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Abstract. Greenland ice sheet mass loss continues to accelerate as global temperatures increase. The surface albedo of the ice

sheet determines the amount of absorbed solar energy, which is a key factor in driving surface snow and ice melting. Satellite

retrieved snow albedo allows us to compare and optimise modelled albedo over the entirety of the ice sheet. We optimise the

parameters of the albedo scheme in the ORCHIDEE land surface model for three random years taken over the 2000-2017

period and validate over the remaining years. In particular, we want to improve the albedo at the edges of the ice sheet since5

they correspond to ablation areas and show the greatest variations in runoff and surface mass balance. By giving a larger weight

to points at the ice sheet’s edge, we improve the model-data fit by reducing the root-mean-square deviation by over 25% for the

whole ice sheet for the summer months. This improvement is consistent for all years, even those not used in the calibration step.

We also show the optimisation successfully improves the model-data fit at 87.5% of in situ sites from the PROMICE network.

We conclude by showing which additional model outputs are impacted by changes to the albedo parameters encouraging future10

work using multiple data streams when optimising these parameters.

1 Introduction

The melting of the Greenland ice sheet (GrIS) is one of the main contributors to sea-level rise (Frederikse et al., 2020). As

global temperatures continue to increase under climate change, further melting and surface mass loss are expected (The IMBIE

team, 2020), potentially affecting deep ocean circulation (Hu et al., 2011). Increased warming also darkens the GrIS (Tedesco15

et al., 2016), decreasing the surface reflectivity (i.e. albedo). This darkening has already been observed over the last decades,

driven by snowmelt, the retreat of the snow line, dust deposition (Dumont et al., 2014), and algae growth (Perini et al., 2019;

Cook et al., 2020; Williamson et al., 2020) and is expected to worsen. Since surface albedo determines the land surface energy

balance by controlling the amount of reflected solar (shortwave) radiation, reductions in albedo - through the darkening of

the ice sheet - result in increased shortwave absorption. This, in turn, enhances melting, creating a strong feedback to the20

atmosphere (Charbit et al., 2019; Box et al., 2022). The melt-albedo feedback is an essential contributor to mass loss (Qu and

Hall, 2014; Zeitz et al., 2021) and can be used as an emergent constraint to reduce the inter-model variability in projections of

climate change (Thackeray et al., 2021).
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Both dynamical effects and surface processes drive Greenland’s evolution. However, recent studies show that surface mass

balance changes dominate mass balance changes (Van den Broeke et al., 2016; Ryan et al., 2019; The IMBIE team, 2020).25

To correctly represent the surface mass balance and its components (sublimation and runoff), it is important to simulate the

physical processes within the snowpack. These depend on the surface energy balance and, therefore, on the albedo. Given the

importance of this albedo, it is crucial that it is accurately simulated in land surface models (LSMs) used to generate climate

change projections. Therefore it is important to confront LSM albedo estimates with observed values. With large areas such as

the GrIS, we can rely on remote sensing-based albedo measurements derived from various polar-orbiting satellites (Qu et al.,30

2015). We can use these data to evaluate and optimise LSMs using data assimilation.

Data assimilation (DA) refers to the act of incorporating observational information into a model to constrain its estimates or

parameters. Several studies have used remotely sensed albedo for DA in LSMs. Due to albedo’s influence on the partitioning

of the surface energy fluxes and the subsequent effect on the development of planetary boundary conditions and clouds (Pielke

and Avissar, 1990), some studies have focused on the impact assimilating surface albedo has on numerical weather prediction35

(e.g., Cedilnik et al., 2012; Boussetta et al., 2015). Others have mainly used remotely sensed data to derive new vegetation

and soil background albedo parameters to use in land surface models (e.g., Liang et al., 2005; Houldcroft et al., 2009). There

are also a number of examples of using snow albedo to improve snow models. For example, Malik et al. (2012) used MODIS

(Moderate Resolution Imaging Spectroradiometer; Schaaf et al. (2002))-based snow albedo and direct insertion methodology

in the Noah LSM over three sites in Colorado to improve simulated snow depth and snow season duration. Satellite-based40

albedo data was also used by Wang et al. (2015) to calibrate the ORCHIDEE (ORganizing Carbon and Hydrology in Dynamic

Ecosystems, Krinner et al. (2005)) LSM and investigate the impacts of albedo assimilation on offline and coupled model

simulations. Dumont et al. (2012) assimilated remotely sensed albedo in the Crocus snowpack model (Vionnet et al., 2012) to

improve the modelling of the spatial distribution of the glacier mass balance. Navari et al. (2018) further improved the Crocus

model using satellite-derived albedo to improve surface mass balance (SMB) along Greenland’s Kangerlussuaq transect. Other45

datasets have also been assimilated to improve snow estimation, including snow cover fraction estimates from optical sensors

(e.g., Toure et al., 2018; Xue et al., 2019) and measured ice surface temperatures (e.g., Navari et al., 2018). There have also been

several studies assimilating joint datasets. For example, MODIS-based snow cover fraction and albedo have been assimilated

in the Common Land Model LSM (Xu and Shu, 2014) and the Noah LSM (Kumar et al., 2020). All these snow model studies

use DA for state estimation, i.e., updating the model state whilst keeping the model parameters fixed. The techniques used50

range from relatively simple methods like direct insertion to more advanced statistical techniques like the ensemble Kalman

filter and particle filters.

Examples of DA used for parameter estimation, i.e., optimising internal model parameters, in snow modelling are less

common. Su et al. (2011) demonstrated how DA can be used for joint state and parameter assimilation in snow modelling.

Nevertheless, DA for parameter estimation remains more commonly used by the LSM community to optimise vegetation pa-55

rameters (see orchidas.ipsl.lsce.fr for such examples calibrating the ORCHIDEE LSM). In these types of studies, it is common

to optimise over a single site (or single pixel) or a group of individual pixels, usually sharing a common trait (e.g. the dominant

vegetation present), in what is known as a “multisite” approach (e.g., Kuppel et al., 2012; Raoult et al., 2016). In each case,
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the optimisation results in sets of parameters that apply to that individual site or trait tested. These approaches were used be-

cause, historically, models were optimised against in situ measurements from sites that are sparsely and unevenly distributed.60

Advances in satellite data retrieval have helped provide data over large areas for which we previously had no measurements.

However, with large amounts of data, computational power and time still limit the experiments we can perform.

Using MODIS snow albedo, in this study, we use DA for parameter estimation to improve the albedo parameterisation inside

the ORCHIDEE LSM (Krinner et al., 2005). While albedo parameters in ORCHIDEE have been optimised for vegetation and

bare soil, this will be the �rst study optimising them for ice sheets. Our target area from this study is the Greenland Ice Sheet.65

This study is the �rst test of applying the ORCHIDEE data assimilation system over ice sheets to improve modelling albedo

and, in turn, the surface mass balance of the ice sheet. Instead of using a single or multisite approach which samples the space,

here, to exploit the full spatial coverage of the satellite retrievals, we optimise over the whole area of the GrIS to obtain one best

set of model parameters applicable over the full ice sheet. Although this study is only over the GrIS, we can apply the method

to other regions. We show how robust Bayesian parameter estimation is an important tool for model development. We further70

highlight the different limitations and considerations needed to apply such an approach. The paper is organised as follows.

Methods and data, including the details about the ORCHIDEE LSM and its DA framework, driving and observational datasets,

and performed experiments, can be found in Sect. 2. Section 3 lists the results, starting with an assessment of the prior. This

is followed by the results of the main experiments and an evaluation over PROMICE in situ sites. In Sect. 3.3, we look at the

impact of the optimisation on the modelling of the SMB of the GrIS, as well as the different SMB components. In this section,75

we also perform a sensitivity analysis of the different parameters of the snow model for future work. Finally, the discussion

and conclusions can be found in Sect. 4.

2 Methods and Data

2.1 ORCHIDEE land surface model

The ORCHIDEE land surface model (Krinner et al., 2005) is the terrestrial component of the IPSL Earth System Model80

(ESM) used in climate projections (Boucher et al., 2020; Cheruy et al., 2020). Either run off-line (i.e., driven by prescribed

meteorological forcing) or coupled with an atmospheric model (i.e., as part of the ESM), ORCHIDEE describes the exchanges

of energy, water, and carbon between the atmosphere and the continental biosphere. The land surfaces are represented as

fractions of bare soil and plant functional types. These surfaces can further be covered with snow.

In this study, we adapted the CMIP (Coupled Model Intercomparison Project) 6 version of ORCHIDEE to run over the GrIS.85

The CMIP6 version of ORCHIDEE uses the three-layered snow model presented in Wang et al. (2013). To apply ORCHIDEE

over the GrIS, we implemented a new soil type into this version of ORCHIDEE to mimic the presence of ice in regions de�ned

by the present-day ice mask (Bamber et al., 2013). In ORCHIDEE, each soil type is de�ned according to the USDA (United

States Department of Agriculture) taxonomy, which classi�es soils as a function of their chemical, physical and biological

properties (Carsel and Parrish, 1988). For the new icy soil type, the porosity and the saturated volumetric water content are set90

to 0.98 to simulate a soil �lled with frozen water. This amounts to considering that ice is an impermeable medium. However,
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it does not allow the representation of processes such as moulins where water seeps through a network of galleries because the

model does not simulate the lateral transport of water. All the other characteristics of this new soil type were set to those of the

loam soil type because it is the dominant soil type in the ice-free regions around the GrIS (Fischer et al., 2008). Furthermore,

to be able to compare directly modelled to satellite retrieved albedo values, we computed the mean of albedo in both visible95

(VIS) and near-infrared (NIR) spectral domains. This is done to be in accordance with MODIS data. We only consider this

averaged albedo in the rest of the study.

The snow albedo in ORCHIDEE is modelled following the formulation of Chalita and Le Treut (1994). In the absence of

fresh snow, snow-covered albedo in ORCHIDEE (� snow ) decreases exponentially with time from its fresh value (Aaged+Bdec)

to a minimum value after ageing, i.e. albedo of old snow (Aaged ),100

� snow = A aged + B dec exp
�

�
� snow

� dec

�
: (1)

Here theBdec and� dec parameters control the decay rate of snow albedo. This formula can be used to calculate the snow-

covered albedo over different vegetation types, with different values ofAaged andBdec accounting for the variability of snow

coverings. The parameterisation of snow age,� snow , is shown in Eq. 2,

� snow (t + dt) = � snow (t) + f age (2)105

wheret is the time,dt is the model time step (1800s). The latter term of equation,f age , represents the effect of low temperatures

on metamorphism,

f age =

2

4

�
� snow (t) +

�
1 � � snow

� max

�
� dt

�
� exp

�
� Psnow

� c

�
� � snow (t)

1 + gtemp (Tsoil )

3

5 ; gtemp (Tsoil ) =
�

max(T0 � Tsoil ;0)
!!!

� ���

(3)

wherePsnow is snowfall,� c is the snowfall depth required to reset the age of the snow,� max is the maximum snow age,T0 is

the melting temperature (0°C),Tsoil is soil temperature, and! and� are tuning constants. All the parameters in bold are listed110

in Table 1. These, along with the albedo of ice,� ICE, are the parameters we focused on in this study.

2.2 Driving and observational datasets

2.2.1 Forcing provided by regional model (MAR)

The ORCHIDEE model was forced using meteorological outputs from the regional climate model Modèle Atmosphérique

Régional (MAR; Gallée and Schayes (1994); Kittel (2021)), version 3.11.4. MAR is a regional atmospheric model that uses115

6 hourly ERA-Interim reanalyses data from the European Centre for Medium-Range Weather Forecasts (ECMWF, Dee et al.

(2011)) to prescribe the atmospheric boundary conditions outside the domain. Outputs from the MAR have a resolution of

20 km and a 3 hourly time step. In addition to the MAR meteorological outputs, we consider runoff, sublimation and SMB

outputs in this study to assess the impact of the optimisation on these simulated quantities. MAR was speci�cally developed

for polar regions and offers good performances for the calculation of SMB and its components. Furthermore, it has been shown120
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Table 1.Parameters of the snow model. The default values represent the values used in the standard simulation of ORCHIDEE, min and max

refer to the range over which the parameters are allowed to vary during our experiments.

Parameter Description Name in code Default values Min Max

Aaged Albedo of old snow SNOWA_AGED* 0.62 0.50 0.70

Bdec Sum with Aagedto be the albedo of fresh snow SNOWA_DEC* 0.169 0.10 0.40

� c Snowfall depth required to reset the snow age (m) SNOW_TRANS_NOBIO 0.2 0.2 2

� dec Snow age decay rate (days) TCST_SNOWA_NOBIO 10 1 10

!
Tuning constants for glaciated snow covered areas

OMG1 7 1 7

� OMG2 4 0.5 4.5

� max Maximum snow age (days) MAX_SNOW_AGE 50 40 60

� ICE Ice albedo ALB_ICE 0.4 0.3 0.5
* note the sum of Aagedand Bdec must be less than or equal to 1 - this constraint is enforced during the optimisations.

to outperform reanalysis products such as ERA5 (Delhasse et al., 2020), especially in providing the near-surface temperature

in summer which play a critical role in representing snow and ice processes.

2.2.2 MODIS snow albedo

In this study, we used satellite-derived snow albedo from the NASA (National Aeronautics and Space Administration) MODIS

MOD10A1 product (Hall et al., 1995). This product uses data from the Terra satellite, which has a sun-synchronous, near-125

polar circular orbit crossing the equator at approximately 10:30 A.M. local time (Hall and Riggs, 2016) and providing global

coverage every 1-2 days. MOD10A1 is a clear-sky daily product. When more than one retrieval is available on a given day,

which is the case near the poles, the best value is kept. This best value is chosen based on solar elevation, distance from nadir

and cell coverage (Hall and Riggs, 2016). In addition, pixels in the MOD10A1 with solar zenith angles greater than 70� are

masked (night is de�ned as a solar zenith angle greater than 85� ). Note that this dataset does not include data from the Aqua130

satellite.

The version of MOD10A1 we used in this study was further processed by Box et al. (2017). Using data from collection 6 of

MOD10A1 (Riggs et al., 2015; Hall and Riggs, 2016), Box et al. (2017) de-noised, gap-�lled and calibrated the data into a daily

5km grid covering Greenland for the years 2000-2017. This dataset was further validated against ground-based measurements

from the PROMICE (Programme for Monitoring of the Greenland Ice Sheet) stations (Fausto et al., 2021) and the residual bias135

in the dataset based on the solar zenith angle corrected for using a linear regression according to time and latitude (Box et al.,

2017). Finally, in this dataset, the April values are used for the winter months (January, February, November, and December).

This is because there is inadequate solar illumination to compute the albedo during these months.

In this study, we used this dataset processed by Box et al. (2017), further aggregating these data using bilinear interpolation

to the resolution of the ORCHIDEE outputs, imposed by the meteorological forcing �les (20 km).140
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2.2.3 PROMICE in situ data

Albedo observations from the PROMICE in situ network were used to evaluate the optimisation. The PROMICE program was

initiated in 2007 (Ahlstrøm et al., 2008; van As et al., 2011), creating a network of on-ice automatic weather stations to provide

in situ measurements of accumulation, ablation, and energy balance of the GrIS. Most sites come in pairs, with a lower station

(L) placed near the ice sheet margin and an upper station (U) placed higher up in the ablation area (Fausto et al., 2021). As such,145

the majority of sites are found at the edges of the ice sheet. In some regions, there are also additional stations, for example,

in the middle (M) of the lower and upper stations. The sites used in this study are listed in Table 2. We started the analysis

with the year where all of March to November was available and ended the analysis with the year 2017 (or the last operational

year) to be consistent with the rest of the work. Further information on ground measurements of snow albedo and associated

methodology can be found in Fausto et al. (2021).150

2.3 Data assimilation system for the ORCHIDEE LSM

2.3.1 A Bayesian framework

To perform the optimisations, we used ORCHIDAS, the ORCHIDEE data assimilation system. ORCHIDAS is a variational

DA system in which all observations within the assimilation time window are included in the optimisation. It uses a Bayesian

statistical formalism (Tarantola, 2005) where errors associated with the parameters, the observations, and the model outputs155

are assumed to follow Gaussian distributions. The optimal parameter set corresponds to the minimum of a cost function, J(x):

J (x) =
1
2

�
(y � M (x))T R � 1(y � M (x)) + ( x � xb)T B � 1(x � xb)

�
(4)

where J(x) measures the mismatch between (i) the observationsy and the corresponding model outputsM (x) (whereM is the

model operator), and (ii) the a priori (xb) and optimised parameters (x). Each term is weighted by its error covariance matrices,

R andB . As in most studies, we set both matrices to be diagonal. For theB matrix, we de�ne the prior distribution of each160

parameter to be 40% of the prior range. For theR matrix, we de�ned the observation error (variance) as the mean-squared

difference between the observations and the prior model simulation so that this variance re�ects not only the measurement

errors but also the model errors. Although not ideal, this approach is common since it is one of the only ways we can assess

the model structural error, which is a large contributor to theR matrix. This error was approximately 0.06 at the edge of the

ice sheet to 0.02 in the middle.165

To minimise the cost function, we use a stochastic random search method, the genetic algorithm (GA), which belongs to a

larger class of evolutionary algorithms that follows the principles of genetics and natural selection (Goldberg, 1989; Haupt and

Haupt, 2004). With each gene corresponding to a different parameter, a vector of parameters is considered to be a chromosome.

At each iteration,p chromosomes are created (wherep is the population selected by the user, here chosen to be 30). For the

�rst set of chromosomes, the parameters are randomly perturbed. For subsequent iterations, the chromosomes are created from170

the previous iteration by one of two processes. The �rst is the “crossover” process. This is the exchange of the gene sequences

of two parent chromosomes. The second process is “mutation”, where selected genes of one parent are randomly perturbed.
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Site name Latitude (� N) Longitude (� W) Elevation (m a.s.l.) Years used

KPC_L 79.9108 24.0828 370 2009-2017

KPC_U 79.8347 25.1662 870 2009-2017

THU_L 76.3998 68.2665 570 2011-2017

THU_U 76.4197 68.1463 760 2011-2017

EGP 75.6247 35.9748 2660 2017

UPE_L 72.8932 54.2955 220 2010-2017

UPE_U 72.8878 53.5783 940 2010-2017

SCO_L 72.223 26.8182 460 2009-2017

SCO_U 72.3933 27.2333 970 2009-2017

KAN_L 67.0955 49.9513 670 2009-2017

KAN_M 67.067 48.8355 1270 2009-2017

KAN_U 67.0003 47.0253 1840 2010-2017

TAS_L 65.6402 38.8987 250 2008-2017

TAS_U 65.6978 38.8668 570 2009-2017

TAS_A 65.779 38.8995 890 2014-2017

MIT 65.6922 37.828 440 2010-2017

QAS_L 61.0308 46.8493 280 2008-2017

QAS_M 61.0998 46.833 630 2017

QAS_U 61.1753 46.8195 900 2009-2017

QAS_A 61.243 46.7328 1000 2013-2014

NUK_L 64.4822 49.5358 530 2008-2017

NUK_U 64.5108 49.2692 1120 2008-2017

NUK_K 64.1623 51.3587 710 2015-2017

NUK_N 64.9452 49.885 920 2011-2014
Table 2. Metadata for the PROMICE automatic weather station network used in this work. Table adapted from Fausto et al. (2021) where

the latitude, longitude, and elevation are derived from automated GPS measurements in summer 2016 or during the last weeks of operation

if discontinued.

The bestp chromosomes are then kept and ranked, based on their cost function values. More weight is then given to the best

parents for the next random selection. Further description of this algorithm applied to ORCHIDEE can be found in Bastrikov

et al. (2018)'s comparative study.175

2.3.2 Sensitivity analysis

With ORCHIDAS, it is also possible to perform a sensitivity analysis (SA) of the model. An SA tests the sensitivity of a

model output (usually a physical variable). It tests how the output changes, with respect to different inputs - here the model
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parameters. This is usually done before optimisation to ensure the right parameters and ranges of variation are used in the

main experiments. In this study we use the Morris method (Morris, 1991; Campolongo et al., 2007), which is effective with180

relatively few model runs compared to other methods (e.g., Sobol', Sobol (2001)). Using an ensemble of parameter values, the

Morris method determines incremental ratios, known as `elementary effects', based on changing parameters one at a time in a

sequence for many trajectories which populate parameter space. The mean (� ) and standard deviation (� ) of the differences in

model outputs for all the trajectories are calculated. This global method determines which parameters have a negligible impact

on the model and which have linear and non-linear effects. The results of this method are qualitative, ranking the parameters185

in order of signi�cance. To assess the results, we look at the normalised means, dividing through by� of the most sensitive

parameter. As such, the values we consider are between 0 and 1, with 1 representing the most sensitive parameters and 0

parameters with no sensitivity. Morris has also been previously used to test parameters for calibration of an earlier version of

the ORCHIDEE snow model (Wang et al., 2013; Dantec-Nédélec et al., 2017).

2.3.3 Performance metrics190

To assess the optimisation results, we rely on two standard metrics: the root-mean-square deviation (RMSD) and total absolute

error (TAE),

RMSD=

r P n
i =1 [y i � M (x i )]2

n
; TAE =

nX

i =1

jy i � M (x i )j (5)

where n is the total number of data points.

2.3.4 Posterior uncertainty195

Assuming Gaussian prior errors and linearity of the model in the vicinity of the solution, the posterior error covariance matrix

of the parameters,A , can be approximated by

A =
�
M T R � 1M + B � 1� � 1

(6)

whereM is the model sensitivity (Jacobian) at the minimum ofJ (x) (Tarantola, 2005).

2.4 Experimental setup200

2.4.1 De�ning edges

The edges of the ice sheet are of particular interest since they correspond to areas of strong ablation and show the greatest

variations in runoff and surface mass balance (SMB). To identify the edges of the GrIS, we exploited the fact that the edges

are steeper than the middle of the ice sheet. To calculate the slope of a given pixel, we used the NOAA (National Oceanic and

Atmospheric Administration) National Geophysical Data Center (NGDC) - ETOPO2 product (NOAA, 2006), which is based205

on a 2 arc-minute global relief model of Earth's surface and integrates land topography and ocean bathymetry. This product is
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Figure 1. Spatial distribution of edge points (green) and middle points (white); selected based on the steepness of the pixel.

already integrated into ORCHIDEE, where it is used to determine the fraction of runoff that pools in �at areas (Ducharne, 2016;

d'Orgeval et al., 2008). In a default ORCHIDEE simulation, when the slope is greater than 0.5%, all precipitation over that

pixel that exceeds the in�ltration capacity is run off immediately (Hortonian runoff); otherwise, it can pond at the soil surface

and in�ltrate at the next time step. Remember that each pixel in our Greenland simulations in this study has a resolution of 20210

km and so the steepness of the slope applies over a large region. We found that by using this same threshold of 0.5%, we were

able to encapsulate the edges of the GrIS (Fig. 1). As such, we refer to pixels with a slope gradient greater than 0.5% as “edge”

points and the rest as “middle” points. These edge points account for just over 25% of all pixels. They were also the pixels with

the largest errors when the standard ORCHIDEE run is compared to the retrieved MODIS snow albedo data; these edge pixels

represented 78% of the pixels with RMSD greater than 0.1.215

2.4.2 Experiments

ORCHIDEE was run over the whole GrIS with a spatial resolution of 20 km and a half-hourly time step, with a daily output

frequency. The model was driven using meteorological data from MAR and confronted with MODIS albedo retrievals aggre-

gated to the same resolution of 20 km. All the simulations performed in this study include two years of model spin-up to allow

snow to accumulate. In each case, the two years preceding the years of study were used in the spinup and the model normally220

over these years (i.e., allowing for accumulation and melting) from an initial snow depth of 0. These two years are not included

in calculating the cost function during the optimisations or during the analysis, but are important in ensuring correct initial
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states. Furthermore, since during the winter months there is not enough solar illumination to compute the albedo, the months

November to February are excluded from the optimisations and analyses.

For the main experiment, to capture the inter-annual variability of snow albedo, we selected three random years to perform225

our optimisation: 2000, 2010, and 2012. We optimised over these three years simultaneously. This means that, in this main

experiment, we minimised a cost function comprising a sum of three cost functions, one for each year considered. The rest of

the 2000-2017 time series was used for validation. During this main experiment, we optimised over the whole of the GrIS but

gave an extra weight of four to the edge points (see Sect. 2.4.1). In early tests, we found that since the number of edge points

is being dwarfed by the much denser middle of the ice sheet, improvements were mainly concentrated over the middle of the230

ice sheet. This led us to choose to give extra weight to edge points during the main optimisation. The edge points account for

approximately a quarter of the points. To ensure the edges and middle both contribute to the cost function, while also giving a

bit more focus to the edge points, we chose to give an extra weight of four to the edges when calculating the cost function in

the main optimisation. This main experiment, referred to as “Both”, was complemented by two more optimisations: one just

over the edges of the ice sheet (“Edges”) and one just over the middle points (“Middle”), again for the same three years. These235

were done to help analyse the posterior parameter values in Sect. 3.2.3. Finally, an additional experiment was performed to

gauge the maximal improvement we could expect at the edges of the ice sheet. This was done to see whether the weighting

used at the edges was suf�cient, full details of which can be found in Appendix A. For each optimisation, 15 iterations of the

genetic algorithm were used, which was enough for the system to converge.

To conclude the study, we performed a sensitivity analysis using Morris's method to understand the relative importance of240

the different model parameters in simulating albedo. In this experiment, we also considered additional parameters controlling

the rate of density change and additional model outputs including SMB and runoff. These were included to better understand

the relationship between different ice sheet processes and to identify which parameters and model output we might consider

in future optimisations. This analysis compared ORCHIDEE outputs to the MAR model outputs, testing how each parameter

affected the RMSD between both models.245

3 Results

3.1 Prior model

Before using ORCHIDAS to optimise the model parameters, the ORCHIDEE model was �rst tuned manually through trial and

error. While not as robust as using a minimisation algorithm, this initial step is common for land surface modellers and helps

get a sense of the different parameter sensitivities. The primary focus of this manual tuning was to better capture the behaviour250

of the GrIS at its edges. This was achieved by increasing the overall albedo of fresh snow (Aaged+ Bdec) and the snowfall depth

required to reset the snow age (� c), while also decreasing the albedo of aged snow and decreasing the rate of snow age decay

(� dec). Furthermore, one of the tuning constants for glaciated snow-covered areas was decreased (! ). The rest of the parameters

were kept as the default ORCHIDEE parameters (see Table B1 for full results).
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This initial tuning helped the model to better simulate the albedo at the edges of the ice sheet, especially in the western part255

(Fig. 2), as well as other snow states such as SMB and runoff, which were also used to assess the success of the manual tuning.

The tuned model was able to capture slightly more of the spatial variability of albedo in the middle of the ice sheet. Figure

2 also shows the albedo from the MAR product, the MAR product is used to drive ORCHIDEE and later to evaluate model

performance. We can see that the MAR �ts MODIS albedo better than the standard ORCHIDEE model. The overall RMSD

value for MAR is lower and the snow albedo is higher in magnitude, more closely matching MODIS. However, MAR shows260

less spatial variability - the albedo on the ice sheet looks uniform. The tuned version of ORCHIDEE does better than MAR,

both in RMSD and spatial patterns. However, the north-south albedo gradient observed in the satellite retrievals was still not

simulated, and overall, the albedo remains underestimated over the ice sheet. This initially tuned model was used as the prior

for the albedo optimisation.

Figure 2. Retrieved and simulated mean albedo over Greenland (averaged over March-October for 2000-2017); a) shows the retrieved

MODIS values, b) shows simulated albedo in the standard ORCHIDEE version (before tuning), c) shows the simulated albedo from the

manually tuned model and d) shows albedo from the MAR model. The bottom left-hand corner of each panel shows the RMSD between

modelled (ORCHIDEE or MAR) and observed (MODIS) albedo.

3.2 Main optimisation265

3.2.1 Optimisation and validation

For the main optimisation, the GrIS albedo was optimised over the years 2000, 2010 and 2012 simultaneously, with a larger

weight given to the edges (see Sect. 2.4.2 for the full setup description). Although a subset of three years was used in this

optimisation, the improvement observed is consistent over all years (Figure 4a and Table 3). Indeed, some of the years with

the greatest reductions in RMSD were years not used in the optimisation e.g. 2003, 2009, and 2016. The troughs during the270

summer months are where the improvement is the most marked. The albedo during the summer months in prior simulations

decreased too much. In the posterior run, these troughs more closely match the retrieved values.
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a)

b)

Figure 3. a) Time series of the snow albedo (averaged over space). The retrieved values (black), prior simulation (blue), and posterior

simulation (orange), i.e. using the optimal parameter set (orange), are shown. The values in the legend denote the RMSD between each

simulation and the retrieved albedo. b) Spatial distribution of differences between the model and the retrieved albedo averaged over March-

October for the years 2000-2017 for both the prior (left) and posterior (right) models, with the total RMSD in the bottom right-hand corner.
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When considering the errors of the posterior model spatially (Figure 4b), we noticed a slight underestimation of modelled

albedo in the north of the ice sheet and a slight overestimation in the south. We also see that the edges are mostly overestimated.

However, the RMSD reductions over the edge points are similar in magnitude to the reductions found in the preliminary275

optimisation where only the edge points were considered (Tables A1 and 3). This means that the weighting used between the

edge and middle points during the optimisation was suf�cient - we have achieved as low RMSD at the edges as in the edge-only

experiment. By including the middle points in our optimisation, we greatly improve the �t of the model in the middle of the ice

sheet - much more so than when only focusing on the edges (43.7% reduction compared to 8.51%). Figure 4 further illustrates

where the error is reduced. By decomposing the TAE, we can see that both the edge and the middle points contribute to the280

error reduction. Figure 4 also allows us to compare the improvements between the different ORCHIDEE simulations. Note

that the tuned model was used as the prior for the optimisation. The optimised model has the lowest error overall, both for the

middle and the edges of the ice sheet. Figure 4 highlights the power of the ORCHIDAS approach - the total absolute error is

reduced more substantially using the framework than when the manual tuning approach was used.
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Whole area Edges Middle

2000 22.3 11.27 37.62

2001 25.73 11.22 43.36

2002 26.17 12.07 42.13

2003 28.89 12.39 44.65

2004 26.85 11.77 43.79

2005 27.08 9.38 45.36

2006 21.39 8.21 37.92

2007 26.55 6.49 46.06

2008 27.1 10.44 43.98

2009 29.17 11.75 45.61

2010 27.21 8.41 46.15

2011 27.31 6.65 46.46

2012 25.76 7.02 42.3

2013 25.0 6.54 43.61

2014 24.58 6.79 42.46

2015 27.35 10.19 43.09

2016 28.46 8.79 45.31

2017 26.04 11.7 41.9

ALL 26.37 9.52 43.68
Table 3. Percentage reduction in model-data RMSD between the

prior and posterior runs over March-October. The years used in

the optimisation are shown in bold.

Figure 4. Total Absolute Error between the modelled and the re-

trieved MODIS albedo for the standard ORCHIDEE (i.e., default

parameters values, left), the manually tuned (middle), and the op-

timised (i.e., using Bayesian framework, right) models. The Total

Absolute Error is decomposed in each case, illustrating the con-

tribution of the edge and middle points to the error for March-

October.

285

3.2.2 Evaluation over PROMICE in situ sites

To evaluate the success of the optimisation, it is important to confront the results with data from a different source. Here we

look at how the �t against albedo at in situ sites is improved with the optimisation (Fig. 5). Generally, the albedo is found to

improve. The �t to the observations results in a lower RMSD compared to when using the prior model. With the exception

of UPE, reductions in RMSD are greater for the upper sites (between 11 and 25%) than for the lower sites (between -6 and290

8%, where negative means the �t has degraded). For the UPE sites, this is the opposite. Of the 24 sites tested, the �t to the

observations is only degraded in three cases. These sites are all lower sites - i.e., where the measurement station is near the ice

sheet margin, where processes are harder to model. Two sites are found on the eastern edge of the ice sheet (SCO_L, TAS_L),

and the last one is found at the southern tip of the ice sheet (QAS_L). When comparing to Fig. 3b, we can see that the eastern
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Figure 5. Evaluation of model-observation �t over PROMICE sites. For each year of available data, the RMSD for the months (Mar-Oct)

is calculated. Different colours represent different sets of sites and the shapes represent the subscript used to identify individual sites (see

Table 2). The mean over these RMSD values is shown in the �gure. Points below the 1-to-1 line represent sites where the model-data �t is

improved by the optimisation.

edge of the ice sheet is where the largest errors occur, even after the optimisation. Furthermore, TAS_L and QAS_L are two295

locations where the smallest amplitude and highest winter temperatures occur (van As et al., 2011, Fig.1) due to being exposed

to the relatively warm wintertime atmospheric conditions of the Atlantic Ocean.

Figure 5 also shows us how ORCHIDEE generally performs at these sites - the magnitude of the RMSD remains similar for

both parameter sets. Since the sites are mainly found at the edges of the ice sheet, errors are generally high - between 0.15 and

0.32. The two sites with the lowest RMSD for both the prior and posterior models are the ones located near the middle of the300

ice sheet, in the accumulation area (KAN_U and EGP). There is no obvious link between latitude and the magnitude of the

errors. Instead, elevation due to the position on the edges of the ice sheet is a more important factor.

Overall, this evaluation is encouraging - it shows that the optimisation was successful at improving model albedo when tested

against a different data source. Nevertheless, we do need to highlight a couple of shortcomings in this comparison. Firstly, we

do not have accurate local forcing data at the sites with which to drive ORCHIDEE. Therefore, the 20km MAR data was used,305

meaning that we are comparing observations and the model at different resolutions. Secondly, MODIS has been validated, and

some of its biases due to the solar zenith angle were corrected for, using PROMICE data (see Sect. 2.2.2). As such, the MODIS

data used in the optimisation is not completely independent from the PROMICE data used in this evaluation.
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a)

b)

Figure 6. a) Posterior parameter values found for three different optimisations; “Both” where the middle and edge points are weighted with a

ratio of 1:4, “Edges” where only the edge points were used in the optimisation, and “Middles” where only the middle points were used. Each

box's range represents the variation used for each parameter during the optimisation. The vertical black line represents the prior parameter

value. b) Correlations between the posterior parameters calculated at the optimum of the “Both” optimisation. Percentages on the diagonal

indicated in the reduction in parameter uncertainty also calculated at the optimum (see Sect. 2.3.4).
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3.2.3 Posterior parameters

In this section, we consider how the parameter values have changed to �x the model-data disparities. In Fig. 6a, we look310

at the posterior parameters from the main experiment (referred to as “Both”) and posterior parameters from experiments

solely optimising the edge points (“Edges”) and solely optimising the middle points (“Middle”). Initially, the prior model

underestimated the albedo. This underestimation is seen both temporally (Fig. 6a), where the maximum simulated albedo is

below that of the retrieved values, and spatially (Fig. 2), where the underestimation is most noticeable over the centre of the ice

sheet. For all three optimisations, Aagedand� ICE increase, contributing to �xing this underestimation. These two parameters315

directly impact the albedo - as they increase, so will the albedo of the GrIS. We also saw that in the prior model, the albedo

decayed too much in summer (Fig. 3a). In the posterior models, the value of the Bdecparameter is lowered, giving less weight to

the decay term in Eq. 1. Again, this decrease occurs for all three optimisations. Similarly,� dec increases in all cases, which also

leads to a smaller decay term. Finally, we see that! values increase and� values decrease. By doing so, these two parameters

increase the value ofgtemp which appears in the denominator off age (Eq. 3) hence slowing down snow ageing.320

We also notice some differences between the three sets of posterior parameters. Since the “Both” optimisation includes

points from both of the other optimisations, we might expect the posterior parameters to be in between the “Edges” and

“Middle” posterior parameter values acting as a compromise between both optimisations. However, this is only true for two

out of the eight parameters. Instead, the “Both” posterior parameters often take higher or lower values than parameters from

the other two optimisations. This behaviour suggests that parameter space is not smooth but full of local minima. The clearest325

example of the “Both” optimisation performing differently is for the parameters� c and� max . These increase and decrease

respectively for the “Edges” and “Middle” optimisations. However, for the “Both” optimisation, the opposite is true. These

parameters can be highly anti-correlated (Fig. 6b). If� c is very small, the snow's age does not reset to zero, so the snow ages

for longer, necessitating a larger value of� max . Therefore, these two parameters,� c and � max , compensate for each other.

However, this relationship is seen to not be critical when we consider the variance at the optimum. We can see that� max330

remains unconstrained by the optimisation. The reduction parameter uncertainty is small - the lowest of all the parameters. The

other parameters show high levels of parameter uncertainty reduction, showing they are highly contained by the optimisation,

with Bdec reducing the most.

3.3 Impact of the different parameter sets on modelling the surface mass balance of the Greenland Ice Sheet

3.3.1 Comparison between ORCHIDEE and MAR model outputs335

In Fig. 7 and 8, we consider how the different parameter sets discussed in this study impact the modelled snow states. To

assess the performance of the different ORCHIDEE parameter sets, we compare the model outputs to that of the MAR model.

Although MAR is a model with its own biases and errors, it has been shown to have good estimations of the different snow

states (Fettweis et al., 2017, 2020) and so is a good product against which to compare.

In particular, we are interested in better modelling the surface mass balance (SMB) and its components (sublimation and340

runoff). SMB measures the difference between mass gains and ablation processes, hence dominating the rates of mass change
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