture anomalies marked by the blue shading.

The anomalies are identified and characterised through the method introduced by Prange et al. (2021). The method relies on

fitting a second order polynomial reference profile (dashed red line) against the logarithmic H2O VMR and identifying layers

of positive moisture anomaly. These moisture anomalies are characterised by their thickness, height and strength, defined as

the vertical integral over the anomalous H2O VMR divided by the layer thickness. The formal definitions of these moisture245

anomaly characteristics are given by Prange et al. (2021). We only consider moisture anomalies that do not intersect with the

900 and 100 hPa levels and that have a minimum pressure thickness of 50 hPa. This way we constrain our analysis to the free

troposphere and make the method less susceptible to small-scale variations that are particularly present in the radiosonde data.

Our method identifies two moist layers in the example humidity profile depicted in Fig. 3a (blue shading).
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Besides the moisture characteristics described above, we also link the moist layers to their impact on the radiative heating250

rate (Fig. 3b), where local maxima in cooling are found at the positions of the moist layers. We calculate longwave radiative

heating rates with the radiative transfer model RRTMG (Rapid Radiative Transfer Model for GCMs, Mlawer et al., 1997)

through its implementation in the radiative convective equilibrium model konrad (Kluft and Dacie, 2020). The strong cooling

of the moist layers can be translated into locally increased subsidence rates, which we quantify through the radiatively driven

vertical velocity255

ωrad =−Q

s
(2)

where s is the static stability defined in Eq. 1. Since s stands in the denominator of ωrad and fluctuates strongly on small vertical

scales about values near zero, ωrad also fluctuates strongly. To distill out the radiatively driven dynamical effects in Fig. 3 on

the vertical scale of the moist layers, we apply an evenly weighted 500 m moving average to s and Q and calculate ωrad based

on the smoothed profiles. This way, local maxima are clearly visible in ωrad in the identified moist laysers. It is also apparent260

that the static stability within the moist layer is a key contributing factor for the magnitude of subsidence. Although the upper

tropospheric moist layer is associated with weaker radiative cooling than the mid-tropospheric one, the lower stability in the

upper tropospheric moist layer results in a stronger subsidence rate.

By calculating moist-layer-associated heating rates, static stabilities and ωrad we estimate the dynamical effect of moist

layers in the different datasets and characterise possible differences in Sect. 6.265
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Figure 3. GRUAN sounding from 2012-15-02 at 12 UTC of (a) H2O volume mixing ratio (VMR), (b) longwave heating rate, (c) static

stability and (d) radiatively driven vertical velocity. The dashed red line in (a) is the reference humidity profile against which moisture

anomalies are identified, which are highlighted by blue shaded regions. Thin gray lines in (b), (c) and (d) indicate raw data and thick lines

500 m moving averages.
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5 Comparison of moisture anomaly characteristics

We compare the distributions of moisture anomaly characteristics for the four collocation pairs. To start off, the comparison

is based on all-sky scenes. In a next step, we distinguish clear-sky from cloudy cases to assess whether cloudiness affects

the datasets’ capability of capturing moisture anomalies. This is of particular interest for the satellite retrieval datasets, which

employ different cloud handling schemes as described in Sect. 2.270

5.1 All-sky

The moisture anomaly identification and characterisation method introduced in Sect. 4 is applied to the humidity profiles of the

four collocation datasets. Fig. 4 shows the resulting distributions of moisture anomaly characteristics for the four collocation

pairs. In the following, we discuss what these results tell us about the different datasets’ ability to capture EMLs. We start off

with ERA5, then go to IASI and finally to AIRS.275

As a first indicator of a dataset’s ability to capture moisture anomalies, we compare the number of detected moisture anoma-

lies to the reference dataset, i.e. the areas under the distributions depicted in Fig. 4. ERA5 captures about 99 % as many

anomalies as collocated GRUAN data, indicating a good amount of vertical water vapor variability in ERA5 (Fig. 4, first row).

Moisture anomalies in ERA5 are about 50 % weaker and 28 % thicker than moisture anomalies in the collocated GRUAN

dataset. Moist layers that are less than 2 km in thickness are particularly underrepresented by ERA5 while moist layers with280

thickness > 3 km occur more often. These biases suggest that ERA5 is subject to some degree of smoothing due to limited

vertical resolution, which we quantify in the following.

To investigate to what extent smoothing alone can explain the biases between the moisture anomaly characteristics of ERA5

and GRUAN, we apply a running mean with vertical window size of 1 km and constant weighting to the GRUAN profiles. The

resulting distributions are shown as thick lines in the first row of Fig. 4. They show that biases in all three moisture anomaly285

characteristics can mostly be eliminated through the artificial smoothing. This indicates an effective vertical resolution of the

ERA5 humidity profiles in the free troposphere of about 1 km. We conclude that ERA5 captures vertical humidity structures

on scales of 1 km and greater well as no systematic deviations from the GRUAN distributions are apparent. Hence, we argue

that ERA5 is a suitable reference for assessing the satellite retrieval datasets.

We assess the IASI L2 CDR by comparing it to GRUAN data (Fig. 4, row 2) and ERA5 data (Fig. 4, row 3). The IASI L2 CDR290

captures about 75 % as many moisture anomalies as in collocated GRUAN data and about 79 % as many moisture anomalies as

in collocated ERA5 data. This is a first indicator that the IASI L2 CDR captures less vertical water vapor variability than ERA5.

In addition, the maximum in moisture anomaly thickness at around 2 km altitude detected in both GRUAN and ERA5 data is

missing in the IASI L2 CDR. Instead, the anomaly thickness distribution is shifted towards significantly higher values with

differences in the means of 85 % against GRUAN and 28 % against ERA5. Moisture anomalies are also significantly weaker in295

the IASI L2 CDR with mean differences of 53 % and 10 % against GRUAN and ERA5 data, respectively. At this point we want

to highlight the added value of assessing the vertical moisture structures of a dataset through moisture characteristics opposed to

just comparing the mean profiles (Fig. 2). While we find a strikingly good agreement of the IASI, ERA5 and GRUAN humidity
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profiles on the mean, quite significant biases become apparent when applying the moist layer characterisation method and then

taking a statistical look at how the resulting metrics compare.300

As for ERA5, we investigate whether the found biases in anomaly strength and thickness against GRUAN can be explained

by smoothing. We apply a 1 km moving average to the GRUAN profiles collocated with the IASI L2 CDR and obtain the

moisture anomaly distributions represented by the thick lines (Fig. 4, row 2). While the biases in anomaly strength and height

against the IASI dataset are significantly reduced, a strong bias remains in the anomaly thickness. We also attempted to increase

the smoothing window up to 5 km, but do not find the anomaly thickness distribution to approach the one of the IASI dataset305

much more (not shown). Hence, the bias in anomaly thickness originates from some other source of error in the IASI dataset

than smoothing. We come back to this in the next subsection when concentrating on the clear-sky.

To assess the AIRS CLIMCAPS retrieval, we rely only on ERA5 as a reference as outlined in Sect. 2.5. The AIRS CLIM-

CAPS retrieval captures about 92 % as many moisture anomalies as collocated ERA5 data, significantly more than the IASI

L2 CDR. Moisture anomalies in the AIRS CLIMCAPS retrieval are on average 26 % stronger and 5 % less thick than those310

in collocated ERA5 data. Also, moist layers in the AIRS CLIMCAPS retrieval are typically found significantly lower in the

troposphere compared to the three other datasets, in particular there are much more moist layer cases below 5 km compared to

ERA5. The mean moist layer height is about 1.3 km lower in the AIRS CLIMCAPS retrieval compared to ERA5. We already

saw this bias in terms of a shift of the mid-tropospheric humidity peak towards lower altitudes when comparing the dataset

mean profiles in Fig. 2. Moisture anomaly strength is a somewhat height dependent quantity with generally stronger anoma-315

lies in the lower troposphere than further up (Prange et al., 2021). Hence, the increased strength of moist layers in the AIRS

CLIMCAPS retrieval is to some degree also caused by a bias in moisture anomaly height. Nonetheless, the number of mois-

ture anomalies in the AIRS CLIMCAPS retrieval speaks towards a good capability of the dataset to capture vertical moisture

variability, more so than the IASI L2 CDR.

These findings are coherent with the notion of previous case studies that optimal estimation based retrievals are more capable320

of capturing vertical moisture structures than regression based retrievals (Smith et al., 2012; Weisz et al., 2013; Smith and

Weisz, 2018; Zhou et al., 2009; Calbet et al., 2006; Chazette et al., 2014; Prange et al., 2021). A plausible explanation for the

superiority of the optimal estimation based AIRS CLIMCAPS retrieval is that capturing EMLs is not sufficiently emphasized

in the training of the regression-based IASI retrieval. The fact that the retrieval is trained based on ERA5 data may also set

a somewhat upper limit in terms of resolvable vertical structure. The AIRS CLIMCAPS retrieval is constrained by a priori325

assumptions about mean and variability of the atmospheric state, but if the optimal estimation setup is tweaked well, deviations

from the mean state can be captured well with this method.
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Figure 4. Distributions of moist layer characteristics (columns) for the four collocation datasets (rows). Moist layer characteristics are defined

by Prange et al. (2021). The thin gray lines refer GRUAN profiles on 10 m vertical resolution while the thick gray lines represent GRUAN

profiles with an applied running mean with a 1 km evenly weighed vertical window.
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5.2 Clear-sky

The satellite retrieval products do operate in the presence of clouds, but information content is limited with increased cloudiness

and cloud depth, in particular from the infrared instruments. Hence, we are interested whether our analysis of moisture anomaly330

characteristics yields different results when limited to clear-sky scenes compared to the previously investigated all-sky scenes.

Possible differences could then potentially be linked to the different cloud handling schemes deployed by the retrieval products

(Sect. 2).

The AIRS CLIMCAPS and IASI L2 retrievals come with an estimate of total cloud fraction for each retrieval pixel, which

are obtained based on quite different methods as outlined in Sect. 2. ERA5 also provides a total cloud fraction variable, which335

we show in addition, but do not base our further analysis on since it appears quite biased against the satellite derived cloud

fractions. As suggested in the CLIMCAPS science application guide, we use a cloud fraction threshold of 0.2 to distinguish

clear-sky from cloudy scenes (Smith et al., 2021). For the two collocation datasets IASI/ERA5 and AIRS/ERA5 this leaves

about 22 % of the all-sky amount of data. For the IASI/GRUAN comparison, sampling becomes too limited, which is why we

limit this analysis to the satellite collocations with ERA5.340

Fig. 5 shows the resulting cloud fraction distributions of the two collocation datasets. It is striking that when limiting satellite

based cloud fractions to 0.2, ERA5 cloud fraction estimates show maxima near cloud fractions of 1. Without any applied

thresholds, both satellite datasets also have their global maxima near cloud fractions of 1 (not shown). However, the secondary

maximum near 0 found in both satellite datasets is not at all present in ERA5. We would have expected a stronger bimodality

between high and low cloud fractions in ERA5 due to the higher spatial resolution of ERA5 of 31 km compared to about 50 km345

in the Nadir view of the two satellite products. However, since cloud fraction requires subgrid-scale knowledge it is difficult to

define this variable in a model framework. Hence, finding significant differences to satellite derived estimates is not completely

surprising.
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Figure 5. Cloud fraction distributions of the two collocation datasets (a) IASI/ERA5 and (b) AIRS/ERA5 after applying a cloud fraction

threshold of 0.2 based on the IASI and AIRS cloud fraction estimates.

Fig. 6 shows the resulting moisture anomaly characteristics after application of the clear-sky filter. All datasets consistently

show an increase in mean anomaly strength of about 20 % compared to the all-sky results. Note that our method for quantifying350

anomaly strength is designed to capture the magnitude of vertical moisture variability rather than absolute amount of humidity,

which would be highest in case of clouds (Prange et al., 2021). The found increase in anomaly strength in the clear-sky is

in line with our expectations because in cloudy conditions vertical humidity variability is limited by the saturation humidity,

leading to weaker moisture anomalies.

We also see a significant change in the shape of the anomaly height distributions when comparing clear-sky to all-sky. IASI355

and ERA5 both show a clear bimodal structure in anomaly height in the clear-sky, which was not the case in the all-sky data.

Physically, we explain the position of the maxima near 5 km and 12 km by levels of preferred detrainment of moist air from mid-

level or deep convective plumes into the clear-sky environment (Johnson et al., 1999; Romps, 2014). The mid-level detrainment

is thought to be driven by enhanced stability near the melting level and the upper tropospheric detrainment is associated with

increased stability towards the tropopause as the atmosphere goes into pure radiative equilibrium aloft. We hypothesize that the360

mid-tropospheric peak is more pronounced than the upper tropospheric peak in ERA5 and IASI anomaly height distributions

because both deep (cumulonimbus) and mid-level (cumulus congestus) convection causes mid-level detrainment while only

deep convection causes upper level detrainment. AIRS also shows peaks in anomaly height near 5 km and 12 km and another

peak inbetween at around 7 km that we can not link to a physical mechanism in this height. However, when interpreting the

detailed shape of the distributions to this extend, we advice caution due to the limited number of AIRS/ERA5 collocations,365

which is only about 10 % of the number of IASI/ERA5 collocations.
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We do not find significant changes in biases between satellite retrievals and ERA5 in anomaly strength or thickness when

limiting our data to clear-sky. While we do see changes in the means of the distributions as described above, biases remain

similar. Although biases do not change much, we see that the all-sky secondary maximum at large anomaly thickness values of

IASI, which is not present in ERA5 (Fig. 4), vanishes in the clear-sky, indicating better vertical resolution. However, going to370

clear-sky does not reduce the gap between satellite retrievals and ERA5 at anomaly thickness values below 3 km. We conclude

that the retrievals’ observing capability of moist layers is not significantly limited by clouds.
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Figure 6. Same as Fig. 4 but with cloud fraction < 0.2 in AIRS and IASI datasets. Collocations with reference to GRUAN are omitted due

to limited clear-sky sampling. Vertical dashes indicate the means.

6 Moist layers’ radiative implications on the dynamics

In this section we want to translate the datasets’ varying capabilites to resolve EMLs found in Sect. 5.1 into estimates of the

moist layers’ effect on meso-scale dynamics. EMLs are thought to impact the mesoscale dynamics of the atmosphere through375

their effect on the spatial structure of radiative heating (Stevens et al., 2017). We attempt to draw a direct connection between

EMLs and dynamics by translating their effect on the heating rates into radiatively driven vertical velocities ωrad, for which to

a first order the static stability is another contributing factor (Sect. 4).

Fig. 7 shows distributions of moist-layer-associated longwave heating rates, static stabilities (s) and radiatively driven verti-

cal velocities (Eq. 2). The same moist layers identified as basis for Fig. 4 are used here and the three additional quantities are380
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calculated for each moist layer. This is done by calculating the vertical median heating rate across each identified moist layer

(Fig. 7, column 1). To calculate the moist layer averaged static stability s according to Eq. 1, moist layer median temperatures,

potential temperatures, and potential temperature gradients are used (Fig. 7, column 2). The resulting moist-layer-associated

heating rates and static stabilities are used to calculate the moist-layer-associated ωrad (Fig. 7, column 3).

The typical tropical free tropospheric heating rate is on the order of -2 K day−1 (Jeevanjee and Fueglistaler, 2020). Moist-385

layer-associated heating rates depicted in the first column of Fig. 7 show their peak at more negative values of around -3 K day−1

because of the locally enhanced infrared opacity of the moist layers that cause increased infrared absorption and cooling to

space. However, a saddle point in the distributions is found at -2 K day−1 that is associated with particularly weak moisture

anomalies that barely increase opacity. The fact that most heating rates are found at values lower than -2 K day−1 shows that

our method does in fact filter for the moisture features we are interested in.390

We expect biases in moist-layer-associated heating rates between the collocated datasets to reflect biases in moist layer

strength and thickness, i.e. stronger and thinner moist layers go along with more pronounced cooling. We find this to generally

be the case as GRUAN shows the strongest moist-layer-associated cooling, followed by only a slight bias to ERA5 and slightly

more cooling in the IASI L2 retrieval than in the AIRS CLIMCAPS retrieval. Differences in heating rate distributions between

ERA5 and GRUAN are small, indicating that the found biases in moisture anomaly strength and thickness that could mostly be395

eliminated by applying 1 km vertical smoothing to the radiosonde data are not very significant for the moist-layer-associated

heating rates. However, we also find a 19 % difference in the means of static stability between ERA5 and GRUAN that adds to

the slightly enhanced cooling in GRUAN to result in a 38 % difference in ωrad means between the two datasets. Static stability

values also showed to be increased in ERA5 compared to GRUAN in the comparison of the 4 year mean profiles in Fig. 2.

For the IASI/GRUAN comparison similar biases are found as for ERA5. The ERA5/IASI comparison reveals that slightly400

stronger cooling rates found in ERA5 are balanced by slightly increased static stabilities in ERA5 yielding only a 0.7 %

difference in ωrad means between ERA5 and IASI.

Stronger biases are found between ERA5 and AIRS. Moist-layer-associated cooling is weakest in the AIRS dataset among

all investigated datasets. In addition, AIRS shows significantly enhanced stability with a 44 % mean difference against ERA5,

while ERA5 already showed enhanced stability compared to GRUAN. The moist-layer-associated weaker cooling and en-405

hanced stability in AIRS yield a 43 % mean difference in ωrad against ERA5 and an about 80 % mean difference to the

GRUAN mean ωrad obtained from collocations with ERA5 and IASI.

To put the found values of ωrad and associated biases between the datasets into some perspective we compare our results

to measurements of meso-scale vertical pressure velocities ω obtained from dropsonde measurements of the EUREC4A field

campaign. During EUREC4A, the HALO aircraft flew 69 circles of about 200 km diameter launching 12 dropsondes per410

circle (Konow et al., 2021; George et al., 2021). Using the method of Bony and Stevens (2019), circle-integrated profiles of

divergence allow for a deduction of ω, some first EUREC4A averaged results of which are presented by Stevens et al. (2021).

The campaign mean ranges between values of 1 to 2 hPa hour−1 throughout the free troposphere, while individual circles show

maximum variations between -5 to 10 hPa hour−1. The moist-layer-associated ωrad values we find based on GRUAN with

values between 1.5 to 4 hPa hour−1 are generally higher than the mean meso-scale ω measurements. We conclude that EMLs415
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show a significant radiative impact on meso-scale dynamics when compared to meso-scale measurements of ω. With biases of

moist-layer-associated ωrad in ERA5, IASI and AIRS data ranging from 38 % to 80 % compared to GRUAN and ωrad means

being on similar order as meso-scale ω measurements we conclude that these datasets have limited usability to assess the

dynamical impact of EMLs.
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Figure 7. Distributions of moist-layer-associated longwave heating rate, static stability (s) and radiatively driven vertical velocity ωrad for

the different collocation datasets. Averaging measure for heating rate is median. s is calculated based on moist layer median temperature,

potential temperature and potential temperature gradient. ωrad is calculated by division of moist-layer-associated heating rate and static

stability. Vertical dashes indicate means.
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7 Conclusions420

We assessed ERA5 reanalysis data, the IASI Level 2 Climate Data Record (CDR) and the CLIMCAPS-Aqua Level 2 retrieval

product in terms of their ability to capture vertical moisture structures, in particular EMLs. As reference, we use 2146 ra-

diosonde soundings from Manus Island of the years 2011 to 2014 that are part of the quality controlled GRUAN network. We

compared mean profiles of temperature, humidity and static stability, then identified and characterised collocated moist layers

using the method of Prange et al. (2021) as basis and assessed the moist layers’ impact on the dynamics in terms of radiative425

heating and radiatively driven vertical velocities. In the following we draw conclusions about our main question, that is how

adequately EMLs are represented in the different data products.

1. The four-year mean profiles show a clear mid-tropospheric maximum in relative humidity in all data products that is

associated with EMLs. It is similarly pronounced in ERA5, IASI and GRUAN. Only the AIRS CLIMCAPS retrieval

shows significant humidity biases against the other data products. The mid-tropospheric humidity peak is not located430

near the melting level as in the other datasets, but about 100 hPa lower causing a significant moist bias in the lower to

mid free troposphere. A peak in mid-tropospheric static stability is also located about 100 hPa lower than in ERA5. In

the upper troposphere between about 400 to 100 hPa the AIRS CLIMCAPS retrieval shows a dry bias against the other

datasets.

2. The number of identified moist layers based on the method described in Sect. 4 is almost equal between collocated ERA5435

and GRUAN data, indicating a good amount of vertical water vapor variability in ERA5. Moist layers in ERA5 are about

50 % weaker and 28 % thicker than moist layers in GRUAN data. These biases can be completely negated by applying

a 1 km moving average to GRUAN profiles, indicating 1 km effective vertical resolution of ERA5 humidity profiles.

The AIRS retrieval shows about 92 % as many moist layers as ERA5 and the IASI retrieval only about 79 %, indicating

slightly enhanced vertical moisture variability in the AIRS retrieval compared to IASI. In addition, the IASI retrieval440

shows about 53 % weaker and 85 % thicker moist layers than collocated GRUAN data. We find that these biases in IASI

can not completely be negated by applying vertical smoothing to the GRUAN data, indicating other sources of error than

pure smoothing. The AIRS retrieval shows stronger and similarly thick moist layers as ERA5. However, moist layers

are generally found about 1.3 km lower in the troposphere than in ERA5, which limits the conclusiveness of comparing

moist layer strength, since moist layers further down are typically stronger.445

3. Reducing the investigated collocated scenes between the two retrieval datasets and ERA5 to clear-sky is found to not

significantly change biases in moist layer strength and thickness, indicating that the cloud handling schemes are not

the limiting factors for the retrievals’ ability to resolve moist layers. While distributions of total cloud fractions are

comparable between the two retrieval datasets, collocated ERA5 total cloud fractions show strong deviations towards

cloud fractions of 1 while retrieval cloud fractions are limited to less than 0.2. These biases merit further study.450

4. Moist-layer-associated heating rates are on average on the order of -3 K day−1, showing enhanced cooling compared

to the mean tropical free tropospheric cooling of about -2 K day−1 (Jeevanjee and Fueglistaler, 2020). Slight biases in
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moist-layer-associated heating rates are found between the datasets that are representative of the found biases in moist

layer strength, thickness and height. Consequently, we find strongest moist-layer-associated cooling in GRUAN data and

weakest cooling in the AIRS CLIMCAPS retrieval, which we attribute to its significant bias towards lower moist layer455

heights where cooling to space is less effective due to the bigger column of water vapor above the moist layers.

5. We find that on average, the moist-layer-associated radiatively driven subsidence ωrad at 1.5 to 4 hPa hour−1 is higher

than mean meso-scale subsidence deduced from EUREC4A field campaign measurements at about 1 to 2 hPa hour−1

(Stevens et al., 2021). Hence, EMLs are relevant for meso-scale atmospheric dynamics. According to Eq. 2, ωrad is

controlled by both moist-layer-associated radiative cooling and static stability. Biases between datasets in both of those460

quantities are significant for the resulting biases in ωrad, which is 38 % for both ERA5 and IASI with respect to GRUAN

and 43 % for the AIRS CLIMCAPS retrieval with respect to ERA5. We conclude that due to these significant relative

biases, all datasets have limited usefulness to assess the dynamical impact of EMLs.

Given the inherently limited vertical resolution of reanalysis and retrieval products compared to in-situ soundings, we find

ERA5 to resolve EMLs well, while IASI and AIRS show some more significant biases that can not be explained purely by465

vertical smoothing. The IASI L2 CDR shows most significant biases in moist layer thickness that may be possible to improve

by more strongly emphasizing EMLs in the retrieval’s training or by introducing an optimal estimation step to the retrieval

as for example found by Calbet et al. (2006), the downside of which would be the computational cost. We find the AIRS

CLIMCAPS retrieval to be subject to significant humidity biases, in particular with respect to moist layer height. Studying the

origins of these biases remains a future task, but we see no inherent reason why it would not be possible to eliminate them.470
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