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Abstract. Greenland ice sheet mass loss continues to accelerate as global temperatures increase. The surface albedo of the ice

sheet determines the amount of absorbed solar energy, which is a key factor in driving surface snow and ice melting. Satellite

retrieved
::::
snow albedo allows us to compare and optimise modelled albedo over the entirety of the ice sheet. We optimise the

parameters of the albedo scheme in the ORCHIDEE land surface model for three random years taken over the 2000-2017

period and validate over the remaining years. In particular, we want to improve the albedo at the edges of the ice sheet since5

they correspond to ablation areas and show the greatest variations in runoff and surface mass balance. By giving a larger weight

to points at the ice sheet’s edge, we improve the model-data fit by reducing the RMSD by over 25% for the whole ice sheet

for the summer months. This improvement is consistent for all years, even those not used in the calibration step. We conclude

by showing which additional model outputs are impacted by changes to the albedo parameters encouraging future work using

multiple data streams for optimisation.10

1 Introduction

The melting of the Greenland ice sheet (GrIS) is one of the main contributors to sea-level rise (Frederikse et al., 2020). As

global temperatures continue to increase under climate change, further melting and surface mass loss are expected (The IMBIE

team, 2020), potentially affecting deep ocean circulation (Hu et al., 2011). Increased warming is also expected to darken the

GrIS (Tedesco et al., 2016), decreasing the surface reflectivity (i.e. albedo). This darkening has already been observed over the15

last decades, driven by: snowmelt, the retreat of the snow line, dust deposition, and algae growth (Cook et al., 2020). Since

surface albedo determines the land surface energy balance by controlling the amount of reflected solar (shortwave) radiation,

reductions in albedo - through the darkening of the ice sheet - result in increased shortwave absorption. This, in turn, enhances

melting, creating a strong feedback to the atmosphere. The melt-albedo feedback is an essential contributor to mass loss (Qu

and Hall, 2014; Zeitz et al., 2021) and can be used as an emergent constraint to reduce the inter-model variability in projections20

of climate change (Thackeray et al., 2021).

Given the importance of albedo, it is crucial that it is accurately simulated in the land surface models (LSMs) used to generate

climate change projections. Therefore it is important to confront LSM albedo estimates with observed values. With large areas
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such as the GrIS, we can rely on remote sensing-based albedo measurements derived from various polar-orbiting satellites (Qu

et al., 2015). We can use these data to evaluate and optimise LSMs using data assimilation.25

Data assimilation (DA) refers to the act of incorporating observational information into a model to constrain its estimates or

parameters. Several studies have used remotely sensed albedo for DA in LSMs. For example, Malik et al. (2012) used MODIS

(Moderate Resolution Imaging Spectroradiometer; Schaaf et al. (2002))-based snow albedo and direct insertion methodology

in the Noah LSM over three sites in Colorado to improve simulated snow depth and snow season duration. Satellite-based

albedo data was also used by Wang et al. (2015) to calibrate the ORCHIDEE LSM and investigate the impacts of albedo30

assimilation on offline and coupled model simulations. Navari et al. (2018) used satellite-derived albedo to improve surface

mass balance (SMB) estimates from the CROCUS snowpack model along Greenland’s Kangerlussuaq transect. Other datasets

have also been assimilated to improve snow estimation, including snow cover fraction estimates from optical sensors (e.g.,

Toure et al., 2018; Xue et al., 2019) and measured ice surface temperatures (e.g., Navari et al., 2018). There have also been

several studies assimilating joint datasets. For example, MODIS-based snow cover fraction and albedo have been assimilated in35

the Common Land Model LSM (Xu and Shu, 2014) and the Noah LSM Kumar et al. (2020). All these studies use DA for state

estimation, i.e., updating the model state whilst keeping the model parameters fixed. The techniques used range from relatively

simple methods like direct insertion to more advanced statistical techniques like the ensemble Kalman filter and particle filters.

Examples of DA used for parameter estimation, i.e., optimising internal model parameters, in snow modelling are less com-

mon. Bonan et al. (2014) demonstrated how DA can be used for joint state and parameter assimilation in ice sheet modelling.40

Nevertheless, DA for parameter estimation remains more commonly used by the LSM community to optimise vegetation pa-

rameters (see orchidas.ipsl.lsce.fr for such examples calibrating the ORCHIDEE LSM). In these types of studies, it is common

to optimise over a single site (or single pixel) or a group of individual pixels, usually sharing a common trait (e.g. the dominant

vegetation present), in what is known as a “multisite” approach (e.g., Kuppel et al., 2012; Raoult et al., 2016). In each case,

the optimisation results in sets of parameters that apply to that individual site or trait tested. These approaches were used be-45

cause, historically, models were optimised against in situ measurements from sites that are sparsely and unevenly distributed.

Advances in satellite data retrieval have helped provide data over large areas for which we previously had no measurements.

However, with large amounts of data, computational power and time still limit the experiments we can perform, which is why

the multisite approach is common.

Using MODIS
::::
snow

:
albedo, in this study, we use DA for parameter estimation to improve the albedo parameterisation50

inside the ORCHIDEE LSM Krinner et al. (2005)
:::::::::::::::::
(Krinner et al., 2005). Instead of using a single or multisite approach

:::::
which

::::::
samples

:::
the

::::::
space,

:::::
here, to exploit the full spatial coverage of the satellite retrievals, we optimise over the whole area of the

GrIS to obtain one best set of model parameters applicable over the full ice sheet.
:::::::
Although

::::
this

:::::
study

::
is

::::
only

::::
over

:::
the

:::::
GrIS,

::
we

::::
can

:::::
apply

:::
the

::::::
method

::
to

:::::
other

:::::::
regions.

:::
We

:::::
show

:::
how

::::::
robust

::::::::
Bayesian

::::::::
parameter

:::::::::
estimation

::
is

::
an

:::::::::
important

:::
tool

:::
for

::::::
model

:::::::::::
development.

:::
We

::::::
further

::::::::
highlight

::
the

::::::::
different

:::::::::
limitations

:::
and

::::::::::::
considerations

::::::
needed

:::
to

::::
apply

:::::
such

::
an

::::::::
approach.

:
55
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2 Methods and Data

2.1 ORCHIDEE land surface model

The ORCHIDEE (ORganizing Carbon and Hydrology in Dynamic Ecosystems) land surface model is the terrestrial component

of the IPSL Earth system model (ESM) used in climate projections (Boucher et al., 2020; Cheruy et al., 2020). Either run

off-line (i.e., driven by prescribed meteorological forcing) or coupled with an atmospheric model (i.e., as part of the ESM),60

ORCHIDEE describes the exchanges of energy, water, and carbon between the atmosphere and the continental biosphere. The

land surfaces are represented as fractions of bare soil and plant functional types. These surfaces can further be covered with

snow.

In this study, we adapted the CMIP (Coupled Model Intercomparison Project) 6 version of ORCHIDEE to run over the GrIS.

The CMIP6 version of ORCHIDEE uses the three-layered snow model presented in Wang et al. (2013). To apply ORCHIDEE65

over the GrIS, we implemented a new soil type into this version of ORCHIDEE to mimic the presence of ice in regions defined

by the present-day ice mask (Bamber et al., 2013). In ORCHIDEE, each soil type is defined according to the USDA (United

States Department of Agriculture) taxonomy, which classifies soils as a function of their chemical, physical and biological

properties (Carsel and Parrish, 1988). For our
::
the

:
new icy soil type, the porosity and the saturated volumetric water content

are set to 0.98 to simulate a soil filled with frozen water. All the other characteristics of this new soil type were set to those70

of the loam soil type because it is the dominant soil type in the non-ice-free regions around the GrIS
::::::::::::::::
(Fischer et al., 2008).

Furthermore, to be able to compare directly modelled to satellite retrieved albedo values, we computed the mean of albedo in

both visible (VIS) and near-infrared (NIR) spectral domains.
:::
We

::::
only

:::::::
consider

:::
this

::::::::
averaged

::::::
albedo

::
in

:::
the

:::
rest

::
of

:::
the

::::::
study.

In the absence of fresh snow, snow-covered albedo in ORCHIDEE (αsnow) decreases exponentially with time from its fresh

value (Aaged+Bdec) to a minimum value after ageing, i.e. albedo of old snow (Aaged),75

αsnow =Aaged +Bdec exp

(
−τsnow

τdec

)
. (1)

Here the Bdec and τdec parameters control the decay rate of snow albedo. This formula can be used to calculate the snow-

covered albedo over different vegetation types, with different values of Aaged and Bdec accounting for the variability of snow

coverings. The parameterisation of snow age, τsnow, is shown in Eq. 2,

τsnow(t+ dt) = τsnow(t)+ fage (2)80

where t is the time, dt is the model time step (1800s). The latter term of equation fage, represents the effect of low temperatures

on metamorphism,

fage =


(
τsnow(t)+

(
1− τsnow

τmax

)
· dt

)
· exp

(
−Psnow

δc

)
− τsnow(t)

1+ gtemp(Tsoil)

 ; gtemp(Tsoil) =

[
max(T0 −Tsoil,0)

ωωω

]βββ
(3)

where Psnow is snowfall, δc is the snowfall depth required to reset the age of the snow, τmax is the maximum snow age, T0 is

the melting temperature (0°C), Tsoil is soil temperature, and ω and β are tuning constants. All the parameters in bold are listed85

in Table B1
:
1. These, along with the albedo of ice, αICE::::

αICE, are the parameters we focused on in this study.
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Table 1. Parameters of the snow model. The prior value refers to
:::::
default

:::::
values

:::::::
represent the value with which each parameter starts

:::::
values

:::
used

::
in
:::
the

:::::::
standard

::::::::
simulation

::
of

:::::::::
ORCHIDEE, min and max refer to the range over which the parameters are allowed to vary during our

experiments.

Parameter Description Name in code Prior (xb)
:::::
Default

:::::
values

:
Min Max

Aaged
Sum to be the albedo of fresh snow

SNOWA_AGED* 0.525
:::
0.62 0.50 0.70

Bdec SNOWA_DEC* 0.349
::::
0.169

:
0.10 0.40

δc Snowfall depth required to reset the snow age (m) SNOW_TRANS_NOBIO 1
::
0.2 0.2 2

τ dec Snow age decay rate (days) TCST_SNOWA_NOBIO 2
::
10 1 10

ω
Tuning constants for glaciated snow covered areas

OMG1 2.5
:
7 1 7

β OMG2 4 0.5 4.5

τmax Maximum snow age MAX_SNOW_AGE 50 40 60

αICE Ice albedo ALB_ICE 0.4 0.3 0.5
* note the sum of Aaged and Bdec must be less than or equal to 1 - this constraint is enforced during the optimisations.

2.2 MAR

The ORCHIDEE model was forced using meteorological outputs from the regional climate model Modèle Atmosphérique

Régional (MAR; Gallée and Schayes (1994)). These outputs ,
:::::::

version
::::::
3.11.4.

::::::
MAR

::
is

:
a
::::::::

regional
::::::::::
atmospheric

::::::
model

::::
that

:::
uses

::
6
::::::

hourly
::::::::::::

ERA-Interim
:::::::::
reanalyses

::::
data

:::::
from

:::
the

:::::::::
European

::::::
Centre

:::
for

::::::::::::::
Medium-Range

:::::::
Weather

:::::::::
Forecasts

:::::::::
(ECMWF,90

:::::::::::::
Dee et al. (2011)

:
)
::
to

::::::::
prescribe

:::
the

::::::::::
atmospheric

:::::::::
boundary

:::::::::
conditions

::::::
outside

:::
the

:::::::
domain.

:::::::
Outputs

::::
from

:::
the

:::::
MAR

:
have a reso-

lution of 20 km . Other outputs from the MAR model, such as runoffand SMB, were also considered
:::
and

:
a
::
3

:::::
hourly

::::
time

:::::
step.

::
In

:::::::
addition

::
to

:::
the

:::::
MAR

:::::::::::::
meteorological

:::::::
outputs,

:::
we

:::::::
consider

::::::
runoff,

::::::::::
sublimation

:::
and

:::::
SMB

:::::::
outputs in this study to assess the

impact of the optimisation on these simulated quantities.

2.3 MODIS
::::
snow

::::::
albedo95

In this study, we used satellite-derived
::::
snow albedo from the NASA (National Aeronautics and Space Administration) MODIS

(Moderate-Resolution Imaging Spectroradiometer) MOD10A1 product (Hall et al., 1995). The latest collection, collection 6, is

used (Riggs et al., 2015; Hall and Riggs, 2016). These data have been
:::
This

:::::::
product

::::
uses

:::
data

:::::
from

:::
the

::::
Terra

:::::::
satellite,

::::::
which

:::
has

:
a
::::::::::::::
sun-synchronous,

:::::::::
near-polar

::::::
circular

:::::
orbit

:::::::
crossing

::
the

:::::::
equator

::
at

::::::::::::
approximately

::::
10:30

:::::
A.M.

::::
local

::::
time

:::::::::::::::::::
(Hall and Riggs, 2016)

:::
and

::::::::
providing

:::::
global

::::::::
coverage

:::::
every

:::
1-2

::::
days.

::::::::::
MOD10A1

::
is

:
a
:::::::
clear-sky

:::::
daily

:::::::
product.

:::::
When

::::
more

::::
than

::::
one

::::::
retrieval

::
is
::::::::
available100

::
on

:
a
:::::
given

::::
day,

:::::
which

::
is

::
the

::::
case

::::
near

:::
the

:::::
poles,

:::
the

::::
best

::::
value

::
is

::::
kept.

::::
This

::::
best

::::
value

::
is

::::::
chosen

:::::
based

::
on

:::::
solar

::::::::
elevation,

:::::::
distance

::::
from

::::
nadir

::::
and

:::
cell

::::::::
coverage

:::::::::::::::::::
(Hall and Riggs, 2016).

::
In

::::::::
addition,

:::::
pixels

::
in

:::
the

:::::::::
MOD10A1

:::::
with

::::
solar

:::::
zenith

::::::
angles

::::::
greater

::::
than

:::
70◦

:::
are

::::::
masked

::::::
(night

::
is

::::::
defined

::
as

::
a

::::
solar

:::::
zenith

:::::
angle

::::::
greater

::::
than

:::::
85◦).

:::
The

:::::::
version

::
of

::::::::::
MOD10A1

::
we

:::::
used

::
in

:::
this

:::::
study

::::
was

::::::
further

:::::::::
processed

::
by

::::::::::::::
Box et al. (2017)

:
.
:::::
Using

::::
data

:::::
from

::::::::
collection

::
6

::
of

:::::::::
MOD10A1

::::::::::::::::::::::::::::::::::
(Riggs et al., 2015; Hall and Riggs, 2016)

:
,
::::::::::::::
Box et al. (2017) de-noised, gap-filled and calibrated

:::
the

::::
data into a105

daily 5km grid covering Greenland after Box et al. (2017) for the years 2000-2017. When MODIS retrievals are inaccurate due
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to
::::
This

::::::
dataset

::::
was

::::::
further

::::::::
validated

::::::
against

::::::::::::
ground-based

::::::::::::
measurements

::::
from

:::
the

::::::::::
PROMICE

:::::::
stations

:::::::::::::::::
(Fausto et al., 2021)

:::
and

:::
the

:::::::
residual

:::
bias

::
in
:::
the

::::::
dataset

:::::
based

:::
on

:::
the

::::
solar

:::::
zenith

:::::
angle

::::::::
corrected

:::
for

:::::
using

:
a
:::::
linear

:::::::::
regression

::::::::
according

::
to

::::
time

::::
and

::::::
latitude

:::::::::::::::
(Box et al., 2017).

:::::::
Finally,

::
in

::::
this

::::::
dataset,

:::::
when

:::::
there

::
is inadequate solar illumination

:
to

::::::::
compute

:::
the

::::::
albedo

:
during

the winter months (January, February, November, and December), April values are swapped in.
::::::::::::::
Box et al. (2017)

:
’s

::::::::::
distribution110

:::::
swaps

::
in

:::
the

:::::
April

::::::
values.

In this study, we further aggregated
::::
used

:::
the

::::::
dataset

:::::::
created

:::
by

::::::::::::::
(Box et al., 2017)

:
,
::::::
further

::::::::::
aggregating

:
these data to the

resolution of the ORCHIDEE outputs, imposed by the meteorological forcing files (20 km).

2.4 ORCHIDAS

2.4.1 A Bayesian framework115

To perform the optimisations, we used ORCHIDAS, the ORCHIDEE data assimilation system. ORCHIDAS is a variational

DA system in which all observations within the assimilation time window are included in the optimisation. It uses a Bayesian

statistical formalism Tarantola (2005)
::::::::::::::
(Tarantola, 2005) where errors associated with the parameters, the observations, and the

model outputs are assumed to follow Gaussian distributions. The optimal parameter set corresponds to the minimum of a cost

function, J(x):120

J(x) =
1

2

[
(y−M(x))TR−1(y−M(x))+ (x−xb)

TB−1(x−xb)
]

(4)

where J(x) measures the mismatch between (i) the observations y and the corresponding model outputs M(x) (where M is

the model operator), and (ii) the a priori (xb) and optimised parameters (x). Each term is weighted by its error covariance

matrices, R and B. As in most studies, we set both matrices to be diagonal. We defined the observation error (variance) as the

mean-squared difference between the observations and the prior model simulation so that this variance reflects not only the125

measurement errors but also the model errors. This observation error was approximately 0.06 at the edge of the ice sheet to

0.02 in the middle.

To minimise the cost function, two algorithms were considered in this study. The first
::::
They

::::
both

:::::
work

:::
by

::::::
varying

:::
the

::::
full

::
set

::
of

::::::::::
parameters

:::::::::
considered

::::::
within

:::
the

:::::
ranges

::::::::::
prescribed,

:::::::
retaining

::
at
:::::
each

:::::::
iteration

:::
the

::
set

:::
of

:::::::::
parameters

:::::
which

:::::::
reduces

::::
J(x)

::::::::
compared

::
to

:::
the

::::::::
previous

:::::::
iteration.

::::
The

::::
first

::::::::
algorithm

:
is a deterministic gradient-based method that uses the quasi-Newton130

algorithm L-BFGS-B to iteratively minimise the cost function (limited memory Broyden–Fletcher–Goldfarb–Shanno algorithm

with bound constraints; see Byrd et al. (1995)), simply referred to as BFGS. At each iteration of the BFGS algorithm, the cost

function is evaluated as well as its gradient with respect to each parameter. The gradient is calculated with a finite-difference

approximation, i.e., using the ratio of change in model output against the change in the model parameter value. The algorithm

terminates when the cost function no longer decreases, i.e, the relative change in the cost function becomes smaller than 10−4135

between successive iterations.

The second
::::::::
algorithm

:::::::::
considered

:
is a stochastic random search method, the genetic algorithm (GA), which belongs to a

larger class of evolutionary algorithms that follows the principles of genetics and natural selection (Goldberg, 1989; Haupt and
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Haupt, 2004). With each gene corresponding to a different parameter, a vector of parameters is considered to be a chromosome.

At each iteration, p chromosomes are created (where p is the population selected by the user, here chosen to be 30). For the first140

set of chromosomes, the parameters are randomly perturbed. For subsequent iterations, the chromosomes are created from the

previous iteration by one of two processes. The first is the “crossover” process. This is the exchange of the gene sequences of

two parent chromosomes. The second process is “mutation”, where selected genes of one parent are randomly perturbed. The

best p chromosomes are then kept and ranked, based on their cost function values. More weight is then given to the best parents

for the next random selection. Further descriptions of both methods can be found in Bastrikov et al. (2018)’s comparative study.145

2.4.2 Sensitivity analysis

With ORCHIDAS, it is also possible to perform a sensitivity analysis (SA) of the model.
::
An

:::
SA

:::::
tests

:::
the

:::::::::
sensitivity

::
of

::
a

:::::
model

::::::
output

:::::::
(usually

:
a
::::::::
physical

::::::::
variable).

::
It

::::
tests

::::
how

:::
the

::::::
output

:::::::
changes,

::::
with

:::::::
respect

::
to

:::::::
different

::::::
inputs

:
-
::::
here

:::
the

::::::
model

:::::::::
parameters.

:
This is usually done before optimisation to ensure the right parameters and ranges of variation are used in the main

experiments. In this study we use the Morris method (Morris, 1991; Campolongo et al., 2007), which is effective with relatively150

few model runs compared to other methods (e.g., Sobol’, Sobol (2001)). Using an ensemble of parameter values, the morris

:::::
Morris

:
method determines incremental ratios, known as ‘elementary effects’, based on changing parameters one at a time in a

sequence for many trajectories which populate parameter space. The mean (µ) and standard deviation (σ) of the differences in

model outputs for all the trajectories are calculated. This global method determines which parameters have a negligible impact

on the model and which have linear and non-linear effects. The results of this method are qualitative, ranking the parameters155

in order of significance. To assess the results, we look at the normalised means, dividing through by µ of the most sensitive

parameter. As such, the values we consider are between 0 and 1, with 1 representing the most sensitive parameters and 0

parameters with no sensitivity. Morris has also been previously used to test parameters for calibration of an earlier version of

the ORCHIDEE snow model (Wang et al., 2013; Dantec-Nédélec et al., 2017).

2.4.3 Performance metrics160

To assess the optimisation results, we rely on two standard metrics: the root-mean-square deviation (RMSD) and total absolute

error (TAE),

RMSD =

√∑n
i=1[yi −M(xi)]2

n
; TAE =

n∑
i=1

|yi −M(xi)| (5)

where n is the total number of data points.

2.5 Performed experimentsORCHIDEE
::::::::::::
Experimental

:::::
setup165

2.5.1
:::::::
Defining

:::::
edges

:::
The

:::::
edges

:::
of

:::
the

:::
ice

::::
sheet

:::
are

:::
of

::::::::
particular

:::::::
interest

::::
since

::::
they

::::::::::
correspond

::
to

:::::::
ablation

:::::
areas

:::
and

:::::
show

:::
the

:::::::
greatest

:::::::::
variations

::
in

:::::
runoff

::::
and

:::::::
surface

:::::
mass

:::::::
balance

::::::
(SMB).

:::
To

:::::::
identify

::::
the

:::::
edges

:::
of

:::
the

:::::
GrIS,

:::
we

:::::::::
exploited

:::
the

::::
fact

::::
that

:::
the

:::::
edges

::::
are

6



Figure 1.
:::::
Spatial

:::::::::
distribution

::
of

::::
edge

:::::
points

:::::
(green)

:::
and

::::::
middle

:::::
points

::::::
(white);

::::::
selected

:::::
based

::
on

:::
the

:::::::
steepness

::
of

::
the

:::::
pixel.

::::::
steeper

::::
than

:::
the

:::::::
middle

::
of

:::
the

:::
ice

::::::
sheet.

:::
To

::::::::
calculate

:::
the

:::::
slope

::
of

::
a
:::::
given

::::::
pixel,

:::
we

::::
used

:::
the

:::::::
NOAA

::::::::
(National

::::::::
Oceanic

:::
and

:::::::::::
Atmospheric

:::::::::::::
Administration)

::::::::
National

:::::::::::
Geophysical

::::
Data

::::::
Center

::::::::
(NGDC)

:
-
::::::::
ETOPO2

:::::::
product

:::::::::::::
(NOAA, 2006),

::::::
which

::
is170

:::::
based

::
on

::
a
::
2

:::::::::
arc-minute

::::::
global

:::::
relief

:::::
model

:::
of

::::::
Earth’s

::::::
surface

::::
and

::::::::
integrates

:::::
land

:::::::::
topography

::::
and

:::::
ocean

::::::::::
bathymetry.

:::::
This

::::::
product

::
is
:::::::

already
:::::::::
integrated

::::
into

:::
the

:::::::::::
ORCHIDEE,

::::::
where

::
it

::
is

::::
used

:::
to

:::::::::
determine

:::
the

:::::::
fraction

::
of

::::::
runoff

::::
that

:::::
pools

::
in
::::

flat

::::
areas

:::::::::::::::::::::::::::::::::
(Ducharne, 2016; d’Orgeval et al., 2008)

:
.
::
In

:
a
:::::::

default
::::::::::
ORCHIDEE

::::::::::
simulation,

:::::
when

:::
the

:::::
slope

::
is

::::::
greater

::::
than

:::::
0.5%,

:::
all

::::::::::
precipitation

::::
over

::::
that

:::::
pixel

:::
that

::::::
exceed

::::
the

:::::::::
infiltration

:::::::
capacity

::
is

:::
run

:::
off

:::::::::::
immediately

:::::::::
(Hortonian

:::::::
runoff)

:::::::::
otherwise,

:
it
::::
can

::::
pond

::
at

:::
the

::::
soil

::::::
surface

::::
and

:::::::
infiltrate

::
at
::::

the
::::
next

::::
time

::::
step.

::::::::::
Remember

:::
that

:::::
each

::::
pixel

:::
in

:::
our

:::::::::
Greenland

::::::::::
simulations

::
in

::::
this175

::::
study

:::
has

::
a
::::::::
resolution

:::
of

::
20

:::
km

:::
and

:::
so

:::
the

::::::::
steepness

::
of

:::
the

:::::
slope

::::::
applies

::::
over

:
a
:::::
large

::::::
region.

:::
We

:::::
found

:::
that

:::
by

:::::
using

:::
this

:::::
same

:::::::
threshold

:::
of

:::::
0.5%,

:::
we

::::
were

::::
able

::
to

::::::::::
encapsulate

::
the

::::::
edges

::
of

:::
the

::::
GrIS

::::
(Fig.

:::
1).

:::
As

::::
such,

:::
we

::::
refer

::
to
::::::
pixels

::::
with

:
a
:::::
slope

:::::::
gradient

::::::
greater

::::
than

::::
0.5%

::
as

:::::::
“edge”

:::::
points

:::
and

:::
the

::::
rest

::
as

::::::::
“middle”

::::::
points.

:::::
These

::::
edge

::::::
points

:::::::
account

:::
for

:::
just

::::
over

::::
25%

::
of

:::
all

::::::
pixels.

::::
They

::::
were

::::
also

:::
the

::::::
pixels

::::
with

:::
the

:::::
largest

::::::
errors

::::
when

:::::::::
compared

::
to

:::
the

::::::::
retrieved

::::::
MODIS

:::::
snow

::::::
albedo

::::
data;

:::::
these

::::
edge

::::::
pixels

:::::::::
represented

::::
78%

:::
of

::
the

::::::
pixels

::::
with

::::::
RMSD

::::::
greater

::::
than

:::
0.1.

:
180

2.5.2
:::::::::
Performed

:::::::::::
experiments

::::::::::
ORCHIDEE

:
was run over the whole GrIS with a spatial resolution of 20 km and a half-hourly time step, with a daily writing

:::::
output

:
frequency. The model was driven using meteorological data from MAR and confronted with MODIS albedo retrievals

aggregated to the same resolution of 20 km. All the optimisations
::::::::::
simulations performed in this study include two years of

model spin-up to allow the snow to accumulate. These two years are not included in calculating the cost function
::::::
during

:::
the185

7



:::::::::::
optimisations

::
or

::::::
during

:::
the

:::::::
analysis,

:
but are important in ensuring correct initial states.

::::::::::
Furthermore,

:::::
since

::::::
during

:::
the

::::::
winter

::::::
months

::::
there

::
is
:::
not

:::::::
enough

::::
solar

::::::::::
illumination

::
to

::::::::
compute

:::
the

::::::
albedo,

:::
the

::::::
months

:::::::::
November

::
to

::::::::
February

:::
are

:::::::
excluded

:::::
from

:::
the

:::::::::::
optimisations

:::
and

::::::::
analyses.

Our aim is to find the best-fit parameters for the whole of the GrIS. However, in particular, we want to improve the albedo

::
To

:::::
begin

:::
the

:::::
study,

:::
we

:::::::::
performed

::
a

::::::::
sensitivity

:::::::
analysis

:::::
using

:::::::
Morris’s

:::::::
method

::
to

:::::::::
understand

:::
the

:::::::
relative

::::::::::
importance

::
of

:::
the190

:::::::
different

:::::
model

::::::::::
parameters

::
in

:::::::::
simulating

::::::
albedo.

::
In

::::
this

::::::::::
experiment,

:::
we

:::
also

::::::::::
considered

::::::::
additional

:::::::::
parameters

::::::::::
controlling

:::
the

:::
rate

::
of

:::::::
density

::::::
change

:::
and

:::::::::
additional

:::::
model

:::::::
outputs

::::::::
including

:::::
SMB

:::
and

::::::
runoff.

:::::
These

:::::
were

:::::::
included

::
to

:::::
better

::::::::::
understand

:::
the

:::::::::
relationship

::::::::
between

:::::::
different

:::
ice

:::::
sheet

::::::::
processes

::::
and

::
to

:::::::
identify

:::::
which

::::::::::
parameters

:::
and

::::::
model

::::::
output

:::
we

:::::
might

::::::::
consider

::
in

:::::
future

::::::::::::
optimisations.

::::
This

:::::::
analysis

:::::::::
compared

:::::::::::
ORCHIDEE

::::::
outputs

::
to
::::

the
:::::
MAR

:::::
model

::::::::
outputs,

::::::
testing

::::
how

::::
each

:::::::::
parameter

::::::
affected

:::
the

:::::::
RMSD

:::::::
between

::::
both

::::::
models.

:
195

:::::
Before

:::
the

:::::
main

:::::::::::
optimisation,

::
a

::::::
couple

::::::::::
preliminary

::::::::::
experiments

::::
were

:::::::::
performed

::
to
::::::

select
:::
the

:::::::::::
minimisation

::::::::
algorithm

::::
and

:::::
gauge

:::
the

:::::::
maximal

:::::::::::
improvement

:::
we

:::::
could

::::::
expect at the edges of the ice sheetsince they correspond to ablation areas and show

the greatest variations in runoff and surface mass balance (SMB). Since
:
,
:::
full

::::::
details

::
of

:::::
which

::::
can

::
be

:::::
found

::
in

:::
the

::::::::
Appendix

:::
A.

:::
We

:::::
found

:::
that

:::
the

:::::::
genetic

::::::::
algorithm

::::::
greatly

::::::::::::
outperformed

:::
the

:::::
BFGS

:::::::::
algorithm,

::::::::
reducing

:::
the

:::
cost

::::::::
function

::
by

::::
11%

:::::::::
compared

::
to

:
a
:::::::::
negligible

::::::::
reduction,

::::
and

:::
that

:::
15

::::::::
iterations

::
of

:::
the

:::::::
genetic

::::::::
algorithm

:::::
were

::::::::
sufficient

:::
for

:::::::::::
convergence.

:::
We

::::
also

:::::
found

::::
that200

::::
since

:
the number of edge points is being dwarfed by the much denser middle of the ice sheet (see Sect. A),

:::::::::::
improvements

:::::
were

::::::
mainly

::::::::::
concentrated

::::
over

::::
the

::::::
middle

::
of

:::
the

:::
ice

:::::
sheet.

::::
This

:::
led

:::
us

::
to

:
we chose to give extra weight to edge points during the

optimisation. In Sect. 2.5.1, we define which points were edge points and how to identify them robustly.

Two preliminary optimisations were performed to select the minimisation algorithm (Sect. A), and a further experiment

focusing solely on the edges of
:::
The

:::::
edge

:::::
points

:::::::
account

:::
for

::::::::::::
approximately

::
a
::::::
quarter

::
of

:::
the

::::::
points.

:::
To

::::::
ensure

:::
the

:::::
edges

::::
and205

::::::
middle

::::
both

::::::::
contribute

::
to

:
the ice sheet was undertaken in Sect. 3.3. These three test experiments were performed over the year

2000 (with the years 1998-1999 as spin-up)
:::
cost

:::::::
function,

::::::
while

:::
also

::::::
giving

::
a

::
bit

:::::
more

:::::
focus

::
to

:::
the

::::
edge

::::::
points,

:::
we

::::::
chose

::
to

:::
give

:::
an

::::
extra

::::::
weight

::
of

::::
four

::
to

:::
the

:::::
edges

:::::
when

:::::::::
calculating

:::
the

::::
cost

:::::::
function

::
in

:::
the

:::::
main

::::::::::
optimisation.

For the main experiment, to capture the inter-annual variability of snow albedo, we selected three random years to perform

our optimisation: 2000, 2010, and 2012. Since the MODIS retrievals during the winter months (November-February) can be210

inaccurate due to low solar illumination, these months were excluded from the optimisation. We optimised over these three

years simultaneously(with two years model spin in each case), and the .
::::
This

::::::
means

::::
that,

::
in

:::
this

::::
main

::::::::::
experiment,

:::
we

:::::::::
minimised

:
a
::::
cost

:::::::
function

:::::::::
comprising

::
a
::::
sum

::
of

:::::
three

:::
cost

:::::::::
functions,

:::
one

:::
for

::::
each

::::
year

::::::::::
considered.

::::
The rest of the 2000-2017 time series

was used for validation. During this main experiment, we optimised over the whole of the GrIS but gave an extra weight

of four to the edge points (see Sect. 2.5.1). This main experiment, referred to as “Both”, was complemented by two more215

optimisations: one just over the edges of the ice sheet (“Edges”) and one just over the middle points (“Middle”), again for the

same three yearsand excluding November-February months. These were done to help analyse the posterior parameter values

in Sect. 3.3.2.
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To conclude the study, we performed a sensitivity analysis using Morris’s method to identify further parameters and model

outputs to consider in future optimisations. This analysis compared ORCHIDEE outputs to the MAR model outputs, testing220

how each parameter affected the RMSD between both models.

3 Results

3.1 Initial
:::::
Prior modeltuning

Before using ORCHIDAS to optimise the model parameters, the ORCHIDEE model was first tuned manually
:::::::
through

:::
trial

::::
and

::::
error. While not as robust as using a Bayesian framework, this initial step is common for land surface modellers and helps get225

a sense of the different parameter sensitivities. The primary focus of this manual tuning was to better capture the behaviour of

the GrIS at its edges. This
:::
was

:::::::
achieved

:::
by

:::::::::
increasing

:::
the

::::::
overall

::::::
albedo

::
of

::::
fresh

:::::
snow

::::::
(Aaged :

+
:::::
Bdec)

:::
and

:::
the

::::::::
snowfall

:::::
depth

:::::::
required

::
to

::::
reset

:::
the

:::::
snow

:::
age

::::
(δc),

:::::
while

::::
also

:::::::::
decreasing

:::
the

::::::
albedo

::
of

::::
aged

:::::
snow

::::
and

:::::::::
decreasing

:::
the

:::
rate

::
of
:::::

snow
::::
age

:::::
decay

:::::
(τ dec).

:::::::::::
Furthermore,

:::
one

::
of

:::
the

::::::
tuning

::::::::
constants

::
for

::::::::
glaciated

::::::::::::
snow-covered

::::
areas

::::
was

::::::::
decreased

::::
(ω).

:::
The

::::
rest

::
of

:::
the

:::::::::
parameters

::::
were

::::
kept

::
as

:::
the

::::::
default

:::::::::::
ORCHIDEE

:::::::::
parameters

::::
(see

::::
Table

:::
B1

:::
for

:::
full

:::::::
results).

:
230

::::
This initial tuning helped the model to better simulate the albedo at the edges of the ice sheet, especially in the western

part (Fig. 2),
::
as
::::

well
:::

as
::::
other

:::::
snow

:::::
states

::::
such

:::
as

::::
SMB

::::
and

::::::
runoff,

:::::
which

:::::
were

::::
also

::::
used

::
to

:::::
assess

:::
the

:::::::
success

::
of

:::
the

:::::::
manual

:::::
tuning. The tuned model was able to capture slightly more the spatial variability of albedo in the middle of the ice sheet.

However, the north-south albedo gradient observed in the satellite retrievals was still not simulated and overall, the albedo

remains underestimated over the ice sheet. This initially tuned model was used as the prior in the rest of the paper
::
for

:::
the

::::::
albedo235

::::::::::
optimisation.

3.2 Preliminary optimisations
:::::::::
Sensitivity

:::::::
analysis

To choose which optimisation algorithm to use in the main experiment, we performed two preliminary tests optimising over a

single year. The results in Fig. A1a show the changes in
::
In

:::
any

:::::::::
parameter

::::::::
estimation

::::::
study,

:::::::::
performing

:
a
::::::::::
preliminary

:::::::::
sensitivity

::::::
analysis

::
is
::::::
typical

::
to

:::::
select

:::
the

:::::::::
parameters

:::
for

:::
the

:::::::::::
optimisation.

:::::
Since

:::
the

:::::::
different

::::::::
processes

::
of

:::
the

:::::
snow

:::::
model

:::
are

::::::::::
interlinked,240

::
we

:::::::
decided

::
to

:::::::
perform

::
a

::::::::
sensitivity

:::::::
analysis

::::
over

::
a
:::::
range

::
of

::::::
model

::::::
outputs

::
to

::::
help

::::::::::
understand

:::::
which

::::::::
simulated

:::::::::
quantities

:::
are

:::
also

:::::::
affected

:::
by

:::
the

::::::
albedo

::::::::::
parameters.

::
In

:::::::
addition

::
to

::::::::::::
understanding

:::
the

:::::::
different

:::::::::::
sensitivities,

:::
this

::::::::::
experiment

:::
was

::::
also

:::::
done

::
to

:::::::
highlight

::::::
which

::::::
further

::::::::::::::
parameterisations

:::
to

:::::::
consider

::
in

:::::
future

:::::::::::
experiments

:
if
:::
we

:::::
were

::
to

:::::::
optimise

:::
the

:::::
snow

::::::
model

::::::
against

::::
other

:::::
types

::
of

:::::::::::
observations

:::::
either

::::::::::
individually

::
or

::::::::::::
simultaneously

::::
with

:::
the

::::::
albedo

:::::::::
retrievals.

:::
We

:::
add

:::::::::
parameters

:::::
from

:::
two

:::::
other

::::::::::::::
parameterisations

:::::::::
controlling

:::::
snow

::::::::
viscosity

:::
and

:::::::
settling

::
of

::::::
freshly

:::::
fallen

:::::
snow

:::::::::
(described

::
in

::::
Sect.

::::
B2)

::
to

:::
get

::
a

:::::
better

::::
idea

::
of245

::
the

:::::::
relative

:::::::::
importance

:::
of

::
the

::::::::
different

::::::::::
parameters.

:::::::::
Parameters

::::
from

:
the simulated albedo when averaged spatially. Figure A1b shows the changes when averaged temporally

from March to October (i.e., removing the winter months). When using the L-BFGS-B algorithm, the improvement in model-data

fit is only very slight
:::::
albedo

::::::::::::::
parameterisation

:::::::::::
significantly

:::::
affect

:::
the

::::
other

:::::::::
simulated

::::::
outputs

::::::
tested.

:::
For

:::
the

::::::::
simulated

:::::::
albedo,
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Figure 2. Retrieved and simulated mean albedo over Greenland (averaged over
:::::::::::
March-October

::
for

:
2000-2017); the left panel shows the re-

trieved MODIS values, the middle panel shows simulated albedo in the currently operational ORCHIDEE version
::
and

:::
its

::::::
standard

::::::::
parameter

:::::
values, and the right right

::::
panel

::
the

:
simulated albedo from the manually tuned model.

::
the

:::::
most

:::::::
sensitive

:::::::::
parameter

:
is
:::::
Bdec :::

for
::::
both

::
the

::::::
middle

::::
and

::::
edge

::
of

:::
the

:::
ice

::::
sheet

:
(Fig. A1a). In Fig. A1b, we see a degradation250

in model-data for March to October, showing that the improvement was only in the winter months. Since the prior model

used was already extensively manually tuned, it is likely that we started very near to a local minimum. As such, since the

gradient-based algorithm is unable to leave local minima,
:::
3).

:::
We

:::
also

:::
see

::::
that the cost function is hardly minimised.

In comparison, with GA,
::::
heat

:::::
fluxes,

:::::::
surface

::::::::::
temperature,

::::
and

::::::::::
sublimation

::
in

::
the

:::::::
middle

::
of

:::
the

::
ice

:::::
sheet

:::
are

:::::::
sensitive

::
to

::::
this

::::::::
parameter.

:::
In

:::::::
addition,

:
the RMSD is reduced by nearly 15%. This improvement can be seen over most of the GrIS. Albedos255

in the middle and south are now slightly overestimated,
::::::::
parameter

:::::::::
controlling

:::
the

:::::
snow

:::::
decay

::::
rate

:::::
(τdec)

::
is

:::
the

::::
most

::::::::
sensitive

::::::::
parameter

:::
for

:::::::::
simulating

::::::::::
sublimation

:::
and

:::
the

:::::
latent

:::
heat

::::
flux

::::
over

:::
the

:::::
whole

:::
ice

:::::
sheet,

:::
and

:::
one

:::
of

::
the

:::::
most

:::::::
sensitive

:::
for

:::::::
sensible

:::
heat

::::
flux.

:::::
Since

::::
both

:::::
Bdec and in the north, they are still underestimated, but to a much lesser extent than with the prior model

. However, the edges, especially in the southwest, show larger errors. These areas were the focus of the prior model tuning and

so started with low RMSD values in the prior model . In reducing the errors over the middle
:::
τdec:::::::

control
:::
the

::::::
impact

::
of

:::::
snow260

:::::
decay,

::::
they

:::::::
directly

::::::
impact

:::
the

::::::
albedo

::
of

:::
the

:::::
snow

::::
and,

:::::::::
therefore,

:::
the

::::::
surface

:::::::::::
temperature.

:::
The

:::::::
surface

::::::::::
temperature

:::::::
directly

:::::
affects

::::::
runoff

:::
and

::::
the

:::::::
sensible

::::
heat

:::
flux

::::::::::
(calculated

::
as

::
a

:::::::
function

::
of

:::
the

:::::::::
difference

:::::::
between

:::
the

:::::::
surface

::::::::::
temperature

::::
and

:::
the

::::::::::
temperature

::
of

:::
the

:::::::::::
atmosphere).

:::
The

:::::
latent

::::
heat

::::
flux

:::::::
depends

:::::::
directly

::
on

:::
the

:::::
snow,

:::
ice

::::
and

::::
bare

:::
soil

::::::::
fractions.

::::
The

::::::
higher

:::
the

::::::
amount

::
of

::::::
runoff,

:::
the

::::
more

:::::
likely

::
it

::
is

::
to

::::
have

::::
areas

::::::
where

::
all

:::
the

:::::
snow

::::
melts

:::
(or

::::
grid

:::::
points

:::::
where

:::
the

:::::
snow

::::::
fraction

::::::::::
decreases).

::::::::
Therefore

:::
the

:::::
latent

::::
heat

:::
flux

:::
on

:::
the

::::
snow

::::::::
decreases

::::
and

::
so

::::
does

:::
the

:::::::::::
sublimation.265
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Figure 3.
:::::::
Heatmap

::::::
showing

:::
the

::::::
relative

::::::::
sensitivity

::
of

::::
each

:::::::
parameter

:::
for

:::::::
different

:::::::
simulated

:::::
model

::::::
outputs;

::::::
albedo,

::::::
sensible

::::
heat

:::
flux

::::
(H),

::::
latent

:::
heat

::::
flux

::::
(LE),

::::::::::
sublimation,

:::::
surface

:::::::::
temperature

:::::::
(Tsurf ),

:::::
runoff,

:::
and

::::::
surface

::::
mass

::::::
balance

::::::
(SMB).

::
In

::::
each

::::
case,

::
the

::::::::
sensitivity

::
of

:::
the

::::::::
parameters

::
is

:::::
shown

::
for

::::::::
simulated

:::::::
quantities

::
at

:::
the

::::
edge

::
of

::
the

:::
ice

::::
sheet

::::::
(shown

::
by

:::
the

:::::
filling

:
at
:::

the
::::
edge

::
of

::::
each

::::
box)

:::
and

::
in

::
the

::::::
middle

::
of

::
the

:::
ice

::::
sheet

::::::
(shown

::
by

:::
the

:::::
filling

::
in

::
the

::::::
middle

::
of

::::
each

::::
box).

:::::
Morris

:::::
scores

:::
are

::::::::
normalised

:::
by

:::
the

:::::
highest

::::::
ranking

::::::::
parameter

::
in

::::
each

::::
case.

::::
Dark

:::::
squares

:::::::
represent

:::
the

::::
most

:::::::
sensitive

::::::::
parameters

:::
for

:::
each

::::::
output,

:::
and

::::
light

::::::
squares

:::::::
represent

::::::::
parameters

::::
with

:::
little

::
to
::
no

:::::::::
sensitivity.

:::
The

::::::
model

:::::::
outputs

:::
are

::::
only

:::::::::
marginally

::::::::
sensitive

::
to
::::::
τmax.

:::::
Since

:::
we

:::::::::
normalise

:::
the

::::::
Morris

:::::
score

:::
by

:::
the

:::::::
highest

:::::::
ranking

::::::::
parameter,

::::
this

:::::
shows

::::
that

:::::::::
compared

::
to

:::
the

::::
most

::::::::
sensitive

:::::::::
parameter,

:::::
τmax ::

is
:::
the

::::
least

::::::::
important

::::::
albedo

::::::
model

:::::::::
parameter

::
in

::::::::
explaining

::::::::
possible

:::::
range

::
of

::::::::
responses

:::
for

::::
each

::::::::
modelled

::::::
output

::::::
tested.

::::::::
Although

::::
seen

::
to

:::
be

::::::::
correlated

:::
to

::
δc::

at
:::
the

::::::::
optimum

::
of

:::
the

::::
cost

:::::::
function

:::::
(Fig.

:::
6b),

:::::::
changes

:::
in

::
δc::::

have
:::::

more
::::::
impact

:::
on

:::
the

::::::
model

::::::
outputs

:::::
than

:::::
τmax,

:::::::::
especially

::
at

:::
the

:::::
centre

:
of

the ice sheet, the errors are edge points increased.These edges only represent a small fraction of the
:
.
:::::
Since

::
δc:::::::

appears
::
in

:::
the270

:::::::::
exponential

::::
term

:::
of

:::
Eq.

::
2,

:::::
small

::::::::
variations

::
in

::
its

:::::
value

::::
will

::::
have

:
a
:::::
larger

::::::
impact

:::
on

:::
the

::::
snow

:::
age

::::::
τsnow ::::

than
::::
small

:::::::::
variations

::
in

:::::
τmax.

:::::::::::
Nevertheless,

::
δc::

is
:::
the

::::::
second

::::
least

::::::::
sensitive

:::::
albedo

:::::::::
parameter

:::
for

::::::::
simulated

::::::
albedo.

:

:::
The

:::
last

::::
two

:::::::::
parameters

:::
of

:::
the

::::::
albedo

::::::::::::::
parameterisation,

::
ω

::::
and

::
β,

:::
can

:::
be

::::
seen

::
to

::::::
impact

::::::::::
temperature

::::
and

:::
the

:::::::
sensible

::::
heat

:::
flux

::
at

:::
the

:::::
centre

::
of

:::
the

:
ice sheet. Since we optimised over the whole of the GrIS, the larger number of middle pixels dominated

the cost function.As such, the improvement in modelled albedoover the middle
::::
These

::::::::::
parameters

:::
are

::::::
present

::
in

:::
the

::::
part

::
of

:::
the275

:::::::::::::
parameterisation

::::::::::
controlling

:::
the

:::::
effect

::
of

:::
low

::::::::::
temperature

:::
on

::::::::::::
metamorphism

::::
(Eq.

:::
3).

:::::
Since,

:::
by

:::::::::
influencing

:::::
snow

::::::
ageing,

:::::
these

:::::::::
parameters

::::::
impact

::::::
surface

::::::::::
temperature

:::::::
(through

:::::::
changes

::
in
:::::::
albedo)

:::
and

::::
thus

:::
the

:::::::
sensible

::::
heat

::::
flux.
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:::
The

:::::::
sensible

::::
heat

:::
flux

::
is

::::::::
especially

::::::::
sensitive

:
to
:::
the

:::::::::
parameter

::::::::::
determining

:::
the

::
ice

::::::
albedo

::
at

:::
the

:::::
edges of the ice sheetcompensates

for the degradation
:
.
:::
We

::::::
expect

:::
the

:::::
snow

::
to

::::
melt

:::::
faster

:
at the edges .

:::::::
exposing

:::
the

:::::
bare

::
ice

::::::
below

:::
and

::::::
hence

:::::::::
increasing

:::
the

:::::::::
importance

::
of

:::
ice

:::::::
albedo.

:::
The

:::
ice

::::::
albedo

::::
will

:::::::
therefore

::::::
impact

:::
the

:::::::
surface

::::::::::
temperature

::
at

:::::
these

:::::::
exposed

::::
edge

:::::
points

::::
and

::::
thus280

::
the

:::::::
sensible

::::
heat

::::
flux.

:

Top panel shows smoothed time series of albedo (average over space) for the whole 2000. Bottom panels show the differences

between simulated and retrieved albedo over Greenland (averaged over March-October of 2000). Shown are the differences

between the model and MODIS using its prior parameter values (left), parameters using the BFGS algorithm (middle), and

parameters found using the GA algorithm (right). In each panel, the RMSD between MODIS and the different ORCHIDEE285

model versions is shown.

3.3 Defining edges

To identify the edges of the GrIS, we exploited the fact that the edges are steeper than the middle
::::::::
Modelled

::::::
albedo

::
is

:::
not

::::
very

:::::::
sensitive

::
to

::::::::::
parameters

::::
from

:::
the

::::::::
viscosity

::::
and

::::
fresh

:::::
snow

:::::::
settling

::::::::::::::
parameterisations

::
-
::::::::
especially

::::
not

::
at

:::
the

:::::
centre

:
of the ice

sheet. To calculate the slope of a given pixel, we used the NOAA (National Oceanic and Atmospheric Administration)National290

Geophysical Data Center (NGDC) - ETOPO2 product (NOAA, 2006), which is based on a 2 arc-minute global relief model of

Earth’s surface and integrates land topography and ocean bathymetry. This product is already integrated into the ORCHIDEE,

where it is used to determine the fraction of runoff that pools in flat areas (Ducharne, 2016; d’Orgeval et al., 2008). In a default

ORCHIDEE simulation, when the slope is greater than 0.5%, all precipitation over that pixel will run off immediately - it is too

steep for precipitation to infiltrate the soil. Remember that each pixel in our Greenland simulations in this study has a resolution295

of 20 km and so the steepness of the slope applies over a large region.We found that by using this same threshold of 0.5%, we

were able to encapsulate the edges of the GrIS (Fig. 1). As such, we refer to pixels with a slope gradient greater than 0.5% as

“edge” points and the rest as “middle” points.
::::::::
However,

::::
these

::::::::::
parameters

::
are

:::::::::
important

:::
for

::::
other

::::::::
modelled

:::::::::
quantities.

Spatial distribution of edge points (green) and middle points (white); selected based on the steepness of the pixel.
:::
The

:::::
runoff,

:::::::
surface

::::
mass

:::::::
balance,

::::
and

:::::::::
sublimation

:::
are

::::::::
sensitive

::
to

:::
the

:::::::
viscosity

:::::::::
parameters

::::
(Eq.

::::
B2),

::::
with

:::
the

::::::::
parameter

::::::::::
controlling300

::
the

:::::::
impact

::
of

:::::
snow

::::::
density

:::
on

:::
this

::::::::::::::
parameterisation

::::
(v2)

::::::::::
highlighted

::
as

:::
the

:::::
most

::::::::
sensitive.

:::::
When

::::::::
viscosity

:::::::::
decreases,

:::::
snow

::::::
density

::::::::
increases

:::
and

:::::
liquid

:::::
water

:::::::
holding

:::::::
capacity

::::::::
decreases.

::::
This

:::::
leads

::
to

::
an

:::::::
increase

::
in

::::::
runoff

:::
and

:
a
::::::::
decrease

::
in

:::::
SMB.

::
If

:::
the

:::::::
increase

::
in

:::::
runoff

::
at

:::
the

:::::
edges

:::::
leads

::
to

:
a
:::::::::
significant

::::::::
decrease

::
in

::::
snow

::::::
cover,

:::
this

::::
will

::::
also

::::::
impact

::::::::::
sublimation

::::::
(which

:::::::
depends

::
on

:::
the

:::::
snow

::::::
fraction

::::
and

:::::::::::
temperature).

Results of preliminary experiment optimising only the edge points of the GrIS for March-October of 2000. The optimisation305

was performed using the GA algorithm. Percentage reduction of model-data RMSD. Negative numbers show an increase in

RMSD i.e. a degradation in fit. Year Mar-Oct All months Mar-Oct All months Mar-Oct All months 2000 11.86 4.21 -6.01

-37.46 3.14 -15.182000-2017 10.11 3.12 8.51 -23.57 9.21 -10.65

These edge points account for just over 25% of all pixels. They were also the pixels with
:::
The

:::
ice

:::::
sheet

::::::::::
temperature

::
at

:::
the

::::::
surface

::
is

:::::::
sensitive

::
to

:::::
fresh

:::::
snow

::::::
settling

:::::::::
parameters

::::
(Eq.

::::
B3),

:::::::::
especially

::
to

:::
ρd.

:::::
When

::::::::::
considering

:::
the

::::
rate

::
of

::::::
density

:::::::
change310

:::::::
equation

::::
(Eq.

::::
B1),

:::
we

:::
can

::::
see

:
it
::
is
:::::
made

:::
up

::
of

::::
two

:::::
terms:

::
a
::::
term

:::::::::::
representing

:::
the

::::::::::
compaction

:::
due

:::
to

::::
snow

::::
load

::::
and

:
a
:::::

term
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::::::::::::
parameterising

:::
the

:::::
effect

:::
of

:::::::::::::
metamorphism,

::::::
which

::
is

:::::::::
significant

:::
for

::::
fresh

:::::::
settling

:::::
snow.

:::::
With

::::::
newly

:::::
fallen

:::::
snow,

::::::
ρsnow ::

is

:::::::
generally

::::
low

:::::::
(50-200

::::::::
kg.m−1),

:::::::::
especially

::
in

::::
cold

:::::::::::
environments

::::
with

:::::
little

:::::
wind.

:::::::::
Depending

:::
on

:::
the

:::::
value

::
of

:::
ρd,

:::
the

:::::::
density

::::
term

::
in

:::
Eq.

:::
B3

::::
will

::::::
become

::::
zero

:::::
more

::
or

::::
less

:::::::
quickly,

::::::::::
maximising

:::
the

:::::
value

::
of

::::::
ψsnow.

:::::
This,

::
in

::::
turn,

::::::::
increases

:::
the

::::::
density

:::
of

::::
snow

:::::::
(ρsnow)

::
in

:::
the

::::::
model.

:::
As

:::
the

::::::
density

::
of

:::::
snow

::::::::
increases,

:::
the

:::::
snow

::::::::
becomes

:::
less

:::::::::
insulating,

::::
and

:::
the

::::::
thermal

:::::::::::
conductivity315

:::::
inside

:::
the

::::::::
snowpack

:::::::::
increases.

::
In

:::::
other

::::::
words,

:::
the

::::::::::
temperature

:::::
inside

::::
and

::
at

:::
the

::::::::::
snowpack’s

::::::
surface

:::::::
depends

:::::::
directly

:::
on

:::
the

::::
snow

:::::::
density.

::::
This

:::::::::
sensitivity

::
to

:
the largest errors; after the GA optimisation in Sect.3.2, these edge pixels represented 80%

of the pixels with RMSD greater than 0.1. To see what the maximal improvement in model-data fit we can expect over these

edges, we performed a preliminary experiment optimising only these points and only over the months March-October (Table 2)

. We were able to reduce the RMSD at these points by approximately 10%. This optimisation was also able overall to improve320

the simulated albedo in the middle
::::
fresh

:::::
snow

:::::::
settling

:::::::::
parameters

:::::
may

::
be

:::::
more

::::::::
important

:::
at

:::
the

:::::
edges

:
of the ice sheet in

summer. This implies there is some consistency between the edge and middle points for the 2000 - 2017 period. However, this

optimisation did not improve the middle points consistently - for example, we observe a degradation in fit for the year 2000.

It also degrades the fit of albedo in the winter months; the maximum albedo value attained in winter was much lower than the

retrieved values. Although the winter values are more uncertain, they still give an idea of the maximal albedo over the GrIS325

after snow accumulation.
::::::
because

::::
there

::
is
:::::
more

::::::::::
precipitation

::::
than

::
in

:::
the

::::::
centre,

:::::
where

:::
the

:::::::
climate

::
is

:::::
colder

:::
and

::::::::
therefore

:::::
drier.

The edge points account for approximately a quarter of the points. To ensure the edges and middle both contribute to the

cost function, while also giving a bit more focus to the edge points, we chose to give an extra weight of four to the edges

when calculating the cost function in the main optimisation
::::::::
Although

::::::::
modelled

::::::
albedo

::
is

:::
not

::::
very

:::::::
sensitive

::
to

:::::::::
parameters

:::::
from330

::
the

:::::
other

:::::::::::::::
parameterisations

::::::
tested,

:::::
these

:::::::::
parameters

:::::::
greatly

::::::
impact

:::::
other

:::::
model

:::::::
outputs.

::::::
These

::::::
model

:::::::
outputs,

::
in

:::::
turn,

:::
are

:::::::
sensitive

::
to

:::::
these

:::::
other

::::::::::
parameters,

::::::::
especially

:::::
those

:::::
from

:::
the

::::::::
viscosity

::::::::::::::
parameterisation.

:::::::::
Therefore,

:::
for

::::::
future

:::::::::::
experiments,

:::
this

:::::::::
sensitivity

:::::::
analysis

:::::::
suggests

::::
that

::
to
::::::::

optimise
::::::
energy

:::::::
budget,

:::::
runoff

::::
and

::::::::::
sublimation

:::::::::::::
simultaneously,

:::
we

::::::
would

::::
need

:::
to

:::::::
consider

::::::::
including

:::
the

::::::::::
parameters

::::
from

:::
the

::::::
albedo

::::
and

::::::::
viscosity

:::::::::::::::
parameterisations.

::::::::
However,

:::
for

::::
this

:::::
study,

:::
we

:::::
only

:::::
focus

::
on

:::
the

:::::::::
parameters

:::::
from

:::
the

::::::
albedo

::::::::::::::
parameterisation

::::
(and

:::
the

::::::
albedo

::
of

::::
ice)

:::
for

::::::::::
optimisation

:::::
since

:::
the

::::::::::::::
parameterisation

:::
has

::
a335

::::::::::
manageable

::::::
number

::
of

:::::::::
parameters

::::
and

::
the

:::::::::
parameter

::::
from

:::
the

:::::
other

::::::::::::::
parameterisations

:::::
show

:::
less

:::::::::
sensitivity

::
to

:::::::
modelled

::::::
albedo.

3.3 Main optimisation

3.3.1 Optimisation and validation

For the main optimisation, the GrIS albedo was optimised over the years 2000, 2010 and 2012
::::::::::::
simultaneously, with a larger

weight given to the edges .
:::
(see

:::::
Sect.

::::
2.5.2

:::
for

::::
the

:::
full

:::::
setup

:::::::::::
description).

:
Although a subset of three years was used in340

this optimisation, the improvement observed is consistent over all years (Figure 4a and Table 2). Indeed
:
, some of the years

with the greatest reductions in RMSD were years not used in the optimisation e.g. 2003, 2009, and 2016. We also see that

the optimisations improve the fit to the winter months which were not used in the optimisation. When averaged over the

whole GrIS, the winter months were seen to be underestimated (Figure 4a). The winter values are still underestimated after
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optimisation, but much less severely. The troughs during the summer months are where the improvement is the most marked.345

The albedo during the summer months in prior simulations decreased too much. In the posterior run, these troughs more closely

match the retrieved values.

When considering the errors of the posterior model spatially (Figure 4b), we noticed a slight underestimation of modelled

albedo in the north of the ice sheet and a slight overestimation in the south. We also see that the edges are mostly overestimated.

However, the RMSD reductions over the edge points are similar in magnitude to the reductions found in the preliminary350

optimisation where only the edge points were considered (Tables A1 and 2). This means that the weighting used between the

edge and middle points during the optimisation was sufficient . We would not expect to lower the RMSD of the edges any

further
:
-
:::
we

::::
have

::::::::
achieved

::
as

::::
low

::::::
RMSD

::
at

:::
the

:::::
edges

:::
as

::
in

:::
the

::::::::
edge-only

::::::::::
experiment. By including the middle points in our

optimisation, we greatly improve the fit of the model in the middle of the ice sheet - much more so than when only focusing on

the edges (43.7% reduction compared to 8.51%). Furthermore, we do not degrade the model during the winter months. Figure 5355

further illustrates where the error is reduced. By decomposing the TAE, we can see that both the edge and the middle points

contribute to the error reduction. The reduction in TAE during the winter months occurs mainly in the middle
::::
This

:::::
figure

::::
also

:::::
allows

:::
us

::
to

:::::::
compare

:::
the

::::::::::::
improvements

:::::::
between

::::
the

:::::::
different

:::::::::::
ORCHIDEE

::::::::::
simulations.

::::
Note

::::
that

:::
the

:::::
tuned

::::::
model

:::
was

:::::
used

::
as

:::
the

::::
prior

:::
for

:::
the

:::::::::::
optimisation.

::::
The

:::::::::
optimised

:::::
model

:::
has

:::
the

::::::
lowest

:::::
error

::::::
overall,

:::::
both

::
for

::::
the

::::::
middle

:::
and

:::
the

:::::
edges

:
of the

ice sheet.
::::
This

:::::
figure

::::::::
highlights

:::
the

::::::
power

::
of

:::
the

::::::::::
ORCHIDAS

::::::::
approach

:
-
:::
the

::::
total

::::::::
absolute

::::
error

::
is

:::::::
reduced

::::
more

:::::::::::
significantly360

::::
using

:::
the

::::::::
Bayesian

:::::::::
framework

::::
than

:::::
when

:::
the

::::::
manual

::::::
tuning

::::::::
approach

:::
was

:::::
used.

:

3.3.2 Posterior parameters

In this section, we consider how the parameter values have changed to fix the model-data disparities. In Fig. 6a, we look

at the posterior parameters from the main experiment (referred to as “Both”) and posterior parameters from experiments

solely optimising the edge points (“Edges”) and solely optimising the middle points (“Middle”). Initially, the prior model365

underestimated the albedo. This underestimation is seen both temporally (Fig. 6a), where the maximum simulated albedo is

below that of the retrieved values, and spatially (Fig. 2), where the underestimation is most noticeable over the centre of the

ice sheet. For all three optimisations, Aaged and αICE ::::
αICE increase, contributing to fixing this underestimation. These two

parameters directly impact the albedo - as they increase, so will the albedo of the GrIS. We also saw that in the prior model,

the albedo decayed too much in summer (Fig. 6a). In the posterior models, the value of the Bdec parameter is lowered, giving370

less weight to the decay term in Eq. 1. Again, this decrease occurs for all three optimisations. Similarly, τdec increases in all

cases, which also leads to a smaller decay term. Finally, we see that omega values increase and beta values decrease. By doing

so, these two parameters increase the value of gtemp which appears in the denominator of fage (Eq. 3) hence slowing down

snow ageing.

We also notice some differences between the three sets of posterior parameters. Since the “Both” optimisation includes375

points from both of the other optimisations, we might expect the posterior parameters to be in between the “Edges” and

“Middle” posterior parameter values acting as a compromise between both optimisations. However, this is only true for two

out of the eight parameters. Instead, the “Both” posterior parameters often take higher or lower values than parameters from
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a)

b)

Figure 4. a) Time series of the albedo (averaged over space). The retrieved values (black), prior simulation (blue), and posterior simulation,

i.e. using the optimal parameter set, (orange) are shown. The values in the legend denote the RMSD between each simulation and the retrieved

albedo. b) Spatial distribution of differences between the model and the retrieved albedo averaged over March-October for the years 2000-

2017 for both the prior (left) and posterior (right) models, with the total RMSD in the bottom right-hand corner.
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Table 2. Percentage reduction in model-data RMSD between the prior and posterior runs
:::
over

::::::::::::
March-October. The years used in the optimi-

sation are shown in bold.

Whole area Edges Middle Whole area Edges Middle

2000 13.91 4.95 28.06 22.3 11.27 37.62

2001 17.27 6.05 33.19 25.73 11.22 43.36

2002 17.87 6.94 31.97 26.17 12.07 42.13

2003 19.58 6.39 35.45 28.89 12.39 44.65

2004 17.51 5.91 33.16 26.85 11.77 43.79

2005 18.02 4.94 34.87 27.08 9.38 45.36

2006 14.19 4.29 28.48 21.39 8.21 37.92

2007 17.87 3.02 35.31 26.55 6.49 46.06

2008 17.27 4.65 33.58 27.1 10.44 43.98

2009 19.4 5.69 35.31 29.17 11.75 45.61

2010 18.64 4.52 36.29 27.21 8.41 46.15

2011 18.36 3.06 35.73 27.31 6.65 46.46

2012 17.63 3.69 33.04 25.76 7.02 42.3

2013 16.12 2.7 32.32 25.0 6.54 43.61

2014 16.58 3.64 32.41 24.58 6.79 42.46

2015 17.96 4.74 33.01 27.35 10.19 43.09

2016 18.69 3.56 35.85 28.46 8.79 45.31

2017 17.22 6.01 31.75 26.04 11.7 41.9

ALL 17.53 4.72 33.4 26.37 9.52 43.68

the other two optimisations. This behaviour suggests that parameter space is not smooth but full of local minima (this supports

the results from Sect. A, where the gradient-based algorithm struggled to improve the cost function). The clearest example of380

the “Both” optimisation performing differently is for the parameters δc and τmax. These increase and decrease respectively

for the “Edges” and “Middle” optimisations. However, for the “Both” optimisation, the opposite is true. These parameters

can be highly anti-correlated (Fig. 6b). If δc is very small, the snow’s age does not reset to zero, so the snow ages for longer,

necessitating a larger value of τmax. Therefore, these two parameters compensate for each other.

3.3.3 Sensitivity analysis385

In any parameter estimation study, performing a preliminary sensitivity analysis is typical to select the parameter for the

optimisation. Since the albedo parameterisation had a manageable number of parameters, we proceeded directly to the optimisation.

However, since the different processes of the snow model are interlinked, we decided to perform a sensitivity analysis to

conclude this study. This was done to help understand which simulated quantities are also affected by the albedo parameters. It

was also done to highlight which further parameterisations to consider in future experiments if we were to optimise the snow390
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Figure 5. Total Absolute Error between the modelled and the retrieved MODIS albedo for prior
:::
the

::::::
standard

::::::::::
ORCHIDEE

:
(
:::
i.e.,

::::::
default

::::::::
parameters

::::::
values, left)

:
,
:::
the

:::::::
manually

:::::
tuned

:::::::
(middle),

:
and the optimised (

:::
i.e.,

::::
using

::::::::
Bayesian

::::::::
framework,

:
right) models. The Total Ab-

solute Error is decomposed in each case, illustrating the contribution of the edge and middle points to the error for the winter months

(November-February) and the rest of the year (March-October).

model against other types of observations either individually or simultaneously with the albedo retrievals. We add parameters

from two other parameterisations controlling snow viscosity and settling of freshly fallen snow (described in Sect. B2) to get a

better idea of the relative importance of the different parameters.

4
::::::
Impact

::
of

:::
the

::::::::
different

::::::::::
parameter

:::
set

::
on

:::::::::
modelling

:::
the

:::::::
surface

:::::
mass

:::::::
balance

::
of

:::
the

::::::::::
Greenland

:::
Ice

:::::
Sheet

::
In

::::
Fig.

:
7
::::
and

:::
8,

:::
we

:::::::
consider

::::
how

:::
the

::::::::
different

::::::::
parameter

::::
sets

::::::::
discussed

:::
in

:::
this

:::::
study

::::::
impact

:::
the

:::::::::
modelled

::::
snow

::::::
states.

:::
To395

:::::
assess

:::
the

::::::::::
performance

:::
of

:::
the

:::::::
different

::::::::::
ORCHIDEE

:::::::::
parameter

::::
sets,

:::
we

:::::::
compare

:::
the

::::::
model

::::::
outputs

::
to

::::
that

::
of

:::
the

:::::
MAR

::::::
model.

::::::::
Although

:::::
MAR

::
is

:
a
::::::
model

::::
with

::
its

::::
own

::::::
biases

:::
and

::::::
errors,

::
it
:::
has

:::::
been

:::::
shown

:::
to

::::
have

::::
good

::::::::::
estimations

::
of

:::
the

::::::::
different

:::::
snow

::::
states

::::::::::::::::::::::::
(Fettweis et al., 2017, 2020)

:::
and

::
so

::
is

:
a
:::::
good

::::::
product

:::::::
against

:::::
which

::
to

::::::::
compare.

Heatmap showing the relative sensitivity of each parameter for different simulated model outputs; albedo, sensible heat flux

(H), latent heat flux (LE), sublimation, surface temperature (Tsurf ), runoff, and surface mass balance (SMB). In each case,400
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a)

b)

Figure 6. a) Posterior parameter values found for three different optimisations; “Both” where the middle and edge points are weighted with a

ratio of 1:4, “Edges” where only the edge points were used in the optimisation, and “Middles” where only the middle points were used. Each

box’s range represents the variation used for each parameter during the optimisation. The vertical black line represents the prior parameter

value. b) Correlations between the posterior parameters calculated at the optimum of the “Both” optimisation.
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the sensitivity of the parameters is shown for simulated quantities at the edge of the ice sheet and in the middle of the ice

sheet. Morris scores are normalised by the highest ranking parameter in each case. Dark squares represent the most sensitive

parameters for each output, and light squares represent parameters with little to no sensitivity.

Parameters from the albedo parameterisation significantly affect the other simulated outputs tested. For the simulated albedo,

the most sensitive parameter is Bdec for both the middle and edge of the ice sheet (Fig. 3). We also see that the heat fluxes,405

surface temperature, and sublimation in the middle
::
In

::::::::
particular,

:::
we

:::
are

::::::::
interested

::
in

:::::
better

:::::::::
modelling

::
the

:::::::
surface

::::
mass

:::::::
balance

::::::
(SMB).

::
It

::::::::
measures

:::
the

::::::::
difference

:::::::
between

:::::
mass

::::
gains

::::
and

:::::::
ablation

::::::::
processes,

:::::
hence

::::::::::
dominating

:::
the

::::
rates

::
of

:::::
mass

::::::
change

::::
over

::
the

:::::
GrIS.

:::::::::
Compared

::
to

::::::
MAR,

:::
the

::::::::
manually

:::::
tuned

::::::
version

::
of

:::::::::::
ORCHIDEE

::::::::
performs

::::
best

::
at

:::::::::
simulating

:::::
SMB.

::::
This

:::
can

:::
be

::::
seen

::::
both

:::::::
spatially

::::
and

:::::::::
temporally.

::::::::
Spatially,

:::
the

::::::::::
differences

:::::::
between

:::::
MAR

::::
and

:::
the

:::::::::::
ORCHIDEE

::::::::::
simulations

:::
are

::::::::
observed

::
at

:::
the

:::::
edges

:
-
::::::::
especially

:::
in

:::
the

:::::
north

:::
and

::::
west

:::
of

:::
the

:::::
GrIS.

:::
The

:::::
most

:::::::::
noticeable

:::::::::
difference

::
in

:::
the

::::::::::
ORCHIDEE

:::::
runs

:::
can

::
be

:::::
seen

::
at410

::
the

:::::
west of the ice sheetare sensitive to this parameter. In addition, ,

::::::
where

:::
the

:::::
tuned

::::::
model

::::::::
simulates

:::::
SMB

:::
the

::::
best

:::::
when

::::::::
compared

::
to

::::::
MAR,

:::::::
followed

:::
by

:::
the

::::::::
optimised

::::::
model.

::
In

::::
both

:
the parameter controlling the snow decay rate (τdec) is the most

sensitive parameter for simulating sublimation and the latent heat flux over the whole ice sheet, and one of the most sensitive for

sensible heat flux. Since both Bdec and τdec control the impact of snow decay, they directly impact the albedo of the snow and,

therefore, the surface temperature. The surface temperature directly affects runoff and the sensible heat flux (calculated as a415

function of the difference between the surface temperature and the temperature of the atmosphere). The latent heat flux depends

directly on the snow, ice and bare soil fractions. The higher the amount of runoff,
::::::::
manually

:::::
tuned

:::
and

:::::::::
optimised

:::::::
models, the

more likely it is to have areas where all the snow melts (or grid points where the snow fraction decreases). Therefore the latent

heat flux on the snow decreases and so does the sublimation.

The model outputs are only marginally sensitive to τmax. Since we normalise the Morris score by the highest ranking420

parameter, this shows that
::::
SMB

::
is

:::::::
reduced

::
at

:::
the

:::::
west

::
of

:::
the

:::
ice

:::::
sheet

::::::::
compared

::
to
:::

the
:::::::

default
::::::::::
ORCHIDEE

:::::::
model.

::::
This

::
is

:::::::
mirrored

:::
by

::
an

:::::::
increase

::
in
::::::

runoff
::
at

:::
the

::::
west

:::
of

:::
the

:::
ice

:::::
sheet.

:::::::
Indeed,

:::
for

::::::::
simulated

::::::
runoff,

:::::::
changes

:::
are

::::::
mainly

::::::
found

::
at

:::
the

::::
west

::
of

:::
the

:::
ice

:::::
sheet,

:::::
with

:::
the

:::::
tuned

:::::
model

::::::::::
performing

:::
the

::::
best

::::
and

:::
the

::::::::
optimised

::::::
model

::::::
second

:::::
when

:::::::::
compared

::
to

::::::
MAR.

::::
Both

::::::
models

:::::::
improve

:::
the

::
fit
:

compared to the most sensitive parameter, τmax is the least important albedo model parameter in

explaining possible range of responses for each modelled output tested. Although seen to be correlated δc at the optimum of425

the cost function (Fig. 6b), changes in δc have more impact on the model outputs than τmax, especially at the centre of the ice

sheet. Since δc appears in the exponential term of Eq. 2, small variations in its value will have a larger impact on the snow

age τsnow than small variations in τmax. Nevertheless, δc is the second least sensitive albedo parameter for simulated albedo.

::::::
default

::::::::::
ORCHIDEE

:::::::::::
simulations.

::::::::
However,

::::::
neither

::::::
model

:
is
::::

able
:::
to

::::::
capture

:::
the

:::::::::
magnitude

::
of

:::
the

::::::
runoff

::
in

::::::::
summer,

::::
with

:::
the

::::
tuned

::::::
model

:::
still

:::::
only

::::::::
simulating

::::
half

:::
the

::::::::
expected

:::::::::
magnitude

::
of

::::::
runoff.430

The last two parameters of the albedo parameterisation, omega and beta, can be seen to impact temperature and the sensible

heat flux at the centre of the ice sheet. These parameters are present in the part of the parameterisation controlling the effect of

low temperature on metamorphism (Eq. 3). Since, by influencing snow ageing, these parameters impact surface temperature

(through changes in albedo) and thus the sensible heat flux.
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The sensible heat flux is especially sensitive to the parameter determining the ice albedo at the edges
::::
When

:::
we

::::::::
consider435

:::::::
modelled

:::::::::::
sublimation,

:::
we

:::
get

:::
the

:::::
most

:::::::
different

::::::
results.

:::
By

:::::::::
increasing

:::
the

::::::
albedo

::::
over

:::
the

:::
ice

:::::
sheet,

:::
we

::::::::
decrease

:::::
latent

::::
heat

:::
over

::::
the

::::
area

:::
and

::::::
hence

:::::::::::
sublimation.

:::::
When

::::::::::
considering

:::
the

:::::
time

:::::
series,

::::
we

:::
see

::::
that

:::
the

::::::::
optimised

::::::
model

::::
gets

:::
the

:::::::
correct

::::::::
magnitude

:::
of

::::::::::
sublimation

::::::
during

:::
the

:::::::
summer

:::::::
months.

:::
All

::
of

:::
the

:::::::::::
ORCHIDEE

::::::::::
simulations

::::
have

::
a
:::::::
delayed

::::
peak

:::::::::
compared

::
to

:::::
MAR

:::
and

:::
no

::::::::::
sublimation

::
is

::::::::
simulated

:::
by

:::::::::::
ORCHIDEE

::::::
outside

:::
the

::::::::
summer

:::::::
months.

:::::
When

::::::::
averaged

::::
over

:::::
time,

:::
we

:::
see

::::
that

:::::
MAR

:::
has

::::
high

::::::::::
sublimation

::::
rates

::
to

:::
the

::::
east

::
of

:::
the

:::::
GrIS.

::::::::
However,

:::::
none

::
of

:::
the

:::::::::::
ORCHIDEE

:::::::::
simulations

:::::::
capture

::::
this.

:::::::
Instead,440

::
the

::::::::::
sublimation

::::
over

:::
the

::::::
centre of the ice sheet . We expect the snow to melt faster at the edges exposing the bare ice below and

hence increasing the importance of ice albedo. The ice albedo will therefore impact the surface temperature at these exposed

edge points and thus the sensible heat flux.

Modelled albedo is not very sensitive to parameters from the viscosity and fresh snow settling parameterisations
:
is
:::::
what

::::::
changes

::::
with

:::
the

::::::::
different

::::::::
parameter

:::
sets

:
- especially not at the centre of the ice sheet. However, these parameters are important445

for other modelled quantities
::::
with

::
the

:::::::::
optimised

:::::
model

::::::::
lowering

:::
the

::::
rates

:::
the

:::::
most.

:::
The

::::::
strong

::::::
impact

:::
that

::::::::
changing

::::::
albedo

:::
has

::
on

::::::::
simulated

::::::::::
sublimation

::::
over

:::
the

::::::
whole

::
of

:::
the

::::
GrIS

:::::
shows

::::
how

:::::::
coupled

::::
they

:::
are

::
in

:::
the

::::::
model.

The runoff, surface mass balance, and sublimation are sensitive to the viscosity parameters (Eq. B2),
::::::
Overall,

:
with the

parameter controlling the impact of snow density on this parameterisation (v2) highlighted as
::::::::
optimised

::::::
model,

:::
we

:::
do

:::::
better

:::
than

:::
the

::::::::
standard

::::::::::
ORCHIDEE

::::::
model

:::
but

:::
not

::
as

::::
well

:::
as

:::
the

::::
tuned

:::::::
model.

::::::
During

:::
the

::::::
manual

::::::
tuning

::
of

:::
the

::::::
albedo

::::::::::
parameters,450

the most sensitive. When viscosity decreases, snow density increases and liquid water holding capacity decreases. This leads

to an increase in runoff and a decrease in SMB. If the increase in runoff at the edges leads to a significant decrease in snow

cover, this will also impact sublimation (which depends on the snow fraction and temperature).

The ice sheet temperature at
::::::::::
performance

::
of

:::
the

:::
new

::::::::::
parameters

:::
was

:::::::
assessed

::::::
against

::::::
several

::::::
model

:::::::
outputs,

::::::::
including

:::::
SMB,

:::::::::
sublimation

::::
and

:::::
runoff

:::
at

::::
each

::::
step

::
of

:::
the

::::
trial

:::
and

:::::
error

:::::::::
procedure.

:::
We

::::
can

::::
think

::
of
::::

this
::::::
manual

::::::
tuning

::
as
::

a
:::::::::::::
multi-objective455

:::::::::
calibration.

:::::
When

::::::::::
performing

:::
the

::::::::
Bayesian

:::::::::::
optimisation,

:::
we

:::
get

:::
the

::::
best

::
fit
:::

to the surface is sensitive to fresh snow settling

parameters (Eq. B3), especially to ρd. When considering the rate of density change equation (Eq. B1), we can see it is made

up of two terms: a term representing the compaction due to snow load and a term parameterising the effect of metamorphism,

which is significant for fresh settling snow. With newly fallen snow, ρsnow is generally low (50-200 kg.m−1, especially in

cold environments with little wind. Depending on the value of ρd, the density term in Eq. B3 will become zero more or less460

quickly, maximising the value of ψsnow. This, in turn, increases the density of snow (ρsnow) in the model
:::::
albedo.

:::::::::
However,

::
we

::::::::
overfitted

:::
to

:::::
albedo

::::
with

:::
no

:::::
other

::::
data,

::::::::
degrading

:::
the

:::
fit

::
to

::::
other

::::::
model

:::::::
outputs.

::
As

:::::
seen

::::
with

:::
the

:::::
BFGS

::::::::
algorithm

::::
and

:::
the

:::::::
posterior

::::::::::
parameters,

::::::::
parameter

:::::
space

::
is

:::
not

::::::
smooth

:::
but

::::
has

::::
many

:::::
local

:::::::
minima.

:::
As

::::
such,

::
it

::
is

:::::::
possible

:::
that

:
a
::::::::
different

:::::::
solution

:::::
exists,

::::::::
reducing

::
the

::::::
albedo

::
to

::
a
::::::
similar

:::::
extent

::::::
whilst

:::
also

:::::::::
improving

:::
the

::
fit

::
to

:::::
other

::::::::
modelled

:::::::
outputs.

::
To

:::::::
achieve

::::
this,

::
we

:::::
need

::
to

::::::
include

:::::
more

:::
data

::
in
:::
the

:::::::::::
optimisation

::
to

:::::::
perform

:
a
:::::::::::::
multi-objective

:::::::::::
optimisation.

::
If

:::
we

:::::
cannot

::::
find

::::
such

::
a

::::::::
parameter

:::
set,

::::
this465

:::::
would

:::::
point

::
to

::::::::
structural

::::::::
problems

::
in

:::
the

::::::
model,

::::
i.e.,

::::::
missing

:::::::::
processes. As the density of snow increases, the snow becomes

less insulating, and the thermal conductivity inside the snowpack increases. In other words, the temperature inside and at the

snowpack’s surface depends directly on the snow density. This sensitivity to the fresh snow settling parameters may be more
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important at the edges of the ice sheet because there is more precipitation than in the centre, where the climate is colder and

therefore drier.470

Although modelled albedo is not very sensitive to parameters from the other parameterisations tested, these parameters

greatly impact other model outputs. These model outputs, in turn, are sensitive to these other parameters, especially those from

the viscosity parameterisation. Therefore, for future experiments, this sensitivity analysis suggests that to optimise energy

budget, runoff and sublimation simultaneously, we would need to consider including the parameters from the albedo and

viscosity parameterisations.475

5 Discussion and conclusions

We have shown that by giving extra weight to the edge points during the optimisation, we can find a set of parameters that

improves model-data fit for all the GrIS. The reduction of RMSD at the edges was similar to the reduction found when only

focusing on the edge points during the optimisation. However, by including the middle points in the optimisation, the whole

ice sheet greatly improved its fit to retrieved albedo. The model was optimised against three separate years simultaneously and480

validated against the rest of the time series. Improvements were consistent over all the years considered.

Parameter optimisation is a valuable tool for model development. Not only can it be used to find the best set of parameters

for a given parameterisation, but more importantly, it can help identify structural issues in the model. When we cannot further

improve the model against the observations, this can point to structural deficiencies in the model. For example, we cannot

capture the different albedos in the north and south of the ice sheet with the current processes represented. More structural485

changes may help capture this variability. For example, we could look at further improving the snow/ice transfer processes

by better discretising vertically the snowpack (Charbit et al., in prep.). Since we are running the ORCHIDEE offline - i.e.,

prescribing the meteorological forcing , - it would also be beneficial to run the model with different forcings to separate model

structural errors from the errors in the forcing.
:::
This

::
is
:::::::::

important
:::::
since

:::::
MAR

::
is

:
a
:::::::::

modelled
:::::::
estimate

::::
and,

::::::::
therefore,

::::
will

:::
be

::::::
subject

::
to

::
its

::::
own

::::::
biases

:::
and

::::::
errors.

:::
We

::::::
would

::::
want

::
to

::::::
ensure

:::
that

:::
we

:::
are

:::::::::
correcting

:::::
errors

::
in

:::
the

::::
land

:::::::
surface

:::::
model

::::
and

:::
not490

::::::::
correcting

::::::::::
atmospheric

::::::
biases

::
in

:::
the

::::::
forcing

::::
data.

:

We must also remember that there are errors linked to the retrievals themselves. Indeed, the large errors
:::::::::::
uncertainties in the

winter months led us to omit them during the optimisation stage of
::
for

:
this study. For the other months, we set the observation

errors to be the mean-squared difference between the observations and the prior model simulation to also account for the

structural model errors. However, in practice, the true errors may be very different.
:::
For

::::::::
example,

:::::::
although

:::::
steps

::
to

::::::
correct

:::
the495

::::
solar

:::::
zenith

:::::
angle

::::
bias

::
in

:::
the

:::::::
product

::::
have

::::
been

::::::::::
undertaken,

::
it
::
is

:::::::
possible

::::
that

:::
the

:::::::
strength

::
of

:::
the

::::::::::
north-south

::::::
albedo

:::::::
gradient

:::::::
observed

::
in

:::
the

::::
data

::
is
:::
an

::::::
artefact

:::
of

:::
the

:::::::
product.

:::::::
Without

::::
clear

::::
and

:::::
robust

::::::::::
uncertainty

::::::::::::
quantification,

:::
we

::::::
cannot

::::::::::
disentangle

::::::
natural

::::
GrIS

::::::::
processes

:::::
from

::::::
biases

::
in

:::
the

::::::::
retrievals.

::::::
There

::
is

::
an

::::::
urgent

:::::
need

:::
for

::::
data

::::::::
producers

::
to
:::::::

provide
::::
this

::::::::::
uncertainty,

:::::
ideally

:::
at

::::
each

::::
time

:::::
step. We further evaluate the optimisations with data from the same source, which will have the same

systematic errors. One method to bypass this issue would be to evaluate the model using data from a different source, e.g., in500

situ data from the PROMICE network (Fausto et al., 2021). However, with these in situ data, we lack accurate local forcing data
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Figure 7.
:::::
Impact

:::
of

:::::::
different

::::::::
parameter

:::
sets

:::
on

::::::::::
ORCHIDEE

::::::::::
simulations;

:::::::::
“Standard”

::::
uses

::::::
default

::::::::
parameter

::::::
values,

:::::::
“Tuned”

::::
uses

:::::::
parameter

:::::
values

::::
from

:::
the

::::::
manual

:::::
tuning

:::
and

::::::::::
“Optimised”

::::
from

::
the

::::::::::
ORCHIDAS

::::::::::
optimisation.

:::::
Shown

:::
are

:::::
spatial

::::
maps

:::::::
averaged

::::
over

::::
time

::::::::::::
(March-October)

:::
for

::::
MAR

:::::
(left)

:::
and

::
the

::::::::
difference

::::::
between

::::::::::
ORCHIDEE

:::
and

:::::
MAR.

::::
Each

:::
row

:::::::
features

:
a
::::::
different

:::::::
variable

::
of

:::::
interest

:::::
(Top:

::::
SMB,

::::::
Middle:

::::::
Runoff,

:::::::
Bottom:

::::::::::
Sublimation).
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Figure 8.
::::
Same

::
as

::::
Fig.

:
7
:::
but

::::::
showing

:::::::
monthly

:::::
means

:::::::
averaged

:::
over

:::::
space.

::::
This

:::
time

:::
the

:::::::
columns

:::::
feature

:::
the

::::::
different

:::::::
variables

::
of

::::::
interest.

with which to drive the model, rendering such tests futile. One solution would be to run the model over these in situ sites with

the same MAR atmospheric forcing at 20 km, but this then would lead to issues of scale and representativity.
:::
For

:::::::::
additional

:::::::::
evaluation,

:::
we

::
are

::::::
testing

:::
the

::::::::::
application

::
of

:::
this

:::::
model

::::
and

:::::::::
parameters

::
to

:::::
other

::::
polar

::::
and

::::::::
non-polar

:::::::
regions,

::::::
starting

::::
with

:::::
other

::
ice

::::::
sheets

::::
such

::
as

:::::::::
Antarctica.

:
505

In our optimisations, we put great importance on the edge points. However, these are also the points where we are most

likely to find bare soil and vegetation instead of ice. These points could be represented by some of the other plant functional

types in the model, which have different parameter values for Aaged and Bdec. To identify and separate these pixels from the

ice-covered pixels used in this study, future experiments could exploit the ESA CCI (European Space Agency Climate Change

Initiative) land cover product (ESA, 2017) allowing us to optimise these parameters for each of the plant functional types510

present.

We have also shown that while significantly improving the model’s fit to retrieved albedo measurements, changing the

parameters also influences the other model outputs. This was
:::
first done by performing a Morris sensitivity analysis. Morris

was chosen since it only required a small number of model runs. However, its main limitation is that the sensitivity measure

is only qualitative - the parameters are only ranked in order of significance but we do not quantify their absolute contribution.515

Furthermore, with this method, it is not possible to distinguish nonlinearity from interactions. It is also very dependent on the

range of variations assigned to the parameters. Nevertheless, the Morris approach can still help give a broad overview of the

most influential parameters and the model outputs they impact.
:::
We

::::
also

::::::
showed

:::
the

::::::::
influence

::
of

:::
the

:::::::::
parameters

:::
on

::::
other

::::::
model

::::::
outputs

:::
by

:::::::::
comparing

::::::::
simulated

:::::
snow

:::::
states

::
to

:::
the

:::::
MAR

::::::
model.

::::
The

:::::::::
optimised

:::::
model

::::
was

:::::
found

::
to
:::::::

perform
::::::

better
::::
than

:::
the

::::::
original

:::::::::::
ORCHIDEE

:::::
model

:::
but

:::
not

:::
as

:::
well

:::
as

:::
the

::::
tuned

::::::
model

:::
for

:::::::::
simulating

::::
SMB

::::
and

::::::
runoff.

:::
For

::::::::::
sublimation,

:::
the

:::::::::
optimised520

:::::
model

:::::::::
simulated

:::
the

:::::
most

:::::::
accurate

:::::::::
magnitude

::
in

:::::::
summer;

::::::::
however,

::
it

:::
still

:::::::
showed

:
a
::::
bias

:::::
when

:::::::::
considered

:::::::
spatially.

:

Therefore, in addition to considering further structural changes, it will be necessary to further optimise the model against

a range of datasets. With the ever-growing quantity of satellite datasets available, there are many different avenues we could

consider. For example, we could use data from the GRACE (Gravity Recovery and Climate Experiment) satellite mission to

constrain SMB (Sasgen et al., 2020). To constrain ice velocity, we could use products based on Sentinel-1 retrievals (Mouginot525
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et al., 2017; Andersen et al., 2020) and data from the ESA CCI land surface temperature project (Karagali et al., 2022) could

be used to constrain surface temperatures. Combining these datasets with MODIS albedo would result in a rich data source

with which to optimise the model and learn about different processes governing the ice sheet.

Code availability. The ORCHIDEE vAR6 model code and documentation are publicly available via the ORCHIDEE wiki page (http:

//forge.ipsl.jussieu.fr/orchidee/browser/) under the CeCILL license (http://www.cecill.info/index.en.html, CeCILL, 2020). The associated530

ORCHIEE documentation can be found at https://forge.ipsl.jussieu.fr/orchidee/wiki/Documentation. The ORCHIDEE model code is written

in Fortran90 and is maintained and developed under an SVN version control system at the Institute Pierre Simon Laplace (IPSL) in France.

The ORCHIDAS data assimilation scheme (in Python) is available through a dedicated web site (https://orchidas.lsce.ipsl.fr).

Appendix A: Additional parameters
:::::::::::
Preliminary

::::::::::::
optimisations

:::
Two

:::::::::::
preliminary

:::::::::::
optimisations

:::::
were

:::::::::
performed

:::
to

:::::
select

:::
the

::::::::::::
minimisation

::::::::
algorithm

::::::
(Sect.

:::
A),

::::
and

::
a

::::::
further

::::::::::
experiment535

:::::::
focusing

:::::
solely

:::
on

:::
the

:::::
edges

::
of

:::
the

:::
ice

:::::
sheet

::::
was

:::::::::
undertaken

::
in

:::::
Sect.

::::
3.3.

:::::
These

::::
three

::::
test

::::::::::
experiments

:::::
were

:::::::::
performed

::::
over

::
the

::::
year

:::::
2000

:::::
(with

:::
the

::::
years

:::::::::
1998-1999

:::
as

:::::::
spin-up).

:

A1
:::::::::
Algorithm

::::::
choice

::
To

::::::
choose

::::::
which

:::::::::::
optimisation

:::::::::
algorithm

::
to

::::
use

::
in

:::
the

:::::
main

:::::::::::
experiment,

:::
we

:::::::::
performed

::::
two

::::::::::
preliminary

::::
tests

::::::::::
optimising

:::
over

::
a
::::::
single

::::
year

:::
and

::::
over

:::
the

::::::
whole

::
of

::::
the

::::
GrIS

::::::::
(without

::::::::
weighting

:::
the

:::::::
edges).

::::
The

:::::
results

:::
in

::::
Fig.

:::
A1

::::
show

::::
the

:::::::
changes540

::
in

:::
the

::::::::
simulated

::::::
albedo

:::::
when

::::::::
averaged

::::::::
spatially.

:::::
When

::::::
using

:::
the

:::::::::
L-BFGS-B

:::::::::
algorithm,

:::
the

::::::::::::
improvement

::
in

::::::::::
model-data

::
is

::::::::::::::
indistinguishable

::::
(Fig.

:::::
A1).

:::::
Since

:::
the

:::::
prior

:::::
model

:::::
used

:::
was

:::::::
already

::::::::::
extensively

::::::::
manually

:::::
tuned,

::
it
::
is

:::::
likely

::::
that

:::
we

::::::
started

::::
very

:::
near

::
to
::
a
::::::::
minimum

::::
(i.e.,

::::::::::
somewhere

:::::
where

:::
the

:::::::
gradient

::
is

::::
close

::
to

::::
zero

::::::::::
surrounded

::
by

:::::::
positive

:::::::
gradient

:::::::
values).

::::::::
However,

:::
this

::
is

:::
not

:::
the

::::::
global

::::::::
minimum

:::::
since

:::
we

::::
have

::::
been

::::
able

::
to
::::::

reduce
:::
the

::::
cost

::::::::
function

::::::
further

::::
when

:::::
using

::
a
:::::::
different

:::::::::
algorithm

::::
(i.e.,

::
in

:::
the

::::
GA

:::::
case).

:::::
Since

:::::::::::::
gradient-based

:::::::::
algorithms

::::
rely

:::
on

:::::::
negative

:::::::
gradient

::::::
values

::
to

:::::::::
minimise

:::
the

::::
cost

::::::::
function,

:::
the545

::::::::::::
gradient-based

::::::::
algorithm

::
is

::::::
unable

::
to

::::
leave

:::::
local

:::::::
minima,

:::
and

:::::::::
therefore,

::
the

::::
cost

:::::::
function

::
is
::::::
hardly

:::::::::
minimised.

::
In

:::::::::::
comparison,

::::
with

:::
GA,

:::
the

::::::
RMSD

::
is
:::::::
reduced

:::
by

::::
over

::::
10%

::::
(Fig.

::::
A1).

::::
This

:::::::::::
improvement

:::
can

:::
be

::::
seen

::::
over

::::
most

::
of

:::
the

:::::
GrIS

:::
and

::::
most

:::::::
notably

::
in

:::
the

:::::
south

::
of
:::

the
:::
ice

:::::
sheet.

::::
The

:::::
north

::
is

:::
still

:::::::::::::
underestimated,

:::
but

::
to

::
a
:::::
lesser

:::::
extent

::::
than

::::
with

:::
the

::::
prior

::::::
model.

:

A2
:::::::::
Weighting

:::
the

:::::
edge

::
of

:::
the

:::
ice

:::::
sheet

::
To

:::
see

::::
what

:::
the

:::::::
maximal

:::::::::::
improvement

::
in
::::::::::
model-data

::
fit

:::
we

:::
can

:::::
expect

::::
over

:::::
these

:::::
edges,

:::
we

::::::::
performed

::
a
:::::::::
preliminary

::::::::::
experiment550

:::::::::
optimising

::::
only

::::
these

::::::
points

:::
and

::::
only

::::
over

:::
the

:::::::
months

:::::::::::::
March-October

:::::
(Table

:::
2).

:::
We

:::::
were

::::
able

::
to

::::::
reduce

:::
the

::::::
RMSD

::
at

:::::
these

:::::
points

:::
by

::::::::::::
approximately

:::::
10%.

::::
This

::::::::::
optimisation

::::
was

::::
also

::::
able

::::::
overall

::
to

:::::::
improve

::::
the

::::::::
simulated

::::::
albedo

::
in

:::
the

::::::
middle

:::
of

:::
the

::
ice

:::::
sheet

::
in

::::::::
summer.

::::
This

::::::
implies

:::::
there

::
is

:::::
some

:::::::::
consistency

::::::::
between

:::
the

::::
edge

::::
and

::::::
middle

:::::
points

:::
for

:::
the

:::::
2000

:
-
:::::
2017

::::::
period.

::::::::
However,

:::
this

:::::::::::
optimisation

:::
did

:::
not

:::::::
improve

:::
the

::::::
middle

::::::
points

::::::::::
consistently

:
-
:::
for

::::::::
example,

:::
we

:::::::
observe

:
a
::::::::::
degradation

:::
in

::
fit

:::
for
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Figure A1.
:::
The

:::::::::
differences

:::::::
between

::::::::
simulated

:::
and

:::::::
retrieved

::::::
albedo

::::
over

::::::::
Greenland

::::::::
(averaged

::::
over

:::::::::::::
March-October).

::::::
Shown

:::
are

:::
the

::::::::
differences

:::::::
between

::
the

::::::
model

:::
and

::::::
MODIS

:::::
using

::
its

::::
prior

::::::::
parameter

::::::
values

::::
(left),

:::::::::
parameters

::::
using

:::
the

:::::
BFGS

::::::::
algorithm

:::::::
(middle),

::::
and

::::::::
parameters

:::::
found

::::
using

:::
the

:::
GA

:::::::
algorithm

::::::
(right).

::
In

:::
each

:::::
panel,

:::
the

::::::
RMSD

::::::
between

::::::
MODIS

:::
and

:::
the

:::::::
different

:::::::::
ORCHIDEE

:::::
model

:::::::
versions

:
is
::::::
shown.

Table A1.
:::::
Results

::
of
::

a
:::::::::
preliminary

::::::::
experiment

:::::::::
optimising

:::
only

:::
the

::::
edge

:::::
points

::
of

:::
the

::::
GrIS

::
for

::::::::::::
March-October

::
of

:::::
2000.

:::
The

::::::::::
optimisation

:::
was

::::::::
performed

::::
using

:::
the

:::
GA

::::::::
algorithm.

:::::::::
Percentage

:::::::
reduction

::
of

:::::::::
model-data

::::::
RMSD.

:::::::
Negative

:::::::
numbers

::::
show

::
an

:::::::
increase

::
in

::::::
RMSD

::
i.e.

::
a

::::::::
degradation

::
in
:::
fit.

::::
Year

::::
Edge

:::::
points

:::::
Middle

:::::
points

: :::
All

::::
points

:

::::
2000

::::
11.86

::::
-6.01

: :::
3.14

:

::::::::
2000-2017

:::::
10.11

:::
8.51

::::
9.21

::
the

::::
year

:::::
2000.

::
It
::::
also

::::::::
degrades

::
the

:::
fit

::
of

::::::
albedo

::
in

:::
the

:::::
winter

:::::::
months;

:::
the

:::::::::
maximum

::::::
albedo

:::::
value

::::::
attained

:::
in

:::::
winter

::::
was

:::::
much555

:::::
lower

::::
than

:::
the

:::::::
retrieved

::::::
values.

::::::::
Although

:::
the

::::::
winter

::::::
values

:::
are

:::::
more

::::::::
uncertain,

::::
they

::::
still

::::
give

::
an

::::
idea

::
of

:::
the

::::::::
maximal

::::::
albedo

:::
over

:::
the

:::::
GrIS

::::
after

:::::
snow

:::::::::::
accumulation.

:
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Table B1.
::::::::
Parameters

::
of
:::

the
:::::

snow
:::::
albedo

::::::
model.

::::::
Default

:::::
values

::::
refer

::
to
:::::::::

parameters
::::
used

::
in

::
a
::::::
standard

::::::::::
ORCHIDEE

:::::::::
simulation,

:::::
tuned

::::::::
parameters

::::
refer

::
to

:::::
values

:::::
found

:::
after

:::
the

::::::
manual

:::::
tuning

::::::::::
experiments,

:::
and

:::
the

:::::::
optimised

:::::::::
parameters

::::
refer

::
to

::::::::
parameters

:::::
values

:::::
found

::::
after

::::
using

::::::::::
ORCHIDAS.

:::::::
Parameter

: :::::::::
Description

::::::
Default

:::::::
Manually

:::::
tuned

::::::::
Optimised

::::
Aaged

Sum to be the albedo of fresh snow :::
0.62

: ::::
0.525

::::
0.553

:::
Bdec: ::::

0.169
::::
0.349

::::
0.320

::
δc :::::::

Snowfall
::::
depth

:::::::
required

:
to
::::
reset

:::
the

::::
snow

:::
age

:::
(m)

: ::
0.2

:
1
: ::::

0.783

:::
τ dec: ::::

Snow
:::
age

:::::
decay

:::
rate

:::::
(days)

::
10

:
2
: ::::

6.911

:
ω
: Tuning constants for glaciated snow covered areas :

7
::
2.5

::::
3.037

:
β
: :

4
:
4
: ::::

3.974

:::
τmax: ::::::::

Maximum
::::
snow

:::
age

::
50

::
50

:::::
56.183

:

:::
αICE: ::

Ice
::::::
albedo

::
0.4

::
0.4

::::
0.476

Appendix B:
:::::::::
Parameter

:::::::::::
information

B1
:::::::::
Parameter

::::::
values

B2
:::::::::
Additional

:::::::::::
parameters560

To get a better overview of the model output sensitivities, we consider addition parameters used to calculate the local rate of

density change in the ith layer of the snowpack:

1

ρsnow(i)

δρsnow(i)

δt
=
g.M(i)

η(i)
+ψ(i) (B1)

The first term, represents the compaction due to snow load. This depends on the pressur
::::::
pressure

:
of the overlying snow,

calculated using the gravitational constant (g; m.s−2) and the cumulative snow mass (M; kg.m−2) and snow viscosity (η). The565

second term describes the effect of metamorphism (ψ), which can also be thought of as determining the settling of freshly fallen

snow since this effect is most significant for newly fallen snow. Both the snow viscosity (η) and settling of freshly fallen snow

(ψ) are solved in ORCHIDEE using the following empirical exponential functions of snow density (ρsnow) and temperature

(Tsnow):

η(i) = v0 exp(v1(Tf −Tsnow(i))+v2ρsnow(i)), (B2)570

ψ(i) = s0 exp(−a1(Tf −Tsnow(i))− s2(max(0,ρsnow(i)−ρd)). (B3)

where Tf is the triple-point temperature for water. The rest are parameters whose values and ranges of variation used in the

sensitivity analysis are outlined in Table B2.
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Table B2. Parameters used to calculate the local rate of density change. The prior
:::::
default value refers to the default value used in the model

:
a

::::::
standard

::::::::::
ORCHIDEE

::::::::
simulation, min and max refer to the ranges over which the parameters are allowed to vart during out experiments.

Equation Parameter Units Prior
::::::
Default Min Max

η (Eq. B2)

v0 Pa s 3.7 x 10−7 1.5 x 10−7 4 x 10−7

v1 K−1 0.081 0.08 0.35

v2 m3.kg−1 0.018 0.009 0.02

ψ (Eq. B3)

s0 s−1 2.8 x 10−6 1.5 x 10−6 3.5 x 10−6

s1 K−1 0.04 0.01 0.1

s2 m3.kg−1 460 320 600

ρd km.m−3 150 100 200
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