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Abstract. The grain-scale morphology of sediments and their size distribution inform on their transport history, of sediments 

are important factors controlling the efficiency of erosion , sediment transport and transport and control the quality of aquatic 

ecosystems. In turn, constraining the spatial evolution of thegrain size and shape of grains can offer deep insights onhelp 

understand the dynamics of erosion and sediment transport in coastal, hillslope and fluvial environments. However, the size 10 

distribution of sediments is generally assessed using insufficiently representative field measurements, and determining the 

grain-scale shape of sediments remains a real challenge in geomorphology. Here we determine the size distribution and grain-

scale shape of sediments located in coastal and river environments with a new methodological approach based on the 

segmentation and geomorphological fitting of 3D point clouds. Point cloud segmentation intoof individual grains is performed 

using a watershed algorithm applied here to 3D point clouds. Once the grains are individualizedsegmented into several sub-15 

clouds, each grain-scale morphology is determined by fitting a 3D geometrical model applied to each sub-cloud. If different 

geometrical models can be conceived and tested, including cuboids and ellipsoids, this study focuses mostly on ellipsoids. A 

phase to describe the geometry of grains. G3Point is a semi-automatic approach that requires a trial-and-error approach to 

determine the best combination of parameter values. Validation of the results checking is then performed to remove grains 

showing a best-fitting model with a low level of confidence.either by comparing the obtained size distribution to independent 20 

measurements (e.g., hand measurements) or by visually inspecting the quality of the segmented grains. The main benefits of 

this semi-automatic and non-destructive method are that it provides access to 1) an un-biased estimate of surface grain-size 

distribution on a large range of scales, from centimeters to meters; 2) a very large number of data, onlymostly limited by the 

number of grains in the point-cloud dataset; 3) the 3D morphology of grains, in turn allowing to developthe development of 

new metrics characterizingthat characterize the size and shape of grains; and 4) the in-situ orientation and organization of 25 

grains and grain clusters. The main limit of this method is that it is only able to detect grains with a characteristic size 

significantly greater than the resolution of the point cloud.  
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1 Introduction 

Rock particles or grains are characterized by a large range of size, from clays to large boulders, and a largediverse variety of 

shape and angularity, from spherical or ellipsoidal to cubic or polyhedral (e.g., Blott and Pye, 2008; Domokos et al., 2014; 

Domokos et al., 2020). Grains areform initially formed by fragmentation or chemical weathering, transforming a cohesive 

rock mass into a granular material. The initial size or shape distributions are controlled by fragmentation, weathering processes 5 

and on the structure of the rock mass (e.g., fracture density and orientation, mineral size) (e.g., Molnar et al., 2007; Garzanti 

et al., 2008; Sklar et al., 2017; DiBiase et al., 2018; Neely and DiBiase, 2020; Verdian et al., 2021). The size and shape of 

grains These initial distributions then evolve due to the action of geomorphological processes, including attrition, chipping, 

abrasion, fragmentation and, chemical weathering, during and transport of grains by wind, river flow, avalanches along 

hillslopes or sea waves and currents (e.g., Attal and Lavé, 2006; 2009; Domokos et al., 2014; Miller et al., 2014; Várkonyi et 10 

al., 2016; Novák-Szabó et al., 2018; Marc et al., 2021). The size and shape distribution of grains in various natural 

environments can therefore be represented as an initial size or shape distribution, informing on fragmentation, weathering 

processes and on the structure of the rock mass (e.g., 2021).fracture density and orientation, mineral size) (e.g., Molnar et al., 

2007; Garzanti et al., 2008; Sklar et al., 2017; DiBiase et al., 2018; Neely and DiBiase, 2020; Verdian et al., 2021). These 

initial distributions are then progressively modified during transport, informing in turn on the transport processes (e.g. saltation 15 

or suspension), conditions (e.g. dense flows) and duration or length. Grains are also found at the surface of other planetary 

bodies or asteroids (Burke et al., 2021) and offer unique constraints on their surface conditions. A striking example is the use 

of the shape of grains to reconstruct the transport history of pebbles on Mars (Szabo et al., 2015). Moreover, the in-situ 

orientation of grains found in deposits can also inform on the paleo-flow conditions during sediment deposition (e.g., 

Johansson, 1963; Rust, 1972). 20 

The distributiondistributions of grain size, shape and orientations strongly controlorientation impact the dynamics of fluvial 

and sedimentary environments. At the scale of rivers, the size of the sediments strongly controls the mobility of alluvial grains 

and their incipient threshold of motion (e.g., Shields, 1936), the timescale required to mobilize landslide-driven sediments 

(e.g., Croissant et al., 2017), the rate of river bedrock incision through the tool-and-cover effect (Sklar and Dietrich, 2004), the 

width of river channels (e.g., Finnegan et al., 2007; Baynes et al., 2020), or the rate of knickpoint propagation (Cook et al., 25 

2013). At the scale of a sedimentary basin, the size of grains influences the stratigraphy of the basin together with the chemical 

and mechanical properties of the sediment (e.g., Armitage et al., 2011). Grain size, shape and orientation in riverbeds are also 

key factors for aquatic habitats (e.g., Kondolf and Wolman, 1993; Riebe et al., 2014), for water and nutrient exchange through 

the hyporheic zone (e.g., Tonina and Buffington, 2009) or even for river hydraulics by impacting basal friction (e.g., Hodge 

et al., 2009).  30 

Despite the ubiquitous role of grain geometry on landscape properties and dynamics, and its potentiality to constrain paleo-

conditions on Earth and other planetary bodies, robustly documenting the 3D geometry of grains and their statistical 

distributions in natural environments remain poorly knownremains a challenge. Sampling the grain-size distribution of the 
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sediments lying at the surface of a riverbed is most often done by the grid-by-number method (Wolman, 1954). This method 

consists in measuring the diameter of a pre-defined number of grains, generally greater than 100. The grid-by-number method, 

which is simple to implement, is considered as directly similar to a volumetric sampling (see Bunte and Abt, 2001; and 

references therein). It is therefore still widely used onin the field (e.g., D’Arcy et al., 2017; Guerit et al., 2014; 2018; Chen et 

al., 2018; Roda-BoluaBodula et al., 2018; Watkins et al., 2020; Baynes et al., 2020). However, samples are often taken over a 5 

few squaredsquare meters and thus lead to inherent representativity biasrepresentativeness and to statistical bias,biases 

associated to the operator, the grain sampling strategy, the measurements themselves and to the choice of the diameter to be 

measured. Collection of a data set can be extremely time consuming, especially when many grains have to be measured to be 

statistically significant (Rice and Church, 1996; Green, 2003; Eaton et al., 2019). ; Purinton and Bookhagen, 2021). 

Measurements are also partly destructive (i.e., grains are moved), which generally lead to information being lost on grain 10 

orientation and exact location.  

These issues have led to the development of alternative methods based on image analysis to characterize large areas in a 

manageable amount of time. Object-based and statistical-based approaches have been developed to characterize grain-size 

distributions from pictures or 3D data. The first oneapproach (so-called “picturephoto-sieving”) consists in measuring each 

grain or a number of selected grains on a picture (e.g., Bunte and Abt, 2001). Several algorithms now exist to perform these 15 

measurements manually, directly on a picturean image (Roduit, 2008). Because this manual procedure can be quite time 

consuming, (semi-automatic to -)automatic procedures have been implemented to automatically recognize grains from pictures 

(Butler et al., 2011; Graham et al., 2005a,b; Detert and Weitbrecht, 2012; Buscombe et al., 2013; Langhammer et al., 2014; 

Carbonneau et al., 2018; Purinton and Bookhagen, 2019, ) Machine learning approaches are being developed to support grain 

segmentation for images (Soloy et al., 2020). However, these methods are still time-consuming as they require the manual 20 

labeling of a large number of grains. The second approach is based on image-texture analyses and aims at correlating some 

statistical properties of images with the median grain sizesizes of the study site (Buscombe and Masselink, 2009; Buscombe 

et al., 2010; Rubin, 2004; Carbonneau et al., 2004). Similarly, 3D approaches relating empirically bed roughness, measured 

on high-resolution topographic data, can be implemented to infer the grain-size distribution from locally calibrated 

relationships (e.g., Rychkov et al., 2012; Westoby et al., 2015; Woodget and Austrums, 2017, Vazquez-Tarrio et al., 2017; 25 

Pearson et al., 2017; Groom et al., 2018; Detert et al., 2018). These approaches considerably reduce the time spend onspent in 

the field, increase efficiently the sampling density and coverage, and are non-destructive. Yet, post-processing remains time-

consuming, and these methods are inherently limited to the 2D measurement of apparent axis of individual grains (Graham et 

al., 2010) of individual grains,), or to empirical local correlations with little generalization capability and limited potential to 

fully explore the 3D geometry of individual grains. 30 

The last decade has seen a steep growth in the use of high-resolution 3D topographic data in Earth Sciences and 

geomorphology, obtained by LiDAR measurements and photogrammetry (e.g., Schneider et al., 2015; Westoby et al., 2012; 

Leduc et al., 2019). The resulting 3D point clouds offer unprecedented access to landscape heterogeneities and to landscape 

temporal evolution (e.g., Hodge et al., 2009; Leyland et al., 2017; Beer et al., 2017; Bernard et al., 2021). The accessibility of 
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3D point clouds, obtained from terrestrial, drone and airborne data, and their ability to capture object geometries robustly and 

accurately in 3D at various scales represent a timely opportunity to develop point cloud-based methods to the issue of grain 

size measurement. Building on this opportunity, Chen et al. (2020) recently developed a deep-learning workflow to segment 

grains based on SfM data.  

In this paper, we develop an another efficient and semi-automatic and efficient methodapproach, entitled G3Point (standing 5 

for “Granulometry from 3D Point clouds”), to measure grain size, shape and orientation using 3D point clouds. G3Point is a 

purely geometric algorithm, which in turn does not rely on the apriori training of a neural network on thousands or more of 

grains which is required in Chen et al. (2020). TheIndeed, the associated workflow consists in the 3D segmentation of 

individual grains using a type of watershed algorithm, the geometrical description of individual grains using 3D ellipsoidal 

models, and the description of the 3D geometry of the grain population using statistical distributions. After describing the new 10 

method, we test it against syntheticG3Point can be characterized as a semi-automatic approach as it is based on several 

parameters which can be optimized by a trial-and-error approach. Moreover, validation of the obtained results is performed 

either by comparing the obtained size distribution to independent measurements (e.g., hand measurements) or by visually 

inspecting the quality of the segmented grains. After describing the new method, we test it against lab and natural controlled 

experiments (e.g., riverbeds and beaches), considering point clouds obtained with Structure From Motion (SFM)structure from 15 

motion with multi-view stereo, herein referred to as SfM, to check its ability to robustly capture the 3D geometry and size of 

grains, independently constrained by hand measurements. 

2 Method 

 

Figure 1. Overview of the G3Point algorithm showing the main series of functions (center) and the results (top and bottom figures). Each 20 
main function is described in detail in the Method section.   
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G3Point is a Matlab program which aims at measuring the size, shape, and orientation of a large number of individual grains 

as detected from any type of 3D point clouds describing the topography of surfaces covered by sediments. The main functions 

of G3Points are described in the following and summarized by Figure 1. A 3D point cloud represents a topographic surface 

defined by a set of points associated to a 3D coordinate system. Compared to 2D digital elevation modelsDigital Elevation 

Models (DEM) where elevation 𝑧 is defined as a function of 2 horizontal coordinates (𝑥, 𝑦), 3D point clouds can include 5 

several points located at the same horizontal position (e.g., the face above and below a grain), allowing a better description of 

geomorphological features such as grains. In the following, we will assume that the considered point cloud is already denoised 

and classified to remove points associated to vegetation or other features unrelated to the sediment cover such as vegetation. 

Several efficient algorithms are available to perform this task (e.g., Lague and Brodu, 2013). We also assume that the point 

cloud surface, over the region of interest (i.e., generally an area of a few 10 m2, what we later refer to as the “patch-scale”), is 10 

relatively planar with its normal orientatedoriented vertically upward. We provide functions to denoise and re-orientatereorient 

the point cloud accordingly. We also assume that in most cases vertically stacked rocks cannot be individually segmented.  
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Figure 2. 3D view of the point cloud, its segmentation into individual grains and the fit ellipsoids. a) Initial point cloud with the colormap 

indicating the elevation of the points. b) Initial segmentation of the point cloud into individual grains performed with a modified watershed 

algorithm using the steepest slope upward criterion to route water. c) Segmentation after merging close grains together. d) Ellipsoid fit to 

each individual grains identified on panel c are represented with colored lines (same color as in panel c) over the point cloud (black dots). 5 
Color in panels a, b and c indicates the label of the grains (i.e., one color per grain). Red dots on panels a and b indicate the location of the 

summit point of each grain. e) Picture showing the location of the point cloud surface, bounded by a red polygon, relative to the Otira river.  

To illustrate the method, we will apply it to a point cloud of an active alluvial riverbed, of area ~40 m2, acquired in 2011 with 

a terrestrial LiDAR scanner (Leica ScanStation 2) along the Otira River in New Zealand (Fig. 2) and already featured in Brodu 

and Lague (2012). The subset of this point cloud that we use in the following is made of ~105 points forwith an average 10 

resolutionpoint density of ~2.4 103 point/m2 and was obtained after a single scan (Fig. 2a).2a). Because it was acquired after a 

single scan, and therefore misses a significant surface area for each visible grain, this point cloud is not optimal to obtain robust 

information on grain size. However, it represents a valuable test to check the ability of G3Point to detect grains despite this 

main disadvantage. 

 15 

Figure 1. Overview of the G3Point algorithm showing the main series of functions (center) and the results (top and bottom figures). Each 

main function is described in detail in the Method section.   

2.1 Initial segmentation: from a global point cloud to individual grains using a watershed algorithm 

The segmentation of the point clouds into sub-point clouds representing individual grains is performed using a single flow 

algorithm based on the steepest slope criterion (O’Callaghan and Mark, 1984). This algorithm is generally used to route water 20 

and identify watersheds on 2D Digital Elevation Models (DEM).DEM. It uses the steepest slope criterion to route water 

between neighborhood points until reaching a local topographic minimum, which corresponds to the outlet of the watershed. 

Each watershed is therefore described by a directed acyclic graph which associates each point of the point cloud to its outlet 

node through a single flow path (e.g., Schwanghart and Scherler, 2014). The Fastscape algorithm offers a fast solution to order 
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points along the steepest water flow path (Braun and Willett, 2013). This algorithmFastscape defines for each node 𝑖 a receiver 

node, corresponding to the neighborhood node leading to the steepest slope (i.e., that therefore would receive water when 

defining a flow topology), and donor nodes, corresponding to neighborhood nodes that gives water to the node 𝑖. Starting from 

each outlet node, a stack of nodes is built by recursively adding the giver nodes to the stack until reaching nodes without 

givers. The list of nodes in each stack therefore defines a watershed associated to one outlet node. This algorithm, designed 5 

for regular grids, can be readily adapted to irregular grids, such as 3D point clouds, as long as the neighborhood nodes of each 

node isare known. We use here the 𝑘-nearest neighbors algorithm, using 3D Euclidean distances, to identify the neighborhood 

nodes. The parameter 𝑘 controls the “neighborhood scale” which varies locally based on the spatial density of points. (Fig. 

A1a). For the point cloud of the Otira River, 𝑘 was taken equal to 20.  as it provides a good solution to grain segmentation. 

We provide some guidelines on how to choose a suitable value of 𝑘 in the Supplementary Material (Fig. S1). 10 

To identify grains instead of watersheds, the single flow algorithm is modified by using the criterion of the steepest slope 

upward instead of the steepest slope downward to route water. In other words, water is routed from a point to its steepest 

upward neighbor, which is associated to the maximum value of ∆𝑧 ሺ∆𝑥2 + ∆𝑦2ሻ1 2ΤΤ , with ∆𝑥, ∆𝑦 and ∆𝑧 the distance along 

the  𝑥, 𝑦 and 𝑧 between the considered point and its 𝑘-nearest neighbors. Using this approach, each grain is theoreticallyshould 

be identified by a single watershed, andwith the associated outlet correspondscorresponding to the summit of the grain. For 15 

the Otira River, the initial segmentation identifies 772 grains (Fig. 2b), and their set of points are associated to a unique label. 

This segmentation approach is convenient as it is fast (i.e. ~0.1s or ~1s of CPU time on a laptop for ~105 or ~106 points, 

respectively), relatively simple to implement, and the topology of a grain can be simplified to the position of its summit (red 

dots on Fig. 2b). Moreover, thisMoreover, this segmentation method is fast as it takes ~0.1s or ~1s of CPU time for ~105 or 

~106 points, respectively, on a laptop with 32 GB of RAM and a Intel i9 CPU of 8 cores with a clock speed of 2.4 GHz. We 20 

emphasize that this algorithm is not intended to provide an accurate description of hydrological flow over a point cloud as in 

Rheinwalt et al. (2019), but simply to provide a fast segmentation of the point cloud. This algorithm only imposes one scale: 

the theoretical minimum grain diameter which can be segmented, i.e., the local neighborhood scale. This scale can lead to 

under-segmentation of small grains, when their number of points is lower or of the same order than the 𝑘 parameter. Except 

for the neighborhood scale, no other scale is introduced, and the algorithm can identify grains of varying size. However, results 25 

show that this watershed segmentation approach also leads to a global over-segmentation of grains. Indeed, grains can exhibit 

several local maxima, due to the geometry of the grain (i.e., angularity) or to a rough surface or to potential data noise, leading 

to a grain being over-segmented (Fig. 2b).2b). Over-segmentation is a classical issue for algorithms dedicated to grain 

segmentation in 2D (e.g. Purinton et al., 2019; Purinton and Bookhagen, 2021) or 3D. 

2.2 Correcting from over-segmentation by merging grains 30 

Correcting over-segmentation is not a trivial task due to the large range of grain sizes and. Mostly because of this issue, 

classical clustering approach,approaches such as hierarchical clustering or dbscanDBSCAN (density-based spatial clustering 
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of applications with noise) (e.g., Esther et al., 1996) proved ineffective to solve forsolving this issue. Moreover, using 

approaches that use all the points ofin the point cloud can lead to significanta longer computational time which might become 

prohibitive for large point clouds. Here, we develop an approach which makes use of the properties of the segmented 

watersheds, which associate grains (i.e., watersheds) to their unique summit points (i.e., outlets) and to their border nodes (i.e., 

crests). We combine 3 criteria (Fig. A1b) to decide if a pair of grains ሺ𝑖, 𝑗ሻ should be merged in a single grain. 5 

1. CriteriaCriterion 1: The distance 𝑑𝑖𝑗  between two summit points should be smaller than the sum of the characteristic radius 

of the two grains. Instead of using a criterion based on a single scale to decide whether two grains should be merged, 

which would be problematic due to the large range of grain size, we use the drainage area 𝐴 at the summit node (i.e., 

outlet), which receives water from all the points sharing the same label, to determine a characteristic scale or grain radius 

𝑙𝑖 = ሺ𝐴𝑖 𝜋Τ ሻ1 2Τ . The criterion to merge the pair of grains ሺ𝑖, 𝑗ሻ together is therefore 𝑑𝑖𝑗 < 𝐶𝐹ሺ𝑙𝑖 + 𝑙𝑗ሻ, with 𝐶𝐹 a factor that 10 

we take generally equal to 0.5-1. These values were obtained after several trial-and-error tests.   

2. CriteriaCriterion 2: Grains 𝑖 and 𝑗 should be neighbors (i.e., at least one of the points of grain 𝑖 belongs to the 

neighborhoodk-neighbors of the pointsone point of the grain 𝑗, and vice versa)). 

3. CriteriaCriterion 3: The 3D angle between the normals of the crest points of grains 𝑖 and 𝑗 should be small. Orientation of 

the normal is computed by taking the normal of the best fitting local plane to the 𝑘-nearest neighbors of the considered 15 

point. For each of the crest node of grain 𝑖, the sum of the 3D angle between its normal and the normal of its neighbors 

belonging to grain 𝑗 is computed. This operation is performed for every crest point of grains 𝑖 and 𝑗, and then a mean 3D 

angle is determined. The criterion to merge the grains is that their mean 3D angle is lower than a threshold 𝛼 that we take 

equalsequal to 60˚ infor the following.point cloud of the Otira River. This last criterion prevents grains that are clearly 

separated by a curved border to bebeing merged. 20 

Therefore, aA pair of grains ሺ𝑖, 𝑗ሻ is merged if, and only if, these three criteria are respected. Due to the low number of grains, 

compared to the number of points in the point cloud, this step is also fast (i.e.., ~0.1-1s or ~1-10s of CPU time on a laptop for 

~105 or ~106 points, respectively). The results show that many labels, suffering from over-segmentation and describing a single 

grain, were effectively merged by applying this test, leaving only 657 labels or grains instead of 772 (Fig. 2c). Overall, the 

resulting segmentation looks qualitatively good, even if some grains still suffer from over-segmentation while a limited number 25 

of labels now suffer from under-segmentation and include more than one grain. We provide some guidelines on how to choose 

suitable values of 𝐶𝐹 and 𝛼 in the Supplementary Material (Fig. S2). 

2.3 Segmentation cleaning operations 

If this initial segmentation is deemed satisfactory at first order, some minor flaws can lead to an inaccurate description of the 

geometry of grains and their size distributions. To increase the quality of the segmentation, we optionally offer optional 30 

routines to perform several post-segmentation operations: (Fig. A1c): 
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1) Applying CriteriaCriterion 3 only, which consists in merging a pair of grains if the 3D angle between their normal, 

computed on the common border, is lower than a threshold 𝛽. The objective is mostly to merge small grains, resulting 

from the initial over-segmentation due to grain local maxima, with large ones.   

2) Cleaning the segmentation by removing grains with less than 𝑛𝑚𝑖𝑛 points. This number of points should be greater 

or equal greater than 𝑘, the number of nearest neighbors 𝑘, and greater or equal than 10, considered as the strict 5 

minimum number of points required to fit an ellipsoid (i.e., number of parameters of an ellipsoid). However, larger 

values of  𝑛𝑚𝑖𝑛 should be favoured to reduce the uncertainty of the resulting ellipsoidal model.  

3) Removing flattish or over-elongated grains, as they generally do not correspond to individual grains but to clusters 

of fine grains with a characteristic size much lower than the typical point spacing of classical point clouds or to 

unproperly segmented grains, respectively.. To detect flattish or over-elongated grains, we perform a singular value 10 

decomposition (SVD) over the 3D coordinates of each of the sub-point clouds. If a grain has a minimum or an 

intermediate singular value divided by its maximum singular value (i.e., the axis ratio between the intermediate or 

minimum dimension of the 3D labelled point cloud and its maximum dimension) lower than a threshold, ∅𝑓𝑙𝑎𝑡  or 

2∅𝑓𝑙𝑎𝑡 , then this grain is considered flattish or over-elongated, respectively, and removed from the segmentation. 

Values of ∅𝑓𝑙𝑎𝑡 < 0.1 were found to be suitable in this study, even if natural settings with very flat (e.g., as found for 15 

slate grains) or elongated grains should probably consider smaller values. 

In the example shown in figure 2, the segmentation was not cleaned. We provide some guidelines on how to choose suitable 

values of 𝛽, 𝑛𝑚𝑖𝑛 and ∅𝑓𝑙𝑎𝑡  in the Supplementary Material (Fig. S3). 
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Figure 2. 3D view of the point cloud, its segmentation into individual grains and the fitted ellipsoids. a) Initial point cloud with the colormap 

indicating the elevation of the points. b) Initial segmentation of the point cloud into individual grains performed with a modified watershed 

algorithm using the steepest slope upward criterion to route water. c) Segmentation after merging close grains together. d) Ellipsoids fitted 



 

12 

to each individual grains identified on panel c are represented with colored lines (same color than for panel c) over the point cloud (black 

dots). Color in panels a, b and c indicates the label of the grains (i.e., one color per grain). Red dots on panels a and b indicate the location 

of the summit point of each grain. e) Picture showing the location of the point cloud surface, bounded by a red polygon, relatively to the 

Otira river.  

2.4 Geometrical modelling: 3D ellipsoidal fitting of grains 5 

Once the grains are segmented and labelled, the following phase consists inof the 3D geometrical description of the geometry 

of each of the grains. Wegrain, particularly seek to extract their 3D size and orientation, and to infer an overall adequacy to 

simple shapes. A strong constraint results from the fact that only an unknown fraction of the upper surface of the segmented 

grains (i.e., the visible part of the grain) is topographically described by the point cloud. This prevents us tofrom directly 

useusing the point cloud describingto describe each grain toand measure their sizesizes and orientationorientations. Instead, 10 

we rely on the use of geometrical models to represent each grain. The most pertinent and simplest 3D geometrical model to 

describe a grain is the ellipsoidal model. Two strategies are adopted to describe the geometry of a grain with an ellipsoidal 

model: fitting an ellipsoid or determining its ellipsoid of inertia. 

Fitting an ellipsoid to a set of points in 3D is a complex problem that has received attention from different applied mathematics 

communities, including computer vision, pattern recognition, numerical analysis, and statistics. Ellipsoids belong to the family 15 

of quadric surfaces that can be defined as: 

𝐴𝑥2 + 𝐵𝑦2 + 𝐶𝑧2 + 2𝐹𝑦𝑧 + 2𝐺𝑥𝑧 + 2𝐻𝑥𝑦 + 2𝑃𝑥 + 2𝑄𝑦 + 2𝑅𝑧 + 𝐷 = 0, ሺ1ሻ 

where 𝐴, 𝐵, 𝐶, 𝐹, G, 𝐻, P, Q, R and 𝐷 are the parameters of the quadric surface. Defining 𝐼 = 𝐴 + 𝐵 + 𝐶 and 𝐽 = 𝐴𝐵 + 𝐵𝐶 +

𝐴𝐶 − 𝐹2 − 𝐺2 − 𝐻2, it can be shown that equation (1) must represent an ellipsoid when 4𝐽 − 𝐼2 > 0 (Li and Griffiths, 2004). 

This condition is respected when the short radius is at least half the length of the major radius of an ellipsoid. This represents 20 

a sufficient condition, but not a necessary one, and ellipsoids can be mathematically defined without respecting 4𝐽 − 𝐼2 > 0. 

Anyhow, weWe use an efficient and robust Matlab version (Hunyadi, 2022) of a direct least square fitting method (Li and 

Griffiths, 2004), based on the condition that 4𝐽 − 𝐼2 > 0, to describe the geometry of the segmented grains by minimizing the 

square of the distance between labeled points and the ellipsoidal model. For ellipsoids fitting grains which do not respect this 

condition, the fitting method might still lead to ellipsoids or to other quadric surfaces. Grains suffering from fitting issues or 25 

leading to quadric surfaces other than an ellipsoid are filtered out, leaving 630 correctly fittedfit ellipsoids over 657 labelled 

grains. The resulting ellipsoids, fitted to each labelled grain, appear qualitatively consistent with the shape, size and orientation 

of the labelled grains (Fig. 2d). Other ellipsoidal fitting algorithms exist, but this direct least-square approach was found to 

lead to the best solution. for the data set we used. In turn, the condition 4𝐽 − 𝐼2 > 0 prevents the occurrence of flat or over-

elongated ellipsoids, which could otherwise represent better mathematical solutions despite being, in some cases, physically 30 

unlikely.  

The second approach considered to characterize the geometry of the grains consists in computing the inertia ellipsoids 

corresponding to the labelled points of the grains. This is performed, first by computing the mean position of the points, second 
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by computing the covariance matrix of the points subtracted from their mean position, and third by making a singular value 

decompositionSVD of the covariance matrix normalized by the number of points.  

The approach based on the inertia ellipsoid can be considered simpler than the direct least-square fitting method and does not 

suffer from mathematical constraints of the direct least-square approach. However, as it is not a fitting method, its main 

drawback is that it is unable to guess the “hidden” geometry of the grains (i.e., by using the curvature of the visible part of the 5 

grain), and the obtained inertia ellipsoids will tend to be flatter than the grains. We later compare the two approaches in the 

Results section. We also compare the obtained ellipsoids to cuboids that are obtained by determining the minimal 3D bounding 

box for each grain, with at least one side oriented along the horizontal plan. More specifically, the orientation and dimensions 

(i.e., length, width and height) of the cuboids are compared to the orientation and dimensions of the major, intermediate and 

short axes of the ellipsoids. 10 

2.5 Geometrical and statistical description of grain size, shape and orientation 
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Figure 3. Size, shape and orientation distribution of 630 ellipsoids correctly fitted to the labelled grains. Histogram distribution of the 

diameters of the ellipsoids along their a) major 𝒂 −, b) intermediate 𝒃 − and c) short 𝒄 − axis. Histogram distribution of the d) 3D axis ratio 

(𝒄/𝒂), e) 2D axis ratio (𝒃/𝒂) and f) volume of the ellipsoids. Histogram distribution of the g) azimuth 𝝋 and h) dip 𝜽 angle. i) 3D view of 

an arbitrary ellipsoid and representation of the different metrics used to characterize ellipsoid size, shape and orientation.  5 

Once the grains are fitted by an ellipsoid, it is straightforward to access their geometrical information. For each ellipsoid, we 

measure the radius (and the diameter, as classically used for grain-size distributions) of the major 𝑎 −, intermediate 𝑏 − and 

short 𝑐 −axisaxes, the orientation (i.e., azimutazimuth and dip) of these 3 axisaxes, the volume of the ellipsoid 𝑉 = 4 3Τ 𝜋𝑎𝑏𝑐 

and the approximate surface area 𝑆𝐴 of the ellipsoid using Knud Thomsen’s formula 𝑆𝐴 = 4𝜋ሺሺ𝑎𝑝𝑏𝑝 + 𝑎𝑝𝑐𝑝 + 𝑏𝑝𝑐𝑝ሻ 3Τ ሻ1 𝑝Τ . 

Indeed, there is no general formula for estimating 𝑆𝐴 and this formula approximateapproximates the ellipsoid area with an 10 

error less than 1.061 % when 𝑝 = 1.6705. We can also compute 2 different axis ratios, with 𝑐 𝑎Τ  the 3D axis ratio between 

the short and major axis, and 𝑏 𝑎Τ  the 2D axis ratio (or elongation ratio) between the intermediate and the major axis. We coin 

this latter the 2D axis ratio as it generally corresponds to the axis ratio measured from 2D images, by contrast with the 3D axis 

ratio that is generally not measurable from 2D images (i.e., assuming that the short axis is oriented vertically). Other metrics 
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can be computed such as the grain intercept sphericity defined as 𝜓 = ቀ
𝑏𝑐

𝑎2
ቁ
1 3Τ

 (Krumbein, 1941; Bunte and Abt, 2001), which 

varies between 0 (i.e., non-spherical) and 1 (i.e., spherical). In the following, we will refer to this metrics as being the sphericity. 

For each grain, we can also compute the distance of each point of the grain, of coordinates ሺ𝑥, 𝑦, 𝑧ሻ, to its projection on the 

ellipsoid surface, of coordinates ሺ𝑥𝑒 , 𝑦𝑒 , 𝑧𝑒ሻ. The square of this distance, corresponding to the residuals in a least-square sense, 

characterizes the goodness of the fit through the coefficient of determination: 𝑅2 = 1 −5 

∑ሺሺ𝑥 − 𝑥𝑒ሻ
2 + ሺ𝑦 − 𝑦𝑒ሻ

2 + ሺ𝑧 − 𝑧𝑒ሻ
2ሻ ∑ ൬ቀ𝑥 − 𝑥

¯
ቁ
2

+ ቀ𝑦 − 𝑦
¯
ቁ
2

+ ቀ𝑧 − 𝑧
¯
ቁ
2

൰ൗ , with 𝑥
¯
, 𝑦
¯
 and 𝑧

¯
 the mean coordinates of the 

points. 𝑅2 informs on the quality of the mathematical fit itself and on the consistency between the ellipsoidal model and the 

shape of the grain, which can deviate significantly from an ellipsoidal geometry.  

The statistical description of grain geometrical properties of a grain population, such as the classical 1D grain-size distribution 

(GSD), is then performed based on the geometrical attributes of each individual grain of the considered population (Fig. 3). 10 

The range of measured diameterdiameters, ~0.01 to ~1 m, spanspans two orders of magnitude (Fig. 3a-c), and the 3D (c/a) and 

2D (b/a) axis ratios unsurprisingly vary between 0 and 1 with mean values of 0.55 and 0.65, respectively (Fig. 3d-e). The range 

of volume of the ellipsoids spans almost 5 orders of magnitude, from 10-5 to 1 m3 (Fig. 3f). In addition to this classic description, 

G3Point also provides information on the 3D organization of the grains. Here, the orientation distribution of the grains along 

this active alluvial bed shows that there is no preferential orientation of grains due to the river flow, as they appear to follow a 15 

mostly uniform distribution of the azimuth 𝜑 (Fig. 3g) and that most grains are lying, as testified by their dip angle 𝜃, in a sub-

horizontal position with 0 < 𝜃 < 30° or 150 < 𝜃 < 180° (Fig. 3h).  

3 Results: method validation and application to syntheticlab or natural environments 

In addition of its robustness and efficiency, an algorithm dedicated to extract granulometric information from point clouds 

must be able to manage various sources of data, including SFMSfM and LiDAR. In the following, we therefore test the newly 20 

developed algorithm against “ground truth” datasets of grain size, obtained in syntheticlab or natural environments. For each 

data set, we compare the distribution obtained with G3Point to the grain-size distribution measured by hand. It is important to 

highlight that the grain sampling approach of G3Point belongs to the family of areal or area-by-number approaches. We first 

start by assessing the pros and cons of the different grain fitting approaches by applying them to individual grains of various 

shapes. 25 

 

3.1 The influence of grain shape and surface cover on the resulting ellipsoid size and orientation 

Two strategies are adopted to describe the geometry of a grain with an ellipsoidal model: fitting an ellipsoid by a direct least-

square fitting approach (DLSF) or determining its ellipsoid of inertia (IE). We here test the influence of using these two 

strategies on the quality of the resulting geometrical models, for individual grains, considering a variable surface covered by 30 

the point cloud (Fig. 4).  
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Indeed, in natural environments, grains have a significant proportion of their surface that is not topographically described, as 

it is hidden under the grain itself, by other grains or features (e.g., vegetation, water), or due to a lack of visibility with respect 

to the sensor (e.g., LiDAR station). The tested grains consist of a spherical ball (grain 1), a low-angularity grain (grain 2), an 

angular grain (grain 3) and an angular, flattish and elongated grain (grain 4). The point clouds representing the surface of these 

four grains were obtained by SfM using Agisoft Metashape. For this purpose, each grain was put on a 1 cm radius plastic plate 5 

attached to the top of a tripod and about 50 pictures were acquired all around the grain. For each of these point clouds, we 

generated ellipsoidal models considering only a prescribed percentage of their surface covered by the point cloud, from 10 to 

100 %. Practically, surface cover is varied by first choosing a random seed among the points of the point cloud and then 

sampling a number of nearest neighbors leading to the sought surface cover of the grain. Ellipsoidal modelling by DLSF and 

IE is then applied only to this sampled part of the total point cloud. The modelled ellipsoidal volume 𝑉𝑚𝑜𝑑𝑒𝑙  and surface area 10 

𝐴𝑚𝑜𝑑𝑒𝑙  are then compared to the volume 𝑉𝑡𝑟𝑢𝑒 and surface area 𝐴𝑡𝑟𝑢𝑒 of the convex hull of the point cloud. The modelled 

diameters 𝑑𝑚𝑜𝑑𝑒𝑙  of the 3 axes are compared to the dimensions 𝑑𝑡𝑟𝑢𝑒 of the bounding box of the point cloud. Last, the 3D 

angle ∆𝛼, between the modelled orientation of the ellipsoid axes and axes of the “true” ellipsoid obtained by considering the 

entire grain, is computed. For each surface cover, 10 samples are tested, leading to 10 models obtained by the DLSF and IE 

approaches, allowing us to define a mean value and a standard deviation for each metric. 15 

For the two low angular grains (grains 1 and 2), metrics obtained with DLSF or IE are consistent with the true geometry of the 

grain even for relatively low surface cover, down to 20-30%. DLSF gives significantly better results than IE, in particular for 

a surface cover between 20 and 80%, which likely represents a common range for most labelled grains. Thanks to grain 

curvature, the DLSF fitting algorithm also converges towards value for 𝑉, 𝐴 and 𝑑 which are close to the true values. For the 

orientation, both approaches are unable to converge towards the true one for the spherical grain (i.e., grain 1), which is not 20 

surprising as the orientation of a sphere is not defined. For grain 2, both approaches converge slowly towards the true 

orientation for a surface cover greater than 50-75%.  
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Figure 4. Influence of the grain surface covered by 3D data on the modelled ellipsoidal geometry of a grain. a) Point clouds of the 4 tested 

grains which consists in grains with increasing angularity and elongation from left (grain 1) to right (grain 4). b) Resulting bounding box 

(green), and ellipsoid fit on each grain (black dots), using either the direct least-square fitting algorithm DLSF (red) or the inertia ellipsoid 

algorithm IE (blue). c) Volume V and d) surface area A of the modelled ellipsoids normalized by the volume and area of the convex hull of 

the point clouds of the entire grains, considered as true estimates. Length of the modelled e) a-axis, f) b-axis and g) c-axis normalized by the 5 
major, intermediate and minor length of the bounding box around the entire grain. 3D angle between the 3D vector of the h) a-axis, i) b-axis 

and j) c-axis with the orientation of the same vector resulting from the ellipsoid fitting the entire grain. In panel c to j, results obtained with 

the direct last-square fitting approach (DLSF) and the inertia ellipsoid approach (IE) are represented in red and blue respectively. The error 

bar, given as a shaded surface around the mean value (solid line), is the standard deviation of the considered metrics obtained by changing 

ten times the random seed. 10 

For the angular grain (grain 3), the DLSF and IE approaches give similar results. The dimensions are well captured for a 

surface cover greater than 60-70 %. The orientation, in particular of the c-axis, converges more rapidly than for low-angular 

or spherical grains. For the angular, elongated and flattish grain (grain 4), the IE approach gives better results than the DLSF 

for the length of the c-axis and the volume, while other metrics are relatively similar. Indeed, the algorithm of the DLSF 

imposes some constraints on the minimum size of the c-axis compared to the a-axis, which makes it unable to properly capture 15 

the 3D dimensions of flattish grains.  

These results show that the dimensions of spherical or low-angular grains are well captured by the IE and DLSF approaches, 

with this latter giving good results even for a surface cover lower than 50%, while their orientation is poorly captured for a 

surface cover lower than ~75 %. On the other hand, grains that clearly depart from the spherical model, in particular due to 

their high angularity, need a greater surface cover, around 60-70 %, to be properly captured for their dimensions by ellipsoidal 20 

models, while their orientations converge more rapidly towards their true value. Flattish grains are better modelled by the IE 

approach, as the DLSF leads to large value of the c-axis. Synthetic environmentLast, we note that the orientation of the 𝑐-axis 

is generally better captured than the one of the 𝑎- and 𝑏-axis, which suggests that the azimuthal orientation of grains is less 

well resolved than their inclination (assuming that the c-axis of grains is sub-vertical).  

3.2 Lab experiment: the test of the pebbles on a flat surface 25 

Here, we apply G3Point to a lab experiment, consisting of 39 black pebbles, bought in a hardware store, laying in a horizontal 

position over a planar surface of 0.5 x 0.5 m (Fig. 5a). This lab experiment was photographed using a Nikon D3500 in a 

4000x6000 pixel format with about 50 pictures, taken with different angles, to generate a 3D point cloud by SfM. Data were 

processed with Agisoft Metashape and the resulting point cloud, made of ~2 105 points, has a native point density of ~1 point 

per millimeter. To segment grains, and only grains, the planar surface is removed from the point cloud by removing all the 30 

points below a threshold elevation over the vertical coordinate. G3Point is then applied to this point cloud using the couple of 

parameters 𝑘 = 100 and 𝐶𝐹 = 0.8, after a trial-and-error series of tests. Indeed, the 39 pebbles are perfectly detected and 

labelled as individual grains. Each grain is then described by a cuboid (Fig. 5b) and ellipsoidal models using the direct least 

square fitting method (DLSF) (Fig. 5c), as previously done, and the inertia ellipsoid (IE) approach (Fig. 5d). We force the 

vertical dimension of the cuboids to start at the elevation of the planar surface for their lower face, to correctly capture the 35 

height of the grains. As the grains are lying flat, the length and the width of the cuboids correspond to the long and intermediate 
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axes of the grains, respectively. The major 𝑎 −, intermediate 𝑏 − and short 𝑐 − axes of the modelled ellipsoids are then 

compared to the true diameters of the pebbles, which are assumed to be characterized by the length, width, and height of the 

cuboids, respectively. We emphasize here that most of the pebbles used for this test are strongly elongated (𝑏/𝑎~0.5) and flat 

(𝑐/𝑎~0.25), which can represent real challenges for most ellipsoidal fitting algorithms. This test should therefore be considered 

as an end-member scenario, testing the ability of the approach to properly describe the geometry of grains using ellipsoidal 5 

models. Formatted: Aucun, German (Germany)
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Figure 45. Results from the syntheticlab experiment considering 39 pebbles on a flat surface. a) Point cloud (grey dots) of the experiment 

overlayed by the label (color) of each identified grain and their summit node (red dot). The resulting b) cuboid (red) and ellipsoids obtained 

with c) a direct least square (DLSF, blue) and d) the inertia ellipsoid (IR, green) approaches. Diameters measured along the e) 𝒂 − 𝒂𝒙𝒊𝒔 

(topleft), 𝒃 − 𝒂𝒙𝒊𝒔 (middlecenter) and 𝒄 −axis (bottomright) using the direct least square (DLSF, blue dots) and the inertia ellipsoid (IE, 5 
green dots) approaches for the 39 grains as a function of the cuboid lengths. (see Figure S4). The red dots show the dimensions of the average 

ellipsoid between the IE and DSLF ellipsoids. f) Axis ratios of the ellipsoids as a function of the axis ratios of the cuboids. g) Volume, area 

and azimuthal angle of the 𝒂 −axis (0-180˚) of the ellipsoids as a function of the azimuthal angle of the cuboids. The black dashed lines 

show the 1:1 line on all the panels. 

The first experiment consists in 39 black pebbles, bought in a hardware store, laying in a horizontal position over a planar 10 

surface of 0.5 x 0.5 m (Fig. 4a). This synthetic experiment was captured by pictures to generate a 3D point cloud by SFM. 

Data were processed with Agisoft Metashape and the resulting point cloud, made of ~2 105 points, has a native resolution of 

~1 point per millimeter. To segment grains, and only grains, the planar surface is removed from the point cloud. G3Point is 

then applied to this point cloud using the couple of parameters 𝑘 = 100 and 𝐶𝐹 = 0.8, which was found satisfying after a trial-

and-error series of tests. Indeed, the 39 pebbles are perfectly detected and labelled as individual grains. Each grain is then 15 
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described by a cuboid (Fig. 4b) and ellipsoidal models using the direct least square fitting method (DLSF) (Fig. 4c), as 

previously done, and the inertia ellipsoid (IE) approach (Fig. 4d). We force the vertical dimension of the cuboids to start, for 

their lower face, at the elevation of the planar surface, to correctly capture the height of the grains. The major 𝑎 −, intermediate 

𝑏 − and short 𝑐 − axes of the modelled ellipsoids are then compared to the true diameters of the pebbles, which are assumed 

to be characterized by the length, width and height of the cuboids, respectively. We emphasize here that most of the pebbles 5 

used for this test are strongly elongated (𝑏/𝑎~0.5) and flat (𝑐/𝑎~0.25), which can represent real challenges for most ellipsoidal 

fitting algorithms. This test should therefore be considered as an end-member scenario, testing the ability of the approach to 

properly describe the geometry of grains using ellipsoidal models. 

Despite that, the obtained diameters for the 𝑎 −, 𝑏 − and 𝑐 −axes are roughly consistent in between the 3 approaches (Fig. 

4e5e), even if the diameters obtained with the DLSF and IE approaches are almost systematically higher or lower, respectively, 10 

than the cuboid dimensions. The ratios between the ellipsoid diameters and the cuboid lengths for the 𝑎 − and 𝑏 −axis range 

between 0.8 and 1 for the IE and between 0.8 and 2 for the DLSF (see Fig. S1S4 in the Supplement). For the 𝑐 −axis, the 

consistency is less good and the ratio range between 0.4-0.9 and 1.1-9 for the IE and DLSF approaches, respectively. TheThese 

results reflect the pros and cons of each approach: the DLSF approach leads to larger than expected ellipsoids, due to the 

geometrical constrain of the fitting algorithm for the 𝑐 −axis, while the IE approach leads to smaller than expected ellipsoids, 15 

as only the upper face of the grains is accounted for. This is well illustrated by the difference in the resulting 3D (𝑐/𝑎) and 2D 

(𝑏/𝑎) axis ratio. If the 2D axis ratio is relatively consistent in between the three approaches (Fig. 4f5f), the 3D axis ratio of 

the DLSF ellipsoids (0.4-0.65) is significantly higher than the one of the cuboids (0.1-0.4), except for one grain. On the 

contrary, the 3D axis ratio of the IE ellipsoids is always lower than the one of the cuboids. These discrepancies also lead to a 

larger or lower volume and area for the DLSF or IE ellipsoids, respectively, compared to the cuboid volume and area (Fig. 20 

4g5g). We note that the consistency of the DLSF ellipsoids with the cuboids is greatly improved when increasing the 3D axis 

ratio (i.e., when considering more spherical grains), which limits the role of the geometrical constrain on the quality of the 

fittedfit ellipsoid. Last, the horizontal orientation of the DLSF or IE ellipsoids, given by the azimuthal angle of the a-axis, is 

relatively consistent with the orientation of the cuboids (Fig. 4g5g). 

Despite a good first-order accuracy of the considered ellipsoidal models to represent the 3D dimensions of grains, none of 25 

these approaches is deemed systematically suitable by itself. The consistency of the ellipsoidal models with the true geometry 

of the grains depends on the considered geometrical model, on the surface coverage of the grain by the point cloud and on the 

shape of the grain itself (see Figure A1 and Appendix A).Fig. 4). In the following, instead of relying on a single ellipsoidal 

model, we rather assess the geometry and dimensions of grains by using both the DLSF and IE ellipsoidal models. Indeed, 

considering the size (or size distribution) obtained with the DLSF and IE ellipsoidal models offer an upper and lower bound 30 

on the true size (or size distribution) of the grain (or grain population). We also provide a mean size (or size distribution) 

obtained with these two ellipsoidal models to offer an approximate solution to the true size of the grain (or grain population).  

 

3.23 Field experiments with SFMSfM 3D point clouds 
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Figure 5. Field pictures (top), initial point clouds colored coded in elevation and segmented point clouds (middle) and grain-size distributions 

(bottom) from a) Site 1 and b) Site 2 of the Pointe du Chateau Renard and c) the Hérault River.  Distributions of the a- (red), b- (green) and 

c- (blue) axis result from Wolman counts (dark colors) and G3Point (light colors). Shaded envelops correspond to uncertainties defined by 

bootstrap approach for Wolman counts and by the envelop defined by the two fitting methods for G3Point (see text for details). Locations 5 
of the Wolman lines (white) and SFM covers (black polygons) are indicated on the pictures. 

 
The second experiment consists in pebbles from three natural field sites in France, the beach of Pointe du Chateau Renard 

(Brittany) with coarse and angular grains at Site 1 and smaller rounded grains at Site 2 (Fig. 5a6a-b), and the Hérault River 

near Saint-André-de-Majencoules (Cévennes) with rounded, fluvially-transported pebbles (Fig. 5c6c). At each site, we 10 

sampled the grain-size distribution by Wolman grid-by-number method (Wolman, 1954). At Site 1 of Pointe du Chateau 

Renard, we defined a grid of about 2.5 x 3 m with nodes every 0.3 m, we measured the three axes of each grain lying under a 
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node and a total of 76 grains were measured. At Site 2, we stretched two parallel decameters and wo operators walked along 

these lines, picked the two grains lying under each of their hands (random selection) about every meter, and measured the 

three axes of the grains. In total, 529 grains were measured. For the Hérault River, we defined a grid of 2.5 x 13 m with nodes 

every 0.4 m and we measured the intermediate axis of 197 grains. The others diameters were not measured due to time 

constraints. Measurements were performed with a calliper and rounded toward the nearest millimeter or with a decameter and 5 

rounded toward the nearest 5 mm, for small or large grains, respectively. Only grains larger than 4 mm were measured.  

 

 
Figure 6. Field pictures (top), initial point clouds colored coded in elevation and segmented point clouds (middle) and grain-size distributions 

(bottom) from a) Site 1 and b) Site 2 of the Pointe du Chateau Renard and c) the Hérault River.  Distributions of the a- (red), b- (green) and 10 
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c- (blue) axis result from Wolman counts (dark colors) and G3Point (light color dash lines). Shaded envelopes correspond to uncertainties 

defined by bootstrap approach for Wolman counts and by the envelope defined by the two fitting methods for G3Point (see text for details). 

Locations of the Wolman lines (white) and SfM covers (black polygons) are indicated on the pictures. 

 

In addition to operator errors, related to the measurement itself and to the choice of the diameter to measure, the resulting 5 

distribution is associated with uncertainties related to the size of the sample. We used a bootstrap approach with replacement 

to evaluate the confidence interval of each distribution (Rice and Church, 1996; Bunte and Abt, 2001; Green, 2003). For each 

sample, we randomly sampled 10000 replicates of the distribution and the scatter defines the confidence interval. The pebbles 

at Site 1 of the beach of Pointe du Chateau Renard have a median a-axis of 170+/-30±48 mm, a median b-axis of 110+/-20±40 

mm and a median c-axis of 60+/-15±20 mm (Fig. 6a, Table 1S1). At Site 2, the pebbles have a median a-axis of 117+/-13±15 10 

mm, a median b-axis of 80+/-8±9 mm and a median c-axis of 50+/-7±6 mm (Fig. 6b, Table 1S1). The fluvial pebbles along the 

Hérault River are smaller, with a median b-axis of 75+/-12±18 mm (Fig. 6c, Table 1S1). 

 

Site  Method  Number 
of grains  k  cf  α  β   flat  Athres 

Min 
point  

Chateau Renard 
Site 1  

Wolman  76  -  -  -  -  -  -  -  

G3Point  8077  30  0.67  35  5  0.2  10  50150  

Chateau Renard 
Site 2  

Wolman  529  -  -  -  -  -  -  -  

G3Point  356332  40  0.5  40  10  0.2  20  100  

Hérault  

Wolman  197  -  -  -  -  -  -  -  

G3Point  192183 50  0.3  35  10  0.1  20  100   

Table 1. Statistics of the grain-size distributions for the three sites surveyed by SFMSfM. The six coefficients (k, CF, 𝛼, 𝛽, 𝜙flatα, 

β, ϕflat, Athres) are the parameters required for G3Point (see text for details). 15 
 

At Chateau Renard, we used a Nikon D3500 in a 4000x6000 pixel format and for the Hérault River, we used a Nikon D7500 

in a 4176x2784 pixel format. At each site, we took about a hundred of pictures with a Nikon D3500 that coveredcovering a 

few squaredsquare meters to build a 3D point cloud by SFMSfM. Data were processed with Agisoft Metashape and the 

resulting point clouds have a native resolutionpoint density of ~ 1 point per millimeter. We subsampled the point clouds with 20 

CloudCompare to ~ 1 point per 2 to 3 mm to reduce calculation duration. G3Point is then applied to the resulting point clouds 

with parameters defined after a trial-and-error series of tests so that the segmentation of the grains is visually satisfying (Fig. 

5). With this approach, a large number of grains is detected (342, 901 and 831 for Chateau Renard Site 1, Site 2 and the Hérault 
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river, respectively, Table 1) and each segmented grain is fitted with two different ellipsoidal fits, DLSF and IE.Table 1, Fig. 

6).  

ToA large number of grains are detected (428, 1077 and 678 for Chateau Renard Site 1, Site 2 and the Hérault river, 

respectively, Table 1). Yet, to compare the distributions obtained by G3Point to the distributions obtained by Wolman counts 

onin the field, we must perform syntheticvirtual Wolman samplings on the fitted grains, for each fitting approach.. We apply 5 

a virtual grid to the 3D point cloud and automatically extract the three axes of the grains lying under the nodes, with grid 

spacing defined as half the maximum b-axis (this roughly corresponds to the D90). We now have 81, 426 and 284 grains for 

Chateau Renard Site 1, Site 2 and the Hérault River, respectively, close to the number of grains measured on the field at each 

site (Table 1). Because we can easily resample the point cloud, we repeat this operation 5025 times for each fitting method 

and define the grain-size distribution as the average of these 5025 samples. Then, the envelope defined by these two average 10 

grain-size distributions (one for , for each fitting method. The DLSF, one for and IE) is distributions are used as the confidence 

interval of eachthe average distribution, as presented in the previous subsection. We consider the average distribution obtained 

by these two methods as the grain-size distribution of the sample and define the median axes on this distribution (Fig. 5). (see 

Methods).  We now have 77, 332 and 183 grains for Chateau Renard Site 1, Site 2 and the Hérault River, respectively (Table 

1). The confidence intervals of the 𝑎- and 𝑏- axis are always quite narrow (i.e., within a few percents of the average value)up 15 

to ±14% but we observe intervals close to +/- ±50 % for the c-axis due to the assumptions made by the fitting methods for the 

c-axis (Table S1, and see the Method section for details).  

      
Figure 6: Ratio between the main quartiles (a) D10, b) D50 and c) D90) defined by Wolman counts and G3Point according to the 20 
sampling sites, for the 3 grain axes (𝑎-axis: red, 𝑏-axis: green, 𝑐-axis: blue). A ratio below (above) 1 indicates an underestimation 

(overestimation) with G3Point with respect to field measurement.  

 

For the three study sites, distributions obtained with G3Point are always within the uncertainties of manual counts distributions, 

except for the smaller quartiles. In fact, we observe that G3point systematically over- or under-estimates the 10th quartile (D10) 25 

of the distributions by 20 to 40 % for the three axes of the three sampling sites (Fig. 6a). We propose that this is due to the 

inability of the algorithm to recover small grains because their relief is too limited to be accurately segmented. However, the 
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two methods lead to similar (i.e., always within uncertainties) median diameters for any grain axis (Table 2). In fact, based on 

G3point, we recover a median 𝑎-axis of 164+/-11 mm, a median 𝑏-axis of 111+/-7 mm and a median 𝑐-axis of 68+/-30 mm 

for Pointe du Chateau Renard Site 1 (Table 2). We thus underestimate the 𝑎-axis D50 by 4% and we overestimate the 𝑏- and 

𝑐-axis D50 by 1 %, and 13 %, respectively, with respect to field counts (Fig. 6b). This is below the uncertainties associated 

with field measurements in this study and below the typical uncertainties associated with manual grain-size measurements 5 

(Green, 2003). For Site 2, the median 𝑎-axis is 117+/-8 mm, the median 𝑏-axis of 82+/-9 mm and a median 𝑐-axis of 52+/-24 

mm (Table 2). We thus recover the same 𝑎-axis we found with Wolman counts and we overestimate the 𝑏-axis D50 by 3 % 

and the 𝑐-axis D50 by 4 % with respect to field counts (Fig. 6b). For the Hérault River, we recover a median 𝑏-axis of 77+/-4 

mm (Table 2) and thus overestimate the 𝑏-axis D50 by 3 % (Fig. 6b), which is again below uncertainties associated with field 

measurements (this study; Green, 2003). Similar accuracies are observed for the D90. In fact, at Pointe du Chateau Renard 10 

Site 1, we overestimate the D90s by 4, 1 and 8 % with G3Point with respect to Wolman counts (Fig. 6c, Table 2). At Site 2, 

the D90s are overestimated by 6, 2 and 2 %, and by 16 % for the Hérault River (Fig. 6c, Table 2). These numbers are always 

lower than the variability associated with field counts.  

 

Site Method 

a-axis b-axis c-axis 

D10 
(mm) 

D50 
(mm) D90 (mm) D10 

(mm) 
D50 
(mm) 

D90 
(mm) 

D10 
(mm) 

D50 
(mm) 

D90 
(mm) 

Chateau 
Renard 
Site 1 

Wolman 82±17 170±51 304±154 52±17 110±42 224±91 31±11 60±19 132±57 

G3Point 62±4 158±9 317±46 38±6 106±10 229±23 25±13 70±31 149±53 

Chateau 
Renard 
Site 2 

Wolman 54±7 117±15 235±28 38±6 81±10 165±22 21±4 50±8 110±19 

G3Point 63±3 118±8 229±19 43±5 84±10 164±14 26±14 52±24 111±41 

Hérault 

Wolman - - - 31±13 75±18 164±44 - - - 

G3Point - - - 43±3 78±5 137±10 - - - 

Table 2. Characteristic quartiles of the grain-size distributions obtained at the three sites by Wolman counts and with G3Point. D10, D50 15 

and D90 are the 10th, 50th and 90th quartiles of the distribution, respectively. The 𝑎-, 𝑏- and 𝑐- axis are the large, intermediate and small axis 

of the grains, respectively. 
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Figure 7: Comparison of the key percentiles (10th, 16th, 25th, 50th, 75th, 84th, 90th) obtained by manual counts and by G3Point at the three 

study sites and for the three diameters. Distributions from G3Point are derived from the virtual Wolman sampling and uncertainties 

correspond to the envelopes defined by the DSLF and IE models.  For manual counts, uncertainties are derived from a bootstrap approach 

with replacements. The dash lines indicate a 1:1 ratio (points under/above the line indicate that G3point under/over-estimates the 5 
percentile with respect to field measurements).  

 

 

To better compare the two approaches, we compare the key percentiles (10th, 16th, 25th, 50th, 75th, 84th, 90th) of the grain-size 

distributions obtained by manual counts and by virtual Wolman on the segmented point cloud (Fig. 7). For each diameter at 10 

each study site, points align along a 1:1 line in a quantile-quantile diagrams, indicating that the average distributions obtained 

with G3Point are similar to the ones obtained by manual counts (Fig. 7). In particular, the 50th percentiles (ie, the D50s of the 

distributions) fall very close on the 1:1 line of the QQplots, implying that G3Point leads to similar median diameters for any 

grain axis. As observed with the previous examples, the DLSF and the IE approaches perform similarly good on the a- and b-

axis but they tend to overestimate and underestimate the c-axis, respectively (Fig. S5). Other diameters are within uncertainties 15 

but must be considered with more care (Fig. 7, Table S1). In fact, at Site 1, G3Point tends to underestimates the smallest 
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percentiles of the distributions and to overestimate the coarsest ones (Fig. 7a-c). Yet, this discrepancy is limited and always 

within the errorbars of manual counts. For example, for the a-axis, the D90 measured on the field is 304±135 mm while it is 

334±46 mm with G3Point (overestimation by ~10%, Fig. 7a). We observe the opposite trend at Site 2 and for the Hérault 

River, with an overestimation of the smallest percentiles and an overestimation of the coarsest ones (Fig. 7d-f). Here again, 

this trend is quite limited as for example, the D10 of the b-axis at Site 2 is 38±6 mm from manual counts and 43±3 mm with 5 

G3Point (overestimation of ~13%). The algorithm is unable to recover small grains because they are described by a limited 

number of points. As a consequence, the worst performance of G3Point is observed for the small percentiles of the c-axis. For 

example, at Site 2, the D10 of the c-axis is overestimated by ~35% (Fig. 7f, Table S1). 

This second experiment based on natural grains thus confirms that G3Point is efficient at recovering Wolman-like grain-size 

distributions for pebble and cobble populations in different environments and for various grain angularity, with a limited 10 

temporal cost onin the field and in the lab. The best performance of the algorithm is for the median and coarse quartiles (D50 

and above).  

 

4 Discussions 

4.1 Practical considerations for using G3Point 15 

As already demonstrated, G3Point is designed to perform semi-automatic 3D granulometric measurements on point clouds 

over surface area 1-100 m2 (hereinafter referred to the “patch-scale”) with a typical resolutionpoint density of ~0.1-1 cm/point 

and a total number of points around 106. The point density should be high enough so that each grain is described by at least 

several dozen of points. This scale enables 1) to perform efficient and fast measurements (i.e., several seconds), 2) to visually 

check the quality of the resulting segmentation of the grains and 3) if needed, to compare the resulting grain-size distribution 20 

with the one obtained with manual counting. We therefore suggest using G3Point mostly for patch-scale studies. However,In 

terms of computational time, there is a tradeoff between the total surface area and point density. G3Point can also perform 

grain size, shape and orientation analysis over larger study area (> 100 m2). In this case, the best practice consists either 1) in 

decreasing point density and in turn to lose the ability to detect smaller grains or 2) in segmenting the initial point cloud into 

several sub point clouds, at the patch-scale and with the initial point density, which can then be successively processed by 25 

G3Point. If G3Point can be directly applied to point clouds, without any field constraint on grain size, we generally recommend 

validating the results against some field measurements (e.g., grain-size distribution obtained by a Wolman count), at least on 

some parts of the studied area. When no classical grain size data is available, we recommend to carefully checkchecking the 

results of the grain segmentation phase and to test its sensitivity to the different parameters of G3Point. For instance, this could 

be the case for the automatic measurement of grain size and shape on other planetary bodies (Szabo et al., 2015; Lauretta et 30 

al., 2019; Burke et al., 2021) or in inaccessible and remote areas. The outcomes of G3Point are tightly linked to the choice of 

the local neighborhood scale through the parameter 𝑘. This parameter should therefore be taken as small as possible, to enable 

the segmentation of small grains, but not too small to prevent the over-segmentation of large grains due to local topographic 
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minima associated to surface roughness or noise. Suitable values of 𝑘 are generally determined by a trial-and-error series of 

tests. (Fig. S1). 

4.2 SFMSfM or LiDAR derived point clouds? 

As demonstrated in this paper, G3Point can be applied to point clouds obtained with a terrestrial LiDAR or by SFMSfM. Point 

clouds obtained with terrestrial LiDAR data provide better accuracy than SFMSfM but can be associated to varying 5 

resolutionpoint density, while the ones obtained by SFMSfM provide uniform resolutionpoint density but can lead to some 

inaccuracies. In particular, point clouds obtained with SFMSfM were observed to generate smooth or inaccurate topographic 

transitions between grains, as these correspond to “shadow” areas difficult to capture with pictures. This might be related to 

the quality of the photos (lighting, blurring, resolution), as with any SfM study. These smooth transitions are not too 

problematic for G3Point, as it is based on the steepest slope, but they prevent efficiently using criterion based on topographic 10 

curvature to segment grains or to correct the segmentation obtained with G3Point. In that case, we recommend removing points 

located at local topographic minima to ease segmentation (thiswhich is a buildbuilt-in option).. For LiDAR data, the issue of 

spatially varying resolutionpoint density can lead to a non-optimal set of parameters, in particular 𝑘, the number of nearest 

neighbors considered, over the entire surface of the considered point cloud. In this case, we recommend working on sub point 

clouds of rather homogeneous spatial point density. The use of point clouds obtained with only one station does not represent 15 

an issue for the watershed segmentation of G3Point (Fig. 2), even if it limits the number of data points per grain and their 

spatial distribution along the surface of the grains, which is not optimal for shape fitting algorithms. In any case, the point 

clouds processed by G3Point must be beforehand cleaned of any geometrical feature not corresponding to pebbles. This mostly 

includesThese features include trees, trunks, vegetation, the water surface, human-made objects and patches of fine grains (i.e., 

smaller than the minimal detected grain size).  20 

4.3 Comparison of G3Point with previous methods 

In terms of total working time, using G3Point over a surface area of about 1-100 m2 captured by SFMSfM involves collecting 

field pictures (~5-10 min), processing the pictures by SFMSfM to obtain a point cloud (10 min to several hours on a laptop) 

and running G3Point several times to find a good parametrization (~10 min). Interestingly, G3Point itself is not the limiting 

factor, as field data acquisition (i.e., pictures or LiDAR data) and data processing (i.e., SFMSfM) appear asto be more time 25 

consuming. ThisThe total working time is roughly equivalent to the one of a typical manual pebble count, which takes about 

60 min to measure the three axes of 100 grains. However, data sampling for G3Point is not destructive, it can be done by a 

single operator and G3Point will result in the measurement of a much larger number of grains for the same sample extension 

(>102 grains) including their size, location, and orientation in 3D. It offers a real benefit in terms of 

representativityrepresentativeness and opens new avenues to quantitatively characterize populations of grains (e.g., not only 30 

their size distribution). In fact), based on the geometry on their upper surface. Moreover, because point cloud data acquisition 

onin the field is fast, large areas or multiple locations along a fluvial system can be documented in a limited amount of time. 
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In addition, pictures for SFMSfM can be acquired with drones so that remote locations or very coarse-grained environments 

can safely be characterized. Together with the large number of grains being considered, G3Point represents a real improvement 

in terms of spatial representativityrepresentativeness with respect to Wolman or photographic approaches which are usually 

limited to a few squaredsquare meters and a hundred of grains (Bunte and Abt, 2001). Last, while most methods based on 3D 

data use texture or any other morphological index to estimate the grain sizes (Vazquez-Tarrio et al., 2017; Woodget et al., 5 

2018; Chardon et al., 2020), G3Point works directly on the grains and does not require a calibration phase. Once again, this 

limits bias and time spend on the field and allows remote areas to be characterized. in the field and allows remote areas to be 

characterized. Compared to Chen et al. (2020), who developed a deep learning approach to segment grains based on point 

clouds, G3Point does not rely on the apriori training of a neural network on thousands or more of grains, which can be highly 

time-consuming. Yet, G3Point could represent a good alternative to train deep learning algorithms, as it can provides in a few 10 

minutes thousands of grains that otherwise take weeks of work when manually labelled. 

4.4 In situ results on the granulometric conversion factors 

 

Figure 8. Illustration of conversion from a G3Point grain-size distribution to a Wolman-like distribution. Data are from Site 2 

of Chateau Renard. The initial G3point distribution is an area-by-number one (large dashed line) that can be converted to a 15 
grid-by-number (e.g., Wolman) one with a conversion factor of 2 (small dashed line). Alternatively, a virtual Wolman count 

can be performed directly on the segmented and fitted grains (black line). The shaded envelop indicates the variability observed 

with 50 realizations. 

 

Because G3Points samples virtually all the grains at the surface, it belongs to the family of areal or area-by-number grain 20 

sampling approaches. To compare this distribution to the Wolman field counts, it must be converted to a grid-by-number 

distribution, which is considered equivalent to a volumetric grain-size distribution. Conversion factors have been proposed to 

convert grain-size data acquired with one approach to another one, based on geometrical arguments (Kellerhals and Bray, 

1971; Church et al., 1987; Diplas and Fripp, 1992). For example, converting an area-by-number (or areal) distribution to a 
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grid-by-number (or volumetric; e.g., Wolman) distribution requires multiplying the frequency of all the particle classes by a 

factor D2. However, this exponent of 2 is theoretically valid only for spherical sediments with the same density and without 

porosity. The use of such conversion factor thus requires a calibration phase and should, in any case, only be considered as an 

approximate conversion method (Bunte and Abt, 2001).  

 5 

Figure 7: Illustration of conversion from a G3Point grain-size distribution to a Wolman-like distribution. 

Data are from Site 2 of Chateau Renard. The initial G3point distribution is an area-by-number one 

(large dashed line) that can be converted to a grid-by-number (e.g., Wolman) one with a conversion 

factor of 2 (small dashed line). Alternatively, a virtual Wolman count can be performed directly on the 

segmented and fitted grains (black line). The shaded envelop indicates the variability observed with 50 10 

realizations.  

 

With our new approach, we work on 3D point clouds covering large areas and a large number of grains can be identified. 

Therefore, instead of converting thefrom an area-by-number distribution to a grid-by-number onedistribution, we can apply a 

virtual grid over the point cloud and perform a Wolman count on the fitted grains. To account for the spatial variability of the 15 

grains, we repeat this operation 5025 times to define an uncertainty envelopenvelope and use the average distribution as the 

grain-size distribution of the sample. For our field examples, we observe that the geometrical conversion is always coarser 

than the virtual Wolman distribution, yet within uncertainties (Figs. 7, S4, S5Fig. 8, S6, S7, S8). The only exception is for the 

c-axis of the grains with the IE fit. Because this fit leads to very flat ellipsoids, the geometrical conversion factor largely 

overestimates the size of the grains (Figs. S4, S5,Fig. S6, S7, S8). In agreement with previous workswork (Graham et al., 20 

2012), this suggests that the geometrical factors are a correct approximation that tend to maximize the size of the grains, so 

that Wolman counts should be favored when possible. We emphasize that the field examples presented above were acquired 

in order to test our approach and the extent of the point clouds are thus similar to the extent of the Wolman counts performed 
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onin the field. Therefore, we sampled aboutapproximately the same number of grains onin the field and virtually (Table 1). 

Yet, G3Point is designed to operate on larger point clouds so that a few hundreds of grains will be sampled with the virtual 

Wolman sampling, allowing for an even more accurate description of the grain-size distribution from point clouds.  

4.5 Opportunities to explore and measure uncharted metrics: grain 3D sphericity and orientation  

Here, we briefly present some results on the orientation and sphericity of grains that we obtain with G3Point. The idea is not 5 

to dedicate a detailed study of these two metricsthis metric, but to illustrate the ability of G3Point to automatically measure 

themit with no additional efforts. This represents a real benefit of G3Point as most field or picture measurement of grain 

sphericity and orientation areis either cumbersome or approximate (e.g., using qualitative classification).), at the exception of 

the azimuth angle that can be accessed with approaches based on 2D pictures (e.g., Purinton & Bookhagen, 2019).  

The azimutazimuth and dip angles of a grain may give some information about the flow that transported and deposited a 10 

population of grains. G3Point offers a very simple way to access the orientation of a large population of grains as the 

azimutazimuth and dip angles can easily be determined from the fittedfit ellipsoids (Fig. 3). On average, the two fitting methods 

are efficient at recovering orientation, but they do not lead to the exact same results (Fig. 4I5g). Therefore, if grain orientation 

is a key element of a study, preliminary tests may be useful to determine the best fitting approach in terms of orientation (which 

may depend for example on the geometry of studied grains). Here, we show the results of both approaches to illustrate their 15 

similarysimilarity and differences. AzimutAzimuth is given with respect to the y-axis defined as parallel to the main water 

flow. At Site 1, the grains show no preferential azimutazimuth (Fig. 8a9a) and most grains rest flat on the beach, with a dip 

angle smaller than to 30° or larger than 150° (Fig. 8b9b). However, 40 to 50 % of the grains exhibit a dip angle between 30° 

and 150° and are thus quite vertical.°. We propose that their orientation results from their fall from the very nearby cliffs rather 

than from transport by the sea. At Site 2, a slightly preferential orientation can be inferred from the DLSF fit, with more grains 20 

showing an angle with the main flow than grains aligned with the flow (Fig. 8c9c). Here again, most grains rest flat and 30-

40% of them exhibit a dip angle comprised between 30° and 150° (Fig. 8d9d). We propose that this is due to a stronger control 

of the sea on this site with respect to Site 1. Along the Hérault River, grains tend to orient themselves perpendicular to the 

main flow (Fig. 8e9e) and to rest flat, with 27-38 % of them with a dip angle comprised between 30° and 150° (Fig. 8f9f).  

 25 
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Figure 8:9. Azimut and dip angles of the grains fitted the two approaches (DLSF and IE) at a-b) Site 1, c-d) Site 2 and e-f) the 

Hérault River. N is the number of grains of a given angle in degree.  

 

Another potential application of the G3Point is to measure the sphericity of the sediment population at a high level of accuracy 5 

as a large number of grains can be considered. Sphericity, 𝜓 = ቀ
𝑏𝑐

𝑎2
ቁ
1 3Τ

, can be interpreted as a proxy for travel distances, 

when comparing sediments having the same source rock (Bunte and Abt, 2001). A low sphericity (close to 0) is associated to 

angular grains and thus suggests a short transport distance. On the contrary, a sphericity close to 1 is associated to smooth 

grains and suggests a long transport distance. To illustrate this point, we generate 1000 grains from the grain-size distributions 

sampled by G3Point (Fig. 5) and calculate the sphericity of the grains. We observe that the grains at Site 1 of Château Renard 10 

are associated with a slightly lower sphericity, with a median value of ~0.63, than the grains from Site 2, with a median value 

of ~0.67 (Figs. 5 and 9). The grains from Site 2 are closer to the shoreline and we propose that the difference in sphericity 

could reflect their tendency to be more frequently moved during tides as they share the same source rock. The fluvial sediments 

from the Hérault River are also associated with a high sphericity which suggests that they are frequently moved, in agreement 

with qualitative field observations. 15 
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Figure 9: Characteristic sphericity of the sediments segmented by G3Point, for the three study sites. One thousand grains are generated from 

the grain-size distributions obtained with the algorithm (Fig. 5) and their sphericity is calculated using the formula 𝜓 = ቀ
𝑏𝑐

𝑎2
ቁ
1 3Τ

. The red 

line indicates the median value, the box represents 50% of the data and 100% of the data are within the whiskers. Red crosses indicate 

outliers. 5 

 5 Conclusion 

The G3pointG3Point algorithm presented here solvesmakes progress on the issue of grain segmentation and shape analysis 

from 3D point cloud data. G3Point represents a methodological advance comparedalternative to previous granulometric 

approaches, including hand measurements or 2D image analysis. Its main advantages are 1) its computational efficiency and 

speed that relies on the use of a state-of-the-art watershed algorithm (e.g., Braun and Willett, 2013) to segment grains, 2) its 10 

scale-free approach which enables to segmentthe segmentation of grains ofwith a large range of sizes above the “neighborhood 

scale” (i.e., typically a few centimeters), 3) its 3D nature which enables to obtain the calculation of metrics (e.g., sphericity, 

orientation) which are seldom obtained in the field, and 4) theits ability to perform a large number of measurements, which 

favors a good representativityrepresentativeness of the results.  

The G3Point algorithm was able to detect all the grains of a synthetic experiments and to properly describe theirthe size and 15 

orientation. of grains in a lab experiment. It was also qualitatively successful compared to hand measurements (e.g., Wolman 

count) in segmenting and quantitatively capturing the size-distribution of hundreds to thousands of grains in fluvial and coastal 

environments and to quantitatively capture their size-distribution, compared to hand measurements (e.g., Wolman count).. The 

modelling of grain geometry was performed using ellipsoidal models obtained either with a direct-least square fitting approach 

or by taking the inertia ellipsoid. If both models lead to accurate inferenceaccurately infer of the major and intermediate axes, 20 

the inertia ellipsoids and the direct-least square ellipsoids tend to underestimate or over-estimate the minor axis, respectively. 
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This in turn impacts the ability of G3Point to infer the volume and surface area of grains. Taking forFor the minor axis, the 

mean value of the inertia and direct least-square ellipsoids provides estimates that are consistent with hand measurements. 

Other geometrical models were tested, including bounding boxes. We acknowledge that future workswork could focus on 

providing better geometrical models or better fitting approach to describe the geometry of grains. Alternatively, future efforts 

could investigate the surface geometry of segmented grains by G3Point, without relying on fitted geometrical models (e.g., 5 

ellipsoidal model), but by exploring the topology of the segmented point clouds. An inherent limit remains that, in natural 

environments, only a fraction of the grain surface is visible and can be topographically described using LiDAR or SfM. 

G3Point is not the first algorithm to propose the segmentation of grains based on point cloud data, as Chen et al. (2020) 

developed an efficient deep-learning workflow to segment grains based on SFM data. Yet, G3Point is a purely geometric 

algorithm, which in turn does not rely on the apriori training of a neural network on thousands or more of grains which is 10 

required in Chen et al. (2020). G3Point could also represent a good alternative to train deep learning algorithms, as it can 

provides in a few minutes thousands of grains that otherwise take weeks of work when manually labelled.  

Fascinating and first order issues remain to understandfor understanding the shape and size of grains and interpretinterpreting 

them in termterms of abrasion and fragmentation processes (Domokos et al., 2014, 2015, 2020; Novák-Szabó et al., 2018). 

This is pivotal for better exploiting the unique geological archives contained in the size, shape and orientation of grains found 15 

in natural systems on Earth and other planetary bodies (e.g.., Szabo et al., 2015). G3Point, by filling a methodological gap, 

could foster the development of a more systematic characterization of grain shape in natural environments and lead to a better 

understanding of the physics of geomorphological processes and of their past dynamics.  
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Appendix A:  

 

Figure A1.The influence Schematic schemes illustrating the different parameters of G3Point used during a) the initial watershed 

segmentation (see Section 2.1), b) the correction of the initial segmentation from over-segmentation by grain surface cover 

onmerging (see Section 2.2), and c) the resulting ellipsoid size and orientation 5 
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Two strategies are adopted to describe cleaning of the geometry of a grain with an ellipsoidal model: fitting an ellipsoid by a 

direct least-square fitting approach (DLSF)segmentation by various operations (see Section 2.3). Black or determining its ellipsoid 

of inertia (IE). We here test the influence of using these two strategies on the quality of the resulting geometrical model 

considering a variable surface covered by the point cloud (Fig. A1). Indeed, natural grains have a significant proportion of 

their surface that is not topographically described, as it is hidden under the grain itself or by other grains or features (e.g., 5 

vegetation, water) or due to a lack of visibility with respect to the sensor (e.g. LiDAR station). The tested grains consist in a 

spherical ball (grain 1), a low-angularity grain (grain 2), an angular grain (grain 3) and an angular, flattish and elongated grain 

(grain 4). The point clouds representing the surface of these four grains were obtained by SFM using Agisoft Metashape. 

For each of these point clouds, we generated ellipsoidal models considering only a prescribed percentage of their surface 

covered by the point cloud, from 10 to 100 %. Practically, surface cover is varied by first choosing a random seed amongcolor 10 

circles represents the points of the point cloud and then sampling a number of. The blue points represent the 𝑘 nearest neighbors leading 

to the seeked surface cover of the grain. Ellipsoidal modelling by DLSF and IE is then applied only to this sampled part of the 

total point cloud.  

The modelled ellipsoidal volume 𝑉𝑚𝑜𝑑𝑒𝑙  and surface area 𝐴𝑚𝑜𝑑𝑒𝑙  are then compared to the volume 𝑉𝑡𝑟𝑢𝑒 and surface area 𝐴𝑡𝑟𝑢𝑒 

of the convex hull of the point cloud. The modelled diameters 𝑑𝑚𝑜𝑑𝑒𝑙  of the 3 axes are compared to the dimensions 𝑑𝑡𝑟𝑢𝑒 of 15 

the bounding box of the point cloud. Last, the 3D angle ∆𝛼, between the modelled orientation of the ellipsoid axes and axes 

of the “true” ellipsoid obtained by considering the entire grain, is computed. For each surface cover, 10 samples are tested, 

leading to 10 models obtained by the DLSF and IE approaches, allowing us to define a mean value and a standard deviation 

for each metric. 

For the two low angular grains (grain 1 and 2), metrics obtained with DLSF or IE are consistent with the true geometry of the 20 

grain even for relatively low surface cover, down to 20-30%. DLSF gives significantly better results than IE, in particular for 

a surface cover between 20 and 80%, which likely represents a common range for most labelled grains. Thanks to grain 

curvature, the DLSF fitting algorithm also converges towards value for 𝑉, 𝐴 and 𝑑 which are close to the true values. For the 

orientation, both approaches are unable to converge towards the true one for the spherical grain (i.e., grain 1), which is not 

surprising as the orientation of a sphere is not defined. For grain 2, both approaches converge slowly towards the true 25 

orientation for a surface cover greater than 50-75%.  

For the angular grain (grain 3), the DLSF and IE approaches give similar results. The dimensions are well captured for a 

surface cover greater than 60-70 %. The orientation, in particular of the c-axis, converges more rapidly than for low-angular 

or spherical grains. For the angular, elongated and flattish grain (grain 4), the IE approach gives better results than the DLSF 

for the length of the c-axis and the volume, while other metrics are relatively similar. Indeed, the algorithm of the DLSF 30 

imposes some constraints on the minimum size of the c-axis compared to the a-axis, which makes it unable to properly capture 

the 3D dimensions of flattish grains.  
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Figure A1. Influence of the grain surface covered by 3D data on the modelled ellipsoidal geometry of a grain. a) Point clouds of the 4 tested 

grains which consists in grains with increasing angularity and elongation from left (grain 1) to right (grain 4). of the red point in caption 

a. Labels in captions b) Resulting bounding box (green), and ellipsoids fitted on each grain (black dots), using either the direct least-square 

fitting algorithm DLSF (red) or the inertia ellipsoid algorithm IE (blue). c) Volume V and d) surface area A of the modelled ellipsoids 

normalized by the volume and area of the convex hull of the point clouds of the entire grains, considered as true estimates. Length of the 5 
modelled e) a-axis, f) b-axis and g) c-axis normalized by the major, intermediate and minor length of the bounding box around the entire 

grain. 3D angle between the 3D vector of the h) a-axis, i) b-axis and j) c-axis with the orientation of the same vector resulting from the 

ellipsoid fitting the entire grain. In panel c to j, results obtained with the direct last-square fitting approach (DLSF) and the inertia ellipsoid 

approach (IE) are represented in red and blue respectively. The error bar, given as a shaded surface around the mean value (solid line), is the 

standard deviation of the considered metrics obtained by changing ten times the random seed. 10 

These results show that the dimensions of spherical or low-angular grains are well captured by the IE and DLSF approaches, 

with this latter giving good results even for a surface cover lower than 50%, while their orientation is poorly captured for a 

surface cover lower than ~75 %. On the other hand, grains that clearly depart from the spherical model, in particular due to 

their high angularity, need a greater surface cover, around 60-70 %, to be properly captured for their dimensions by ellipsoidal 

models, while their orientations converge more rapidly. Flattish grains are better modelled by the IE approach, as the DLSF 15 

leads to large value of the c-axis. Last, we note that the orientation of the c-axis is generally better captured than the one of the 

a- and b-axis, which suggests that the azimuthal orientation of grains is less well resolved than their inclination (assuming than 

the c-axis of grains is sub-vertical).  and c are shown by the color of the points, and the summit (or outlet) of each grain is represented 

by a red polygon. 


