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Abstract. Greenland ice sheet mass loss continues to accelerate as global temperatures increase. The surface albedo of the ice

sheet determines the amount of absorbed solar energy, which is a key factor in driving surface snow and ice melting. Satellite

retrieved snow albedo allows us to compare and optimise modelled albedo over the entirety of the ice sheet. We optimise the

parameters of the albedo scheme in the ORCHIDEE land surface model for three random years taken over the 2000-2017

period and validate over the remaining years. In particular, we want to improve the albedo at the edges of the ice sheet since5

they correspond to ablation areas and show the greatest variations in runoff and surface mass balance. By giving a larger weight

to points at the ice sheet’s edge, we improve the model-data fit by reducing the RMSD by over 25% for the whole ice sheet

for the summer months. This improvement is consistent for all years, even those not used in the calibration step. We
:::
also

:::::
show

::
the

:::::::::::
optimisation

::::::::::
successfully

::::::::
improves

:::
the

::::::::::
model-data

::
fit

::
at

::::::
87.5%

::
of

::
in

:::
situ

::::
sites

:::::
from

:::
the

:::::::::
PROMICE

::::::::
network.

:::
We

:
conclude

by showing which additional model outputs are impacted by changes to the albedo parameters encouraging future work using10

multiple data streams for optimisation.

1 Introduction

The melting of the Greenland ice sheet (GrIS) is one of the main contributors to sea-level rise (Frederikse et al., 2020).

As global temperatures continue to increase under climate change, further melting and surface mass loss are expected (The

IMBIE team, 2020), potentially affecting deep ocean circulation (Hu et al., 2011). Increased warming is also expected to15

darken
:::
also

:::::::
darkens the GrIS (Tedesco et al., 2016), decreasing the surface reflectivity (i.e. albedo). This darkening has already

been observed over the last decades, driven by : snowmelt, the retreat of the snow line, dust deposition
:::::::::::::::::
(Dumont et al., 2014),

and algae growth (Cook et al., 2020)
:::::::::::::::::::::::::::::::::::::::::::::::::::
(Perini et al., 2019; Cook et al., 2020; Williamson et al., 2020)

:::
and

:
is
::::::::
expected

::
to

::::::
worsen.

Since surface albedo determines the land surface energy balance by controlling the amount of reflected solar (shortwave)

radiation, reductions in albedo - through the darkening of the ice sheet - result in increased shortwave absorption. This, in20

turn, enhances melting, creating a strong feedback to the atmosphere
::::::::::::::::::::::::::::::
(Charbit et al., 2019; Box et al., 2022). The melt-albedo

feedback is an essential contributor to mass loss (Qu and Hall, 2014; Zeitz et al., 2021) and can be used as an emergent

constraint to reduce the inter-model variability in projections of climate change (Thackeray et al., 2021).
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::::
Both

:::::::::
dynamical

::::::
effects

:::
and

::::::
surface

:::::::::
processes

::::
drive

::::::::::
Greenland’s

:::::::::
evolution.

::::::::
However,

:::::
recent

:::::::
studies

::::
show

::::
that

::::::
surface

:::::
mass

::::::
balance

:::::::
changes

::::::::
dominate

:::::
mass

::::::
balance

:::::::
changes

:::::::::::::::::::::::::::::::::::::::::::::::::::::::::::
(Van den Broeke et al., 2016; Ryan et al., 2019; The IMBIE team, 2020).

:::
To25

:::::::
correctly

::::::::
represent

:::
the

:::::::
surface

:::::
mass

:::::::
balance

:::
and

:::
its

:::::::::::
components

::::::::::
(sublimation

::::
and

:::::::
runoff),

::
it

::
is

:::::::::
important

::
to

:::::::
simulate

::::
the

:::::::
physical

::::::::
processes

:::::
within

:::
the

:::::::::
snowpack.

::::::
These

::::::
depend

:::
on

:::
the

::::::
surface

::::::
energy

::::::
balance

::::
and,

:::::::::
therefore,

::
on

:::
the

::::::
albedo.

:
Given the

importance of
::
this

:
albedo, it is crucial that it is accurately simulated in the land surface models (LSMs) used to generate climate

change projections. Therefore it is important to confront LSM albedo estimates with observed values. With large areas such as

the GrIS, we can rely on remote sensing-based albedo measurements derived from various polar-orbiting satellites (Qu et al.,30

2015). We can use these data to evaluate and optimise LSMs using data assimilation.

Data assimilation (DA) refers to the act of incorporating observational information into a model to constrain its estimates or

parameters. Several studies have used remotely sensed albedo for DA in LSMs.
:::
Due

::
to

:::::::
albedo’s

::::::::
influence

:::
on

:::
the

::::::::::
partitioning

::
of

:::
the

:::::::
surface

::::::
energy

:::::
fluxes

::::
and

:::
the

::::::::::
subsequent

:::::
effect

:::
on

::::
the

:::::::::::
development

::
of

::::::::
planetary

:::::::::
boundary

:::::::::
conditions

::::
and

::::::
clouds

:::::::::::::::::::::
(Pielke and Avissar, 1990)

:
,
:::::
some

::::::
studies

::::
have

:::::::
focused

:::
on

:::
the

::::::
impact

::::::::::
assimilating

:::::::
surface

::::::
albedo

:::
has

:::
on

:::::::::
numerical

:::::::
weather35

::::::::
prediction

:::::::::::::::::::::::::::::::::::::::::
(e.g., Cedilnik et al., 2012; Boussetta et al., 2015).

::::::
Others

:::::
have

::::::
mainly

:::::
used

:::::::
remotely

:::::::
sensed

::::
data

::
to

::::::
derive

::::
new

::::::::
vegetation

::::
and

:::
soil

::::::::::
background

:::::
albedo

:::::::::
parameters

::
to
:::
use

::
in
::::
land

::::::
surface

:::::::
models

::::::::::::::::::::::::::::::::::::::
(e.g., Liang et al., 2005; Houldcroft et al., 2009)

:
.
:::::
There

:::
are

::::
also

::
a
:::::::
number

::
of

::::::::
examples

:::
of

:::::
using

:::::
snow

::::::
albedo

::
to

::::::::
improve

:::::
snow

:::::::
models. For example, Malik et al. (2012)

used MODIS (Moderate Resolution Imaging Spectroradiometer; Schaaf et al. (2002))-based snow albedo and direct insertion

methodology in the Noah LSM over three sites in Colorado to improve simulated snow depth and snow season duration.40

Satellite-based albedo data was also used by Wang et al. (2015)
::::::::::::::::
(Wang et al., 2015) to calibrate the ORCHIDEE

:::::::::::
(ORganizing

::::::
Carbon

:::
and

:::::::::
Hydrology

::
in
::::::::
Dynamic

:::::::::::
Ecosystems,

::::::::::::::::
Krinner et al. (2005)

:
)
:
LSM and investigate the impacts of albedo assimilation

on offline and coupled model simulations. Navari et al. (2018) used
:::::::::::::::::
Dumont et al. (2012)

:::::::::
assimilated

::::::::
remotely

::::::
sensed

::::::
albedo

::
in

:::
the

::::::
Corcus

::::::::
snowpack

::::::
model

::::::::::::::::::
(Vionnet et al., 2012)

::
to

:::::::
improve

:::
the

:::::::::
modelling

::
of

:::
the

::::::
spatial

::::::::::
distribution

::
of

:::
the

::::::
glacier

:::::
mass

:::::::
balance.

::::::::::::::::
Navari et al. (2018)

::::::
further

::::::::
improved

:::
the

::::::
Crocus

::::::
model

:::::
using

:
satellite-derived albedo to improve surface mass bal-45

ance (SMB) estimates from the CROCUS snowpack model along Greenland’s Kangerlussuaq transect. Other datasets have also

been assimilated to improve snow estimation, including snow cover fraction estimates from optical sensors (e.g., Toure et al.,

2018; Xue et al., 2019) and measured ice surface temperatures (e.g., Navari et al., 2018). There have also been several studies

assimilating joint datasets. For example, MODIS-based snow cover fraction and albedo have been assimilated in the Common

Land Model LSM (Xu and Shu, 2014) and the Noah LSM Kumar et al. (2020)
::::::::::::::::
(Kumar et al., 2020). All these

::::
snow

:::::
model

:
stud-50

ies use DA for state estimation, i.e., updating the model state whilst keeping the model parameters fixed. The techniques used

range from relatively simple methods like direct insertion to more advanced statistical techniques like the ensemble Kalman

filter and particle filters.

Examples of DA used for parameter estimation, i.e., optimising internal model parameters, in snow modelling are less

common. Bonan et al. (2014)
:::::::::::::
Su et al. (2011) demonstrated how DA can be used for joint state and parameter assimilation in55

ice sheet
::::
snow

:
modelling. Nevertheless, DA for parameter estimation remains more commonly used by the LSM community to

optimise vegetation parameters (see orchidas.ipsl.lsce.fr for such examples calibrating the ORCHIDEE LSM). In these types of

studies, it is common to optimise over a single site (or single pixel) or a group of individual pixels, usually sharing a common
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trait (e.g. the dominant vegetation present), in what is known as a “multisite” approach (e.g., Kuppel et al., 2012; Raoult

et al., 2016). In each case, the optimisation results in sets of parameters that apply to that individual site or trait tested. These60

approaches were used because, historically, models were optimised against in situ measurements from sites that are sparsely

and unevenly distributed. Advances in satellite data retrieval have helped provide data over large areas for which we previously

had no measurements. However, with large amounts of data, computational power and time still limit the experiments we can

perform, which is why the multisite approach is common.

Using MODIS snow albedo, in this study, we use DA for parameter estimation to improve the albedo parameterisation inside65

the ORCHIDEE LSM (Krinner et al., 2005).
:::::
While

::::::
albedo

:::::::::
parameters

::
in

:::::::::::
ORCHIDEE

::::
have

::::
been

:::::::::
optimised

:::
for

::::::::
vegetation

::::
and

:::
bare

::::
soil,

::::
this

:::
will

:::
be

:::
the

:::
first

:::::
study

:::::::::
optimising

:::::
them

:::
for

:::
ice

:::::
sheets.

::::
Our

:::::
target

::::
area

::::
from

::::
this

:::::
study

:
is
:::

the
:::::::::
Greenland

:::
Ice

::::::
Sheet.

::::
This

::::
study

::
is
:::
the

::::
first

:::
test

:::
of

:::::::
applying

:::
the

:::::::::::
ORCHIDEE

::::
data

::::::::::
assimilation

::::::
system

::::
over

:::
ice

::::::
sheets

::
to

:::::::
improve

:::::::::
modelling

::::::
albedo

:::
and,

::
in
:::::
turn,

:::
the

::::::
surface

::::
mass

:::::::
balance

::
of

:::
the

:::
ice

:::::
sheet. Instead of using a single or multisite approach which samples the space,

here, to exploit the full spatial coverage of the satellite retrievals, we optimise over the whole area of the GrIS to obtain one best70

set of model parameters applicable over the full ice sheet. Although this study is only over the GrIS, we can apply the method

to other regions. We show how robust Bayesian parameter estimation is an important tool for model development. We further

highlight the different limitations and considerations needed to apply such an approach.
:::
The

:::::
paper

::
is

::::::::
organised

:::
as

:::::::
follows.

:::::::
Methods

:::
and

:::::
data,

::::::::
including

:::
the

:::::
details

:::::
about

:::
the

:::::::::::
ORCHIDEE

::::
land

::::::
surface

:::::
model

::::
and

::
its

::::
data

::::::::::
assimilation

::::::::::
framework,

::::::
driving

:::
and

:::::::::::
observational

::::::::
datasets,

:::
and

:::::::::
performed

:::::::::::
experiments,

::::
can

::
be

::::::
found

::
in

::::
Sect.

:::
2.

::::::
Section

::
3
::::
lists

:::
the

::::::
results,

:::::::
starting

::::
with

:::
an75

:::::::::
assessment

::
of

:::
the

:::::
prior.

::::
This

::
is

:::::::
followed

:::
by

:::
the

:::::
results

::
of

:::
the

:::::
main

::::::::::
experiments

:::
and

:::
an

::::::::
evaluation

::::
over

::::::::::
PROMICE

::
in

:::
situ

:::::
sites.

::
In

::::
Sect.

::
4,

:::
we

::::
look

::
at
:::
the

::::::
impact

:::
of

:::
the

::::::::::
optimisation

:::
on

:::
the

:::::::::
modelling

::
of

:::
the

:::::
SMB

::
of

:::
the

:::::
GrIS,

::
as

::::
well

::
as

:::
the

::::::::
different

:::::
SMB

::::::::::
components.

::
In
::::

this
:::::::
section,

:::
we

::::
also

:::::::
perform

:
a
:::::::::
sensitivity

:::::::
analysis

::
of
::::

the
:::::::
different

:::::::::
parameters

:::
of

:::
the

:::::
snow

:::::
model

:::
for

::::::
future

:::::
work.

::::::
Finally,

:::
the

:::::::::
discussion

:::
and

::::::::::
conclusions

::::
can

::
be

:::::
found

::
in

:::::
Sect.

::
5.

2 Methods and Data80

2.1 ORCHIDEE land surface model

The ORCHIDEE (ORganizing Carbon and Hydrology in Dynamic Ecosystems) land surface model
::::::::::::::::::
(Krinner et al., 2005) is the

terrestrial component of the IPSL Earth system model (ESM) used in climate projections (Boucher et al., 2020; Cheruy et al.,

2020). Either run off-line (i.e., driven by prescribed meteorological forcing) or coupled with an atmospheric model (i.e., as part

of the ESM), ORCHIDEE describes the exchanges of energy, water, and carbon between the atmosphere and the continental85

biosphere. The land surfaces are represented as fractions of bare soil and plant functional types. These surfaces can further be

covered with snow.

In this study, we adapted the CMIP (Coupled Model Intercomparison Project) 6 version of ORCHIDEE to run over the GrIS.

The CMIP6 version of ORCHIDEE uses the three-layered snow model presented in Wang et al. (2013). To apply ORCHIDEE

over the GrIS, we implemented a new soil type into this version of ORCHIDEE to mimic the presence of ice in regions defined90

by the present-day ice mask (Bamber et al., 2013). In ORCHIDEE, each soil type is defined according to the USDA (United
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States Department of Agriculture) taxonomy, which classifies soils as a function of their chemical, physical and biological

properties (Carsel and Parrish, 1988). For the new icy soil type, the porosity and the saturated volumetric water content are set

to 0.98 to simulate a soil filled with frozen water.
::::
This

:::::::
amounts

::
to

::::::::::
considering

::::
that

:::
ice

::
is

::
an

:::::::::::
impermeable

::::::::
medium.

::::::::
However,

:
it
::::
does

::::
not

:::::
allow

:::
the

::::::::::::
representation

::
of

::::::::
processes

:::::
such

::
as

:::::::
moulins

:::::
where

::::::
water

:::::
seeps

::::::
through

::
a
:::::::
network

::
of

::::::::
galleries

:::::::
because95

::
the

::::::
model

::::
does

:::
not

::::::::
simulate

:::
the

:::::
lateral

::::::::
transport

::
of

::::::
water. All the other characteristics of this new soil type were set to those

of the loam soil type because it is the dominant soil type in the non-ice-free regions around the GrIS (Fischer et al., 2008).

Furthermore, to be able to compare directly modelled to satellite retrieved albedo values, we computed the mean of albedo

in both visible (VIS) and near-infrared (NIR) spectral domains.
:::
This

::
is
:::::
done

::
to

::
be

::
in

::::::::::
accordance

::::
with

:::::::
MODIS

::::
data.

:
We only

consider this averaged albedo in the rest of the study.100

:::
The

:::::
snow

::::::
albedo

::
in

:::::::::::
ORCHIDEE

::
is

::::::::
modelled

::::::::
following

:::
the

::::::::::
formulation

:::
of

:::::::::::::::::::::::
Chalita and Le Treut (1994).

:
In the absence of

fresh snow, snow-covered albedo in ORCHIDEE (αsnow) decreases exponentially with time from its fresh value (Aaged+Bdec)

to a minimum value after ageing, i.e. albedo of old snow (Aaged),

αsnow =Aaged +Bdec exp

(
−τsnow

τdec

)
. (1)

Here the Bdec and τdec parameters control the decay rate of snow albedo. This formula can be used to calculate the snow-105

covered albedo over different vegetation types, with different values of Aaged and Bdec accounting for the variability of snow

coverings. The parameterisation of snow age, τsnow, is shown in Eq. 2,

τsnow(t+ dt) = τsnow(t)+ fage (2)

where t is the time, dt is the model time step (1800s). The latter term of equation fage, represents the effect of low temperatures

on metamorphism,110

fage =


(
τsnow(t)+

(
1− τsnow

τmax

)
· dt

)
· exp

(
−Psnow

δc

)
− τsnow(t)

1+ gtemp(Tsoil)

 ; gtemp(Tsoil) =

[
max(T0 −Tsoil,0)

ωωω

]βββ
(3)

where Psnow is snowfall, δc is the snowfall depth required to reset the age of the snow, τmax is the maximum snow age, T0 is

the melting temperature (0°C), Tsoil is soil temperature, and ω and β are tuning constants. All the parameters in bold are listed

in Table 1. These, along with the albedo of ice, αICE, are the parameters we focused on in this study.

2.2 MAR
:::::::
Driving

::::
and

::::::::::::
observational

:::::::
datasets115

2.2.1
:::::::
Forcing

::::::::
provided

::
by

::::::::
regional

:::::
model

:::::::
(MAR)

The ORCHIDEE model was forced using meteorological outputs from the regional climate model Modèle Atmosphérique Ré-

gional (MAR; Gallée and Schayes (1994))
:::::::::::::::::::::::::::::::::
Gallée and Schayes (1994); Kittel (2021)

:
), version 3.11.4. MAR is a regional atmo-

spheric model that uses 6 hourly ERA-Interim reanalyses data from the European Centre for Medium-Range Weather Forecasts

(ECMWF, Dee et al. (2011)) to prescribe the atmospheric boundary conditions outside the domain. Outputs from the MAR have120
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Table 1. Parameters of the snow model. The default values represent the values used in the standard simulation of ORCHIDEE, min and max

refer to the range over which the parameters are allowed to vary during our experiments.

Parameter Description Name in code Default values Min Max

Aaged :::::
Albedo

::
of
:::
old

::::
snow

:
SNOWA_AGED* 0.62 0.50 0.70

Bdec ::::
Sum

:::
with

::::
Aaged::

to
::
be

:::
the

:::::
albedo

::
of

::::
fresh

::::
snow

:
SNOWA_DEC* 0.169 0.10 0.40

δc Snowfall depth required to reset the snow age (m) SNOW_TRANS_NOBIO 0.2 0.2 2

τ dec Snow age decay rate (days) TCST_SNOWA_NOBIO 10 1 10

ω
Tuning constants for glaciated snow covered areas

OMG1 7 1 7

β OMG2 4 0.5 4.5

τmax Maximum snow age MAX_SNOW_AGE 50 40 60

αICE Ice albedo ALB_ICE 0.4 0.3 0.5
* note the sum of Aaged and Bdec must be less than or equal to 1 - this constraint is enforced during the optimisations.

a resolution of 20 km and a 3 hourly time step. In addition to the MAR meteorological outputs, we consider runoff, sublimation

and SMB outputs in this study to assess the impact of the optimisation on these simulated quantities.
::::
MAR

::::
was

::::::::::
specifically

::::::::
developed

:::
for

:::::
polar

::::::
regions

:::
and

::::::
offers

::::
good

:::::::::::
performances

:::
for

:::
the

::::::::::
calculation

::
of

::::
SMB

::::
and

::
its

:::::::::::
components.

:::::::::::
Furthermore,

::
it

:::
has

::::
been

::::::
shown

::
to

:::::::::
outperform

:::::::::
reanalysis

:::::::
products

::::
such

:::
as

:::::
ERA5

:::::::::::::::::::
(Delhasse et al., 2020),

:::::::::
especially

::
in

::::::::
providing

:::
the

:::::::::::
near-surface

::::::::::
temperature

::
in

:::::::
summer

:::::
which

::::
play

:
a
::::::
critical

::::
role

::
in

::::::::::
representing

:::::
snow

:::
and

:::
ice

:::::::::
processes.125

2.3 MODIS snow albedo

2.2.1
:::::::
MODIS

:::::
snow

::::::
albedo

In this study, we used satellite-derived snow albedo from the NASA (National Aeronautics and Space Administration) MODIS

(Moderate-Resolution Imaging Spectroradiometer) MOD10A1 product (Hall et al., 1995). This product uses data from the

Terra satellite, which has a sun-synchronous, near-polar circular orbit crossing the equator at approximately 10:30 A.M. local130

time (Hall and Riggs, 2016) and providing global coverage every 1-2 days. MOD10A1 is a clear-sky daily product. When more

than one retrieval is available on a given day, which is the case near the poles, the best value is kept. This best value is chosen

based on solar elevation, distance from nadir and cell coverage (Hall and Riggs, 2016). In addition, pixels in the MOD10A1

with solar zenith angles greater than 70◦ are masked (night is defined as a solar zenith angle greater than 85◦).
::::
Note

:::
that

::::
this

::::::
dataset

::::
does

:::
not

::::::
include

::::
data

::::
from

:::
the

:::::
Aqua

:::::::
satellite.

:
135

The version of MOD10A1 we used in this study was further processed by Box et al. (2017). Using data from collection 6 of

MOD10A1 (Riggs et al., 2015; Hall and Riggs, 2016), Box et al. (2017) de-noised, gap-filled and calibrated the data into a daily

5km grid covering Greenland for the years 2000-2017. This dataset was further validated against ground-based measurements

from the PROMICE
::::::::::
(Programme

::
for

::::::::::
Monitoring

::
of

:::
the

:::::::::
Greenland

:::
Ice

:::::
Sheet)

:
stations (Fausto et al., 2021) and the residual bias

in the dataset based on the solar zenith angle corrected for using a linear regression according to time and latitude (Box et al.,140

2017). Finally, in this dataset, when there is inadequate solar illumination to compute the albedo during the
::::
April

::::::
values

:::
are

5



::::
used

:::
for

:::
the winter months (January, February, November, and December), Box et al. (2017)’s distribution swaps in the April

values
:
.
::::
This

:
is
:::::::
because

:::::
there

::
is

:::::::::
inadequate

::::
solar

::::::::::
illumination

::
to
::::::::
compute

:::
the

::::::
albedo

:::::
during

:::::
these

::::::
months.

In this study, we used the dataset created by (Box et al., 2017)
::::::::::::::
Box et al. (2017), further aggregating these data

::::
using

:::::::
bilinear

::::::::::
interpolation

:
to the resolution of the ORCHIDEE outputs, imposed by the meteorological forcing files (20 km).145

2.2.2
::::::::::
PROMICE

::
in

:::
situ

:::::
data

::::::
Albedo

:::::::::::
observations

::::
from

:::
the

::::::::::
PROMICE

::
in

::::
situ

:::::::
network

:::::
were

::::
used

::
to

::::::::
evaluate

:::
the

:::::::::::
optimisation.

::::
The

:::::::::
PROMICE

::::::::
program

:::
was

:::::::
initiated

::
in
:::::

2007
:::::::::::::::::::::::::::::::::::
(Ahlstrøm et al., 2008; van As et al., 2011)

:
,
:::::::
creating

:
a
:::::::
network

:::
of

:::::
on-ice

:::::::::
automatic

:::::::
weather

:::::::
stations

::
to

::::::
provide

::
in

::::
situ

::::::::::::
measurements

::
of

::::::::::::
accumulation,

::::::::
ablation,

:::
and

::::::
energy

:::::::
balance

::
of

:::
the

:::::::::
Greenland

:::
ice

::::::
sheet.

::::
Most

:::::
sites

:::::
come

::
in

::::
pairs,

::::
with

::
a
:::::
lower

::::::
station

:::
(L)

::::::
placed

::::
near

:::
the

:::
ice

::::
sheet

:::::::
margin

:::
and

::
an

::::::
upper

:::::
station

::::
(U)

::::::
placed

:::::
higher

:::
up

::
in

:::
the

:::::::
ablation

::::
area150

::::::::::::::::
(Fausto et al., 2021)

:
.
::
As

:::::
such,

:::
the

::::::::
majority

::
of

:::::
sites

:::
are

:::::
found

::
at
:::
the

::::::
edges

::
of

:::
the

:::
ice

::::::
sheet.

::
In

:::::
some

:::::::
regions,

:::::
there

:::
are

::::
also

::::::::
additional

:::::::
stations,

:::
for

::::::::
example,

::
in

:::
the

::::::
middle

::::
(M)

:::
of

:::
the

:::::
lower

:::
and

:::::
upper

::::::::
stations.

:::
The

:::::
sites

::::
used

::
in

::::
this

:::::
study

:::
are

:::::
listed

::
in

::::
Table

::
2.
::::
We

:::::
started

:::
the

:::::::
analysis

:::::
with

:::
the

::::
year

:::::
where

:::
all

::
of

::::::
March

::
to

:::::::::
November

:::
was

::::::::
available

:::
and

::::::
ended

:::
the

:::::::
analysis

::::
with

:::
the

:::
year

:::::
2017

:::
(or

:::
the

:::
last

::::::::::
operational

::::
year)

::
to
:::

be
::::::::
consistent

:::::
with

:::
the

:::
rest

::
of

:::
the

:::::
work.

::::
See

::::::::::::::::
Fausto et al. (2021)

:::
for

:
a
::::::::::
description

::
of

:::
how

:::::::
ground

::::::::::::
measurements

::
of

::::
snow

::::::
albedo

:::
are

:::::
made.

:
155

2.3 ORCHIDAS
::::
Data

:::::::::::
assimilation

::::::
system

:::
for

:::
the

::::::::::::
ORCHIDEE

:::::
LSM

2.3.1 A Bayesian framework

To perform the optimisations, we used ORCHIDAS, the ORCHIDEE data assimilation system. ORCHIDAS is a variational

DA system in which all observations within the assimilation time window are included in the optimisation. It uses a Bayesian

statistical formalism (Tarantola, 2005) where errors associated with the parameters, the observations, and the model outputs160

are assumed to follow Gaussian distributions. The optimal parameter set corresponds to the minimum of a cost function, J(x):

J(x) =
1

2

[
(y−M(x))TR−1(y−M(x))+ (x−xb)

TB−1(x−xb)
]

(4)

where J(x) measures the mismatch between (i) the observations y
:
y
:

and the corresponding model outputs M(x) (where M

is the model operator), and (ii) the a priori (xb) and optimised parameters (x). Each term is weighted by its error covariance

matrices, R and B. As in most studies, we set both matrices to be diagonal. We defined the observation error (variance) as165

the mean-squared difference between the observations and the prior model simulation so that this variance reflects not only

the measurement errors but also the model errors. This observation
::::::::
Although

:::
not

:::::
ideal,

::::
this

::::::::
approach

::
is

:::::::
common

:::::
since

::
it

::
is

:::
one

::
of

:::
the

::::
only

:::::
ways

:::
we

::::
can

:::::
assess

:::
the

::::::
model

::::::::
structural

:::::
error,

::::::
which

::
is

:
a
:::::
large

:::::::::
contributor

::
to
::::

the
::
R

::::::
matrix.

::::
This

:
error was

approximately 0.06 at the edge of the ice sheet to 0.02 in the middle.

To minimise the cost function, two algorithms were considered in this study. They both work by varying the full set170

of parameters considered within the ranges prescribed, retaining at each iteration the set of parameters which reduces J(x)

compared to the previous iteration. The first algorithm is a deterministic gradient-based method that uses the quasi-Newton
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:::
Site

::::
name

: ::::::
Latitude

::
(◦

::
N)

: ::::::::
Longitude

::
(◦

::
W)

: :::::::
Elevation

::
(m

:::::
a.s.l.)

::::
Years

:::
used

:::::
KPC_L

: ::::::
79.9108

: ::::::
24.0828

: :::
370

::::::::
2009-2017

:::::
KPC_U

: ::::::
79.8347

: ::::::
25.1662

: :::
870

::::::::
2009-2017

:::::
THU_L

: ::::::
76.3998

: ::::::
68.2665

: :::
570

::::::::
2011-2017

::::::
THU_U

: ::::::
76.4197

: ::::::
68.1463

: :::
760

:::::::
2011-2017

:::
EGP

: ::::::
75.6247

: ::::::
35.9748

: :::
2660

::::
2017

:::::
UPE_L

: ::::::
72.8932

: ::::::
54.2955

: :::
220

:::::::
2010-2017

:::::
UPE_U

: ::::::
72.8878

: ::::::
53.5783

: :::
940

:::::::
2010-2017

:::::
SCO_L

: :::::
72.223

: ::::::
26.8182

: :::
460

:::::::
2009-2017

:::::
SCO_U

: ::::::
72.3933

: ::::::
27.2333

: :::
970

:::::::
2009-2017

::::::
KAN_L

: ::::::
67.0955

: ::::::
49.9513

: :::
670

:::::::
2009-2017

::::::
KAN_M

: :::::
67.067

: ::::::
48.8355

: :::
1270

:::::::
2009-2017

::::::
KAN_U

: ::::::
67.0003

: ::::::
47.0253

: :::
1840

:::::::
2010-2017

:::::
TAS_L

: ::::::
65.6402

: ::::::
38.8987

: :::
250

:::::::
2008-2017

:::::
TAS_U

: ::::::
65.6978

: ::::::
38.8668

: :::
570

:::::::
2009-2017

:::::
TAS_A

: :::::
65.779

: ::::::
38.8995

: :::
890

:::::::
2014-2017

:::
MIT

: ::::::
65.6922

: :::::
37.828

: :::
440

:::::::
2010-2017

:::::
QAS_L

: ::::::
61.0308

: ::::::
46.8493

: :::
280

:::::::
2008-2017

::::::
QAS_M

: ::::::
61.0998

: :::::
46.833

: :::
630

:::
2017

:::::
QAS_U

: ::::::
61.1753

: ::::::
46.8195

: :::
900

:::::::
2009-2017

:::::
QAS_A

: :::::
61.243

: ::::::
46.7328

: :::
1000

:::::::
2013-2014

::::::
NUK_L

: ::::::
64.4822

: ::::::
49.5358

: :::
530

:::::::
2008-2017

::::::
NUK_U

: ::::::
64.5108

: ::::::
49.2692

: :::
1120

:::::::
2008-2017

::::::
NUK_K

: ::::::
64.1623

: ::::::
51.3587

: :::
710

:::::::
2015-2017

::::::
NUK_N

: ::::::
64.9452

: :::::
49.885

: :::
920

:::::::
2011-2014

Table 2.
::::::
Metadata

:::
for

:::
the

::::::::
PROMICE

::::::::
automatic

::::::
weather

::::::
station

::::::
network

::::
used

::
in

:::
this

:::::
work.

::::
Table

::::::
adapted

::::
from

:::::::::::::::
Fausto et al. (2021)

:::::
where

::
the

:::::::
latitude,

:::::::
longitude,

:::
and

:::::::
elevation

:::
are

::::::
derived

::::
from

::::::::
automated

::::
GPS

::::::::::
measurements

::
in
:::::::
summer

::::
2016

::
or

:::::
during

::
the

:::
last

:::::
weeks

::
of
::::::::

operation

:
if
::::::::::
discontinued.

algorithm L-BFGS-B to iteratively minimise the cost function (limited memory Broyden–Fletcher–Goldfarb–Shanno algorithm

with bound constraints; see Byrd et al. (1995)), simply referred to as BFGS. At each iteration of the BFGS algorithm, the cost

function is evaluated as well as its gradient with respect to each parameter. The gradient is calculated with a finite-difference175

approximation, i.e., using the ratio of change in model output against the change in the model parameter value. The algorithm

terminates when the cost function no longer decreases, i.e, the relative change in the cost function becomes smaller than 10−4

between successive iterations.

7



The second algorithm considered is a
::
we

:::
use

::
a stochastic random search method, the genetic algorithm (GA), which belongs

to a larger class of evolutionary algorithms that follows the principles of genetics and natural selection (Goldberg, 1989;180

Haupt and Haupt, 2004). With each gene corresponding to a different parameter, a vector of parameters is considered to be

a chromosome. At each iteration, p chromosomes are created (where p is the population selected by the user, here chosen to

be 30). For the first set of chromosomes, the parameters are randomly perturbed. For subsequent iterations, the chromosomes

are created from the previous iteration by one of two processes. The first is the “crossover” process. This is the exchange of

the gene sequences of two parent chromosomes. The second process is “mutation”, where selected genes of one parent are185

randomly perturbed. The best p chromosomes are then kept and ranked, based on their cost function values. More weight is

then given to the best parents for the next random selection. Further descriptions of both methods
:::::::::
description

::
of

:::
this

:::::::::
algorithm

::::::
applied

::
to

:::::::::::
ORCHIDEE can be found in Bastrikov et al. (2018)’s comparative study.

2.3.2 Sensitivity analysis

With ORCHIDAS, it is also possible to perform a sensitivity analysis (SA) of the model. An SA tests the sensitivity of a190

model output (usually a physical variable). It tests how the output changes, with respect to different inputs - here the model

parameters. This is usually done before optimisation to ensure the right parameters and ranges of variation are used in the

main experiments. In this study we use the Morris method (Morris, 1991; Campolongo et al., 2007), which is effective with

relatively few model runs compared to other methods (e.g., Sobol’, Sobol (2001)). Using an ensemble of parameter values, the

Morris method determines incremental ratios, known as ‘elementary effects’, based on changing parameters one at a time in a195

sequence for many trajectories which populate parameter space. The mean (µ) and standard deviation (σ) of the differences in

model outputs for all the trajectories are calculated. This global method determines which parameters have a negligible impact

on the model and which have linear and non-linear effects. The results of this method are qualitative, ranking the parameters

in order of significance. To assess the results, we look at the normalised means, dividing through by µ of the most sensitive

parameter. As such, the values we consider are between 0 and 1, with 1 representing the most sensitive parameters and 0200

parameters with no sensitivity. Morris has also been previously used to test parameters for calibration of an earlier version of

the ORCHIDEE snow model (Wang et al., 2013; Dantec-Nédélec et al., 2017).

2.3.3 Performance metrics

To assess the optimisation results, we rely on two standard metrics: the root-mean-square deviation (RMSD) and total absolute

error (TAE),205

RMSD =

√∑n
i=1[yi −M(xi)]2

n
; TAE =

n∑
i=1

|yi −M(xi)| (5)

where n is the total number of data points.

2.3.4
::::::::
Posterior

::::::::::
uncertainty
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::::::::
Assuming

::::::::
Gaussian

::::
prior

::::::
errors

:::
and

:::::::
linearity

::
of

:::
the

::::::
model

::
in

:::
the

::::::
vicinity

:::
of

::
the

::::::::
solution,

:::
the

::::::::
posterior

::::
error

:::::::::
covariance

::::::
matrix

::
of

:::
the

:::::::::
parameters,

:::
A,

:::
can

:::
be

:::::::::::
approximated

:::
by210

A=
[
MTR−1M+B−1

]−1

:::::::::::::::::::::::
(6)

:::::
where

:::
M

:
is
:::
the

::::::
model

:::::::::
sensitivity

::::::::
(Jacobian)

::
at
:::
the

:::::::::
minimum

::
of

::::
J(x)

:::::::::::::::
(Tarantola, 2005).

:

2.4 Experimental setup

2.4.1 Defining edges

The edges of the ice sheet are of particular interest since they correspond to ablation areas
::::
areas

::
of

:::::
strong

::::::::
ablation and show215

the greatest variations in runoff and surface mass balance (SMB). To identify the edges of the GrIS, we exploited the fact that

the edges are steeper than the middle of the ice sheet. To calculate the slope of a given pixel, we used the NOAA (National

Oceanic and Atmospheric Administration) National Geophysical Data Center (NGDC) - ETOPO2 product (NOAA, 2006),

which is based on a 2 arc-minute global relief model of Earth’s surface and integrates land topography and ocean bathymetry.

This product is already integrated into the ORCHIDEE, where it is used to determine the fraction of runoff that pools in flat220

areas (Ducharne, 2016; d’Orgeval et al., 2008). In a default ORCHIDEE simulation, when the slope is greater than 0.5%, all

precipitation over that pixel will
:::
that

::::::
exceed

:::
the

:::::::::
infiltration

:::::::
capacity

::
is
:
run off immediately - it is too steep for precipitation to

infiltrate the soil
:::::::::
(Hortonian

::::::
runoff);

:::::::::
otherwise,

::
it
:::
can

:::::
pond

::
at

:::
the

::::
soil

::::::
surface

:::
and

::::::::
infiltrate

::
at

:::
the

::::
next

::::
time

::::
step. Remember

that each pixel in our Greenland simulations in this study has a resolution of 20 km and so the steepness of the slope applies

over a large region. We found that by using this same threshold of 0.5%, we were able to encapsulate the edges of the GrIS225

(Fig. 1). As such, we refer to pixels with a slope gradient greater than 0.5% as “edge” points and the rest as “middle” points.

These edge points account for just over 25% of all pixels. They were also the pixels with the largest errors when
::
the

::::::::
standard

::::::::::
ORCHIDEE

:::
run

::
is
:
compared to the retrieved MODIS snow albedo data; these edge pixels represented 78% of the pixels with

RMSD greater than 0.1.

2.4.2 Performed experiments230

ORCHIDEE was run over the whole GrIS with a spatial resolution of 20 km and a half-hourly time step, with a daily output fre-

quency. The model was driven using meteorological data from MAR and confronted with MODIS albedo retrievals aggregated

to the same resolution of 20 km. All the simulations performed in this study include two years of model spin-up to allow the

snow to accumulate.
::
In

::::
each

::::
case,

:::
the

::::
two

::::
years

:::::::::
preceding

:::
the

:::::
years

::
of

:::::
study

::::
were

::::
used

::
in

:::
the

::::::
spinup

:::
and

:::
the

::::::
model

::::::::
normally

:::
over

:::::
these

:::::
years

::::
(i.e.,

:::::::
allowing

:::
for

:::::::::::
accumulation

::::
and

:::::::
melting)

::::
from

::
an

::::::
initial

::::
snow

:::::
depth

::
of

::
0.

:
These two years are not included235

in calculating the cost function during the optimisations or during the analysis, but are important in ensuring correct initial

states. Furthermore, since during the winter months there is not enough solar illumination to compute the albedo, the months

November to February are excluded from the optimisations and analyses.
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Figure 1. Spatial distribution of edge points (green) and middle points (white); selected based on the steepness of the pixel.

To begin the study, we performed a sensitivity analysis using Morris’s method to understand the relative importance of the

different model parameters in simulating albedo. In this experiment, we also considered additional parameters controlling the240

rate of density change and additional model outputs including SMB and runoff. These were included to better understand the

relationship between different ice sheet processes and to identify which parameters and model output we might consider in

future optimisations. This analysis compared ORCHIDEE outputs to the MAR model outputs, testing how each parameter

affected the RMSD between both models.

Before the main optimisation, a couple preliminary experiments were performed to select the minimisation algorithm and245

gauge the maximal improvement we could expect at the edges of the ice sheet, full details of which can be found in the

Appendix A. We found that the genetic algorithm greatly outperformed the BFGS algorithm, reducing the cost function by

11% compared to a negligible reduction, and that 15 iterations of the genetic algorithm were sufficient for convergence.We

also
::
For

:::
the

:::::
main

::::::::::
experiment,

::
to

::::::
capture

:::
the

::::::::::
inter-annual

:::::::::
variability

::
of

::::
snow

:::::::
albedo,

::
we

:::::::
selected

:::::
three

::::::
random

:::::
years

::
to

:::::::
perform

:::
our

:::::::::::
optimisation:

:::::
2000,

:::::
2010,

::::
and

:::::
2012.

:::
We

:::::::::
optimised

::::
over

:::::
these

::::
three

:::::
years

:::::::::::::
simultaneously.

::::
This

::::::
means

::::
that,

:::
in

:::
this

:::::
main250

:::::::::
experiment,

:::
we

::::::::::
minimised

:
a
::::
cost

:::::::
function

::::::::::
comprising

:
a
::::

sum
:::

of
::::
three

::::
cost

:::::::::
functions,

:::
one

:::
for

:::::
each

::::
year

:::::::::
considered.

::::
The

::::
rest

::
of

:::
the

:::::::::
2000-2017

::::
time

:::::
series

::::
was

::::
used

:::
for

:::::::::
validation.

::::::
During

::::
this

::::
main

::::::::::
experiment,

:::
we

:::::::::
optimised

::::
over

:::
the

:::::
whole

::
of

:::
the

:::::
GrIS

:::
but

::::
gave

::
an

:::::
extra

::::::
weight

::
of

::::
four

:::
to

:::
the

::::
edge

::::::
points

:::
(see

:::::
Sect.

::::::
2.4.1).

::
In

:::::
early

::::
tests,

:::
we

:
found that since the number of edge

points is being dwarfed by the much denser middle of the ice sheet(see Sect. A), improvement ,
::::::::::::
improvements

:
were mainly

concentrated over the middle of the ice sheet. This lead us to we chose
::
led

::
us

:::
to

::::::
choose to give extra weight to edge points255

during the
::::
main

:
optimisation. The edge points account for approximately a quarter of the points. To ensure the edges and
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middle both contribute to the cost function, while also giving a bit more focus to the edge points, we chose to give an extra

weight of four to the edges when calculating the cost function in the main optimisation.

For the main experiment, to capture the inter-annual variability of snow albedo, we selected three random years to perform

our optimisation: 2000, 2010, and 2012. We optimised over these three years simultaneously. This means that, in this
:::
This

:
main260

experiment, we minimised a cost function comprising a sum of three cost functions, one for each year considered. The rest of

the 2000-2017 time series was used for validation. During this main experiment, we optimised over the whole of the GrIS but

gave an extra weight of four to the edge points (see Sect. 2.4.1). This main experiment, referred to as “Both”, was complemented

by two more optimisations: one just over the edges of the ice sheet (“Edges”) and one just over the middle points (“Middle”),

again for the same three years. These were done to help analyse the posterior parameter values in Sect. 3.2.2.
::::::
Finally,

:::
an265

::::::::
additional

::::::::::
experiment

:::
was

:::::::::
performed

::
to

::::::
gauge

:::
the

:::::::
maximal

:::::::::::
improvement

:::
we

:::::
could

::::::
expect

::
at

:::
the

:::::
edges

::
of
:::

the
:::

ice
::::::
sheet.

::::
This

:::
was

::::
done

:::
to

:::
see

:::::::
whether

:::
the

::::::::
weighting

::::
used

::
at

:::
the

:::::
edges

::::
was

::::::::
sufficient,

:::
full

::::::
details

::
of

::::::
which

:::
can

::
be

::::::
found

::
in

::::::::
Appendix

::
A.

::::
For

::::
each

:::::::::::
optimisation,

::
15

::::::::
iterations

::
of

:::
the

::::::
genetic

:::::::::
algorithm

::::
were

:::::
used,

:::::
which

::::
was

::::::
enough

:::
for

:::
the

::::::
system

::
to

::::::::
converge.

:

3 Results

::
To

::::::::
conclude

:::
the

:::::
study,

::::
we

:::::::::
performed

:
a
:::::::::
sensitivity

:::::::
analysis

:::::
using

::::::::
Morris’s

::::::
method

::
to
::::::::::

understand
:::
the

:::::::
relative

:::::::::
importance

:::
of270

::
the

::::::::
different

:::::
model

::::::::::
parameters

::
in

:::::::::
simulating

::::::
albedo.

::
In

::::
this

::::::::::
experiment,

:::
we

:::
also

::::::::::
considered

::::::::
additional

:::::::::
parameters

::::::::::
controlling

::
the

::::
rate

::
of

:::::::
density

::::::
change

:::
and

:::::::::
additional

:::::
model

:::::::
outputs

::::::::
including

:::::
SMB

:::
and

::::::
runoff.

:::::
These

:::::
were

:::::::
included

::
to

:::::
better

::::::::::
understand

::
the

::::::::::
relationship

::::::::
between

:::::::
different

:::
ice

:::::
sheet

::::::::
processes

::::
and

::
to

:::::::
identify

:::::
which

:::::::::
parameters

::::
and

:::::
model

::::::
output

:::
we

:::::
might

::::::::
consider

::
in

:::::
future

::::::::::::
optimisations.

::::
This

:::::::
analysis

::::::::
compared

:::::::::::
ORCHIDEE

::::::
outputs

::
to
:::

the
::::::

MAR
:::::
model

:::::::
outputs,

::::::
testing

::::
how

::::
each

:::::::::
parameter

::::::
affected

:::
the

:::::::
RMSD

:::::::
between

::::
both

::::::
models.

:
275

3
::::::
Results

3.1 Prior model

Before using ORCHIDAS to optimise the model parameters, the ORCHIDEE model was first tuned manually through trial and

error. While not as robust as using a Bayesian framework
:::::::::::
minimisation

::::::::
algorithm, this initial step is common for land surface

modellers and helps get a sense of the different parameter sensitivities. The primary focus of this manual tuning was to better280

capture the behaviour of the GrIS at its edges. This was achieved by increasing the overall albedo of fresh snow (Aaged + Bdec)

and the snowfall depth required to reset the snow age (δc), while also decreasing the albedo of aged snow and decreasing the

rate of snow age decay (τ dec). Furthermore, one of the tuning constants for glaciated snow-covered areas was decreased (ω).

The rest of the parameters were kept as the default ORCHIDEE parameters (see Table B1 for full results).

This initial tuning helped the model to better simulate the albedo at the edges of the ice sheet, especially in the western part285

(Fig. 2), as well as other snow states such as SMB and runoff, which were also used to assess the success of the manual tuning.

The tuned model was able to capture slightly more
::
of the spatial variability of albedo in the middle of the ice sheet. However,
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the
:::::
Figure

::
2
::::
also

:::::
shows

:::
the

::::::
albedo

::::
from

:::
the

:::::
MAR

:::::::
product,

:::
the

:::::
MAR

::::::
product

::
is
::::
used

::
to

:::::
drive

::::::::::
ORCHIDEE

::::
and

::::
later

::
to

:::::::
evaluate

:::::
model

:::::::::::
performance.

::::
We

:::
can

:::
see

::::
that

:::
the

:::::
MAR

:::
fits

:::::::
MODIS

::::::
albedo

:::::
better

::::
than

::::
the

:::::::
standard

:::::::::::
ORCHIDEE

::::::
model.

::::
The

::::::
overall

::::::
RMSD

::::
value

:::
for

:::::
MAR

::
is
:::::
lower

::::
and

:::
the

::::
snow

::::::
albedo

::
is

::::::
higher

::
in

:::::::::
magnitude,

:::::
more

::::::
closely

::::::::
matching

::::::::
MODIS.

::::::::
However,

:::::
MAR290

:::::
shows

::::
less

:::::
spatial

:::::::::
variability

:
-
:::
the

::::::
albedo

:::
on

:::
the

:::
ice

:::::
sheet

:::::
looks

:::::::
uniform.

::::
The

:::::
tuned

::::::
version

:::
of

::::::::::
ORCHIDEE

:::::
does

:::::
better

::::
than

:::::
MAR,

::::
both

::
in
:::::::

RMSD
:::
and

::::::
spatial

::::::::
patterns.

::::::::
However,

:::
the

:
north-south albedo gradient observed in the satellite retrievals was

still not simulated and overall, the albedo remains underestimated over the ice sheet. This initially tuned model was used as

the prior for the albedo optimisation.
::::::
satellite

::::::::
retrievals

:::
was

::::
still

:::
not

:::::::::
simulated,

:::
and

::::::
overall,

:::
the

::::::
albedo

:::::::
remains

:::::::::::::
underestimated

:::
over

:::
the

:::
ice

:::::
sheet.

::::
This

:::::::
initially

:::::
tuned

::::::
model

:::
was

::::
used

:::
as

::
the

:::::
prior

:::
for

:::
the

:::::
albedo

:::::::::::
optimisation.

:
295

Retrieved and simulated mean albedo over Greenland (averaged over March-October for 2000-2017); the left panel shows the retrieved

MODIS values, the middle panel shows simulated albedo in the currently operational ORCHIDEE version and its standard parameter

values, and the right panel simulated albedo from the manually tuned model.

Figure 2.
:::::::
Retrieved

:::
and

:::::::
simulated

:::::
mean

:::::
albedo

::::
over

::::::::
Greenland

::::::::
(averaged

::::
over

:::::::::::
March-October

:::
for

::::::::::
2000-2017);

::
the

:::
left

:::::
panel

:::::
shows

:::
the

::::::
retrieved

:::::::
MODIS

:::::
values,

:::
the

::::::
second

:::::
panel

:::::
shows

:::::::
simulated

::::::
albedo

::
in

:::
the

::::::
standard

::::::::::
ORCHIDEE

::::::
version

::::::
(before

::::::
tuning),

:::
the

::::
third

:::::
panel

::::
shows

:::
the

::::::::
simulated

:::::
albedo

::::
from

:::
the

:::::::
manually

:::::
tuned

:::::
model

:::
and

:::
the

:::
last

::::
panel

:::::
shows

::::::
albedo

::::
from

::
the

:::::
MAR

::::::
model.

:::
The

::::::
bottom

:::::::
left-hand

:::::
corner

::
of

:::
each

:::::
panel

:::::
shows

::
the

::::::
RMSD

::::::
between

:::::::
modelled

::::::::::
(ORCHIDEE

::
or
::::::
MAR)

:::
and

:::::::
observed

:::::::
(MODIS)

::::::
albedo.
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3.2 Sensitivity analysis

In any parameter estimation study, performing a preliminary sensitivity analysis is typical to select the parameters for the

optimisation. Since the different processes of the snow model are interlinked, we decided to perform a sensitivity analysis

over a range of model outputs to help understand which simulated quantities are also affected by the albedo parameters. In

addition to understanding the different sensitivity, this experiment was also done to highlight which further parameterisations to300

consider in future experiments if we were to optimise the snow model against other types of observations either individually or

simultaneously with the albedo retrievals. We add parameters from two other parameterisations controlling snow viscosity and

settling of freshly fallen snow (described in Sect. B2) to get a better idea of the relative importance of the different parameters.

3.2
::::

Main
:::::::::::
optimisation

3.2.1
:::::::::::
Optimisation

::::
and

:::::::::
validation305

Parameters from the albedo parameterisation significantly affect the other simulated outputs tested. For the simulated albedo,

the most sensitive parameter is Bdec for both the middle and edge of the ice sheet (Fig. 9). We also see that the heat fluxes,

surface temperature, and sublimation in the middle of the ice sheet are sensitive to this parameter. In addition, the parameter

controlling the snow decay rate (τdec) is the most sensitive parameter for simulating sublimation and the latent heat flux over

the whole ice sheet, and one of the most sensitive for sensible heat flux. Since both Bdec and τdec control the impact of snow310

decay, they directly impact the albedo of the snow and, therefore, the surface temperature. The surface temperature directly

affects runoff and the sensible heat flux (calculated as a function of the difference between the surface temperature and the

temperature of the atmosphere). The latent heat flux depends directly on the snow , ice and bare soil fractions. The higher the

amount of runoff, the more likely it is to have areas where all the snow melts (or grid points where the snow fraction decreases).

Therefore the latent heat flux on the snow decreases and so does the sublimation.315

The model outputs are only marginally sensitive to τmax. Since we normalise the Morris score by the highest ranking

parameter, this shows that compared to the most sensitive parameter, τmax is the least important albedo model parameter in

explaining possible range of responses for each modelled output tested. Although seen to be correlated δc at the optimum of

the cost function (Fig. 6b), changes in δc have more impact on the model outputs than τmax, especially at the centre of the ice

sheet . Since δc appears in the exponential term of Eq. 2, small variations in its value will have a larger impact on the snow age320

τsnow than small variations in τmax. Nevertheless, δc is the second least sensitive albedo parameter for simulated albedo.

The last two parameters of the albedo parameterisation, ω and β, can be seen to impact temperature and the sensible heat

flux at the centre of the ice sheet. These parameters are present in the part of the parameterisation controlling the effect of

low temperature on metamorphism (Eq. 3). Since, by influencing snow ageing, these parameters impact surface temperature

(through changes in albedo) and thus the sensible heat flux.325

The sensible heat flux is especially sensitive to the parameter determining the ice albedo at the edges of the ice sheet. We

expect the snow to melt faster at the edges exposing the bare ice below and hence increasing the importance of ice albedo. The

ice albedo will therefore impact the surface temperature at these exposed edge points and thus the sensible heat flux.

13



Heatmap showing the relative sensitivity of each parameter for different simulated model outputs; albedo, sensible heat flux (H), latent heat

flux (LE), sublimation, surface temperature (Tsurf ), runoff, and surface mass balance (SMB). In each case, the sensitivity of the parameters

is shown for simulated quantities at the edge of the ice sheet (shown by the filling at the edge of each box) and in the middle of the ice sheet

(shown by the filling in the middle of each box). Morris scores are normalised by the highest ranking parameter in each case. Dark squares

represent the most sensitive parameters for each output, and light squares represent parameters with little to no sensitivity.

:
a)

:
b)

Figure 3.
:
a)

:::::
Time

::::
series

:::
of

::
the

:::::
snow

:::::
albedo

::::::::
(averaged

::::
over

::::::
space).

:::
The

:::::::
retrieved

:::::
values

::::::
(black),

:::::
prior

::::::::
simulation

:::::
(blue),

::::
and

:::::::
posterior

::::::::
simulation

:::::::
(orange),

:::
i.e.

::::
using

:::
the

::::::
optimal

::::::::
parameter

:::
set

:::::::
(orange),

:::
are

:::::
shown.

::::
The

:::::
values

::
in

:::
the

:::::
legend

::::::
denote

::
the

::::::
RMSD

:::::::
between

::::
each

::::::::
simulation

:::
and

:::
the

:::::::
retrieved

::::::
albedo.

::
b)
::::::

Spatial
:::::::::

distribution
:::

of
::::::::
differences

:::::::
between

:::
the

:::::
model

::::
and

:::
the

:::::::
retrieved

::::::
albedo

:::::::
averaged

::::
over

:::::::::::
March-October

:::
for

::
the

:::::
years

::::::::
2000-2017

::
for

::::
both

:::
the

::::
prior

::::
(left)

:::
and

:::::::
posterior

:::::
(right)

::::::
models,

::::
with

::
the

::::
total

::::::
RMSD

:
in
:::

the
::::::
bottom

::::::::
right-hand

:::::
corner.
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Modelled albedo is not very sensitive to parameters from the viscosity and fresh snow settling parameterisations - especially

not at the centre of the ice sheet. However, these parameters are important for other modelled quantities.330

The runoff, surface mass balance, and sublimation are sensitive to the viscosity parameters (Eq. B2), with the parameter

controlling the impact of snow density on this parameterisation (v2) highlighted as the most sensitive. When viscosity decreases,

snow density increases and liquid water holding capacity decreases. This leads to an increase in runoff and a decrease in SMB.

If the increase in runoff at the edges leads to a significant decrease in snow cover, this will also impact sublimation (which

depends on the snow fraction and temperature).335

The ice sheettemperature at the surface is sensitive to fresh snow settling parameters (Eq. B3), especially to ρd. When

considering the rate of density change equation (Eq. B1), we can see it is made up of two terms: a term representing the

compaction due to snow load and a term parameterising the effect of metamorphism, which is significant for fresh settling

snow. With newly fallen snow, ρsnow is generally low (50-200 kg.m−1, especially in cold environments with little wind.

Depending on the value of ρd, the density term in Eq. B3 will become zero more or less quickly, maximising the value of340

ψsnow. This , in turn, increases the density of snow (ρsnow) in the model . As the density of snow increases, the snow becomes

less insulating, and the thermal conductivity inside the snowpack increases. In other words, the temperature inside and at the

snowpack’s surface depends directly on the snow density. This sensitivity to the fresh snow settling parameters may be more

important at the edges of the ice sheet because there is more precipitation than in the centre, where the climate is colder and

therefore drier.345

Although modelled albedo is not very sensitive to parameters from the other parameterisations tested, these parameters

greatly impact other model outputs. These model outputs, in turn, are sensitive to these other parameters, especially those from

the viscosity parameterisation. Therefore, for future experiments, this sensitivity analysis suggests that to optimise energy

budget, runoff and sublimation simultaneously, we would need to consider including the parameters from the albedo and

viscosity parameterisations. However, for this study, we only focus the parameters from the albedo parameterisation (and the350

albedo of ice) for optimisationsince the parameterisation has a manageable number of parameters and the parameter from the

other parameterisations show less sensitivity to modelled albedo.

3.3 Main optimisation

3.2.1 Optimisation and validation

For the main optimisation, the GrIS albedo was optimised over the years 2000, 2010 and 2012 simulateneously
::::::::::::
simultaneously,355

with a larger weight given to the edges (see Sect. 2.4.2 for the full setup description). Although a subset of three years was

used in this optimisation, the improvement observed is consistent over all years (Figure 4a and Table 3). Indeed, some of the

years with the greatest reductions in RMSD were years not used in the optimisation e.g. 2003, 2009, and 2016. We also see

that the optimisations improve the fit to the winter months which were not used in the optimisation. When averaged over the

whole GrIS, the winter months were seen to be underestimated (Figure 4a). The winter values are still underestimated after360

optimisation, but much less severely. The
:::
The

:
troughs during the summer months are where the improvement is the most
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marked. The albedo during the summer months in prior simulations decreased too much. In the posterior run, these troughs

more closely match the retrieved values.

a)b)a) Time series of the albedo (averaged over space). The retrieved values (black), prior simulation (blue), and posterior

simulation, i.e. using the optimal parameter set, (orange) are shown. The values in the legend denote the RMSD between365

each simulation and the retrieved albedo. b) Spatial distribution of differences between the model and the retrieved albedo

averaged over March-October for the years 2000-2017 for both the prior (left) and posterior (right) models, with the total

RMSD in the bottom right-hand corner. When considering the errors of the posterior model spatially (Figure 4b), we noticed

a slight underestimation of modelled albedo in the north of the ice sheet and a slight overestimation in the south. We also see

that the edges are mostly overestimated. However, the RMSD reductions over the edge points are similar in magnitude to the370

reductions found in the preliminary optimisation where only the edge points were considered (Tables A1 and 3). This means

that the weighting used between the edge and middle points during the optimisation was sufficient - we have achieved as low

RMSD at the edges as in the edge-only experiment. By including the middle points in our optimisation, we greatly improve the

fit of the model in the middle of the ice sheet - much more so than when only focusing on the edges (43.7% reduction compared

to 8.51%). Figure 4 further illustrates where the error is reduced. By decomposing the TAE, we can see that both the edge and375

the middle points contribute to the error reduction. This figure
:::::
Figure

:
4
:
also allows us to compare the improvements between

the different ORCHIDEE simulations. Note that the tuned model was used as the prior for the optimisation. The optimised

model has the lowest error overall, both for the middle and the edges of the ice sheet. This figure
:::::
Figure

::
4 highlights the power

of the ORCHIDAS approach - the total absolute error is reduced more significantly using the Bayesian
::::::::::
substantially

:::::
using

:::
the

framework than when the manual tuning approach was used.380
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Percentage reduction in model-data RMSD between the

prior and posterior runs over March-October. The years

used in the optimisation are shown in bold.
Whole area Edges Middle

2000 22.3 11.27 37.62

2001 25.73 11.22 43.36

2002 26.17 12.07 42.13

2003 28.89 12.39 44.65

2004 26.85 11.77 43.79

2005 27.08 9.38 45.36

2006 21.39 8.21 37.92

2007 26.55 6.49 46.06

2008 27.1 10.44 43.98

2009 29.17 11.75 45.61

2010 27.21 8.41 46.15

2011 27.31 6.65 46.46

2012 25.76 7.02 42.3

2013 25.0 6.54 43.61

2014 24.58 6.79 42.46

2015 27.35 10.19 43.09

2016 28.46 8.79 45.31

2017 26.04 11.7 41.9

ALL 26.37 9.52 43.68
Table 3. Percentage reduction in model-data RMSD between the

prior and posterior runs over March-October. The years used in

the optimisation are shown in bold.

:::

Total Absolute Error between the modelled and the

retrieved MODIS albedo for the standard ORCHIDEE

(i.e., default parameters values, left), the manually tuned

(middle), and the optimised (i.e., using Bayesian

framework, right) models. The Total Absolute Error is

decomposed in each case, illustrating the contribution of

the edge and middle points to the error for March-October.

Figure 4. Total Absolute Error between the modelled and the re-

trieved MODIS albedo for the standard ORCHIDEE (i.e., default

parameters values, left), the manually tuned (middle), and the op-

timised (i.e., using Bayesian framework, right) models. The Total

Absolute Error is decomposed in each case, illustrating the con-

tribution of the edge and middle points to the error for March-

October.

3.2.1
:::::::::
Evaluation

:::::
over

::::::::::
PROMICE

::
in

:::
situ

:::::
sites
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Figure 5.
:::::::

Evaluation
::
of
::::::::::::::
model-observation

::
fit
::::
over

:::::::::
PROMICE

::::
sites.

:::
For

::::
each

:::
year

::
of

:::::::
available

::::
data,

:::
the

::::::
RMSD

::
for

:::
the

::::::
months

::::::::
(Mar-Oct)

:
is
:::::::::
calculated.

:::::::
Different

:::::
colours

::::::::
represent

::::::
different

::::
sets

::
of

:::
sites

::::
and

::
the

::::::
shapes

:::::::
represent

:::
the

:::::::
subscript

::::
used

::
to

::::::
identify

::::::::
individual

:::
sites

::::
(see

::::
Table

::
2).

::::
The

::::
mean

::::
over

::::
these

::::::
RMSD

:::::
values

:
is
::::::
shown

:
in
:::

the
:::::
figure.

:::::
Points

:::::
below

:::
the

:::::
1-to-1

:::
line

:::::::
represent

::::
sites

:::::
where

::
the

:::::::::
model-data

::
fit

::
is

:::::::
improved

::
by

:::
the

::::::::::
optimisation.

::
To

:::::::
evaluate

:::
the

:::::::
success

::
of

:::
the

:::::::::::
optimisation,

::
it
::
is

::::::::
important

::
to
::::::::
confront

:::
the

::::::
results

::::
with

::::
data

::::
from

::
a

:::::::
different

::::::
source.

:::::
Here

:::
we

::::
look

::
at

::::
how

:::
the

::
fit

::::::
against

::::::
albedo

::
at

::
in

::::
situ

::::
sites

::
is

::::::::
improved

::::
with

:::
the

:::::::::::
optimisation

::::
(Fig.

:::
5).

:::::::::
Generally,

:::
the

:::::
albedo

::
is
::::::
found

::
to

:::::::
improve.

::::
The

::
fit

::
to
:::

the
:::::::::::

observations
::::::
results

::
in

::
a
:::::
lower

::::::
RMSD

:::::::::
compared

::
to

:::::
when

:::::
using

:::
the

:::::
prior

::::::
model.

::::
With

:::
the

:::::::::
exception385

::
of

:::::
UPE,

:::::::::
reductions

::
in

::::::
RMSD

:::
are

::::::
greater

:::
for

:::
the

:::::
upper

:::::
sites

::::::::
(between

::
11

::::
and

:::::
25%)

::::
than

:::
for

:::
the

:::::
lower

::::
sites

::::::::
(between

::
-6

::::
and

:::
8%,

::::::
where

:::::::
negative

::::::
means

:::
the

::
fit

:::
has

::::::::::
degraded).

:::
For

:::
the

::::
UPE

:::::
sites,

::::
this

::
is

:::
the

::::::::
opposite.

::
Of

:::
the

:::
24

::::
sites

::::::
tested,

:::
the

::
fit

:::
to

:::
the

::::::::::
observations

::
is

::::
only

::::::::
degraded

::
in

::::
three

:::::
cases.

::::::
These

::::
sites

:::
are

::
all

:::::
lower

::::
sites

:
-
::::
i.e.,

:::::
where

:::
the

:::::::::::
measurement

::::::
station

::
is

::::
near

:::
the

:::
ice

::::
sheet

:::::::
margin,

:::::
where

::::::::
processes

:::
are

::::::
harder

::
to

::::::
model.

::::
Two

::::
sites

:::
are

:::::
found

:::
on

::
the

:::::::
eastern

::::
edge

::
of

:::
the

:::
ice

::::
sheet

::::::::
(SCO_L,

::::::::
TAS_L),

:::
and

:::
the

:::
last

::::
one

:
is
::::::
found

::
at

:::
the

:::::::
southern

:::
tip

::
of

:::
the

:::
ice

::::
sheet

:::::::::
(QAS_L).

:::::
When

:::::::::
comparing

::
to

::::
Fig.

:::
3b,

:::
we

:::
can

:::
see

::::
that

:::
the

::::::
eastern390

::::
edge

::
of

:::
the

:::
ice

:::::
sheet

::
is

:::::
where

:::
the

::::::
largest

:::::
errors

::::::
occur,

::::
even

::::
after

:::
the

:::::::::::
optimisation.

:::::::::::
Furthermore,

:::::::
TAS_L

:::
and

:::::::
QAS_L

:::
are

::::
two

:::::::
locations

::::::
where

::
the

:::::::
smallest

:::::::::
amplitude

:::
and

::::::
highest

::::::
winter

:::::::::::
temperatures

:::::
occur

::::::::::::::::::::::
(van As et al., 2011, Fig.1)

:::
due

::
to

:::::
being

:::::::
exposed

::
to

:::
the

::::::::
relatively

::::::
warm

:::::::::
wintertime

::::::::::
atmospheric

:::::::::
conditions

::
of

:::
the

:::::::
Atlantic

::::::
Ocean.

:::::
Figure

::
5

:::
also

::::::
shows

::
us

::::
how

:::::::::::
ORCHIDEE

::::::::
generally

:::::::
performs

::
at

:::::
these

::::
sites

:
-
:::
the

:::::::::
magnitude

::
of

:::
the

::::::
RMSD

:::::::
remains

::::::
similar

:::
for

::::
both

::::::::
parameter

::::
sets.

:::::
Since

:::
the

::::
sites

:::
are

::::::
mainly

:::::
found

::
at

:::
the

:::::
edges

::
of

:::
the

:::
ice

:::::
sheet,

:::::
errors

:::
are

::::::::
generally

::::
high

:
-
:::::::
between

::::
0.15

::::
and395

::::
0.32.

::::
The

:::
two

::::
sites

::::
with

:::
the

::::::
lowest

::::::
RMSD

:::
for

::::
both

:::
the

:::::
prior

:::
and

::::::::
posterior

::::::
models

:::
are

:::
the

::::
ones

::::::
located

::::
near

:::
the

:::::::
middle

::
of

:::
the
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::
ice

::::::
sheet,

::
in

:::
the

:::::::::::
accumulation

::::
area

::::::::
(KAN_U

::::
and

:::::
EGP).

::::::
There

::
is

::
no

:::::::
obvious

::::
link

:::::::
between

:::::::
latitude

:::
and

:::
the

:::::::::
magnitude

:::
of

:::
the

:::::
errors.

:::::::
Instead,

::::::::
elevation

:::
due

::
to

:::
the

:::::::
position

:::
on

::
the

::::::
edges

::
of

:::
the

::
ice

:::::
sheet

::
is

:
a
:::::
more

::::::::
important

::::::
factor.

::::::
Overall,

::::
this

::::::::
evaluation

::
is
::::::::::
encouraging

::
-
:
it
:::::
shows

::::
that

:::
the

::::::::::
optimisation

::::
was

::::::::
successful

::
at

:::::::::
improving

:::::
model

::::::
albedo

:::::
when

:::::
tested

::::::
against

:
a
:::::::
different

::::
data

::::::
source.

::::::::::::
Nevertheless,

:::
we

::
do

::::
need

::
to
::::::::
highlight

::
a

:::::
couple

:::
of

:::::::::::
shortcomings

::
in

:::
this

:::::::::::
comparison.

::::::
Firstly,

:::
we400

::
do

:::
not

::::
have

:::::::
accurate

:::::
local

::::::
forcing

::::
data

::
at

:::
the

::::
sites

::::
with

:::::
which

::
to

:::::
drive

:::::::::::
ORCHIDEE.

:::::::::
Therefore,

:::
the

:::::
20km

:::::
MAR

:::
data

::::
was

:::::
used,

:::::::
meaning

:::
that

:::
we

:::
are

:::::::::
comparing

:::::::::::
observations

:::
and

:::
the

:::::
model

::
at
::::::::
different

:::::::::
resolutions.

:::::::::
Secondly,

:::::::
MODIS

:::
has

::::
been

::::::::
validated,

::::
and

::::
some

::
of

:::
its

:::::
biases

:::
due

::
to
:::
the

:::::
solar

:::::
zenith

:::::
angle

::::
were

::::::::
corrected

:::
for,

:::::
using

:::::::::
PROMICE

::::
data

::::
(see

::::
Sect.

::::::
2.2.1).

::
As

:::::
such,

:::
the

:::::::
MODIS

:::
data

::::
used

:::
in

::
the

:::::::::::
optimisation

::
is

:::
not

:::::::::
completely

:::::::::::
independent

::::
from

:::
the

:::::::::
PROMICE

::::
data

::::
used

::
in

::::
this

:::::::::
evaluation.

3.2.2 Posterior parameters405

In this section, we consider how the parameter values have changed to fix the model-data disparities. In Fig. 6a, we look

at the posterior parameters from the main experiment (referred to as “Both”) and posterior parameters from experiments

solely optimising the edge points (“Edges”) and solely optimising the middle points (“Middle”). Initially, the prior model

underestimated the albedo. This underestimation is seen both temporally (Fig. 6a), where the maximum simulated albedo is

below that of the retrieved values, and spatially (Fig. 2), where the underestimation is most noticeable over the centre of the410

ice sheet. For all three optimisations, Aaged :::::
Aaged and αICE increase, contributing to fixing this underestimation. These two

parameters directly impact the albedo - as they increase, so will the albedo of the GrIS. We also saw that in the prior model, the

albedo decayed too much in summer (Fig. 6
:
3a). In the posterior models, the value of theBdec::::

Bdec parameter is lowered, giving

less weight to the decay term in Eq. 1. Again, this decrease occurs for all three optimisations. Similarly, τdec :::
τ dec increases in

all cases, which also leads to a smaller decay term. Finally, we see that omega
:
ω
:
values increase and beta

::
β values decrease. By415

doing so, these two parameters increase the value of gtemp ::::
gtemp which appears in the denominator of fage :::

f age:(Eq. 3) hence

slowing down snow ageing.

We also notice some differences between the three sets of posterior parameters. Since the “Both” optimisation includes points

from both of the other optimisations, we might expect the posterior parameters to be in between the “Edges” and “Middle”

posterior parameter values acting as a compromise between both optimisations. However, this is only true for two out of the420

eight parameters. Instead, the “Both” posterior parameters often take higher or lower values than parameters from the other

two optimisations. This behaviour suggests that parameter space is not smooth but full of local minima(this supports the results

from Sect. A, where the gradient-based algorithm struggled to improve the cost function). .
:
The clearest example of the “Both”

optimisation performing differently is for the parameters δc and τmax. These increase and decrease respectively for the “Edges”

and “Middle” optimisations. However, for the “Both” optimisation, the opposite is true. These parameters can be highly anti-425

correlated (Fig. 6b). If δc is very small, the snow’s age does not reset to zero, so the snow ages for longer, necessitating a

larger value of τmax. Therefore, these two parameters
:
,
::
δc::::

and
:::::
τmax,

:
compensate for each other.

:::::::
However,

::::
this

::::::::::
relationship

::
is

::::
seen

::
to

:::
not

:::
be

::::::
critical

:::::
when

:::
we

:::::::
consider

:::
the

::::::::
variance

::
at

:::
the

::::::::
optimum.

::::
We

:::
can

:::
see

::::
that

:::::
τmax:::::::

remains
::::::::::::
unconstrained

:::
by

:::
the

:::::::::::
optimisation.

:::
The

::::::::
reduction

:::::::::
parameter

:::::::::
uncertainty

::
is
:::::
small

:
-
:::
the

::::::
lowest

::
of

:::
all

:::
the

:::::::::
parameters.

::::
The

:::::
other

:::::::::
parameters

:::::
show

::::
high

:::::
levels

::
of

::::::::
parameter

::::::::::
uncertainty

::::::::
reduction,

:::::::
showing

::::
they

:::
are

::::::
highly

::::::::
contained

::
by

:::
the

:::::::::::
optimisation,

::::
with

::::
Bdec::::::::

reducing
::
the

:::::
most.

:
430
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:
a)

:
b)

Figure 6.
::
a)

:::::::
Posterior

:::::::
parameter

:::::
values

:::::
found

::
for

::::
three

:::::::
different

::::::::::
optimisations;

::::::
“Both”

:::::
where

::
the

::::::
middle

:::
and

:::
edge

:::::
points

:::
are

:::::::
weighted

::::
with

:
a

:::
ratio

::
of

:::
1:4,

:::::::
“Edges”

:::::
where

:::
only

:::
the

::::
edge

::::
points

::::
were

::::
used

::
in

:::
the

:::::::::
optimisation,

:::
and

::::::::
“Middles”

:::::
where

::::
only

::
the

::::::
middle

:::::
points

::::
were

::::
used.

::::
Each

::::
box’s

::::
range

::::::::
represents

:::
the

:::::::
variation

::::
used

::
for

::::
each

::::::::
parameter

:::::
during

:::
the

::::::::::
optimisation.

:::
The

::::::
vertical

::::
black

:::
line

::::::::
represents

:::
the

::::
prior

::::::::
parameter

::::
value.

::
b)
::::::::::
Correlations

::::::
between

:::
the

:::::::
posterior

::::::::
parameters

::::::::
calculated

::
at

:::
the

:::::::
optimum

::
of

::
the

::::::
“Both”

::::::::::
optimisation.

:::::::::
Percentages

::
on

:::
the

:::::::
diagonal

:::::::
indicated

:
in
:::
the

:::::::
reduction

::
in

::::::::
parameter

::::::::
uncertainty

::::
also

:::::::
calculated

::
at
:::
the

:::::::
optimum

:::
(see

::::
Sect.

:::::
2.3.4).
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4
::::::
Impact

::
of

:::
the

::::::::
different

::::::::::
parameter

:::
sets

:::
on

:::::::::
modelling

:::
the

:::::::
surface

:::::
mass

:::::::
balance

::
of

:::
the

::::::::::
Greenland

:::
Ice

:::::
Sheet

4.1
::::::::::

Comparison
::::::::
between

:::::::::::
ORCHIDEE

::::
and

:::::
MAR

::::::
model

:::::::
outputs

5 Impact of the different parameter set on modelling the surface mass balance of the Greenland Ice Sheet

In Fig. 7 and 8, we consider how the different parameter sets discussed in this study impact the modelled snow states. To

assess the performance of the different ORCHIDEE parameter sets, we compare the model outputs to that of the MAR model.435

Although MAR is a model with its own biases and errors, it has been shown to have good estimations of the different snow

states (Fettweis et al., 2017, 2020) and so is a good product against which to compare.

In particular, we are interested in better modelling the surface mass balance (SMB) . It
:::
and

:::
its

::::::::::
components

:::::::::::
(sublimation

:::
and

:::::::
runoff).

:::::
SMB measures the difference between mass gains and ablation processes, hence dominating the rates of mass

change over the GrIS. Compared to MAR, the
:::
The

:
manually tuned version of ORCHIDEE performs best at simulating SMB440

::::::::
simulates

::::
SMB

:::
the

::::::
closest

::
to

:::::::
MAR’s

::::
SMB. This can be seen both spatially and temporally. Spatially, the differences between

MAR and the ORCHIDEE simulations are observed at the edges - especially in the north and west of the GrIS. The most

noticeable difference in the ORCHIDEE runs can be seen at the west of the ice sheet, where the tuned model simulates SMB

the best when compared to MAR, followed by the optimised model. In both the manually tuned and optimised models
:::
runs, the

SMB is reduced at the west of the ice sheet compared to the default ORCHIDEE model
::
run. This is mirrored by an increase445

in runoff at the west
::::::
western

::::
edge

:
of the ice sheet. Indeed, for simulated runoff, changes are mainly found at the west

::::::
western

::::
edge of the ice sheet, with the tuned model performing the best and the optimised model second

:::
best when compared to MAR.

Both models
::::::::
parameter

:::
sets

:::::::::
(optimised

::::
and

:::::
tuned)

:
improve the fit compared to the default ORCHIDEE simulations. However,

neither model is able to capture the magnitude of the runoff in summer, with the tuned model still only simulating half the

expected magnitude of runoff.450

When we consider modelled sublimation, we get the most different results. By increasing the albedo over the ice sheet, we

decrease latent heat over the area and hence sublimation. When considering the time series, we see that the optimised model

gets the correct magnitude of sublimation during the summer months. All of the ORCHIDEE simulations have a delayed peak

compared to MAR and no sublimation is simulated by ORCHIDEE outside the summer months. When averaged over time, we

see that MAR has high sublimation rates to the east
::
at

:::
the

::::::
eastern

::::
edge

:
of the GrIS. However, none of the ORCHIDEE simu-455

lations capture this. Instead, the sublimation over the centre of the ice sheet is what changes with the different parameter sets

- with the optimised model lowering the rates the most. The strong impact that changing albedo has on simulated sublimation

over the whole of the GrIS shows how coupled they
:::::
albedo

::::
and

::::::::::
sublimation are in the model.

Overall, with the optimised model, we do better than the standard ORCHIDEE model but not as well as the tuned model.

During the manual tuning of the albedo parameters, the performance of the new parameters was assessed against several model460

outputs, including SMB, sublimation and runoff at each step of the trial and error procedure. We can think of this manual

tuning as a multi-objective calibration. When performing the Bayesian optimisation, we get the best fit to the albedo. However,

we overfitted to albedo with no other data, degrading the fit to other model outputs. As seen with the BFGS algorithm and
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a)b)

Figure 7. a) Posterior parameter values found for three
:::::
Impact

::
of
:

different optimisations
:::::::
parameter

::::
sets

::
on

::::::::::
ORCHIDEE

:::::::::
simulations;

“Both
:::::::
Standard” where the middle and edge points are weighted with a ratio of 1:4

:::
uses

::::::
default

::::::::
parameter

:::::
values, “Edges

:::::
Tuned” where

only
:::
uses

::::::::
parameter

:::::
values

::::
from the edge points were used in the optimisation,

:::::
manual

:::::
tuning

:
and “Middles

:::::::
Optimised” where only

::::
from

the middle points were used. Each box’s range represents the variation used for each parameter during the
:::::::::
ORCHIDAS

:
optimisation. The

vertical black line represents the prior parameter value. b
:::::
Shown

:::
are

:::::
spatial

::::
maps

:::::::
averaged

::::
over

:::
time

::::::::::::
(March-October) Correlations between

::
for

:::::
MAR

::::
(left)

:::
and

:
the posterior parameters calculated at the optimum

:::::::
difference

:::::::
between

::::::::::
ORCHIDEE

:::
and

:::::
MAR.

:::::
Each

:::
row

::::::
features

::
a

::::::
different

::::::
variable

:
of the “Both” optimisation

:::::
interest

:::::
(Top:

::::
SMB,

::::::
Middle:

::::::
Runoff,

:::::::
Bottom:

::::::::::
Sublimation).
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Figure 8.
::::
Same

::
as

::::
Fig.

:
7
:::
but

::::::
showing

:::::::
monthly

:::::
means

:::::::
averaged

:::
over

:::::
space.

::::
This

:::
time

:::
the

:::::::
columns

:::::
feature

:::
the

::::::
different

:::::::
variables

::
of

::::::
interest.

the posterior parameters, parameter space is not smooth but has many local minima. As such, it is possible that a different

solution exists, reducing the albedo to a similar extent whilst also improving the fit to other modelled outputs. To achieve this,465

we need to include more data in the optimisation to perform a multi-objective optimisation. If we cannot find such a parameter

set, this would point to structural problems in the model, i.e., missing processes.
::::
The

:::
fact

::::
that

:::::
MAR

:::
has

:
a
:::::
more

:::::::
complex

:::::
snow

:::::
model

::::
that

:::::
works

:::::
better

::
at

::::::::
capturing

:::
the

::::::::
different

::::::::
processes

::::
over

:::::::::
Greenland

:::::
leads

::
us

::
to

::::::
believe

::::::::
structural

:::::::
changes

:::
are

:::::::
needed

::
in

::::::::::
ORCHIDEE

:::
for

::
it

::
to

::
be

::::
able

::
to

:::::
better

::::::::
simulate

::::
SMB

::::
and

::
its

:::::::::::
components.

:::::::
Through

:::
the

:::::::::::
optimisation,

:::
we

:::::
have

::::::::
improved

:::
the

:::::::::::
representation

::
of
::::::
albedo

:::
but

:::
not

:::
of

::::
SMB

::::
and

::
its

:::::::::::
components.

::::
This

::
is

::::::
because

::::::
albedo

::
is

:::
not

:::
the

::::
only

::::::::
important

:::::::::
parameter

::
in

:::
the470

::::::::
modelling

::
of

:::
the

:::::::::
snowpack

::::::::
evolution.

:::::
Other

::::::::
processes

::::
like

::::::
melting

::::::
depend

:::
on

:::
the

::::::
snow’s

::::::::::
temperature

::::::
profile,

::::::::::
compaction,

::::
and

:::::::::
refreezing,

:::::::
therefore

:::
on

:::
the

:::::::
thermal

:::
and

::::::::::
mechanical

::::::::
properties

::
of

:::
the

:::::::::
snowpack.

::::::
These

::::::::
processes

::::
must

:::
be

::::
well

::::::::::
represented

::
in

::
the

::::::
model

:::
and

::::
may

::::::
require

::::::
further

:::::::::
calibration

::
in
::::::
future

::::::
works.

Impact of different parameter sets on ORCHIDEE simulations; “Standard” uses default parameter values, “Tuned” uses

parameter values from the manual tuning and “Optimised” from the ORCHIDAS optimisation. Shown are spatial maps475

averaged over time (March-October) for MAR (left) and the difference between ORCHIDEE and MAR.

4.1
::::::::

Sensitivity
::::::::
analysis

::
of

:::::::::::
ORCHIDEE

::::::::::
parameters

::
In

:::
any

:::::::::
parameter

:::::::::
estimation

:::::
study,

:::::::::
performing

::
a
::::::::::
preliminary

:::::::::
sensitivity

:::::::
analysis

::
to

:::::
select

:::
the

:::::::::
parameters

:::
for

:::
the

:::::::::::
optimisation

:
is
::::::::
standard

:::::::
practice.

:::::
Since

:::
the

::::::
albedo

::::::::::::::
parameterisation

:::
had

::
a

::::::::::
manageable

::::::
number

:::
of

:::::::::
parameters,

:::
we

:::::::::
proceeded

:::::::
directly

::
to

:::
the

:::::::::::
optimisation.

::::::::
However,

:::::
since

:::
the

:::::::
different

::::::::
processes

:::
of

:::
the

:::::
snow

:::::
model

:::
are

::::::::::
interlinked,

:::
we

:::::::
decided

::
to

:::::::
perform

::
a
:::::::::
sensitivity480

::::::
analysis

:::
to

:::::::
conclude

::::
this

:::::
study.

::
In

::::::::
addition

::
to

::::::::::::
understanding

:::
the

:::::::
different

:::::::::::
sensitivities,

:::
this

::::
was

::::
done

::
to

::::
help

::::::::::
understand

::::
how

::::
other

::::::::
simulated

:::::::::
quantities

::
are

::::
also

:::::::
affected

::
by

:::
the

::::::
albedo

::::::::::
parameters,

::::::
notably

:::::
SMB

:::
and

:::
its

::::::::::
components,

::::
and

::
to

:::::::
highlight

::::::
which

:::::
further

:::::::::::::::
parameterisations

::
to

:::::::
consider

::
in

:::::
future

:::::::::::
experiments.

::::
This

::
is

::::::::
especially

:::::::::
important

:
if
:::
we

::::
were

::
to
::::::::
optimise

:::
the

::::
snow

::::::
model

::::::
against

::::
other

:::::
types

::
of

::::::::::
observations

:::::
either

::::::::::
individually

::
or

:::::::::::::
simultaneously

::::
with

:::
the

:::::
albedo

:::::::::
retrievals.

:::
We

:::
add

:::::::::
parameters

::::
from

::::
two

::::
other

:::::::::::::::
parameterisations

:::::::::
controlling

:::::
snow

:::::::
viscosity

::::
and

::::::
settling

::::::
freshly

:::::
fallen

:::::
snow

::::::::
(described

::
in
:::::
Sect.

:::
B2)

::
to
:::::
better

::::::::::
understand485

::
the

:::::::
relative

:::::::::
importance

:::
of

::
the

::::::::
different

::::::::::
parameters.

23



Figure 9. Same as Fig
::::::
Heatmap

:::::::
showing

::
the

::::::
relative

::::::::
sensitivity

::
of

:::
each

::::::::
parameter

:::
for

::::::
different

:::::::
simulated

:::::
model

:::::::
outputs;

:::::
albedo,

::::::
sensible

::::
heat

:::
flux

:::
(H),

:::::
latent

:::
heat

:::
flux

:::::
(LE),

:::::::::
sublimation,

::::::
surface

:::::::::
temperature

:::::
(T surf),:::::

runoff,
:::
and

::::::
surface

::::
mass

::::::
balance

:::::
(SMB).

::
In

:::
each

::::
case,

:::
the

::::::::
sensitivity

:
of
:::

the
:::::::::
parameters

::
is

:::::
shown

:::
for

:::::::
simulated

::::::::
quantities

::
at

::
the

::::
edge

::
of
:::

the
:::
ice

::::
sheet

::::::
(shown

::
by

:::
the

:::::
filling

::
at

:::
the

::::
edge

::
of

::::
each

::::
box)

:::
and

::
in

:::
the

:::::
middle

::
of

:::
the

::
ice

::::
sheet

::::::
(shown

::
by

:::
the

::::
filling

::
in

:::
the

:::::
middle

::
of

::::
each

::::
box).

:::::
Morris

:::::
scores

:::
(see

::::
Sect. 7 but showing monthly means averaged over

space
::::
2.3.2

::
for

::::::::
discussion

::
of

::::::
Morris

:::::
scores)

:::
are

:::::::::
normalised

::
by

:::
the

:::::
highest

::::::
ranking

::::::::
parameter

::
in

::::
each

:::
case.

::::
Dark

::::::
squares

:::::::
represent

:::
the

::::
most

::::::
sensitive

:::::::::
parameters

::
for

::::
each

:::::
output,

:::
and

::::
light

::::::
squares

:::::::
represent

::::::::
parameters

::::
with

::::
little

::
to

::
no

::::::::
sensitivity.

:::::::::
Parameters

::::
from

::::
the

::::::
albedo

::::::::::::::
parameterisation

:::::::::::
significantly

:::::
affect

:::
all

::::::::
simulated

:::::::
outputs

:::::
tested

::
in
::::

this
:::::::::
sensitivity

::::::::
analysis.

:::
For

:::
the

::::::::
simulated

:::::::
albedo,

:::
the

::::
most

::::::::
sensitive

::::::::
parameter

::
is
::::
Bdec:::

for
::::
both

:::
the

:::::::
middle

:::
and

::::
edge

:::
of

:::
the

:::
ice

::::
sheet

:::::
(Fig.

:::
9).

::::
This

::
is

::::::::
consistent

::::
with

:::
the

::::::::
reduction

::
in

:::::::::
parameter

:::::::::
uncertainty

:::::
found

::
in

::::
Fig.

:::
6b,

:::::
which

::::
was

:::
the

::::::
highest

::
of

:::
all

:::
the

:::::::::
parameters

:::::::::
optimised.

:::
We

:::
also

::::
see

:::
that

:::
the

::::
heat

::::::
fluxes,

::::::
surface

:::::::::::
temperature,

::::
and

::::::::::
sublimation

::
in

:::
the

::::::
middle

::
of

:::
the

:::
ice

:::::
sheet

:::
are

::::::::
sensitive

::
to

::::
Bdec.

:::
In490

:::::::
addition,

:::
the

:::::::::
parameter

:::::::::
controlling

:::
the

:::::
snow

:::::
decay

::::
rate

:::::
(τ dec)

::
is

:::
the

::::
most

::::::::
sensitive

::::::::
parameter

:::
for

:::::::::
simulating

::::::::::
sublimation

::::
and

::
the

:::::
latent

::::
heat

::::
flux

::::
over

:::
the

::::::
whole

::
ice

:::::
sheet

::::
(Fig.

:::
9),

::::
and

:::
one

::
of

:::
the

:::::
most

:::::::
sensitive

:::
for

:::::::
sensible

::::
heat

::::
flux.

:::::
Since

::::
both

::::
Bdec::::

and

:::
τ dec::::::

control
:::
the

::::::
impact

::
of

:::::
snow

:::::
decay,

::::
they

:::::::
directly

::::::
impact

:::
the

::::::
albedo

::
of

:::
the

::::
snow

::::
and,

::::::::
therefore,

:::
the

:::::::
surface

::::::::::
temperature.

::::
The

::::::
surface

::::::::::
temperature

:::::::
directly

::::::
affects

:::::
runoff

::::
and

:::
the

:::::::
sensible

::::
heat

::::
flux

:::::::::
(calculated

::
as

::
a
:::::::
function

:::
of

:::
the

::::::::
difference

::::::::
between

:::
the

::::::
surface

::::::::::
temperature

:::
and

:::
the

::::::::::
temperature

::
of

:::
the

:::::::::::
atmosphere).

:::
The

:::::
latent

::::
heat

::::
flux

:::::::
depends

::::::
directly

:::
on

::
the

:::::
snow,

:::
ice

::::
and

:::
bare

::::
soil495

:::::::
fractions.

::::
The

::::::
higher

:::
the

::::::
amount

:::
of

::::::
runoff,

:::
the

::::
more

::::::
likely

:
it
::
is
::
to

:::::
have

::::
areas

::::::
where

::
all

:::
the

:::::
snow

:::::
melts

:::
(or

::::
grid

:::::
points

::::::
where

::
the

:::::
snow

:::::::
fraction

:::::::::
decreases).

:::::::::
Therefore

::
the

:::::
latent

::::
heat

::::
flux

::
on

:::
the

:::::
snow

::::::::
decreases

::::
and

::
so

::::
does

:::
the

::::::::::
sublimation.

:
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:::
The

::::::
model

:::::::
outputs

:::
are

::::
only

:::::::::
marginally

::::::::
sensitive

::
to
::::::
τmax.

:::::
Since

:::
we

:::::::::
normalise

:::
the

::::::
Morris

:::::
score

:::
by

:::
the

:::::::
highest

:::::::
ranking

::::::::
parameter,

::::
this

:::::
shows

::::
that

:::::::::
compared

::
to

:::
the

::::
most

::::::::
sensitive

:::::::::
parameter,

:::::
τmax ::

is
:::
the

::::
least

::::::::
important

::::::
albedo

::::::
model

:::::::::
parameter

::
in

::::::::
explaining

::::
the

:::::::
possible

:::::
range

::
of

:::::::::
responses

:::
for

::::
each

:::::::::
modelled

:::::
output

::::::
tested.

:::::
This

::
is

:::::
again

:::::::::
consistent

::::
with

:::
the

:::::::::::
optimisation500

:::::
results

::
in

:::::
Sect.

:::::
3.2.2,

:::::
which

:::::
found

:::::
τmax::

to
::
be

:::
the

::::
least

::::::::::
constrained

:::
by

:::
the

:::::::::::
optimisation.

::::::::
Although

::::
seen

::
to

::
be

:::::::::
correlated

::
to

::
δc ::

at

::
the

::::::::
optimum

::
of

:::
the

::::
cost

:::::::
function

:::::
(Fig.

:::
6b),

:::::::
changes

::
in
:::
δc ::::

have
:::::
more

::::::
impact

::
on

:::
the

::::::
model

::::::
outputs

::::
than

:::::
τmax,

:::::::::
especially

::
at

:::
the

:::::
centre

::
of

:::
the

:::
ice

:::::
sheet.

:::::
Since

::
δc:::::::

appears
::
in

:::
the

:::::::::
exponential

:::::
term

::
of

:::
Eq.

::
3,

:::::
small

::::::::
variations

::
in

:::
its

::::
value

::::
will

::::
have

::
a

:::::
larger

::::::
impact

::
on

:::
the

:::::
snow

:::
age

:::::
τsnow::::

than
:::::
small

:::::::::
variations

::
in

:::::
τmax.

:::::::::::
Furthermore,

::::
high

::::::::::
uncertainty

::::::::
remaining

::::::
around

:::
the

:::::
τmax:::::::::

parameter
::
at

::
the

::::::::
optimum

:::::::
implies

:::
that

:::
this

::::::::::
relationship

::
is
:::
not

::::::
critical

::
in
:::
the

:::::
snow

::::::
model.

:
505

:::
The

:::
last

::::
two

:::::::::
parameters

:::
of

:::
the

::::::
albedo

::::::::::::::
parameterisation,

::
ω

::::
and

::
β,

:::
can

:::
be

::::
seen

::
to

::::::
impact

::::::::::
temperature

::::
and

:::
the

:::::::
sensible

::::
heat

:::
flux

::
at

:::
the

::::::
centre

::
of

:::
the

:::
ice

::::::
sheet.

:::::
These

::::::::::
parameters

:::
are

::::::
present

::
in

:::
the

::::
part

:::
of

:::
the

::::::::::::::
parameterisation

:::::::::
controlling

:::
the

:::::
effect

:::
of

:::
low

::::::::::
temperature

::
on

:::::::::::::
metamorphism

::::
(Eq.

::
3).

:::
By

::::::::::
influencing

::::
snow

::::::
ageing,

:::::
these

:::::::::
parameters

::::::
impact

::::::
surface

::::::::::
temperature

::::::::
(through

::::::
changes

::
in
:::::::
albedo)

:::
and

::::
thus

:::
the

:::::::
sensible

::::
heat

::::
flux.

:

:::
The

:::::::
sensible

::::
heat

:::
flux

::
is
:::::::::
especially

:::::::
sensitive

::
to

:::
the

:::::::::
parameter

::::::::::
determining

:::
the

:::
ice

:::::
albedo

::::::
(αICE)

::
at

:::
the

:::::
edges

::
of

:::
the

:::
ice

:::::
sheet.510

:::
We

:::::
expect

:::
the

:::::
snow

::
to

::::
melt

:::::
faster

::
at

:::
the

:::::
edges

::::::::
exposing

:::
the

:::
bare

:::
ice

::::::
below

:::
and

:::::
hence

:::::::::
increasing

:::
the

:::::::::
importance

:::
of

::
ice

:::::::
albedo.

:::
The

:::
ice

::::::
albedo

:::
will

::::::::
therefore

::::::
impact

:::
the

::::::
surface

::::::::::
temperature

::
at

:::::
these

:::::::
exposed

::::
edge

::::::
points

:::
and

::::
thus

:::
the

:::::::
sensible

:::
heat

:::::
flux.

::::::::
Modelled

:::::
albedo

::
is
:::
not

::::
very

::::::::
sensitive

::
to

:::::::::
parameters

::::
from

:::
the

::::::::
viscosity

:::
and

:::::
fresh

::::
snow

:::::::
settling

::::::::::::::
parameterisations

:
-
:::::::::
especially

:::
not

::
at

:::
the

:::::
centre

::
of

:::
the

:::
ice

:::::
sheet.

:::::::::
However,

::::
these

::::::::::
parameters

:::
are

::::::::
important

:::
for

:::::
other

::::::::
modelled

:::::::::
quantities.

:::
The

::::::
runoff,

:::::::
surface

::::
mass

:::::::
balance,

::::
and

::::::::::
sublimation

:::
are

::::::::
sensitive

::
to

:::
the

::::::::
viscosity

::::::::::
parameters

::::
(Eq.

::::
B2).

::::
The

:::::::::
parameter

:::::::::
controlling

:::
the

::::::
impact

:::
of515

::::
snow

:::::::
density

::
in

:::
this

::::::::::::::
parameterisation

::::
(v2)

::
is

:::
the

::::
most

::::::::
sensitive.

::::::
When

:::::::
viscosity

:::::::::
decreases,

:::::
snow

::::::
density

::::::::
increases

:::
and

::::::
liquid

::::
water

:::::::
holding

:::::::
capacity

:::::::::
decreases.

::::
This

:::::
leads

::
to

:::
an

:::::::
increase

::
in

::::::
runoff

:::
and

::
a

:::::::
decrease

::
in
::::::
SMB.

::
If

:::
the

:::::::
increase

::
in

::::::
runoff

::
at

:::
the

:::::
edges

::::
leads

::
to

::
a

::::::::
significant

::::::::
decrease

::
in

:::::
snow

:::::
cover,

:::
this

::::
will

::::
also

:::::
impact

::::::::::
sublimation

::::::
(which

::::::::
depends

::
on

:::
the

:::::
snow

::::::
fraction

::::
and

:::::::::::
temperature).

:::
The

:::
ice

:::::
sheet

::::::::::
temperature

::
at
::::

the
::::::
surface

::
is

::::::::
sensitive

::
to

:::::
fresh

:::::
snow

::::::
settling

::::::::::
parameters

::::
(Eq.

::::
B3),

:::::::::
especially

::
to

:::
ρd,

::::::
which520

:
is
::

a
:::::::::
parameter

:::::::::
impacting

:::::
snow

::::::
density

::::::::
(ρsnow).

:::::
When

::::::::::
considering

::::
the

:::
rate

:::
of

::::::
density

:::::::
change

::::::::
equation

::::
(Eq.

::::
B1),

:::
we

::::
can

:::
see

:
it
:::::::::

comprises
::::
two

::::::
terms:

:
a
:::::

term
::::::::::
representing

::::
the

::::::::::
compaction

:::
due

:::
to

::::
snow

:::::
load

:::
and

::
a
::::
term

:::::::::::::
parameterising

:::
the

:::::
effect

:::
of

::::::::::::
metamorphism,

::::::
which

::
is

:::::::::
significant

::
for

:::::
fresh

::::::
settling

:::::
snow.

:::::
With

:::::
newly

:::::
fallen

:::::
snow,

::::::
ρsnow ::

is
::::::::
generally

:::
low

:::::::
(50-200

::::::::
kg.m−1),

::::::::
especially

::
in

::::
cold

:::::::::::
environments

:::::
with

::::
little

::::
wind

::::
and,

:::::::::
therefore,

::::
very

::::
little

::::::
drifting

:::
of

:::::
snow.

:::::::::
Depending

:::
on

:::
the

::::
value

:::
of

:::
ρd,

:::
the

::::::
density

::::
term

::
in

::::
Eq.

:::
B3

::::
will

::::::
become

:::::
zero

::::
more

:::
or

:::
less

:::::::
quickly,

:::::::::::
maximising

:::
the

:::::
value

::
of

::::::
ψsnow.

:::::
This,

::
in

:::::
turn,

::::::::
increases

:::
the525

::::::
density

::
of

:::::
snow

:::::::
(ρsnow)

::
in

:::
the

::::::
model.

:::
As

:::
the

:::::::
density

::
of

:::::
snow

::::::::
increases,

:::
the

:::::
snow

::::::::
becomes

:::
less

:::::::::
insulating,

::::
and

:::
the

:::::::
thermal

::::::::::
conductivity

:::::
inside

::::
the

::::::::
snowpack

:::::::::
increases.

::
In

:::::
other

::::::
words,

:::
the

:::::::::::
temperature

:::::
inside

::::
and

::
at

:::
the

::::::::::
snowpack’s

::::::
surface

::::::::
depends

::::::
directly

:::
on

:::
the

::::
snow

:::::::
density.

::::
This

:::::::::
sensitivity

::
to

:::
the

:::::
fresh

::::
snow

:::::::
settling

:::::::::
parameters

::::
may

::
be

:::::
more

::::::::
important

::
at
:::
the

::::::
edges

::
of

:::
the

::
ice

:::::
sheet

:::::::
because

::::
there

::
is

:::::
more

::::::::::
precipitation

::::
than

::
in

:::
the

::::::
centre,

::::::
where

::
the

:::::::
climate

::
is

:::::
colder

::::
and,

::::::::
therefore,

:::::
drier.

:::::
When

:::::::::
comparing

:::::::
different

:::::::::::
ORCHIDEE

::::
runs

::
to

:::::
MAR

:::::
(Sect.

::::
4.1),

:::
we

:::
saw

::::
that

::::::::::
sublimation

:::
was

:::
the

::::::
output

::::
most

::::::::
impacted

:::
by530

::
the

::::::::
different

::::::::
parameter

::::
sets.

:::::
This

:::
was

:::::::::
especially

::::::
notable

::
at

:::
the

::::::
centre

::
of

:::
the

:::
ice

:::::
sheet.

::::
This

:::::::::
sensitivity

:::::::
analysis

::::::::
highlights

::::
that

:::::::::
sublimation

::
at
:::
the

:::::
centre

:::
of

::
the

:::
ice

:::::
sheet

:
is
:::::
most

:::::::
sensitive

::
to

:::
the

::::
Bdec :::

and
::::
τ dec :::::::::

parameters,
::::::
which

::
are

:::::::
changed

::
in
:::
the

:::::::::::
optimisation
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::
to

::::
lower

:::
the

:::::
decay

::::
term

::::
and

:::::::
therefore

:::::::
increase

::::::
albedo.

:::
In

:::::::
contrast,

:::
for

:::::
runoff

:::
and

:::::
SMB,

::::
both

::
of

::::::
which

::::
show

:::
no

:::::
spatial

:::::::::
variability

:::
over

::::
the

::::::
middle

::
of

:::
the

:::
ice

:::::
sheet

::
in

::::
Fig.

::
7,

:::
the

::
v2:::::::::

parameter
::::
from

:::
the

::::::::
viscosity

::::::::::::::
parameterisation

::
is

:::::
more

:::::::::
important.

::::::::
However,

:::
this

:::::::::
parameter

:::
was

::::
not

::::::::
optimised

:::
in

:::
this

::::::
study.

::::
Nor

::::
were

:::::
other

::::::::::
parameters

::::
from

:::
the

::::::::
viscosity

::::::::::::::::
parameterizations,

::
to

::::::
which535

::::::::::
sublimation,

::::::
runoff

:::
and

:::::
SMB

:::
are

::::::::
sensitive,

:::::::::
especially

::
at

:::
the

::::::
edges.

::::::::
Although

:::
we

:::
do

:::
get

:::::
some

:::::::
variation

:::
in

:::::
runoff

::::
and

:::::
SMB

::
in

:::
the

:::::::
different

:::::::::::
ORCHIDEE

::::
runs

:::::
(Sect.

::::
4.1),

:::::
since

:::::
these

:::
are

::::::::::
concentrated

::
at
:::
the

::::::
edges,

::
it

::
is

:::::::
possible

:::
that

:::
by

:::::::::
optimising

:::::
these

:::::::
viscosity

:::::::::
parameters

:::
we

::::::
would

:::::
better

::
fit

:::::
MAR

:::::::
outputs.

::::::
Overall,

::::::::
although

::::::::
modelled

::::::
albedo

::
is

:::
not

::::
very

:::::::
sensitive

::
to
::::::::::
parameters

::::
from

:::
the

:::::
snow

::::::::
viscosity

:::
and

::::::
settling

:::
of

::::::
freshly

:::::
fallen

::::
snow

:::::::::
functions,

:::::::::
parameters

:::::
from

::::
these

:::::
latter

:::
two

:::::::::::::::
parameterisations

::::::
greatly

::::::
impact

:::
the

:::::
other

::::::
model

::::::
outputs

::::::
tested.

:::::::::
Especially540

::
the

::::::::::
parameters

::::
from

:::
the

::::::::
viscosity

::::::::::::::
parameterisation.

:::::::::
Therefore,

:::
for

:::::
future

:::::::::::
experiments,

:::
this

:::::::::
sensitivity

:::::::
analysis

:::::::
suggests

::::
that

::
to

:::::::
optimise

::::::
energy

::::::
budget,

::::::
runoff

:::
and

::::::::::
sublimation

:::::::::::::
simultaneously,

:::
we

:::::
would

:::::
need

::
to

:::::::
consider

::::::::
including

:::
the

:::::::::
parameters

:::::
from

:::
the

:::::
albedo

::::
and

:::::::
viscosity

:::::::::::::::
parameterisations.

:

5 Discussion and conclusions

We have shown that by giving extra weight to the edge points during the optimisation, we can find a set of parameters that545

improves model-data fit for all the GrIS. The reduction of RMSD at the edges was similar to the reduction found when only

focusing on the edge points during the optimisation. However, by including the middle points in the optimisation, the whole

ice sheet greatly improved its fit to retrieved albedo. The model was optimised against three separate years simultaneously and

validated against the rest of the time series. Improvements were consistent over all the years considered.
:::
We

::::
also

::::::::
evaluated

::
the

:::::::::::
optimisation

:::::
using

::
in

::::
situ

::::::
albedo

::::
with

:::
the

::::::::::
PROMICE

:::::::
network

::::
with

:::::::::
promising

::::::
results

:
-
:::
the

:::::::
RMSD

::
at

::
21

::::
out

::
of

:::
24

::::
sites550

::::::::
improved

::::::::
compared

::
to

:::
the

:::::
prior

::::::
model.

:::::::
Further

::::
work

::::
will

::::::::
including

::::::
testing

:::
the

::::::::::
application

::
of

::::
this

::::::
model

:::
and

::::::::::
parameters

::
to

::::
other

:::::
polar

:::
and

::::::::
non-polar

:::::::
regions,

:::::::
starting

::::
with

::::
other

:::
ice

::::::
sheets

::::
such

::
as

:::::::::
Antarctica.

:

Parameter optimisation is a valuable tool for model development. Not only can it be used to find the best set of parameters

for a given parameterisation, but more importantly, it can help identify structural issues in the model. When we cannot further

improve the model against the observations, this can point to structural deficiencies in the model. For example, we cannot555

capture the different albedos in the north and south of the ice sheet with the current processes represented. More structural

changes may help capture this variability. For example, we could look at further improving the snow/ice transfer processes by

better discretising vertically the snowpack (Charbit et al., in prep.).
::::::::
Processes

::::::
linked

::
to

:::
the

:::::::::
darkening

::
on

:::
the

:::
ice

:::::
sheet

:::::
(e.g.,

::::::::
deposition

:::
of

:::::::
aerosols,

:::::
algae

:::
and

:::::
dust)

::::
also

::::
need

::
to

:::
be

:::::::::
considered

::
in

:::::
future

::::::::::::
developments

::
of

:::
the

::::::
model.

:
Since we are running

the ORCHIDEE offline - i.e., prescribing the meteorological forcing - it would also be beneficial to run the model with different560

forcings to separate model structural errors from the errors in the forcing. This is important since MAR is a modelled estimate

and, therefore, will be subject to its own biases and errors. We would want to ensure that we are correcting errors in the land

surface model and not correcting atmospheric biases in the forcing data.

We must also remember that there are errors linked to the retrievals themselves. Indeed, the large uncertainties in the winter

months led us to omit them for this study. For the other months, we set the observation errors to be the mean-squared difference565
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between the observations and the prior model simulation to also account for the structural model errors. However, in practice,

the true errors may be very different. For example, although steps to correct the solar zenith angle bias in the product have

been untaken
:::::::::
undertaken, it is possible that the strength of the north-south albedo gradient observed in the data is an artefact

of the product. Without clear and robust uncertainty quantification, we cannot disentangle natural GrIS processes from biases

in the retrievals. There is an urgent need for data producers to provide this uncertainty, ideally at each time step . We further570

evaluate the optimisations with data from the same source, which will have the same systematic errors. One method to bypass

this issue would be to evaluate the model using data from a different source, e.g., in situ data from the PROMICE network

(Fausto et al., 2021). However, with these in situ data, we lack accurate local forcing data with which to drive the model,

rendering such tests futile. One solution would be to run the model over these in situ sites with the same MAR atmospheric

forcing at 20 km, but this then would lead to issues of scale and representativity. For additional evaluation, we are testing the575

application of this model and parameters to other polar and non-polar regions, starting with other ice sheets such as Antarctica.

::::::::::::::::::
(Merchant et al., 2017)

:
.

In our optimisations, we put great importance on the edge points. However, these are also the points where we are most

likely to find bare soil and vegetation instead of ice. These points could be represented by some of the other plant functional

types in the model, which have different parameter values for Aaged and Bdec ::::
Aaged :::

and
::::
Bdec. To identify and separate these580

pixels from the ice-covered pixels used in this study, future experiments could exploit the ESA CCI (European Space Agency

Climate Change Initiative) land cover product (ESA, 2017),
:
allowing us to optimise these parameters for each of the plant

functional types present.
:::
For

:::
the

::::::::::::
optimisations,

::
we

::::
also

:::::::
selected

:::::
three

::::::
random

:::::
years

::::::
instead

::
of

:::
the

:::
full

::::
time

::::::
series.

::::::::
However,

::
it

:
is
:::::::
possible

::::
that

:
a
::::::::

different
:::::
subset

:::
of

::::
years

::::::
would

::::
give

:::::::
different

:::::::
results.

:::::::::::
Nevertheless,

:::::
given

:::
the

::::::::
consistent

:::::::::::
improvement

::::::
found

:::
over

:::
the

::::::
whole

::::::
period,

:::
we

::
do

:::
not

:::::
think

:::
that

:::
the

::::::
results

::::::
would

::
be

:::
too

::::::::
different.585

We have also shown that while significantly improving the model’s fit to retrieved albedo measurements, changing the

parameters also influences the other model outputs. This was first done by performing a
::::::::::
considering

:::
the

::::::::
influence

:::
of

:::
the

::::::::
optimised

:::::::::
parameters

:::
on

:::::
other

:::::
model

:::::::
outputs

::
by

:::::::::
comparing

:::::::::
simulated

::::
snow

::::::
states

::
to

:::
the

:::::
MAR

::::::
model.

::::
The

::::::::
optimised

::::::
model

:::
was

:::::
found

::
to
:::::::

perform
:::::

more
::::::::::
consistently

::::
with

::::::
MAR

::::::
outputs

::::
than

:::
the

:::::::
original

::::::::::
ORCHIDEE

::::::
model

:::
but

:::
not

::
as

::::
well

:::
as

:::
the

:::::
tuned

:::::
model

:::
for

:::::::::
simulating

::::
SMB

:::
and

::::::
runoff.

:::
For

:::::::::::
sublimation,

:::
the

::::::::
optimised

:::::
model

::::::::
simulated

:::
the

:::::
most

:::::::
accurate

::::::::
magnitude

::
in

::::::::
summer;590

:::::::
however,

::
it

:::
still

:::::::
showed

:
a
::::
bias

:::::
when

:::::::::
considered

::::::::
spatially.

:::
We

::::
also

::::::::
performed

::
a Morris sensitivity analysis

::::
using

::
a
:::::
wider

:::
set

::
of

:::::::::
parameters. Morris was chosen since it only required a small number of model runs. However, its main limitation is that the

sensitivity measure is only qualitative - the parameters are only ranked in order of significance but we do not quantify their

absolute contribution. Furthermore, with this method, it is not possible to distinguish nonlinearity from interactions. It is also

very dependent on the range of variations assigned to the parameters. Nevertheless, the Morris approach can still help give595

a broad overview of the most influential parameters and the model outputs they impact. We also showed the influence of the

parameters on other model outputs by comparing simulated snow states to the MAR model. The optimised model was found

to perform better than the original ORCHIDEE model but not as well as the tuned model for simulating SMB and runoff.

For sublimation, the optimised model simulated the most accurate magnitude in summer; however, it still showed a bias when

considered spatially.600
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Therefore, in addition to considering further structural changes, it will be necessary to further optimise the model
:
’s

:::::::
internal

:::::::::
parameters against a range of datasets. With the ever-growing quantity of satellite datasets available, there are many different

avenues we could consider
::::
many

::::::::
different

:::::::
avenues. For example, we could use data from the GRACE (Gravity Recovery and

Climate Experiment) satellite mission
::::
data to constrain SMB (Sasgen et al., 2020). To constrain ice velocity, we could use

products based on Sentinel-1 retrievals (Mouginot et al., 2017; Andersen et al., 2020) and data from the ESA CCI land surface605

temperature project (Karagali et al., 2022) could be used to constrain surface temperatures. Combining these datasets with

MODIS albedo would result in a rich data source with which to optimise the model
:
’s

:::::::
internal

:::::::::
parameters

:
and learn about

different processes governing the ice sheet.

Code availability. The ORCHIDEE vAR6 model code and documentation are publicly available via the ORCHIDEE wiki page (http://

forge.ipsl.jussieu.fr/orchidee/browser/) under the CeCILL license (http://www.cecill.info/index.en.html, CeCILL, 2020). This is the version610

used in CMIP6. The associated ORCHIEE documentation can be found at https://forge.ipsl.jussieu.fr/orchidee/wiki/Documentation. The

ORCHIDEE model code is written in Fortran90 and is maintained and developed under an SVN version control system at the Institute

Pierre Simon Laplace (IPSL) in France. The ORCHIDAS data assimilation scheme (in Python) is available through a dedicated web site

(https://orchidas.lsce.ipsl.fr).

Appendix A: Preliminary optimisations
:::::::::
Weighting

:::
the

::::
edge

:::
of

:::
the

:::
ice

::::
sheet615

Two preliminary optimisations were performed to select the minimisation algorithm (Sect. A), and a further experiment

focusing solely on the edges of the ice sheet was undertaken in Sect. 3.3. These three test experiments were performed over

the year 2000 (with the years 1998-1999 as spin-up).

A1 Algorithm choice

To choose which optimisation algorithm to use in the main experiment, we performed two preliminary tests optimising over620

a single year and over the whole of the GrIS (without weighting the edges). The results in Fig. ?? show the changes in

the simulated albedo when averaged spatially. When using the L-BFGS-B algorithm, the improvement in model-data is

indistinguishable (Fig. ??). Since the prior model used was already extensively manually tuned, it is likely that we started

very near to a minimum (i.e., somewhere where the gradient is close to zero surrounded by positive gradient values). However,

this is not the global minimum since we have been able to reduce the cost function further when using a different algorithm625

(i.e., in the GA case). Since gradient-based algorithms rely on negative gradient values to minimise the cost function, the

gradient-based algorithm is unable to leave local minima, and therefore, the cost function is hardly minimised. In comparison,

with GA, the RMSD is reduced by over 10% (Fig. ??). This improvement can be seen over most of the GrIS and most notably

in the south of the ice sheet. The north is still underestimated, but to a lesser extent than with the prior model. The differences

between simulated and retrieved albedo over Greenland (averaged over March-October). Shown are the differences between630
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the model and MODIS using its prior parameter values (left), parameters using the BFGS algorithm (middle), and parameters

found using the GA algorithm (right). In each panel, the RMSD between MODIS and the different ORCHIDEE model versions

is shown.

A1 Weighting the edge of the ice sheet

To
::
To

:
see what the maximal improvement in model-data fit we can expect over these edges, we performed a preliminary635

experiment optimising only these points and only over
::
for

:
the months March-October (Table 2

:::
A1). We were able to reduce the

RMSD at these
::::
edge points by approximately 10%. This optimisation was also able overall to improve the simulated albedo

in the middle of the ice sheet in summer. This implies there is some consistency between the edge and middle points for the

2000 - 2017 period. However, this optimisation did not improve the middle points consistently - for example, we observe a

degradation in fit for the year 2000. It also degrades the fit of albedo in the winter months; the maximum albedo value attained640

in winter was much lower than the retrieved values. Although the winter values are more uncertain, they still give an idea of

the maximal albedo over the GrIS after snow accumulation.

Table A1. Results of
:
a preliminary experiment optimising only the edge points of the GrIS for March-October of 2000. The optimisation

was performed using the GA algorithm. Percentage reduction of model-data RMSD. Negative numbers show an increase in RMSD i.e. a

degradation in fit.

Year Edge points Middle points All points

2000 11.86 -6.01 3.14

2000-2017 10.11 8.51 9.21

Appendix B: Parameter information

B1 Parameter values

B2 Additional parameters645

To get a better overview of the model output sensitivities, we consider addition parameters used to calculate the local rate of

density change in the ith layer of the snowpack:

1

ρsnow(i)

δρsnow(i)

δt
=
g.M(i)

η(i)
+ψ(i) (B1)

The first term, represents the compaction due to snow load. This depends on the pressure of the overlying snow, calculated

using the gravitational constant (g; m.s−2) and the cumulative snow mass (M; kg.m−2) and snow viscosity (η). The second650

term describes the effect of metamorphism (ψ), which can also be thought of as determining the settling of freshly fallen snow

since this effect is most significant for newly fallen snow. Both the snow viscosity (η) and settling of freshly fallen snow (ψ) are
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Table B1. Parameters of the snow albedo model. Default values refer to parameters used in a standard ORCHIDEE simulation, tuned

parameters refer to values found after the manual tuning experiments, and the optimised parameters refer to parameters values found after

using ORCHIDAS.

Parameter Description Default Manually tuned Optimised

Aaged
Sum to be the albedo of fresh snow

0.62 0.525 0.553

Bdec 0.169 0.349 0.320

δc Snowfall depth required to reset the snow age (m) 0.2 1 0.783

τ dec Snow age decay rate (days) 10 2 6.911

ω
Tuning constants for glaciated snow covered areas

7 2.5 3.037

β 4 4 3.974

τmax Maximum snow age 50 50 56.183

αICE Ice albedo 0.4 0.4 0.476

solved in ORCHIDEE using the following empirical exponential functions of snow density (ρsnow) and temperature (Tsnow):

η(i) = v0 exp(v1(Tf −Tsnow(i))+v2ρsnow(i)), (B2)

ψ(i) = s0 exp(−a1(Tf −Tsnow(i))− s2(max(0,ρsnow(i)−ρd)). (B3)655

where Tf is the triple-point temperature for water. The rest are parameters whose values and ranges of variation used in the

sensitivity analysis are outlined in Table B2.

Table B2. Parameters used to calculate the local rate of density change. The default value refers to the value used in a standard ORCHIDEE

simulation, min and max refer to the ranges over which the parameters are allowed to vart during out experiments.

Equation Parameter Units Default Min Max

η (Eq. B2)

v0 Pa s 3.7 x 10−7 1.5 x 10−7 4 x 10−7

v1 K−1 0.081 0.08 0.35

v2 m3.kg−1 0.018 0.009 0.02

ψ (Eq. B3)

s0 s−1 2.8 x 10−6 1.5 x 10−6 3.5 x 10−6

s1 K−1 0.04 0.01 0.1

s2 m3.kg−1 460 320 600

ρd km.m−3 150 100 200

Author contributions. SC and CD developed the snow model for its application over the GrIS, with support from FM and CO. VB developed

the ORCHIDAS system and, with NR, expanded its application over 2D surfaces. NR integrated the sensitivity analyses to ORCHIDAS.
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